2010高等数学下试卷及答案

合集下载

(完整)2010年全国高考数学试题及答案-全国2卷,推荐文档

(完整)2010年全国高考数学试题及答案-全国2卷,推荐文档

(完整)2010年全国高考数学试题及答案-全国2卷,推荐文档绝密★启用前2010年普通高等学校招生全国统一考试(全国Ⅱ卷)文科数学第Ⅰ卷(选择题)本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么球的表面积公式(+)()+()P A B P A P B = S=4πR 2如果事件A 、B 相互独立,那么其中R 表示球的半径()()()P A B P A P B ?=? 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34V R 3π= n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径P ()(1)(0,1,2,,)k k n k n n k C p p k n -=-=L一、选择题(1)设全集{}*U 6x N x =∈<,集合{}{}A 1,3B 3,5==,,则U ()A B =U e()(A){}1,4 (B){}1,5 (C){}2,4 (D){}2,5(2)不等式302x x -<+的解集为()(A){}23x x -<< (B){}2x x <-(C){}23x x x <->或(D){}3x x >(3)已知2sin 3α=,则cos(2)πα-= (A) 53- (B) 19- (C) 19(D) 53 (4)函数1ln(1)(1)y x x =+->的反函数是(A) 11(0)x y ex +=-> (B) 11(0)x y e x -=+> (C) 11(R)x y e x +=-∈ (D) 11(R)x y e x -=+∈ (5) 若变量,x y 满足约束条件1325x y x x y ≥-??≥??+≤?,则2z x y =+的最大值为(A) 1 (B) 2 (C) 3 (D)4(6)如果等差数列{}n a 中,3a +4a +5a =12,那么1a +2a +…+7a =(A) 14 (B) 21 (C) 28 (D)35(7)若曲线2y x ax b =++在点(0,)b 处的切线方程式10x y -+=,则(A )1,1a b == (B )1,1a b =-=(C )1,1a b ==- (D )1,1a b =-=-(8)已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA=3,那么直线AB 与平面SBC 所成角的正弦值为(A )3 (B )5 (C )7 (D ) 34(9)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有(A )12种(B )18种(C )36种(D )54种(10)△ABC 中,点D 在边AB 上,CD 平分∠ACB ,若CB a =,CA b =,1,2a b ==,则CD =(A )1233a b + (B )2233a b + (C )3455a b + (D )4355a b + (11)与正方体1111ABCD A B C D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点(A )有且只有1个(B )有且只有2个(C )有且只有3个(D )有无数个(12)已知椭圆C :22x a +22by =1(0)a b >>的离心率为23,过右焦点F 且斜率为k (k >0)的直线与C 相交于A 、B 两点,若AF =3FB ,则k = (A )1(B )2 (C )3 (D )2第Ⅱ卷(非选择题)二.填空题:本大题共4小题,每小题5分,共20分。

2010年级数学试卷下册【含答案】

2010年级数学试卷下册【含答案】

2010年级数学试卷下册【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x^3 3x在x=0处的导数为-2,则f(x)在x=0处的切线方程为()A. y = -2x + 3B. y = 2x 3C. y = -2x 3D. y = 2x + 32. 设矩阵A为对称矩阵,则下列选项正确的是()A. A的逆矩阵也是对称矩阵B. A的特征值都是实数C. A的行列式值为0D. A的转置矩阵等于A的逆矩阵3. 已知函数g(x) = ln(x + 1) + x^2,则g(x)在(0, +∞)上()A. 单调递增B. 单调递减C. 有极大值D. 有极小值4. 若函数h(x) = ax^3 + bx^2 + cx + d在x=1处有极大值,则()A. a > 0B. b > 0C. c < 0D. d > 05. 设向量组α1, α2, α3线性无关,向量组β1, β2, β3线性相关,则下列选项正确的是()A. α1, α2, α3线性相关B. β1, β2, β3线性无关C. α1, α2, α3与β1, β2, β3等价D. α1, α2, α3与β1, β2, β3线性相关二、判断题(每题1分,共5分)1. 若函数f(x)在区间(a, b)上单调递增,则f'(x)在区间(a, b)上恒大于0。

()2. 若矩阵A为可逆矩阵,则A的行列式值不为0。

()3. 函数f(x) = x^2在x=0处取得极大值。

()4. 若向量组α1, α2, α3线性相关,则α1, α2, α3中至少有一个向量可以由其余向量线性表示。

()5. 若函数f(x)在区间(a, b)上连续,则f(x)在区间(a, b)上可积。

()三、填空题(每题1分,共5分)1. 若函数f(x) = x^2 2x + 3,则f'(x) = _______。

2. 设矩阵A = [1 2; 3 4],则det(A) = _______。

2010河南专升本高等数学真题及答案详解

2010河南专升本高等数学真题及答案详解

2010年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学答题前,考生务必将自己的姓名、考场号、座位号、考生号填写在答题卡上。

本试卷的试题答案必须答在答题卡上,答在试卷上无效。

一、选择题(每小题2分,共60分)在每小题的四个备选答案中选出一个正确答案,用铅笔把答题卡上对应题目的答案标 号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

1.设函数)(x f 的定义域为区间(1,1]-,则函数(1)e f x -的定义域为A .[2,2]-B .(1, 1]-C .(2, 0]-D .(0, 2]2.若()f x ()x R ∈为奇函数,则下列函数为偶函数的是A .()y x =,[1, 1]x ∈-B .3()tan y xf x x =+,(π, π)x ∈-C .3sin ()y x x f x =-,[1, 1]x ∈-D .25()e sin x y f x x =,[π, π]x ∈- 3.当0→x 时,2e1x-是sin 3x 的A .低阶无穷小B .高阶无穷小C .等价无穷小D .同阶非等价无穷小4.设函数2511sin , 0()e , 0xx x x f x x ⎧>⎪=⎨⎪<⎩,则0x =是)(x f 的 A .可去间断点 B .跳跃间断点 C .连续点D .第二类间断点5.下列方程在区间(0, 1)内至少有一个实根的为 A .220x +=B .sin 1πx =-C .32520x x +-=D .21arctan 0x x ++=6.函数)(x f 在点0x x =处可导,且1)(0-='x f ,则000()(3)lim2h f x f x h h→-+=A .23B .23-C .32-D .327.曲线x x y ln =的平行于直线01=+-y x 的切线方程是 A .1-=x y B .)1(+-=x y C .1y x =-+D .)1)(1(ln -+=x x y8.设函数π2sin 5y =,则='y A.π2cos 5-B.CD.2πcos 55-9.若函数()f x 满足2d ()2sin d f x x x x =-,则()f x = A .2cos xB .2cos x C +C .2sin x C +D .2cos x C -+10.d e sin(12)d d b xax x x --=⎰ A .e sin(12)x x -- B .e sin(12)d x x x -- C .e sin(12)x x C --+D .011.若()()f x f x -=,在区间(0, )+∞内,()0f x '>,()0f x ''>,则()f x 在区间(, 0)-∞内A .()0f x '<,()0f x ''<B .()0f x '>,()0f x ''>C .()0f x '>,()0f x ''<D .()0f x '<,()0f x ''>12.若函数()f x 在区间(, )a b 内连续,在点0x 处不可导,0(, )x a b ∈,则 A .0x 是()f x 的极大值点 B .0x 是()f x 的极小值点 C .0x 不是()f x 的极值点 D .0x 可能是()f x 的极值点13.曲线e xy x -=的拐点为 A .1x =B .2x =C .222,e ⎛⎫ ⎪⎝⎭D .11,e ⎛⎫ ⎪⎝⎭14.曲线2arctan 35xy x=+ A .仅有水平渐近线 B .仅有垂直渐近线C .既有水平渐近线,又有垂直渐近线D .既无水平渐近线,又无垂直渐近线 15.若x cos 是)(x f 的一个原函数,则=⎰)(d x fA .sin x C -+B .sin xC + C .cos x C -+D .cos x C +16.设曲线()y f x =过点(0, 1),且在该曲线上任意一点(, )x y 处切线的斜率为e x x +,则=)(x fA .2e 2x x -B .2e 2x x +C .2e x x +D .2e x x -17.2 π4πsin d 1x xx x -=+⎰A .2B .0C .1D .1-18.设)(x f 是连续函数,则2()d x af t t ⎰是A .)(x f 的一个原函数B .)(x f 的全体原函数C .)(22x xf 的一个原函数D .)(22x xf 的全体原函数19.下列广义积分收敛的是 A.1x +∞⎰ B .2 e ln d xx x +∞⎰C .2e1d ln x x x+∞⎰D .21d 1xx x+∞+⎰20.微分方程0)(224=-'+''y x y y x 的阶数是 A .1B .2C .3D .421.已知向量{5, , 2}a x =-和{, 6, 4}b y = 平行,则x 和y 的值分别为A .4-,5B .3-,10-C .4-,10-D .10-,3-22.平面1x y z ++=与平面2=-+z y x 的位置关系是 A .重合 B .平行C .垂直D .相交但不垂直23.下列方程在空间直角坐标系中表示的曲面为柱面的是 A .221y z += B .22z x y =+ C .222z x y =+D .22z x y =-24.关于函数222222,0(,)0,0xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩下列表述错误的是A .(, )f x y 在点(0, 0)处连续B .(0, 0)0x f =C .(0, 0)0y f =D .(, )f x y 在点(0, 0)处不可微25.设函数)ln(y x y x z -=,则=∂∂yzA .)(y x y x -B .2ln()x x y y --C .ln()()x y xy y x y -+- D .2ln()()x x y xy y x y ---- 26.累次积分2d (, )d x f x y y ⎰⎰写成另一种次序的积分是A .1d (, )d yyy f x y x -⎰⎰B.2d (, )d y f x y x ⎰⎰C.11d (,)d y f x y x -⎰⎰D.11 11d (, )d y f x y x -⎰⎰27.设{(, )|D x y x =≤2, y ≤2},则⎰⎰=Dy x d dA .2B .16C .12D .428.若幂级数∑∞=0n nnx a的收敛半径为R ,则幂级数∑∞=-02)2(n n n x a 的收敛区间为A.( B .(2, 2)R R -+ C .(, )R R -D.(2 229.下列级数绝对收敛的是 A .∑∞=-11)1(n nnB .∑∞=-1223)1(n n nnC .∑∞=-+-1121)1(n n n nD .∑∞=--1212)1(n nn n30.若幂级数(3)nn n a x ∞=-∑在点1x =处发散,在点5x =处收敛,则在点0x =,2x =,4x =,6x =中使该级数发散的点的个数有A .0个B .1个C .2个D .3个二、填空题(每空2分,共20分)31.设(32)f x -的定义域为(3, 4]-,则)(x f 的定义域为________. 32.极限limx =________.33.设函数()(1)(2)(3)(4)f x x x x x =++--,则(4)()f x =________.34.设参数方程22 1 31x t y t =+⎧⎨=-⎩所确定的函数为()y y x =,则22d d yx =________. 35.(ln 1)d x x +=⎰________.36.点(3, 2, 1)-到平面10x y z ++-=的距离是________. 37.函数(1)x z y =+在点(1, 1)处的全微分d z =________.38.设L 为三个顶点分别为(0, 0),(1, 0)和(0, 1)的三角形边界,L 的方向为逆时针方向,则2322()d (3)d Lxyy x x y xy y -+-=⎰ ________.39.已知微分方程x ay y e =+'的一个特解为x x y e =,则a =________.40.级数03!nn n ∞=∑的和为________.三、计算题(每小题5分,共45分)41.求极限2040sin d (e 1)sin lim 1cos x x x t t x x x →⎛⎫- ⎪- ⎪- ⎪⎝⎭⎰. 42.设由方程22e e y xy -=确定的函数为)(x y y =,求d d x yx =. 43.求不定积分2xx .44.求定积分( 2d x x ⎰.45.求过点(1, 2, 5)-且与直线213 3 x y z x y -+=⎧⎨-=⎩平行的直线方程.46.求函数x xy y x y x f 823),(22+-+=的极值. 47.将23()21xf x x x =+-展开成x 的幂级数. 48.计算二重积分Dσ⎰⎰,其中D 是由圆223x y +=所围成的闭区域.49.求微分方程069=+'-''y y y 的通解.四、应用题(每小题8分,共16分)50.要做一个容积为V 的圆柱形带盖容器,问它的高与底面半径的比值是多少时用料最省? 51.平面图形D 由曲线2x y =,直线x y -=2及x 轴所围成.求: (1)D 的面积;(2)D 绕x 轴旋转形成的旋转体的体积.五、证明题(9分)52.设函数)(x f 在闭区间]1,0[上连续,在开区间)1,0(内可导,且(0)0f =,(1)2f =.证明:在)1,0(内至少存在一点ξ,使得()21f ξξ'=+成立.2010年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学试题参考答案及评分标准一、选择题(每小题2分,共60分)二、填空题(每小题2分,共20分)31.[5, 9)- 32.5233.24 34.3235.ln x x C + 3637.2ln 2d d x y + 38.0 39.1- 40.3e三、计算题(每小题5分,共45分)41.3242.222002d d 24e d d e 0x x y y y xx-======- 43.322(e 1)3x C +-44.π22+ 45.125315x y z --+==- 46.函数在(6, 2)--处有极小值(6, 2)24f --=- 47.00111()(1)2[(1)2], , 22nnnnn n nn n n f x x x x x ∞∞∞===⎛⎫=--=--∈- ⎪⎝⎭∑∑∑48.49.1312()e x y C C x =+(1C ,2C 是任意常数) 四、应用题(每小题8分,共16分)50.3232ππ2πππV h V V V r r r r V===⋅=⋅= 51.(1) 1201d 112A x x =+⋅⋅⎰ 13015326x =+= (2) 14201πd π113x V x x =+⋅⋅⎰ 150π8ππ5315x =+=第51题图五、证明题(9分)52.证明:构造函数2()()F x f x x =-,因)(x f 在闭区间]1,0[上连续,在开区间)1,0(内可导,所以函数)(x F 在闭区间]1,0[上连续,在开区间)1,0(内可导,且()()2F x f x x ''=-.于是)(x F 在]1,0[上满足拉格朗日中值定理的条件,故在开区间)1,0(内至少存在一点ξ,使得(1)(0)()10F F F ξ-'=-,将(0)0f =,(1)2f =代入上式,得(1)(0)()[(1)1][(0)0]110F F F f f ξ-'==---=-,即()21f ξξ'-=,于是()21f ξξ'=+.。

2010级高等数学(下)期中试卷参考解答

2010级高等数学(下)期中试卷参考解答

2010级《高等数学》(下)期中试卷(考试时间 120分钟)班级 姓名 学号 成绩 一(10分)设(,,)u f x y z =有连续偏导数,()()和y y x z z x ==分别由方程0xye y -=和0z e xz -=所确定,求du dx。

二(10分)设函数()x,y f 在点(1,1)处可微,且()(,)(,),11111112,3,f f f ,x y∂∂===∂∂()()(x)f x,f x,x ϕ=,求()1d d 3=x x xϕ。

三(10分)求曲面22z x y =+垂直于直线2122x z y z +=⎧⎨+=⎩的切平面方程。

四(10分)求曲面224y x z --=和)(3122y x z +=所围闭区域Ω的体积.五(10分)求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域.六(10分)求面密度为常数μ的锥面22y x z +=()10≤≤z )对z 轴的转动惯量。

七(10分)求函数22222),(y x y x y x f -+=在闭区域}0,4),({22≥≤+=y y x y x D 上的最大值和最小值。

八(10分)计算积分224L xdy ydx x y -+⎰Ñ,其中L 为圆周222(1)(1)x y R R -+=≠(按逆时针方向).九(10分)计算曲面积分⎰⎰∑++=xydxdy zydzdx xzdydz I 32,其中∑为有向曲面)10(4122≤≤--=z y x z 方向取上侧。

十(10分)设函数),(||),(y x y x y x f ϕ-=,其中),(y x ϕ连续,问: (1)),(y x ϕ应满足什么条件,才能使偏导数)0,0(x f ,)0,0(y f 存在。

(2)在上述条件下,),(y x f 在点)0,0(处是否可微?中国矿业大学2010级《高等数学》(下)期中试卷参考解答(考试时间 120分钟)一(10分)设(,,)u f x y z =有连续偏导数,()()和y y x z z x ==分别由方程0xye y -=和0z e xz -=所确定,求dudx。

2010高数试卷及答案(经济管理类)

2010高数试卷及答案(经济管理类)

高数试卷及答案一.(本题30分,每题3分)1.极限lim2nn→+∞⎛⎫=⎪⎪⎝⎭。

解:记))112nα+=,则ln6lim2nnnα→+∞=,))()ln61211lim lim1lim122nnnn nnn n neααα→+∞→+∞→+∞⎛⎫+⎛⎫⎡⎤⎪=+=+== ⎪⎢⎥⎪ ⎪⎣⎦⎝⎭⎝⎭2. 设()f x在1x=处可导,且(1)0f=,(1)1f'=,则极限()1131()d dlim(1)xtxt f u u tx→=-⎰⎰。

解:()()()()()()()()111132111d d d dlim lim lim61131xt x xx x xt f u u t x f u u f u u xf xxx x→→→-==---⎰⎰⎰⎰()()()1'1lim66xf x f x xf x→---==-。

3.设yx=⎰,则334d y dydx dx-=。

解:将yx=⎰y微分得到dxdy=dydx=224'4d y yyydx==,334'd yydx==,简单计算可得3340d y dydx dx-=。

4. 设()f x有一个原函数是sin xx,那么2()xf x dxππ'=⎰。

解:首先由分部积分公式有2222()()()()xf x dx xdf x xf x f x dxππππππππ'==-⎰⎰⎰,又()f x 有一个原函数sin x x,所以'2sin cos sin ()x x x x f x x x -⎛⎫== ⎪⎝⎭, 222cos sin sin 4()1x x xx xf x dx xxπππππππ-'=-=-⎰。

5. 曲线211y x=+绕其渐近线旋转所得旋转体体积V = 。

解:渐近线为x 轴,22224221111seccos 2V dx dt x t tπππππ+∞-∞-⎛⎫==⋅=⎪+⎝⎭⎰⎰。

全国2010年1月-2014年10月高等教育自学考试高等数学(工专)试题和答案

全国2010年1月-2014年10月高等教育自学考试高等数学(工专)试题和答案

全国2010年1⽉-2014年10⽉⾼等教育⾃学考试⾼等数学(⼯专)试题和答案全国2010年10⽉⾼等教育⾃学考试⾼等数学(⼯专)试题课程代码:00022⼀、单项选择题(本⼤题共5⼩题,每⼩题2分,共10分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。

错选、多选或未选均⽆分。

1.函数y=ln在(0,1)内()A.是⽆界的B.是有界的C.是常数D.是⼩于零的2.极限()A.B.0C.e-1D.-∞3.设f(x)=1+,则以下说法正确的是()A.x=0是f(x)的连续点B.x=0是f(x)的可去间断点C.x=0是f(x)的跳跃间断点D.x=0是f(x)的第⼆类间断点4.=()A.cosx+sinx+CB.cosx-sinxC.cosx+sinxD.cosx-sinx+C5.矩阵的逆矩阵是()A.B.C.D.⼆、填空题(本⼤题共10⼩题,每⼩题3分,共30分)请在每⼩题的空格中填上正确答案。

错填、不填均⽆分。

6.如果级数的⼀般项恒⼤于0.06,则该级数的敛散性为__________.7.若=2,则=____________.8.设f(x)=ex+ln4,则=____________.9.函数f(x)=(x+2)(x-1)2的极⼩值点是________________。

10.⾏列式=_________________________.11.设,则___________________.12.如果在[a,b]上f(x)2,则=_______________________.13.若F(x)为f(x)在区间I上的⼀个原函数,则在区间I上,=_______.14.⽆穷限反常积分=_____________________.15.设A是⼀个3阶⽅阵,且|A|=3,则|-2A|_________________.三、计算题(本⼤题共8⼩题,每⼩题6分,共48分)16.求极限.17.求微分⽅程的通解.18.设y=y(x)是由⽅程ey+xy=e确定的隐函数,求.19.求不定积分.20.求曲线y=ln(1+x2)的凹凸区间和拐点.21.设f(x)=xarctanx-,求.22.计算定积分.23.求解线性⽅程组四、综合题(本⼤题共2⼩题,每⼩题6分,共12分)24.求函数f(x)=x4-8x2+5在闭区间[0,3]上的最⼤值和最⼩值.25.计算由曲线y=x2,y=0及x=1所围成的图形绕x轴旋转⽽成的旋转体的体积.全国2011年1⽉⾼数(⼯专)试题课程代码:00022⼀、单项选择题 1.函数y =ln(x -1)的反函数是() A.y =10x +1 B.y=e x +1 C.y =10x -1 D.y=e -x +12.当x →0时,3x 2是() A.x 的同阶⽆穷⼩量 B.x 的等价⽆穷⼩量 C.⽐x ⾼阶的⽆穷⼩量D.⽐x 低阶的⽆穷⼩量 3.设f (x )==-≠+0,20,)1ln(x x xax 在x =0处连续,则a =( ) A.2 B.-1 C.-2 D.1 4.设f (x )==π'?xf dt t 0)2(, sin 则( ) A.不存在 B.-1 C.0D.15.矩阵A=的逆矩阵是??1 22 5() A.5 2-2- 1 B.1 2-2- 5 C.5 2 2- 1 D ??5 2-2 1 ⼆、填空题(本⼤题共10⼩题,每⼩题3分,共30分) 6.级数∑∞==-+1.____________)1(n n s n n n 项和的前7..____________)11(lim 22=+∞→x x x8.-=+11._____________)sin (dx x x 9.=--+._____________)1111(22dx xx10.函数.____________32的单调减少区间是x y =11.当._______________,453,13=+-=±=p px x y x 则有极值函数时12.24 1 2 1 11 1 )(x x x f =⽅程=0的全部根是_______________.13.曲线.______________2的⽔平渐近线是x e y -=14.设矩阵A =.____________,2 1 1- 3- 2 1 , 1- 1 2 1 =??=?AB B 则 15.⽆穷限反常积分._____________122=?三、计算题(本⼤题共8⼩题,每⼩题6分,共48分)16.求极限.2cos lim2xdt t xx ?∞→17..0)1(2的通解求微分⽅程=++xydx dy x18..,arctan )1ln(222dx yd tt y t x 求设??-=+= 19..14334的凹凸区间与拐点求曲线+-=x x y20..21,1422x y y x ==+直线在该点处其切线平⾏于上的点求椭圆21.求不定积分?.ln 2xdx x 22..11231dx x +?计算定积分 23.⽤消元法求解线性⽅程组=+--=+--=++.0 ,12,323 32321321x x x x x x x x 四、综合题(本⼤题共2⼩题,每⼩题6分,共12分)24.试证当.,1ex e x x>>时 25.线.1,202⾯积轴所围成的平⾯图形的和由曲线之间和x x y x x -===全国2011年4⽉⾼数(⼯专)试题课程代码:00022⼀、单项选择题1.设f (x )=ln x ,g (x )=x +3,则f [g(x )]的定义域是( A ) A.(-3,+∞) B.[-3,+∞) C.(-∞ ,3] D.(-∞,3) 2.当x →+∞时,下列变量中为⽆穷⼤量的是( B )A.x 1B.ln(1+x )C.sin xD.e -x 3.=∞→)πsin(1lim 2n nn ( ) A.不存在 B.π2 C.1 D.04.=+++?22)111(dx x x x ( ) A.0 B.4π C.2π D.π5.设A 为3阶⽅阵,且A 的⾏列式|A |=a ≠0,⽽A *是A 的伴随矩阵,则|A *|等于( ) A.a B. a1C. a 2D.a 3⼆、填空题(本⼤题共10⼩题,每⼩题3分,共30分)6.=++++--∞→)3131313(lim 12n n _________. 7.设函数=≠=0,,0,1sin )(2x a x xx x f 在x =0连续,则a=_________. 8.=∞→xx x 1sinlim _________. 9.y '=2x 的通解为y =_________. 10.设y =sin2x ,则y 〃=_________.11.函数y =e x -x -1单调增加的区间是_________. 12.设?=xdt t x f 0)sin(ln )(,则f '(x )=_________.13.若⽆穷限反常积分4112πA ,则A =_________. 14.⾏列式=aa a 111111_________.15.设矩阵300220111=A ,则=A A '_________.三、计算题(本⼤题共8⼩题,每⼩题6分,共48分)16.设f (x )=(x -a )g (x ),其中g (x )在点x =a 处连续且g (a )=5,求)('a f . 17.求极限3 arctan limx xx x -→.18.求微分⽅程0=+xdy y dx 满⾜条件y |x =3=4的特解. 19.已知参数⽅程-=-=,3,232t t y t t x 求22dx y d .20.求函数f (x )=x 3-3x 2-9x +5的极值.21.求不定积分?+dx ex 13. 22.计算定积分1dx xe x .23.问⼊取何值时,齐次⽅程组=-+=-+-=+--,0)2(,0)3(4,0)1(312121x x x x x x λλλ有⾮零解?四、综合题(本⼤题共2⼩题,每⼩题6分,共12分)24.已知f (x )的⼀个原函数为x sin ,证明C x xx dx x xf +-=?sin 2cos )('. 25.欲围⼀个⾼度⼀定,⾯积为150平⽅⽶的矩形场地,所⽤材料的造价其正⾯是每平⽅⽶6元,其余三⾯是每平⽅⽶3元.问场地的长、宽各为多少⽶时,才能使所⽤材料费最少?2011年4⽉⾼数⾃考试题答案全国2012年1⽉⾼等教育⾃学考试⾼等数学(⼯专)试题课程代码:00022⼀、单项选择题(本⼤题共5⼩题,每⼩题2分,共10分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。

2010年江苏省专转本高等数学真题答案

2010年江苏省专转本高等数学真题答案

2010年江苏省普通高校“专转本”统一考试高等数学参考答案1、A2、C3、B4、D5、D6、C7、2e8、2 9、2π 10、4-11、2dx dy + 12、(1,1]- 13、2200cos 1cos sin lim()lim sin sin x x x x x x x x x x x→→-=-= 200cos sin cos cos 1lim lim 2sin cos 3cos sin 3x x x x x x x x x x x x x →→---===-++ 14、(1)2x y y e y +''++=,21x yx y e y e++-'=+, 23(1)(1)(2)(1)9(1)(1)x y x y x y x y x yx y x y e y e e e y e y e e +++++++''-++--+-''==++ 15、222arctan arctan arctan 222x x x xd x x d ==-⎰⎰ 2222arctan 22(1)1arctan arctan 222x x x x x x d x C x x -+-+==+⎰16、设t x =+12,则当0=x 时,1t =;当4x =时,3t =. 于是有 原式23331115128(5).2233t t tdt t t +==+=⎰ 17、解:已知直线方向向量为{}11,2,3s →=,平面法向量为{}2,0,1n →=-,于是所求直线方向向量为{}12,7,4s s n →→→=⨯=--,所以直线方程为: 111274x y z ---==--18、解:设u xy =,x v e =,则2(,)z y f u v =. 所以 3212x z y f e y f x∂''=+∂,223211122132x x z y f xy f e yf xe y f x y ∂''''''=+++∂∂ 19、解:令cos ,sin ,0 1.0.4x r y r r πθθθ==≤≤≤≤12400cos D xdxdy d r dr πθθ==⎰⎰⎰⎰20、解:对应齐次方程的特征方程的特征根为12r =-,12=r ,1,2p q ==-由于12=r 为特征根,故设原方程特解为*x y Axe =,则*'x x y Ae Axe =+,*''2x x y Ae Axe =+.于是有:22x x x x x x Ae Axe Ae Axe Axe e +++-=,得13A =即有特解*13x y xe = 故原方程的通解为*2121.3x x x y y y C eC e xe -=+=++ 21、证明:令1211()22x f x e x -=--,则1()x f x e x -'=-,1()1x f x e -''=-, 因为1x >,所以()0f x ''>,所以()f x '单调递增,则()(1)0f x f ''>=,则()f x 单调递增 所以()(1)0f x f >=,得证。

2009-2010学年第二学期高等数学B试卷

2009-2010学年第二学期高等数学B试卷

2 z 求 . x y
解:
z ( x, xy ) yg 2 ( x, xy ) ---4 分 2 f (2 x y ) g1 x
2 z ( x, xy) g 2 ( x, xy) xyg 21 ( x, xy) ----8 分 2 f (2 x y) xg12 xy
2
2 2 3 2
3 2m 时,水箱所用的材料最省. --8 分
1 展开成 x 的幂级数并求其收敛区间。 x x3 1 1 1 1 1 1 1 1 解: f ( x) ------------1 分 ( ) ( x 1)( x 2) 3 x 1 x 2 6 1 x 3 1 x 2
福建师范大学试卷纸
共 6 页,第 5 页
Y C1 cos x C2 sin x, ------2 分
* * 观察可得, y y x 的一个特解为 y1 x, y y e x 的一个特解为 y2 e x . -----6 分 * * 由非齐次线性微分方程的叠加原理知 y* y1 y2 x ex
D D1 D D1




C. xydxdy 4 xydxdy
D D1
D. x dxdy 4 x 2 dxdy
2 D D1
5、若级数 an 收敛,则下列级数不收敛的是( B )
n 1

福建师范大学试卷纸
共 6 页,第 1 页
A.
2 an
n 1

B.
(an 1)
五(10 分)求级数
福建师范大学试卷纸
共 6 页,第 4 页
1 1 1 x dt ln -----------------(8 分) 2 1 t 2 1 x 1 1 1 1 1 2 2 ln(1 2) --------(10 分) 2 s ( ) 2 ln 故 n 1 2 1 2 n 0 (2n 1)2 2

2010年江苏专转本高等数学真题(附答案)

2010年江苏专转本高等数学真题(附答案)

2010年江苏专转本⾼等数学真题(附答案)2010年江苏省普通⾼校“专转本”统⼀考试⾼等数学⼀、单项选择题(本⼤题共6⼩题,每⼩题4分,满分24分)1.设当0x →时,函数()sin f x x x =-与()n g x ax =是等价⽆穷⼩,则常数,a n 的值为 ( ) A. 1,36a n = = B. 1,33a n == C. 1,412a n == D. 1,46a n == 2.曲线223456x x y x x -+=-+的渐近线共有( )A. 1条B. 2条C. 3条D. 4条 3.设函数22()c o s txx e t d tΦ=?,则函数()x Φ的导数()x 'Φ等于 ( )A. 222cos x xe x B. 222cos x xe x - C. 2cos xxe x - D. 22cos x e x -4.下列级数收敛的是( )A. 11n n n ∞=+∑ B. 2121n n n n ∞=++∑C. 1n n ∞= D. 212n n n ∞=∑5.⼆次积分111(,)y dy f x y dx+??交换积分次序后得( ) A. 1101(,)x dx f x y dy +?? B. 2110(,)x dx f x y dy -?? C. 2111(,)x dx f x y dy -?D. 2111(,)x dx f x y dy -??6.设3()3f x x x=-,则在区间(0,1)( )A. 函数()f x 单调增加且其图形是凹的B. 函数()f x 单调增加且其图形是凸的C. 函数()f x 单调减少且其图形是凹的D. 函数()f x 单调减少且其图形是凸的⼆、填空题(本⼤题共6⼩题,每⼩题4分,满分24分) 7. 1lim( )1xx x x →∞+=- 8. 若(0)1f '=,则0()()limx f x f x x→--=9. 定积分211dx x -+?的值为 10. 设(1,2,3),(2,5,)a b k ==,若a 与b 垂直,则常数k =11.设函数lnz =10x y dz===12. 幂级数0(1)n nn x n ∞=-∑的收敛域为三、计算题(本⼤题共8⼩题,每⼩题8分,满分64分) 13、求极限2011lim()tan x x x x→-14、设函数()y y x =由⽅程2x yy e x ++=所确定,求22,dy d y15、求不定积分arctan x xdx ?16、计算定积分417、求通过点(1,1,1),且与直线23253x t y t z t =+??=+??=+?垂直,⼜与平⾯250x z --=平⾏的直线的⽅程。

2010年高考全国数学卷(全国Ⅱ.理)(含详解答案)

2010年高考全国数学卷(全国Ⅱ.理)(含详解答案)

2010年普通高等学校招生全国统一考试(全国卷II )数学(理科)【教师简评】按照“保持整体稳定,推动改革创新,立足基础考查,突出能力立意”命题指导思想,本套试卷的总体印象是:题目以常规题为主,难度较前两年困难,得高分需要扎扎实实的数学功底.1.纵观试题,小题起步较低,难度缓缓上升,除了选择题11、12、16题有一定的难度之外,其他题目难度都比较平和.2.解答题中三角函数题较去年容易,立体几何难度和去年持平,数列题的难度较去年有所提升,由去年常见的递推数列题型转变为今年的数列求极限、数列不等式的证明,不易拿满分,概率题由去年背景是“人员调配”问题,转变为今年的与物理相关的电路问题,更体现了学科之间的联系.两道压轴题以解析几何和导数知识命制,和去年比较更有利于分步得分.3.要求考生有比较强的计算能力,例如立体几何问题,题目不难,但需要一定的计算技巧和能力.不管题目难度如何变化,“夯实双基(基础知识、基本方法)”,对大多数考生来说,是以不变应万变的硬道理.(1)复数231i i -⎛⎫= ⎪+⎝⎭(A )34i -- (B )34i -+ (C )34i - (D )34i + 【答案】A【命题意图】本试题主要考查复数的运算.【解析】231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. (2).函数1ln(1)(1)2x y x +-=>的反函数是(A ) 211(0)x y e x +=-> (B )211(0)x y e x +=+> (C )211(R)x y e x +=-∈ (D )211(R)x y e x +=+∈【答案】D【命题意图】本试题主要考察反函数的求法及指数函数与对数函数的互化。

【解析】由原函数解得,即,又;∴在反函数中,故选D.(3).若变量,x y 满足约束条件1,,325x y x x y -⎧⎪⎨⎪+⎩≥≥≤,则2z x y =+的最大值为(A )1 (B )2 (C )3 (D )4 【答案】C【命题意图】本试题主要考查简单的线性规划问题.【解析】可行域是由A(1,1),B(1,4),C(1,1)---构成的三角形,可知目标函数过C 时最大,最大值为3,故选C.(4).如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++= (A )14 (B )21 (C )28 (D )35 【答案】C【命题意图】本试题主要考查等差数列的基本公式和性质. 【解析】173454412747()312,4,7282a a a a a a a a a a a +++===∴+++=== (5)不等式2601x x x --->的解集为 (A ){}2,3x x x -<或> (B ){}213x x x -<,或<<(C ) {}213x x x -<<,或> (D ){}2113x x x -<<,或<<【答案】C【命题意图】本试题主要考察分式不等式与高次不等式的解法.【解析】利用数轴穿根法解得-2<x <1或x >3,故选C(6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种【答案】B【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力.【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.(7)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像(A )向左平移4π个长度单位 (B )向右平移4π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π个长度单位【答案】B【命题意图】本试题主要考查三角函数图像的平移.【解析】s i n (2)6y x π=+=sin 2()12x π+,sin(2)3y x π=-=sin 2()6x π=-,所以将s i n (2)6y x π=+的图像向右平移4π个长度单位得到sin(2)3y x π=-的图像,故选B.(8)ABC V 中,点D 在AB 上,CD 平方ACB ∠.若C B a =u u r ,CA b =uu r,1a =,2b =,则CD =u u u r(A )1233a b +(B )2133a b + (C )3455a b + (D )4355a b + 【答案】B【命题意图】本试题主要考查向量的基本运算,考查角平分线定理. 【解析】因为CD 平分ACB ∠,由角平分线定理得AD CA2=DBCB 1=,所以D 为AB 的三等分点,且22AD AB (CB CA)33==- ,所以2121CD CA+AD CB CA a b 3333==+=+,故选B.(9)已知正四棱锥S ABCD -中,SA =,那么当该棱锥的体积最大时,它的高为(A )1 (B (C )2 (D )3【答案】C【命题意图】本试题主要考察椎体的体积,考察告辞函数的最值问题.【解析】设底面边长为a ,则高所以体积,设,则,当y 取最值时,,解得a=0或a=4时,体积最大,此时,故选C.(10)若曲线12y x -=在点12,a a -⎛⎫ ⎪⎝⎭处的切线与两个坐标围成的三角形的面积为18,则a =(A )64 (B )32 (C )16 (D )8【答案】A【命题意图】本试题主要考查求导法则、导数的几何意义、切线的求法和三角形的面积公式,考查考生的计算能力..【解析】332211',22y x k a --=-∴=-,切线方程是13221()2y a a x a ---=--,令0x =,1232y a -=,令0y =,3x a =,∴三角形的面积是121331822s a a -=⋅⋅=,解得64a =.故选A.(11)与正方体1111ABCD A BC D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点 (A )有且只有1个 (B )有且只有2个 (C )有且只有3个 (D )有无数个【答案】D【解析】直线上取一点,分别作垂直于于则分别作,垂足分别为M ,N ,Q ,连PM ,PN ,PQ ,由三垂线定理可得,PN ⊥PM ⊥;PQ ⊥AB ,由于正方体中各个表面、对等角全等,所以,∴PM=PN=PQ ,即P 到三条棱AB 、CC 1、A 1D 1.所在直线的距离相等所以有无穷多点满足条件,故选D.(12)已知椭圆2222:1(0)x y C a b a b +=>>F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =(A )1 (B (C (D )2【答案】B【命题意图】本试题主要考察椭圆的性质与第二定义.【解析】设直线l 为椭圆的有准线,e 为离心率,过A ,B 分别作AA 1,BB 1垂直于l ,A 1,B 为垂足,过B 作BE 垂直于AA 1与E ,由第二定义得,,由,得,∴即k=,故选B.第Ⅱ卷注意事项:1.用0.5毫米的黑色字迹签字笔在答题卡上作答。

2010年全国统一高考真题数学试卷(理科)(大纲版ⅱ)(含答案及解析)

2010年全国统一高考真题数学试卷(理科)(大纲版ⅱ)(含答案及解析)

2010年全国统一高考数学试卷(理科)(大纲版Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数()2=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i2.(5分)函数的反函数是()A.y=e2x﹣1﹣1(x>0)B.y=e2x﹣1+1(x>0)C.y=e2x﹣1﹣1(x∈R)D.y=e2x﹣1+1(x∈R)3.(5分)若变量x,y满足约束条件,则z=2x+y的最大值为()A.1B.2C.3D.44.(5分)如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14B.21C.28D.355.(5分)不等式>0的解集为()A.{x|x<﹣2,或x>3}B.{x|x<﹣2,或1<x<3}C.{x|﹣2<x<1,或x>3}D.{x|﹣2<x<1,或1<x<3} 6.(5分)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有()A.12种B.18种C.36种D.54种7.(5分)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin(2x+)的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位8.(5分)△ABC中,点D在边AB上,CD平分∠ACB,若=,=,||=1,||=2,则=()A.+B.+C.+D.+9.(5分)已知正四棱锥S﹣ABCD中,SA=2,那么当该棱锥的体积最大时,它的高为()A.1B.C.2D.310.(5分)若曲线y=在点(a,)处的切线与两个坐标围成的三角形的面积为18,则a=()A.64B.32C.16D.811.(5分)与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点()A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个12.(5分)已知椭圆T:+=1(a>b>0)的离心率为,过右焦点F且斜率为k(k>0)的直线与T相交于A,B两点,若=3,则k=()A.1B.C.D.2二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知a是第二象限的角,tan(π+2α)=﹣,则tanα=.14.(5分)若(x﹣)9的展开式中x3的系数是﹣84,则a=.15.(5分)已知抛物线C:y2=2px(p>0)的准线l,过M(1,0)且斜率为的直线与l相交于A,与C的一个交点为B,若,则p=.16.(5分)已知球O的半径为4,圆M与圆N为该球的两个小圆,AB为圆M 与圆N的公共弦,AB=4,若OM=ON=3,则两圆圆心的距离MN=.三、解答题(共6小题,满分70分)17.(10分)△ABC中,D为边BC上的一点,BD=33,sinB=,cos∠ADC=,求AD.18.(12分)已知数列{a n}的前n项和S n=(n2+n)•3n.(Ⅰ)求;(Ⅱ)证明:++…+>3n.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC,AA1=AB,D为BB1的中点,E为AB1上的一点,AE=3EB1.(Ⅰ)证明:DE为异面直线AB1与CD的公垂线;(Ⅱ)设异面直线AB1与CD的夹角为45°,求二面角A1﹣AC1﹣B1的大小.20.(12分)如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是P,电流能通过T4的概率是0.9,电流能否通过各元件相互独立.已知T1,T2,T3中至少有一个能通过电流的概率为0.999.(Ⅰ)求P;(Ⅱ)求电流能在M与N之间通过的概率.21.(12分)已知斜率为1的直线l与双曲线C:相交于B、D两点,且BD的中点为M(1,3).(Ⅰ)求C的离心率;(Ⅱ)设C的右顶点为A,右焦点为F,|DF|•|BF|=17,证明:过A、B、D三点的圆与x轴相切.22.(12分)设函数f(x)=1﹣e﹣x.(Ⅰ)证明:当x>﹣1时,f(x)≥;(Ⅱ)设当x≥0时,f(x)≤,求a的取值范围.2010年全国统一高考数学试卷(理科)(大纲版Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数()2=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i【考点】A5:复数的运算.【专题】11:计算题.【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,把复数整理成整式形式,再进行复数的乘方运算,合并同类项,得到结果.【解答】解:()2=[]2=(1﹣2i)2=﹣3﹣4i.故选:A.【点评】本题主要考查复数的除法和乘方运算,是一个基础题,解题时没有规律和技巧可寻,只要认真完成,则一定会得分.2.(5分)函数的反函数是()A.y=e2x﹣1﹣1(x>0)B.y=e2x﹣1+1(x>0)C.y=e2x﹣1﹣1(x∈R)D.y=e2x﹣1+1(x∈R)【考点】4H:对数的运算性质;4R:反函数.【专题】11:计算题;16:压轴题.【分析】从条件中中反解出x,再将x,y互换即得.解答本题首先熟悉反函数的概念,然后根据反函数求解三步骤:1、换:x、y换位,2、解:解出y,3、标:标出定义域,据此即可求得反函数.【解答】解:由原函数解得x=e 2y﹣1+1,∴f﹣1(x)=e 2x﹣1+1,又x>1,∴x﹣1>0;∴ln(x﹣1)∈R∴在反函数中x∈R,故选:D.【点评】求反函数,一般应分以下步骤:(1)由已知解析式y=f(x)反求出x=Ф(y);(2)交换x=Ф(y)中x、y的位置;(3)求出反函数的定义域(一般可通过求原函数的值域的方法求反函数的定义域).3.(5分)若变量x,y满足约束条件,则z=2x+y的最大值为()A.1B.2C.3D.4【考点】7C:简单线性规划.【专题】31:数形结合.【分析】先根据约束条件画出可行域,设z=2x+y,再利用z的几何意义求最值,只需求出直线z=2x+y过可行域内的点B时,从而得到m值即可.【解答】解:作出可行域,作出目标函数线,可得直线与y=x与3x+2y=5的交点为最优解点,∴即为B(1,1),当x=1,y=1时z max=3.故选:C.【点评】本题考查了线性规划的知识,以及利用几何意义求最值,属于基础题.4.(5分)如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14B.21C.28D.35【考点】83:等差数列的性质;85:等差数列的前n项和.【分析】由等差数列的性质求解.【解答】解:a3+a4+a5=3a4=12,a4=4,∴a1+a2+…+a7==7a4=28故选:C.【点评】本题主要考查等差数列的性质.5.(5分)不等式>0的解集为()A.{x|x<﹣2,或x>3}B.{x|x<﹣2,或1<x<3}C.{x|﹣2<x<1,或x>3}D.{x|﹣2<x<1,或1<x<3}【考点】73:一元二次不等式及其应用.【专题】11:计算题.【分析】解,可转化成f(x)•g(x)>0,再利用根轴法进行求解.【解答】解:⇔⇔(x﹣3)(x+2)(x﹣1)>0利用数轴穿根法解得﹣2<x<1或x>3,故选:C.【点评】本试题主要考查分式不等式与高次不等式的解法,属于不等式的基础题.6.(5分)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有()A.12种B.18种C.36种D.54种【考点】D9:排列、组合及简单计数问题.【专题】11:计算题.【分析】本题是一个分步计数问题,首先从3个信封中选一个放1,2有3种不同的选法,再从剩下的4个数中选两个放一个信封有C42,余下放入最后一个信封,根据分步计数原理得到结果.【解答】解:由题意知,本题是一个分步计数问题,∵先从3个信封中选一个放1,2,有=3种不同的选法;根据分组公式,其他四封信放入两个信封,每个信封两个有=6种放法,∴共有3×6×1=18.故选:B.【点评】本题考查分步计数原理,考查平均分组问题,是一个易错题,解题的关键是注意到第二步从剩下的4个数中选两个放到一个信封中,这里包含两个步骤,先平均分组,再排列.7.(5分)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin(2x+)的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】1:常规题型.【分析】先将2提出来,再由左加右减的原则进行平移即可.【解答】解:y=sin(2x+)=sin2(x+),y=sin(2x﹣)=sin2(x﹣),所以将y=sin(2x+)的图象向右平移个长度单位得到y=sin(2x﹣)的图象,故选:B.【点评】本试题主要考查三角函数图象的平移.平移都是对单个的x来说的.8.(5分)△ABC中,点D在边AB上,CD平分∠ACB,若=,=,||=1,||=2,则=()A.+B.+C.+D.+【考点】9B:向量加减混合运算.【分析】由△ABC中,点D在边AB上,CD平分∠ACB,根据三角形内角平分线定理,我们易得到,我们将后,将各向量用,表示,即可得到答案.【解答】解:∵CD为角平分线,∴,∵,∴,∴故选:B.【点评】本题考查了平面向量的基础知识,解答的核心是三角形内角平分线定理,即若AD为三角形ABC的内角A的角平分线,则AB:AC=BD:CD9.(5分)已知正四棱锥S﹣ABCD中,SA=2,那么当该棱锥的体积最大时,它的高为()A.1B.C.2D.3【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;16:压轴题.【分析】设出底面边长,求出正四棱锥的高,写出体积表达式,利用求导求得最大值时,高的值.【解答】解:设底面边长为a,则高h==,所以体积V=a2h=,设y=12a4﹣a6,则y′=48a3﹣3a5,当y取最值时,y′=48a3﹣3a5=0,解得a=0或a=4时,当a=4时,体积最大,此时h==2,故选:C.【点评】本试题主要考查椎体的体积,考查高次函数的最值问题的求法.是中档题.10.(5分)若曲线y=在点(a,)处的切线与两个坐标围成的三角形的面积为18,则a=()A.64B.32C.16D.8【考点】6H:利用导数研究曲线上某点切线方程.【专题】31:数形结合.【分析】欲求参数a值,必须求出在点(a,)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=a处的导函数值,再结合导数的几何意义即可求出切线的斜率得到切线的方程,最后求出与坐标轴的交点坐标结合三角形的面积公式.从而问题解决.【解答】解:y′=﹣,∴k=﹣,切线方程是y﹣=﹣(x﹣a),令x=0,y=,令y=0,x=3a,∴三角形的面积是s=•3a•=18,解得a=64.故选:A.【点评】本试题主要考查求导法则、导数的几何意义、切线的求法和三角形的面积公式,考查考生的计算能力.11.(5分)与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点()A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个【考点】LO:空间中直线与直线之间的位置关系.【专题】16:压轴题.【分析】由于点D、B1显然满足要求,猜想B1D上任一点都满足要求,然后想办法证明结论.【解答】解:在正方体ABCD﹣A1B1C1D1上建立如图所示空间直角坐标系,并设该正方体的棱长为1,连接B1D,并在B1D上任取一点P,因为=(1,1,1),所以设P(a,a,a),其中0≤a≤1.作PE⊥平面A1D,垂足为E,再作EF⊥A1D1,垂足为F,则PF是点P到直线A1D1的距离.所以PF=;同理点P到直线AB、CC1的距离也是.所以B1D上任一点与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离都相等,所以与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点有无数个.故选:D.【点评】本题主要考查合情推理的能力及空间中点到线的距离的求法.12.(5分)已知椭圆T:+=1(a>b>0)的离心率为,过右焦点F且斜率为k(k>0)的直线与T相交于A,B两点,若=3,则k=()A.1B.C.D.2【考点】KH:直线与圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】设A(x1,y1),B(x2,y2),根据求得y1和y2关系根据离心率设,b=t,代入椭圆方程与直线方程联立,消去x,根据韦达定理表示出y1+y2和y1y2,进而根据y1和y2关系求得k.【解答】解:A(x1,y1),B(x2,y2),∵,∴y1=﹣3y2,∵,设,b=t,∴x2+4y2﹣4t2=0①,设直线AB方程为,代入①中消去x,可得,∴,,解得,故选:B.【点评】本题主要考查了直线与圆锥曲线的综合问题.此类题问题综合性强,要求考生有较高地转化数学思想的运用能力,能将已知条件转化到基本知识的运用.二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知a是第二象限的角,tan(π+2α)=﹣,则tanα=.【考点】GO:运用诱导公式化简求值;GS:二倍角的三角函数.【专题】11:计算题.【分析】根据诱导公式tan(π+α)=tanα得到tan2α,然后利用公式tan(α+β)=求出tanα,因为α为第二象限的角,判断取值即可.【解答】解:由tan(π+2a)=﹣得tan2a=﹣,又tan2a==﹣,解得tana=﹣或tana=2,又a是第二象限的角,所以tana=﹣.故答案为:.【点评】本试题主要考查三角函数的诱导公式、正切的二倍角公式和解方程,考查考生的计算能力.14.(5分)若(x﹣)9的展开式中x3的系数是﹣84,则a=1.【考点】DA:二项式定理.【专题】11:计算题.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为3得展开式中x3的系数,列出方程解得.【解答】解:展开式的通项为=(﹣a)r C9r x9﹣2r令9﹣2r=3得r=3∴展开式中x3的系数是C93(﹣a)3=﹣84a3=﹣84,∴a=1.故答案为1【点评】本试题主要考查二项展开式的通项公式和求指定项系数的方法.15.(5分)已知抛物线C:y2=2px(p>0)的准线l,过M(1,0)且斜率为的直线与l相交于A,与C的一个交点为B,若,则p=2.【考点】K8:抛物线的性质.【专题】11:计算题;16:压轴题.【分析】设直线AB的方程与抛物线方程联立消去y得3x2+(﹣6﹣2p)x+3=0,进而根据,可知M为A、B的中点,可得p的关系式,解方程即可求得p.【解答】解:设直线AB:,代入y2=2px得3x2+(﹣6﹣2p)x+3=0,又∵,即M为A、B的中点,∴x B+(﹣)=2,即x B=2+,得p2+4P﹣12=0,解得p=2,p=﹣6(舍去)故答案为:2【点评】本题考查了抛物线的几何性质.属基础题.16.(5分)已知球O的半径为4,圆M与圆N为该球的两个小圆,AB为圆M 与圆N的公共弦,AB=4,若OM=ON=3,则两圆圆心的距离MN=3.【考点】JE:直线和圆的方程的应用;ND:球的性质.【专题】11:计算题;16:压轴题.【分析】根据题意画出图形,欲求两圆圆心的距离,将它放在与球心组成的三角形MNO中,只要求出球心角即可,通过球的性质构成的直角三角形即可解得.【解答】解法一:∵ON=3,球半径为4,∴小圆N的半径为,∵小圆N中弦长AB=4,作NE垂直于AB,∴NE=,同理可得,在直角三角形ONE中,∵NE=,ON=3,∴,∴,∴MN=3.故填:3.解法二:如下图:设AB的中点为C,则OC与MN必相交于MN中点为E,因为OM=ON=3,故小圆半径NB为C为AB中点,故CB=2;所以NC=,∵△ONC为直角三角形,NE为△ONC斜边上的高,OC=∴MN=2EN=2•CN•=2××=3故填:3.【点评】本题主要考查了点、线、面间的距离计算,还考查球、直线与圆的基础知识,考查空间想象能力、运算能力和推理论证能力,属于基础题.三、解答题(共6小题,满分70分)17.(10分)△ABC中,D为边BC上的一点,BD=33,sinB=,cos∠ADC=,求AD.【考点】GG:同角三角函数间的基本关系;HP:正弦定理.【分析】先由cos∠ADC=确定角ADC的范围,因为∠BAD=∠ADC﹣B所以可求其正弦值,最后由正弦定理可得答案.【解答】解:由cos∠ADC=>0,则∠ADC<,又由知B<∠ADC可得B<,由sinB=,可得cosB=,又由cos∠ADC=,可得sin∠ADC=.从而sin∠BAD=sin(∠ADC﹣B)=sin∠ADCcosB﹣cos∠ADCsinB==.由正弦定理得,所以AD==.【点评】三角函数与解三角形的综合性问题,是近几年高考的热点,在高考试题中频繁出现.这类题型难度比较低,一般出现在17或18题,属于送分题,估计以后这类题型仍会保留,不会有太大改变.解决此类问题,要根据已知条件,灵活运用正弦定理或余弦定理,求边角或将边角互化.18.(12分)已知数列{a n}的前n项和S n=(n2+n)•3n.(Ⅰ)求;(Ⅱ)证明:++…+>3n.【考点】6F:极限及其运算;R6:不等式的证明.【专题】11:计算题;14:证明题.【分析】(1)由题意知,由此可知答案.(2)由题意知,==,由此可知,当n≥1时,.【解答】解:(1),所以=;(2)当n=1时,;当n>1时,===所以,n≥1时,.【点评】本题考查数列的极限问题,解题时要注意公式的灵活运用.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC,AA1=AB,D为BB1的中点,E为AB1上的一点,AE=3EB1.(Ⅰ)证明:DE为异面直线AB1与CD的公垂线;(Ⅱ)设异面直线AB1与CD的夹角为45°,求二面角A1﹣AC1﹣B1的大小.【考点】LM:异面直线及其所成的角;LQ:平面与平面之间的位置关系.【专题】11:计算题;14:证明题.【分析】(1)欲证DE为异面直线AB1与CD的公垂线,即证DE与异面直线AB1与CD垂直相交即可;(2)将AB1平移到DG,故∠CDG为异面直线AB1与CD的夹角,作HK⊥AC1,K 为垂足,连接B1K,由三垂线定理,得B1K⊥AC1,因此∠B1KH为二面角A1﹣AC1﹣B1的平面角,在三角形B1KH中求出此角即可.【解答】解:(1)连接A1B,记A1B与AB1的交点为F.因为面AA1BB1为正方形,故A1B⊥AB1,且AF=FB1,又AE=3EB1,所以FE=EB1,又D为BB1的中点,故DE∥BF,DE⊥AB1.作CG⊥AB,G为垂足,由AC=BC知,G为AB中点.又由底面ABC⊥面AA1B1B.连接DG,则DG∥AB1,故DE⊥DG,由三垂线定理,得DE⊥CD.所以DE为异面直线AB1与CD的公垂线.(2)因为DG∥AB1,故∠CDG为异面直线AB1与CD的夹角,∠CDG=45°设AB=2,则AB1=,DG=,CG=,AC=.作B1H⊥A1C1,H为垂足,因为底面A1B1C1⊥面AA1CC1,故B1H⊥面AA1C1C.又作HK⊥AC1,K为垂足,连接B1K,由三垂线定理,得B1K⊥AC1,因此∠B1KH 为二面角A1﹣AC1﹣B1的平面角.B1H=,C1H=,AC1=,HK=tan∠B1KH=,∴二面角A1﹣AC1﹣B1的大小为arctan.【点评】本试题主要考查空间的线面关系与空间角的求解,考查考生的空间想象与推理计算的能力.三垂线定理是立体几何的最重要定理之一,是高考的热点,它是处理线线垂直问题的有效方法,同时它也是确定二面角的平面角的主要手段.通过引入空间向量,用向量代数形式来处理立体几何问题,淡化了传统几何中的“形”到“形”的推理方法,从而降低了思维难度,使解题变得程序化,这是用向量解立体几何问题的独到之处.20.(12分)如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是P,电流能通过T4的概率是0.9,电流能否通过各元件相互独立.已知T1,T2,T3中至少有一个能通过电流的概率为0.999.(Ⅰ)求P;(Ⅱ)求电流能在M与N之间通过的概率.【考点】C5:互斥事件的概率加法公式;C8:相互独立事件和相互独立事件的概率乘法公式.【专题】11:计算题.【分析】(1)设出基本事件,将要求事件用基本事件的来表示,将T1,T2,T3至少有一个能通过电流用基本事件表示并求出概率即可求得p.(Ⅱ)根据题意,B表示事件:电流能在M与N之间通过,根据电路图,可得B=A4+(1﹣A4)A1A3+(1﹣A4)(1﹣A1)A2A3,由互斥事件的概率公式,代入数据计算可得答案.【解答】解:(Ⅰ)根据题意,记电流能通过T i为事件A i,i=1、2、3、4,A表示事件:T1,T2,T3,中至少有一个能通过电流,易得A1,A2,A3相互独立,且,P()=(1﹣p)3=1﹣0.999=0.001,计算可得,p=0.9;(Ⅱ)根据题意,B表示事件:电流能在M与N之间通过,有B=A4+(1﹣A4)A1A3+(1﹣A4)(1﹣A1)A2A3,则P(B)=P(A4+(1﹣A4)A1A3+(1﹣A4)(1﹣A1)A2A3)=0.9+0.1×0.9×0.9+0.1×0.1×0.9×0.9=0.9891.【点评】本题考查了概率中的互斥事件、对立事件及独立事件的概率,注意先明确事件之间的关系,进而选择对应的公式来计算.21.(12分)已知斜率为1的直线l与双曲线C:相交于B、D两点,且BD的中点为M(1,3).(Ⅰ)求C的离心率;(Ⅱ)设C的右顶点为A,右焦点为F,|DF|•|BF|=17,证明:过A、B、D三点的圆与x轴相切.【考点】J9:直线与圆的位置关系;KC:双曲线的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题;14:证明题;16:压轴题.【分析】(Ⅰ)由直线过点(1,3)及斜率可得直线方程,直线与双曲线交于BD 两点的中点为(1,3),可利用直线与双曲线消元后根据中点坐标公式找出a,b的关系式即求得离心率.(Ⅱ)利用离心率将条件|FA||FB|=17,用含a的代数式表示,即可求得a,则A点坐标可得(1,0),由于A在x轴上所以,只要证明2AM=BD即证得.【解答】解:(Ⅰ)由题设知,l的方程为:y=x+2,代入C的方程,并化简,得(b2﹣a2)x2﹣4a2x﹣a2b2﹣4a2=0,设B(x1,y1),D(x2,y2),则,,①由M(1,3)为BD的中点知.故,即b2=3a2,②故,∴C的离心率.(Ⅱ)由①②知,C的方程为:3x2﹣y2=3a2,A(a,0),F(2a,0),.故不妨设x1≤﹣a,x2≥a,,,|BF|•|FD|=(a﹣2x1)(2x2﹣a)=﹣4x1x2+2a(x1+x2)﹣a2=5a2+4a+8.又|BF|•|FD|=17,故5a2+4a+8=17.解得a=1,或(舍去),故=6,连接MA,则由A(1,0),M(1,3)知|MA|=3,从而MA=MB=MD,且MA⊥x轴,因此以M为圆心,MA为半径的圆经过A、B、D三点,且在点A处与x轴相切,所以过A、B、D三点的圆与x轴相切.【点评】本题考查了圆锥曲线、直线与圆的知识,考查学生运用所学知识解决问题的能力.22.(12分)设函数f(x)=1﹣e﹣x.(Ⅰ)证明:当x>﹣1时,f(x)≥;(Ⅱ)设当x≥0时,f(x)≤,求a的取值范围.【考点】6E:利用导数研究函数的最值.【专题】15:综合题;16:压轴题.【分析】(1)将函数f(x)的解析式代入f(x)≥整理成e x≥1+x,组成新函数g(x)=e x﹣x﹣1,然后根据其导函数判断单调性进而可求出函数g(x)的最小值g(0),进而g(x)≥g(0)可得证.(2)先确定函数f(x)的取值范围,然后对a分a<0和a≥0两种情况进行讨论.当a<0时根据x的范围可直接得到f(x)≤不成立;当a≥0时,令h(x)=axf(x)+f(x)﹣x,然后对函数h(x)进行求导,根据导函数判断单调性并求出最值,求a的范围.【解答】解:(1)当x>﹣1时,f(x)≥当且仅当e x≥1+x令g(x)=e x﹣x﹣1,则g'(x)=e x﹣1当x≥0时g'(x)≥0,g(x)在[0,+∞)是增函数当x≤0时g'(x)≤0,g(x)在(﹣∞,0]是减函数于是g(x)在x=0处达到最小值,因而当x∈R时,g(x)≥g(0)时,即e x≥1+x所以当x>﹣1时,f(x)≥(2)由题意x≥0,此时f(x)≥0当a<0时,若x>﹣,则<0,f(x)≤不成立;当a≥0时,令h(x)=axf(x)+f(x)﹣x,则f(x)≤当且仅当h(x)≤0因为f(x)=1﹣e﹣x,所以h'(x)=af(x)+axf'(x)+f'(x)﹣1=af(x)﹣axf (x)+ax﹣f(x)(i)当0≤a≤时,由(1)知x≤(x+1)f(x)h'(x)≤af(x)﹣axf(x)+a(x+1)f(x)﹣f(x)=(2a﹣1)f(x)≤0,h(x)在[0,+∞)是减函数,h(x)≤h(0)=0,即f(x)≤;(ii)当a>时,由y=x﹣f(x)=x﹣1+e﹣x,y′=1﹣e﹣x,x>0时,函数y递增;x<0,函数y递减.可得x=0处函数y取得最小值0,即有x≥f(x).h'(x)=af(x)﹣axf(x)+ax﹣f(x)≥af(x)﹣axf(x)+af(x)﹣f(x)=(2a ﹣1﹣ax)f(x)当0<x<时,h'(x)>0,所以h'(x)>0,所以h(x)>h(0)=0,即f(x)>综上,a的取值范围是[0,]【点评】本题主要考查导数的应用和利用导数证明不等式,考查考生综合运用知识的能力及分类讨论的思想,考查考生的计算能力及分析问题、解决问题的能力;导数常作为高考的压轴题,对考生的能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力.估计以后对导数的考查力度不会减弱.作为压轴题,主要是涉及利用导数求最值解决恒成立问题,利用导数证明不等式等,常伴随对参数的讨论,这也是难点之所在.。

【专升本】2010年高等数学(二)及参考答案

【专升本】2010年高等数学(二)及参考答案

绝密★启用前2010年成人高等学校专升本招生全国统一考试高等数学(二)答案必须答在答题卡上指定的位置,答在试卷上无效。

一、选择题:1-10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的,将近选项前的字母填涂在答题卡相应题号的信息点上。

1.A、 B.0 C. D.—2.设函数,则′=A、2B、1C、D、−3.设函数,则′=A.2B.-2C.D.-4.下列在区间(0,+)内单调减少的是A.y=xB.y=C.y=D.y=5.dx=A.-+CB.+CC.+CD.+C6.曲线y=1-与x轴所围成的平面图形的面积S=A.2B.C.1D.7.已知=dt,则′=A. B.+1 C. D.8.设函数z=,则│A.0B.C.1D.29.设函数z=,则=A.-B.C.D.10.袋中有8个乒乓球,其中5个白色球,3个黄色球,从中一次任取2个乒乓球,则取出2个球均为白色球的概率为A. B. C. D.二、填空题:11-20小题,每小题4分,共40分,把答案写在答题卡相应题号后。

11、12、当0时,与是等价无穷小量,则13、设函数在点处的极限存在,则a=14、曲线y=+3+1的拐点坐标为15、设函数y=,则=16、设曲线y=ax在x=0处的切线斜率为2,则a=17、=18、=19、=20、函数z=2的驻点坐标为三、解答题:21-28题,共70分。

解答应写出推理、演算步骤,并将其写在答题卡相应题号后。

21、(本题满分8分)计算 .22、(本题满分8分)设y=,求 .23、(本题满分8分)计算。

24、(本题满分8分)计算。

25、(本题满分8分)(1)求常数a .(2)求X的数学期望EX和方差DX.26、(本题满分10分)在半径为R的半圆内作一内接矩形,其中的一边在直径上,另外两个顶点在圆周上(如图所示).当矩形的长和宽各位多少时,矩形面积最大?最大值是多少?27、(本题满分10分)证明:当x1时,x1.28、(本题满分10分)求二元函数,=++xy,在条件x+2y=4下的极值.绝密★启用前2010年成人高等学校专升本招生全国统一考试高等数学(二)一、选择题:每小题4分,共40分.1. A2. C3. B4. D5. A6. B7. C8.D9.A 10.B二、填空题:每小题4分,共40分.11. 0 12. 113.1 14.15.16. 217.+ C 18. e 119.20.三、解答题:共70分.21.解:=6分= . 8分22.解:y′=′2分= . 6分所以 = y′=8分23.解:=6分=+ C 8分24.解:设 = t,则 =2t . 2分当x=0时,t=0;当x=1时,t=1 . 3分则 =2=2=2t25.解:(1)因为0.2 + 0.1 + 0.3 + a = 1,所以a=0.4 . 3分(2)EX=00.2=1.9 5分 DX=0.2+++0.4=1.29 8分26.解:如图,设x轴通过半圆的直径,y轴垂直且平分直径 .设OA=x,则AB= .矩形面积S=2x . 2分S′=2 -=2 . 6分令S′=0,得x=R (舍去负值). 8分由于只有一个驻点,根据实际问题,x=R必为所求.则AB=R.所以,当矩形的长为R,宽为R时,矩形面积最大,且最大值S= . 8分27.解:设= x-1-,2分则′=1- .当 x1时,′0,则单调上升 .所以当x1时,= 0. 6分即 x-1-0 ,得 x6分28.解:设F,, =,= . 4分令,①,②,③8分由①与②消去得x=0,代入③得y = 2 .所以函数,的极值为4 . 10分。

西安理工大学高科学院-高数考试题(第二学期)

西安理工大学高科学院-高数考试题(第二学期)

1专业 班级 姓名 学号 考场2010年 秋季学期《高等数学》试卷 命题教师 命题小组 系主任审核 考试形式 闭 考试类型 学位课 √ 非学位课 (请在前面打“√”选择)考试班级考试日期 10年 月 日 考试时间 150分钟题号 一 二三 四 总 分得分注意:1.请用深蓝色墨水书写,字、图清晰,书写不出边框。

2.答题演草时不许使用附加纸,试卷背面可用于演草。

试卷不得拆开。

单项选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前面的字母填入题后的括号内。

1.当0→x 时,与无穷小()1cos2x -等价的无穷小是 ( ) A.x ; B.2x ; C.2x ; D.22x2. 设()21sin ,0,0x x f x xa x x ⎧>⎪=⎨⎪+≤⎩ 在0x =连续,则常数a =( ) A.0; B.1; C.2; D.3 3.设()111f x x=-+,则曲线()x f y = A. 仅有水平渐近线; B.仅有铅直渐近线; C. 既有水平渐近线又有铅直渐近线; D.无渐近线题号 得分 一教务处印制 共 8 页 (第 1 页)24. 设()f x 为连续函数,()()2ln xx F x f t dt =⎰,则()F x '=( )A.()()21ln 2f x xf x x +; B. ()()21ln 2f x xf x x-; C. ()()2ln f x f x +; D. ()()2ln f x f x - 5.在下列等式中,正确的结果是( )A. ()()f x dx f x '=⎰;B. ()()df x f x =⎰;C.()()df x dx f x dx =⎰; D. ()().d f x dx f x =⎰ 6. 0211dx x -∞=+⎰ ( ) A.2π; B. 2π-; C.0; D.发散7. 曲线23,,x t y t z t ===在点()1,1,1处的切线方程为( ) A .2111123x y z t t ---==; B. 111123x y z ---==; C . ()()2121310x t y t z -+-+-=; D. ()()121310x y z -+-+-= 8. 函数22z x y =+在点()1,2P 处方向导数的最大值为 ( ) A.0; B.5; C. 25; D. 359.函数()3322,339f x y x y x y x =-++-在点()1,0处( )A. 不取得极值;B. 取得极小值;C. 取得极大值 ;D. 不能确定是否取得极值教务处印制 共 8 页 (第 2 页)310.221101(,)y y dy f x y dx ---=⎰⎰( )A. 21100(,)x dx f x y dy -⎰⎰ B. 221111(,)x x dx f x y dy ----⎰⎰C. 221101(,)x x dx f x y dy ---⎰⎰D. 21110(,)x dx f x y dy --⎰⎰填空题(本大题共10小题,每小题3分,共30分)1. 3tan ln3x y x =++,则()0y '= ;2. 设)1ln(2++=x x y ,则=dy ;3. 设sin y ax =,则()=n y ;4. sin cos x xdx ⋅=⎰ ;5. ()222a ax a xdx -+-=⎰;6.函数1x y e x =--的单调增加的区间是 ;7. 函数()32231f x x x =-+在区间[]1,4-上的最大值为 ; 8. 设arctanyz x=,则dz = ; 9. 幂级数2112nn n n x ∞=+∑的收敛半径=R ;10.微分方程y xy '=的通解为y = 。

2010-214年高等数学(工本)00023历年试题及参考答案

2010-214年高等数学(工本)00023历年试题及参考答案

2010-2014年高等数学(工本)00023历年试题及参考答案 全国2010年10月自学考试高等数学(工本)试题一、单项选择题(本大题共5小题,每小题3分,共15分) 1.在空间直角坐标系下,方程2x 2+3y 2=6表示的图形为( ) A .椭圆 B .柱面 C .旋转抛物面D .球面2.极限021lim →→y x arcsin(x +y 2)=( )A .6πB .3π C .2π D .π3.设积分区域22:y x Ω+≤R 2,0≤z ≤1,则三重积分⎰⎰⎰=+Ωdxdydz y xf )(22( )A .⎰⎰⎰π200102)(Rdz r f drd θ B .⎰⎰⎰π20012)(Rdz r f rdrd θC .⎰⎰⎰+π20122)(Rrdz y x f dr d θD .⎰⎰⎰π102)(Rdz r f rdrd θ4.以y =sin 3x 为特解的微分方程为( ) A .0=+''y y B .0=-''y y C .09=+''y y D .09=-''y y5.设正项级数∑∞=1n nu收敛,则下列无穷级数中一定发散的是( )A .∑∞=+1100n nuB .∑∞=++11)(n n n u uC .∑∞=1)3(n nuD .∑∞=+1)1(n nu二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6.向量a ={1,1,2}与x 轴的夹角=α__________. 7.设函数22),(y x xy y x f -=,则=)1,(x yf __________.8.设∑是上半球面z =221y x --的上侧,则对坐标的曲面积分⎰⎰∑=dxdy y 3__________.9.微分方程x y y sin 3='+'''的阶数是__________.10.设)(x f 是周期为2π的函数,)(x f 在[)ππ,-上的表达式为[)[)⎪⎩⎪⎨⎧∈-∈=.π,0,23sin .0,π,0)(x x x x f )(x S 是)(x f 的傅里叶级数的和函数,则S (0) =__________.三、计算题(本大题共12小题,每小题5分,共60分)11.设平面π过点P 1(1,2,-1)和点P 2(-5,2,7),且平行于y 轴,求平面π的方程. 12.设函数22ln y x z +=,求yx z∂∂∂2.13.设函数232y x e z -=,求全微分dz .14.设函数)2,(22xy y x f z -=,其中f (u , v )具有一阶连续偏导数,求xz ∂∂和y z ∂∂. 15.求曲面x 2+y 2+2z 2=23在点(1,2,3)处的切平面方程. 16.计算二重积分⎰⎰+D dxdy y x )sin(22,其中积分区域D :x 2+y 2≤a 2.17.计算三重积分⎰⎰⎰Ωzdxdydz ,其中Ω是由曲面z =x 2+y 2,z =0及x 2+y 2=1所围区域.18.计算对弧长的曲线积分⎰Cds x 2,其中C 是圆周x 2+y 2=4的上半圆.19.计算对坐标的曲线积分⎰+-+-Cdy y x dx y )21()31(,其中C 为区域D :| x |≤1,| y |≤1 的正向边界曲线.20.求微分方程02=-+-dy e dx e y x y x 的通解. 21.判断无穷级数∑∞=--+1212)1(1n n n 的敛散性. 22.将函数51)(+=x x f 展开为x +1的幂级数. 四、综合题(本大题共3小题,每小题5分,共15分)23.设函数)(x yz ϕ=,其中)(u ϕ为可微函数.证明:0=∂∂+∂∂y zy x z x24.设曲线y =y (x )在其上点(x , y )处的切线斜率为xyx -24,且曲线过点(1,1),求该曲线的方程. 25.证明:无穷级数∑∞=-=++-+121)122(n n n n .全国2011年1月自学考试高等数学(工本)试题一、单项选择题(本大题共5小题。

高等数学(A)(下)期末考试试题.解答.

高等数学(A)(下)期末考试试题.解答.

2009-2010(春)高等数学A(下)期末考试试题解答(2010.6)一、填空题(本题满分15分,共有5道小题,每道小题3分,请将合适的答案填在空中).2∂z=2xyexy.∂x2函数u=xy2+z3-x2yz在点P(1,1,1)处的梯度(-1,1,2).21设z=exy,则3设f(x,y)为二元连续函数,交换积分次序⎰10dy⎰f(x,y)dx=y⎰10dx⎰f(x,y)dy.x5级数L在p>1条件下收敛.∑pnn=1∞二、选择填空题(本题满分15分,共有5道小题,每道小题3分).以下每道题有四个答案,其中只有一个答案是正确的,请选出合适的答案填在空中,多选无效.1 二元函数f(x,y)在点(x0,y0)处两个偏导数fx(x0,y0)与fy(x0,y0)存在是f(x,y)在该点处连续的( D ).(A)充分而非必要条件;(B)必要而非充分条件;(C)充分必要条件;(D)既非必要条件又非充分条件. 2 曲面yz+zx+xy=3在点(0,1,3)处的切平面方程为( B ).(A) 2x+y-1=0; (B)4x+3y+z-6=0; (C) x+y+z-1=0; (D) 4x+3y+z-2=0.(A)bn=(B)bn=(C)bn=(D)bn=4 设级数f(x)sinnxdx(n=1,2, ),和函数为f(x);⎰ππ-πf(x)cosnxdx(n=1,2, ),和函数为f(x);⎰ππ-11πf(x)cosnxdx(n=1,2, ),和函数为2f(x);⎰ππ-ππ⎰2πf(x)sinnxdx(n=1,2, ),和函数为f(x).∑un=1∞n收敛,且∑un=1∞n=u,则级数∑(un+un+1)=( C ).n=1∞(A) 2u;(B)u;(C)2u-u1;(D)u-u1.25 已知y=1,y=x,y=x为某二阶非齐次线性微分方程y''+p(x)y'+q(x)y=f(x)的三个解,则其通解为( C ).(其中C1,C2为任意常数)(A)y=C1+C2x+x;(B)y=C1x+C2x+1;(C)y=C1(x-1)+C2(x-1)+1;(D)y=C1(x-1)+C2(x-1)+x-x.三、(本题满分8分)22222⎛∂2zx⎫设二元函数z=xy+f xy,⎪,其中函数f具有二阶连续的偏导数,求.∂x∂yy⎭⎝∂z1=y+yf1'+f2' , 4分解:∂xy⎡⎛x⎫⎤1⎛x⎫⎤∂2z1⎡''''''''''⎥⎪=1+f1+y⎢xf11+ -2⎪f12⎥-2f2+⎢xf21+ -2⎪f22⎪∂x∂yy⎣⎝y⎭⎦y⎝y⎭⎦⎣1x''-3f22'' . 4分 =1+f1'-2f2'+xyf11yy四、(本题满分10分)计算二重积分解:⎰⎰(yD2+3x+9)dxdy,其中D=(x,y)x2+y2≤1. {}22=(y+3x+9)dxdyy⎰⎰dxdy+⎰⎰3xdxdy+⎰⎰9dxdy 2分⎰⎰DDDD2y⎰⎰dxdy+0+9π 3分D ===⎰2π0sin2θ⎰ρ3dρ+9π 3分0137π . 2分 4五、(本题满分16分,其中1题为8分,2题为8分)1 讨论级数∑n=1∞(-1)nann(a>0)的敛散性;2 试将函数f(x)=1 解:当a>1,lim⎰x0. sint2dt展成x的幂级数(要求写出该幂级数的一般项并指出其收敛域)un+1n1=lim=<1,故原级数绝对收敛; 3分n→∞un→∞n+1aan 当0<a<1,limun+1n1=lim=>1,limun≠0,故原级数发散;3分n→∞n→∞un→∞n+1aan当a=1,原级数为∞∑n=1∞(-1)n,条件收敛. n 2分 (-1)n-1t2n-12 因为sint=∑t∈(-∞,+∞) , 2分 (2n-1)!n=1∞(-1)n-1t4n-22 则sint=∑t∈(-∞,+∞) . 2分n=1(2n-1)!将上式两端逐项积分,得⎛∞(-1)n-1t4n-2⎫ f(x)=⎰sintdt=⎰ ∑⎪dt (2n-1)!⎭00⎝n=1∞x(-1)n-1t4n-2=∑⎰dt (2n-1)!n=102xx(-1)n-1x4n-1=∑ (-∞<x<+∞) . 4分 2n-1!(4n-1)n=0∞六、(本题满分12分).∑ 2解:令∑1为z=4被z=x2+y2所截得部分的上侧, 则原式=由高斯公式z=4∑+∑1-⎰⎰∑1, 2分⎰⎰∑∑+=⎰⎰⎰[(x)'x+(y)'y+(z(x+y))'z]dv=13322ΩD=(⎰⎰Ωdxdy)xyz=x2+y2⎰[4(x2+ y2)]dz2π2z=422=⎰dθ⎰rdr⎰[4r]dz=2π⎰r[4r2](4-r2)dr=00z=r2012π8 . 6分 3由曲面积分计算公式得2π2222=0+0+4(x+y)dxdy=dθ4(r⎰⎰⎰⎰⎰⎰)rdr=32π, 2分∑1D00128π32π . 2分 -32π=33七、(本题满分8分)某工厂生产两种型号的机床,其产量分别为x台和y台,成本函数为故原式= c(x,y)=x2+2y2-xy (万元)若市场调查分析,共需两种机床8台,求如何安排生产,总成本最少?最小成本为多少?解:即求成本函数c(x,构造辅助函数 F(x,y)在条件x+y=8下的最小值. y)=x2+2y2-xy+λ(x+y-8) 2分⎧Fx'=2x-y+λ=0⎪解方程组⎨Fy'=-x+4y+λ=0⎪F'=x+y-8=0⎩λ解得λ=-7,x=5,y=3 4分这唯一的一组解,即为所求,当这两种型号的机床分别生产5台和3台时,总成本最小,最小成本为: c(5,3)=52+2⨯32-5⨯3=28(万) 2分八、(本题满分16分,其中1题为10分,2题为6分)1 设可导函数ϕ(x)满足ϕ(x)cosx+2⎰ϕ(t)sintdt=x+1,求ϕ(x). 0x2 设函数f(u)具有二阶连续的导函数,而且z=fesiny满足方程 x()∂2z∂2z2x+=ez,22∂x∂y试求函数f(u).解1 在ϕ(x)cosx+2⎰x0ϕ(t)sintdt=x+1两端对x求导得,ϕ'(x)+tanxϕ(x)=secx. 4分解上述一阶线性微分方程得通解为.ϕ(x)=six+nC. cxo 4分由ϕ(x)cosx+2⎰x0ϕ(t)sintdt=x+1得,ϕ(0)=1,则C=1故ϕ(x)=sinx+cosx. 2分2 设u=exsiny,则有∂z∂z=f'(u)exsiny,=f'(u)excosy ∂x∂y∂2z2x2x所以,2=f''(u)esiny+f'(u)esiny ∂x∂2z=f''(u)e2xco2sy-f'(u)exsiny 2分2∂x∂2z∂2z代入方程 +2=e2xz,2∂x∂y2x2x2x2x2x得,f''(u)esiny+f'(u)esiny+f''(u)ecosy-f'(u)esiny=ez 即,f''(u)e2x=f(u)e2x由此得微分方程 f''(u)-f(u)=0 2分解此二阶线性微分方程,得其通解为f(u)=C1e+C2eu-u (C1与C2为任意常数) 2分此即为所求函数.。

2010年高考全国数学卷(全国Ⅰ.理)(含详解答案)

2010年高考全国数学卷(全国Ⅰ.理)(含详解答案)

绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I 卷1至2页。

第Ⅱ卷3 至4页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k k n kn n P k C p p k n -=-=…一.选择题 (1)复数3223ii+=- (A)i (B)i - (C)12-13i (D) 12+13i1.A 【命题意图】本小题主要考查复数的基本运算,重点考查分母实数化的转化技巧.【解析1】32(32)(23)694623(23)(23)13i i i i i i i i i +++++-===--+. 【解析2】232322323i i ii i i+-+==-- (2)记cos(80)k -︒=,那么tan100︒=A.kB. -kC.D.2.B 【命题意图】本小题主要考查诱导公式、同角三角函数关系式等三角函数知识,并突出了弦切互化这一转化思想的应用.【解析1】sin 80=== ,所以tan100tan80︒=-sin80cos80=-=【解析2】cos(80)k -︒=cos(80)k⇒︒=,()()00000sin 18080sin100sin80tan1001008018080oo ocon con con -︒===--k=-(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)13.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力.【解析1】画出可行域(如右图),由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为max 12(1)3z =-⨯-=.【解析2】11222z x y y x z =-⇒=-,画图知过点()1,1-是最大,()1213Max z =--= (4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =x +20y -=(A) 4.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析1】由等比数列的性质知31231322()5a a a a a a a === ,37897988()a a a a a a a === 10,所以132850a a =,所以133364564655()(50)a a a a a a a ===== 【解析2】123a a a =5325a ⇒=;789a a a =103810,a ⇒=6333528456550a a a a a a a ⇒==⇒==(5)35(1(1+的展开式中x 的系数是 (A) -4 (B) -2 (C) 2 (D) 4 5.C 【解析】12451335333322(1(1161281510105x x x x x x x x ⎛⎫⎛⎫+=+++-+-+- ⎪ ⎪⎝⎭⎝⎭x 的系数是 -10+12=2(6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 (A) 30种 (B)35种 (C)42种 (D)48种6.A 【命题意图】本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想.【解析1】:可分以下2种情况:(1)A 类选修课选1门,B 类选修课选2门,有1234C C 种不同的选法;(2)A 类选修课选2门,B 类选修课选1门,有2134C C 种不同的选法.所以不同的选法共有1234C C +2134181230C C =+=种.【解析2】33373430C C C --=(7)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为AB C DA 1B1C 1D1 OA3B 3C 23D 37.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.与【解析1】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1平面AC 1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO S DD∆∆⋅=⋅.设DD 1=a,则122111sin 60)22ACD S AC AD ∆==⨯= ,21122ACDS AD CD a ∆== . 所以1313A C D A C D S D D D O a S ∆∆== ,记DD 1与平面AC 1D 所成角为θ,则1sin DO DD θ==,所以cos 3θ=. 【解析2】设上下底面的中心分别为1,O O ;1O O 与平面AC 1D 所成角就是B 1B 与平面AC 1D所成角,1111cos O O O OD OD ∠=== (8)设a=3log 2,b=In2,c=125-,则A a<b<c Bb<c<a C c<a<b D c<b<a8.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用. 【解析1】 a=3log 2=21log 3, b=In2=21log e,而22log 3log 1e>>,所以a<b, c=125-222log 4log 3>=>,所以c<a,综上c<a<b.【解析2】a =3log 2=321log ,b =ln2=21log e, 3221log log 2e <<< ,32211112log log e <<<; c=12152-=<=,∴c<a<b (9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点p 在C 上,∠1F p 2F =060,则P 到x 轴的距离为(A)(C)(D) 9.B 【命题意图】本小题主要考查双曲线的几何性质、第二定义、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.【解析1】不妨设点P 00(,)x y 在双曲线的右支,由双曲线的第二定义得21000||[()]1a PF e x a ex c =--=+=,22000||[)]1a PF e x ex a c=-=-=-.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +-,即cos 060=, 解得2052x =,所以2200312y x =-=,故P 到x轴的距离为0||2y = 【解析2】由焦点三角形面积公式得:120226011cot 1cot 22222F PF S b c h h h θ∆=====⇒=(10)已知函数F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是(A))+∞(B))+∞ (C)(3,)+∞ (D)[3,)+∞10.A 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+2b 2a a=+>从而错选A,这也是命题者的用苦良心之处.【解析1】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+2b=2a a+ 又0<a<b,所以0<a<1<b ,令2()f a a a=+,由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+21=3,即a+2b 的取值范围是(3,+∞).【解析2】由0<a<b,且f (a )=f (b )得:0111a b ab <<⎧⎪<⎨⎪=⎩,利用线性规划得:0111x y xy <<⎧⎪<⎨⎪=⎩,求2z x y=+的取值范围问题,11222z x y y x z =+⇒=-+,2111y y x x'=⇒=-<-⇒过点()1,1时z 最小为3,∴(C)(3,)+∞(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ∙的最小值为(A) 4-(B)3-(C) 4-+(D)3-+11.D 【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析1】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,,sin α=||||cos2PA PB PA PB α∙=⋅ =22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令PA PB y ∙= ,则4221x x y x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得3y ≤--3y ≥-+.故min ()3PA PB ∙=-+此时x =【解析2】法一: 设,0APB θθπ∠=<<,()()2cos 1/tan cos 2PA PB PA PB θθθ⎛⎫∙== ⎪⎝⎭ 2222221sin 12sin cos 22212sin 2sin sin22θθθθθθ⎛⎫⎛⎫-- ⎪⎪⎛⎫⎝⎭⎝⎭=⋅-=⎪⎝⎭ 法二:换元:2sin ,012x x θ=<≤,()()1121233x x PA PB x x x --∙==+-≥ 或建系:园的方程为221x y +=,设11110(,),(,),(,0)A x y B x y P x -,()()2211101110110,,001AO PA x y x x y x x x y x x ⊥⇒⋅-=⇒-+=⇒=()222222221100110110221233PA PB x x x x y x x x x x ∙=-+-=-+--=+-≥(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(A)3(B)3(C)(D) 312.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析1】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,max h =故max V =. 【解析2】()()22210110111001,,2PA PB x x y x x y x x x x y ∙=-⋅--=-+-绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修II)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。

2010-2011学年第二学期高等数学试题 (A)含答案

2010-2011学年第二学期高等数学试题 (A)含答案

2010-2011学年第二学期高等数学试题 (A)一、填空题(每小题4 分,共20分)1. 设区域D 为1x y +≤,则()22Dxyf xy dxdy +⎰⎰= 。

2. 过点0M (2,4,0)且与直线210:320x z L y z +-=⎧⎨--=⎩平行的直线方程是 。

3. 设有一力22F i j k =-+ ,则F 在a i j k =++方向上的分力为 。

4. 设S 为球面2229x y z ++=的外侧面,则曲面积分Szdxdy ⎰⎰的值是 。

5. 敛域14n n n∞=∑的和为 。

二、选择题(每小题4 分,共20分)1. 设数列{}n a 单调减少,lim 0n n a →∞=,()11,2,nn k k S a n ===∑ 无界,则幂级数()11nn n a x ∞=-∑的收敛域为 。

(A) (1,1]-; (B) [1,1)-; (C) [0,2); (D) (0,2]2. 设()101,2,n a n n≤<= ,则下列级数中肯定收敛的是 。

(A)1n n a ∞=∑; (B)()11nn n a ∞=-∑;(C)1n ∞=; (D)()211nn n a ∞=-∑3. 已知()(),f x f y 在区域(){},1D x y x y =+≤上连续,且()()0,0f x f y >>,则()()()()()Daf y bf x dxdy f x f y +=+⎰⎰(A) a b -; (B)a b +; (C) ()2a b +; (D) ()2a b -;4. 设S 是平面4x y z ++=被圆柱面221x y +=截出的有限部分,则曲面积分Syds⎰⎰的值是 。

(A) 0; (B)(C)(D) ;5. 设Ω是由椭球面2222221x y z a b c ++=围成的区域,则2z dxdydz Ω⎰⎰⎰的值为 。

(A )0; (B)3415abc π; (C)(D) π;三、解答题(1~6题每题8分,第7题12分,共60分)1. 设(),f u v 具有二姐连续偏导数,且满足22221u f fv∂∂+=∂∂, 又()()221,,2g x y f xy x y ⎡⎤=-⎢⎥⎣⎦,求2222g g x y ∂∂+∂∂。

2010年普通高等学校招生全国统一考试数学(江苏卷)(附答案,完全word版)

2010年普通高等学校招生全国统一考试数学(江苏卷)(附答案,完全word版)

2010年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ试题参考公式:锥体的体积公式:13V Sh =锥体,其中S 是锥体的底面面积,h 是高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.设集合{1,1,3}A =-,{}4,22++=a a B ,{}3=⋂B A ,则实数a 的值为____▲____. 1.【答案】1.【命题意图】本题考查交集的定义,对求得的集合中的元素要进行检验.【解析】由题意得1,32==+a a .又由342=+a 不符合题意.经检验得1=a .2.设复数z 满足(23)64z i i -=+(i 为虚数单位),则z 的模为____▲____. 2.【答案】2.【命题意图】本题考查复数有关运算及复数模的计算. 【解析】由i i z 46)32(+=-得,2)32)(32()32)(46(3246i i i i i i i z =+-++=-+=即2,2=∴=z i z . 3.盒子里共有大小相同的3只白球,1只黑球.若从中随机摸出两只球,则它们颜色不同的概率是_ ▲__.3.【答案】21. 【命题意图】本题考查古典概型知识. 【解析】31.62p == 4.某棉纺厂为了解一批棉花的质量,从中随机抽测了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标).所得数据均在区间[5,40]中,其频率分布直方图如图所示,则在抽测的100根中,有_ ▲__ 根棉花纤维的长度小于20mm. 4.【答案】30.【命题意图】本题考查概率统计中频率分布直方图的有关运用,注意纵坐标是频率/组距.【解析】由频率分布直方图得棉花纤维长度小于mm 20的根数为(0.01+0.01+0.04)301005=⨯⨯. 5.设函数()()xxf x x e ae -=+(x ∈R )是偶函数,则实数a 的值为____▲____. 5.【答案】1-.【命题意图】本题考查函数的奇偶性.【解析】设R x ae e x g xx∈+=-,)(,由题意分析)(x g 应为奇函数(奇函数⨯奇函数=偶函数), 又R x ∈ ,0)0(=∴g ,则,01=+a 所以1-=a .6.在平面直角坐标系xOy 中,已知双曲线221412x y -=上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为____▲____.6.【答案】4.【命题意图】本题考查求曲线上点的坐标、双曲线的焦点坐标、两点间距离公式的运用. 【解析】由题意得点15,3(±M ),双曲线的右焦点的坐标为(4,0),2MF 22)015()43(-±+-==4.或用第二定义:2MFe d==,2d =,4MF =. 7.右图是一个算法流程图,则输出的S 的值是____▲____.7.【答案】63.【命题意图】本题考查算法流程图,由流程图得出S 的关系式,比较得出S 的值.【解析】由流程图得12345122222S =+++++=1+2+48+16+32=6333≥,即.63=S8.函数2(0)y x x =>的图象在点2(,)k k a a 处的切线与x 轴的交点的横坐标为1k a +,其中k ∈N *.若116a =,则123a a a ++的值是____▲____.8.【答案】21.【命题意图】考查函数的切线方程、数列的通项.【解析】在点2(,)k k a a 处的切线方程为22(),k k k y a a x a -=-当0y =时,解得2ka x =,所以 1135,1641212kk a a a a a +=++=++=. 9.在平面直角坐标系xOy 中,已知圆224x y +=上有且只有四个点到直线1250x y c -+=的距离为1,则实数c 的取值范围是____▲____. 9.【答案】(13,13)-.【命题意图】本题考查直线与圆的位置关系.【解析】如图,圆422=+y x 的半径为2,圆上有且仅有四个点到直线的距离为1,问题转化为原点(0,0)到直线05=+-c y x 的距离小于1,即1313,13,151222<<-∴<<+c c c .10.设定义在区间(0,)2π上的函数y=6cosx 的图象与y=5tan x 的图象交于点P ,过点P 作x 轴的垂线,垂足为P 1,直线PP 1与函数y=sinx 的图像交于点P 2,则线段P 1P 2的长为____▲____. 10.【答案】.32y O 0512=+-c y x1 11【命题意图】本题考查三角函数问题,由图象相交,即三角函数值相等,建立关系式,求出,32sin =x 结合图象,数形结合分析P 1P 2的值.【解析】由题意得x x tan 5cos 6=,即x x xxx sin 5cos 6,cos sin 5cos 62==, 226(1sin )5sin ,6sin 5sin 60x x x x -=+-=得,32sin =x 结合图象分析得32sin 21==P P x .11.已知函数21,0,()1,0,x x f x x ⎧+≥=⎨<⎩则满足不等式2(1)(2)f x f x ->的x 的取值范围是____▲____.11.【答案】).12,1(--【命题意图】本题考查分段函数的单调性.【解析】2212,10,x x x ⎧->⎪⎨->⎪⎩解得121x -<<,所以x 的取值范围是).12,1(-- 12.设x,y 为实数,满足3≤2xy ≤8,4≤2x y≤9,则34x y 的最大值是____▲____.12.【答案】27.【命题意图】考查不等式的基本性质,等价转化思想.【解析】22()[16,81]x y ∈,2111[,]83xy ∈,322421()[2,27]x x y y xy=⋅∈,43y x 的最大值是27.13.在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .若6cos b a C a b +=,则tan tan tan tan C CA B+的值是 ▲ . 【答案】4.【解析】考查三角函数知识,三角形中的正、余弦定理的应用,等价转化思想. (方法一)考虑已知条件和所求结论对于角A 、B 和边a 、b 具有轮换性. 当A=B 或a=b 时满足题意,此时有1cos 3C =,21cos 1tan 21cos 2C C C -==+,2tan 22C =.等腰三角形中,1tan tan 2tan 2A B C ===,tan tan tan tan C CA B+=4. (方法二)226cos 6cos b a C ab C a b a b +=⇒=+,2222222236,22a b c c ab a b a b ab +-⋅=++=.2tan tan sin cos sin sin cos sin sin()1sin tan tan cos sin sin cos sin sin cos sin sin C C C B A B A C A B C A B C A B C A B C A B+++=⋅=⋅=⋅,由正弦定理,得上式22222214113cos ()662c c c c C ab a b =⋅===+⋅. 14.将边长为1m 的正三角形薄铁皮沿一条平行于某边的直线剪成两块,其中一块是梯形,记2(s =梯形的周长)梯形的面积,则s 的最小值是____▲____. 【答案323. 【解析】考查函数中的建模应用,等价转化思想. 设剪成的小正三角形的边长为x ,则222(3)(01)1133(1)(1)x s x x x x -==<<-⋅+⋅⋅-. (方法一)利用导数求函数最小值.22(3)()13x S x x -=-,2222(26)(1)(3)(2)()(1)3x x x x S x x -⋅---⋅-'=-222(31)(3)(1)3x x x ---=- 1()0,01,3S x x x '=<<=.当1(0,]3x ∈时,()0,S x '<递减;当1[,1)3x ∈时,()0,S x '>递增.故当13x =时,S 323. (方法二)利用函数的方法求最小值.令1113,(2,3),(,)32x t t t -=∈∈,则22218668331t S t t t t==-+--+-.故当131,83x t ==时,S 323. 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在平面直角坐标系xOy 中,已知点(1,2)A --,(2,3)B ,(2,1).C -- (1)求以线段AB 、AC 为邻边的平行四边形的两条对角线的长; (2)设实数t 满足(OC t AB -)·OC =0,求t 的值.【解析】本小题主要考查平面向量的几何意义、线性运算、数量积,考查运算求解能力.满分14分.解:(1)由题设知(3,5)AB =,(1,1)AC =-,则 (2,6)A B A C +=,(4,4).AB AC -=所以||210AB AC +=||4 2.AB AC -= 故所求的两条对角线长分别为42,210.(2)由题设知 (2,1)OC =--,(32,5).AB tOC t t -=++由()0AB tOC OC -=,得(32,5)(2,1)0t t ++--=, 从而511t =-,所以11.5t =- 16.(本小题满分14分)如图,在四棱锥P-ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=900. (1)求证:PC ⊥BC ;(2)求点A 到平面PBC 的距离.【解析】本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力.满分14分.解:(1)因为PD ⊥平面ABCD ,BC ⊂平面ABCD ,所以PD ⊥BC. 由∠BCD=900,得BC ⊥DC.又PD DC D ⋂=,PD ⊂平面PCD ,DC ⊂平面PCD , 所以BC ⊥平面PCD.因为PC ⊂平面PCD ,所以PC ⊥BC. (2)(方法一)分别取AB 、PC 的中点E 、F ,连DE 、DF.则易证DE ∥CB ,DE ∥平面PBC ,点D 、E 到平面PBC 的距离相等. 由(1)知BC ⊥平面PCD ,所以平面PBC ⊥平面PCD.因为PD=DC ,PF=FC ,所以DF ⊥PC ,所以DF ⊥平面PBC 于F. 易知DF=22.又点A 到平面PBC 的距离等于E 到平面PBC 的距离 的2倍,故点A 到平面PBC 2(方法二)连结AC.设点A 到平面PBC 的距离h. 因为AB ∥DC ,∠BCD=900,所以∠ABC=900. 从而由AB=2,BC=1,得ABC ∆的面积1ABC S ∆=.由PD ⊥平面ABCD 及PD=1,得三棱锥P ABC -的体积11.33ABC V S PD ∆== 因为PD ⊥平面ABCD ,DC ⊂平面ABCD ,所以PD ⊥DC.又PD=DC=1,所以22 2.PC PD DC =+=由PC ⊥BC ,BC=1,得PBC ∆的面积22PBC S ∆= 由1121333PBC V S h h ∆===,得2h =.因此,点A 到平面PBC 的距离为2. 17.(本小题满分14分)某兴趣小组要测量电视塔AE 的高度H(单位:m).如示意图,垂直放置的标杆BC 高度h=4m ,仰角∠ABE=α,∠ADE=β.(1)该小组已测得一组α,β的值,算出了tan α=1.24,tan β=1.20,请据此算出H 的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d (单位:m ),使α与β之差较大,可以提高测量精度.若电视塔的实际高度为125m ,试问d 为多少时,αβ-最大?【解析】本小题主要考查解三角形、基本不等式、导数等基础知识,考查数学建模能力、抽象概括能力和解决实际问题的能力.满分14分. 解:(1)由tan H AB α=,tan h BD β=,tan HAD β= 及AB BD AD +=,得tan tan tan H h Hαββ+=, 解得tan 4 1.24124tan tan 1.24 1.20h H αβα⨯===--.因此,算出的电视塔的高度H 是124m. (2)由题设知d AB =,得tan .H dα= 由tan tan H hAB AD BD ββ=-=-,得tan H h d β-=,所以tan tan tan()()1tan tan 2()h H H h H H h d dαβαβαβ--==≤-+⋅-+,当且仅当()H H h d d-=,即()125121555d H H h -⨯=. 所以当555d =tan()αβ-最大. 因为02πβα<<<,则02παβ<-<,所以当555d =αβ-最大.故所求的d 是555m. 18.(本小题满分16分)在平面直角坐标系xOy 中,如图,已知椭圆15922=+y x 的左、右顶点为A 、B ,右焦点为F.设过点T (m t ,)的直线TA 、TB 与此椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y . (1)设动点P 满足422=-PB PF ,求点P 的轨迹; (2)设31,221==x x ,求点T 的坐标; (3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关).【解析】本小题主要考查求简单曲线的方程,考查直线与椭圆的方程等基础知识,考查运算求解能力和探究问题的能力.满分16分.解:由题设得(3,0)A -,(3,0)B ,(2,0).F(1)设点(,)P x y ,则222(2)PF x y =-+,222(3).PB x y =-+ 由422=-PB PF ,得2222(2)(3)4x y x y -+---=,化简得92x =. 故所求点P 的轨迹为直线92x =. (2)由12x =,2211195x y +=及10y >,得153y =,则点5(2,)3M , 从而直线AM 的方程为113y x =+; 由213x =,2222195x y +=及20y <,得2109y =-,则点110(,)39N -, 从而直线BN 的方程为5562y x =-. 由11,355,62y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩解得7,10.3x y =⎧⎪⎨=⎪⎩所以点T 的坐标为10(7,)3. (3)由题设知,直线AT 的方程为(3)12m y x =+,直线BT 的方程为(3)6my x =-. 点11(,)M x y 满足112211(3),121,95m y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩得 22111(3)(3)(3)9125x x x m -++=-,因为13x ≠-,则211339125x x m -+=-,解得212240380m x m -=+,从而124080m y m =+. 点22(,)N x y 满足2222222(3),61,953,m y x x y x ⎧=-⎪⎪⎪+=⎨⎪≠⎪⎪⎩解得22236020m x m -=+,222020m y m -=+. 若12x x =,则由222224033608020m m m m--=++及0m >,得210m = 此时直线MN 的方程为1x =,过点(1,0).D若12x x ≠,则210m ≠MD 的斜率2222401080240340180MDmm m k m m m +==---+, 直线ND 的斜率222220102036040120NDmm m k m mm -+==---+,得MD ND k k =,所以直线MN 过D 点. 因此,直线MN 必过x 轴上的点(1,0). 19.(本小题满分16分)设各项均为正数的数列{}n a 的前n 项和为n S .已知3122a a a +=,数列{}nS 是公差为d 的等差数列.(1)求数列{}n a 的通项公式(用d n ,表示);(2)设c 为实数,对满足n m k n m ≠=+且3的任意正整数k n m ,,,不等式k n m cS S S >+都成立,求证:c 的最大值为29.【解析】本小题主要考查等差数列的通项、求和以及基本不等式等有关知识,考查探索、分析及论证的能力.满分16分. 解:(111(1)(1)n S S n d a n d =-=-,则当2n ≥时,221111()()232.n n n n n n n a S S S S S S a d d n ---=-==+由2132a a a =+,得221112(2)23a d a a d =+1.a d = 故当2n ≥时,222.n a nd d =-又21a d =,所以数列{}n a 的通项公式为2(21)n a n d =-.(21a d =1(1)n S a n d =-,得0d >,22n S n d =. 于是,对满足题设的k ,,m n ≠,有2222222()99()222m n k m n S S m n d d d k S ++=+>==.所以c 的最大值max 92c ≥.另一方面,任取实数92a >.设k 为偶数,令331,122m k n k =+=-,则k n m ,,符合条件,且22222222331()((1)(1))(94).222m n S S d m n d k k d k +=+=++-=+于是,只要22942k ak +<,即当29k a >-时,就有22122m n k S S d ak aS +<⋅=.所以满足条件的92c ≤,从而max 92c ≤.因此c 的最大值为92.20.(本小题满分16分)设)(x f 是定义在区间),1(+∞上的函数,其导函数为)('x f .如果存在实数a 和函数)(x h ,其中)(x h 对任意的),1(+∞∈x 都有)(x h >0,使得)1)(()('2+-=ax x x h x f ,则称函数)(x f 具有性质)(a P . (1)设函数2()ln (1)1b f x x x x +=+>+,其中b 为实数. (i)求证:函数)(x f 具有性质)(b P ;(ii)求函数)(x f 的单调区间.(2)已知函数)(x g 具有性质)2(P .给定1212,(1,),,x x x x ∈+∞<设m 为实数,21)1(x m mx -+=α,21)1(mx x m +-=β,且1,1>>βα,若|)()(βαg g -|<|)()(21x g x g -|,求m 的取值范围.【解析】本小题主要考查函数的概念、性质、图象及导数等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力.满分16分.解:(1)(i)由2()ln 1b f x x x +=++,得'()f x 221.(1)x bx x x -+=+ 因为1x >时,21()0(1)h x x x =>+,所以函数)(x f 具有性质)(b P .(ii)当2b ≤时,由1x >得222121(1)0x bx x x x -+≥-+=->, 所以)('x f 0>,从而函数)(x f 在区间),1(+∞上单调递增.当2b >时,解方程210x bx -+=得214b b x --=,224b b x +-=因为214b b x --=2214b b b =<<+-,2241b b x +-=>,所以当2(1,)x x ∈时,)('x f 0<;当2(,)x x ∈+∞时,)('x f 0>;当2x x =时,)('x f =0.从而函数)(x f 在区间2(1,)x 上单调递减,在区间2(,)x +∞上单调递增. 综上所述,当2b ≤时,函数)(x f 的单调增区间为),1(+∞;当2b >时,函数)(x f 的单调减区间为24b b +-,单调增区间为24()b b +-+∞.(2)(方法一)由题意,得22'()()(21)()(1)g x h x x x h x x =-+=-. 又)(x h 对任意的),1(+∞∈x 都有)(x h >0,所以对任意的),1(+∞∈x 都有()0g x '>,()g x 在(1,)+∞上递增.当1m =时,1x α=,2x β=,不合题意.1212,(21)()x x m x x αβαβ+=+-=--. 当1,12m m >≠时,αβ<,且112212(1)(1),(1)(1)x m x m x x m x m x αβ-=-+--=-+-, 221212()()(1)()0x x m x x αβ∴--=---<,12x x αβ∴<<<或12x x αβ<<<,若12x x αβ<<<,则12()()()()f f x f x f αβ<<<,12|()()||()()|g g g x g x αβ∴->-,不合题意.12x x αβ∴<<<,即112122(1),(1),x mx m x m x mx x <+-⎧⎨-+<⎩解得1m <,11.2m ∴<< 当12m =时,αβ=,120|()()||()()|g g g x g x αβ=-<-,符合题意. 当12m <时,αβ>,且212112(),()x m x x x m x x αβ-=--=--,同理有12x x βα<<<,112122(1),(1),x m x mx mx m x x <-+⎧⎨+-<⎩解得0m >,10.2m ∴<<综合以上讨论,得所求的m 的取值范围是(0,1).(方法二)由题设知,()g x 的导函数2'()()(21)g x h x x x =-+,其中函数()0h x >对于任意的),1(+∞∈x 都成立,所以,当1x >时,2'()()(1)0g x h x x =->,从而()g x 在区间),1(+∞上单调递增. ①当(0,1)m ∈时,有12111(1)(1)mx m x mx m x x α=+->+-=,222(1)mx m x x α<+-=,得12(,)x x α∈,同理可得12(,)x x β∈,所以由()g x 的单调性知()g α,()g β12((),())g x g x ∈,从而有|)()(βαg g -|<|)()(21x g x g -|,符合题设.②当0m ≤时,12222(1)(1)mx m x mx m x x α=+-≥+-=,12111(1)(1)m x mx m x mx x β=-+≤-+=,于是由1,1αβ>>及()g x 的单调性知12()()()()g g x g x g βα≤<≤,所以|)()(βαg g -|≥|)()(21x g x g -|,与题设不符.③当1m ≥时,同理可得12,x x αβ≤≥,进而得|)()(βαg g -|≥|)()(21x g x g -|,与题设不符.因此,综合①、②、③得所求的m 的取值范围为(0,1).数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题.......,并.在.相应的答题.....区域内作答......若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲(本小题满分10分)如图,AB 是圆O 的直径,D 为圆O 上一点,过D 作圆O 的切线交AB 的延长线于点C.若DA=DC ,求证:AB=2BC.【解析】本题主要考查三角形、圆的有关知识,考查推理论证能力.满分10分.证明:(方法一)连OD ,则OD ⊥DC.又OA=OD ,DA=DC ,所以∠DAO=∠ODA=∠DCO ,∠DOC=∠DAO+∠ODA=2∠DCO ,所以∠DCO=300,所以OC=2OD ,即OB=BC=OD=OA ,所以AB=2BC.(方法二)连结OD 、BD.因为AB 是圆O 的直径,所以∠ADB=900,AB=2OB.因为DC 是圆O 的切线,所以∠CDO=900.又因为DA=DC ,所以∠A=∠C ,于是△ADB ≌△CDO ,从而AB=CO.即2OB=OB+BC ,得OB=BC.故AB=2BC.B.选修4-2:矩阵与变换(本小题满分10分)在平面直角坐标系xOy 中,已知点(0,0),(2,0),(2,1)A B C --.设k 为非零实数,矩阵M =⎥⎦⎤⎢⎣⎡100k ,N =⎥⎦⎤⎢⎣⎡0110,点A 、B 、C 在矩阵MN 对应的变换下得到的点分别为A 1、B 1、C 1,△A 1B 1C 1的面积是△ABC 的面积的2倍,求k 的值.【解析】本题主要考查图形在矩阵对应的变换下的变化特点,考查运算求解能力.满分10分.解:由题设得0010011010k k MN ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.由0001000k ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,0201002k -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,021012k k -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦, 可知1(0,0)A ,1(0,2)B -,1(,2)C k -.计算得△ABC 的面积是1,△A 1B 1C 1的面积是||k ,则由题设知||212k =⨯=.所以k 的值为2-或2.C.选修4-4:参数方程与极坐标(本小题满分10分)在极坐标系中,已知圆2cos ρθ=与直线3cos 4sin 0a ρθρθ++=相切,求实数a 的值.【解析】本题主要考查曲线的极坐标方程等基础知识,考查转化问题的能力.满分10分.解:将极坐标方程化为直角坐标方程,得圆的方程为22222,(1)1x y x x y +=-+=即,直线的方程为340x y a ++=.由题设知,圆心(1,0)到直线的距离为1221,34=+解得8a =-,或2a =.故a 的值为8-或2.D.选修4-5:不等式选讲(本小题满分10分)设a ,b 是非负实数,求证:3322()a b ab a b +≥+.【解析】本题主要考查证明不等式的基本方法,考查推理论证的能力.满分10分.证明:由a ,b 是非负实数,作差得 3322()()()a b ab a b a a a b b b b a ++=+55()[()()]a b a b =-.当a b ≥a b ≥,从而55()()a b ≥,得55()[()()]0a b a b -≥;当a b <a b <,从而55()()a b <,得55()[()()]0a b a b ->. 所以3322()a b ab a b +≥+.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)某工厂生产甲、乙两种产品.甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元.设生产各件产品相互独立.(1)记X (单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X 的分布列;(2)求生产4件甲产品所获得的利润不少于10万元的概率.【解析】本题主要考查概率的有关知识,考查运算求解的能力.满分10分.解:(1)由题设知,X 的可能取值为10,5,2,-3,且P (X=10)=0.8×0.9=0.72, P (X=5)=0.2×0.9=0.18,P (X=2)=0.8×0.1=0.08, P (X=-3)=0.2×0.1=0.02.由此得X 的分布列为: X-3 2 5 10 P 0.02 0.08 0.18 0.72(2)设生产的4件甲产品中一等品有n 件,则二等品有4n -件.由题设知4(4)10n n --≥,解得145n ≥, 又n N ∈,得3n =,或4n =. 所以3344440.80.20.80.8192P C C =+=. 故所求概率为0.8192.23.(本小题满分10分)已知△ABC 的三边长都是有理数.(1)求证:cos A 是有理数; (2)求证:对任意正整数n ,cos nA 是有理数.【解析】本题主要考查余弦定理、数学归纳法等基础知识,考查推理论证的能力与分析问题、解决问题的能力.满分10分.证法一:(1)由AB 、BC 、AC 为有理数及余弦定理知222cos 2AB AC BC A AB BC+-=是有理数. (2)①当1n =时,由(1)知cos A 是有理数.当2n =时,∵2cos22cos 1A A =-,因为cos A 是有理数,∴cos 2A 也是有理数;②假设当(2)n k k ≤≥时,结论成立,即coskA 、cos(1)k A -均是有理数.当1n k =+时,cos(1)cos cos sin sin k A kA A kA A +=-,1cos(1)cos cos [cos()cos()]2k A kA A kA A kA A +=---+, 11cos(1)cos cos cos(1)cos(1)22k A kA A k A k A +=--++, 解得cos(1)2cos cos cos(1)k A kA A k A +=--. ∵cos A ,cos kA ,cos(1)k A -均是有理数,∴2cos cos cos(1)kA A k A --是有理数,∴cos(1)k A +是有理数.即当1n k =+时,结论成立.综上所述,对于任意正整数n ,cos nA 也是有理数.证法二:(1)由AB 、BC 、AC 为有理数及余弦定理知222cos 2AB AC BC A AB BC+-=是有理数. (2)用数学归纳法证明cos nA 和sin sin A nA 都是有理数.①当1n =时,由(1)知cos A 是有理数,从而有2sin sin 1cos A A A =-也是有理数.②假设当(1)n k k =≥时,cos kA 和sin sin A kA 都是有理数.当1n k =+时,由cos(1)cos cos sin sin k A kA A A kA +=-,sin sin(1)sin (sin cos cos sin )A k A A A kA A kA +=+(sin sin )cos (sin sin )cos A A kA A kA A =+,及①和归纳假设,知cos(1)k A +与sin sin(1)A k A +都是有理数.即当1n k =+时,结论成立.综合①、②可知,对任意正整数n ,cos nA 也是有理数.毋意,毋必,毋固,毋我。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华南农业大学期末考试试卷(A 卷)2009~2010学年第2学期 考试科目:高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、 单项选择题(本大题共5小题,每小题3分,共15分) 1.微分方程'220y y x ---=是( )A .齐次方程B .可分离变量方程C .一阶线性方程D .二阶微分方程2.过点(1,2,--且与直线25421x y z +-==-垂直的平面方程是( )A .4250x y z +-+=B .4250x y z ++-=C .42110x y z +-+=D .42110x y z ++-= 3.设(,)ln()2yf x y x x=+,则(1,1)y f =( ) A .0 B .13 C .12D .24.若lim 0n n u →∞=,则级数1n n u ∞=∑( )A .可能收敛,也可能发散B .一定条件收敛C .一定收敛D .一定发散5.下列级数中发散的是( )A .112n n ∞=∑ B .11(1)n n ∞-=-∑ C .n ∞= D .n ∞= 二、填空题(本大题共5小题,每小题3分,共15分)1.微分方程"4'50y y y -+=的通解为______。

(今年不作要求)2.设有向量(4,3,0),(1,2,2)a b ==-,则2a b +=____________________。

3.设有向量(1,1,0),a b ==-,它们的夹角为θ,则c o s θ=____________________。

4.设x z y =,则dz =____________________。

5.设L 是圆周229x y +=(按逆时针方向绕行),则曲线积分2(22)(4)Lxy y dx x x dy -+-⎰的值为____________________。

三、计算题(本大题共7小题,每小题7分,共49分)1.已知arctan x z y =,求2,z z x x y∂∂∂∂∂。

2.求微分方程()()0x y x x y y e e dx e e dy ++-++=的通解。

3.求微分方程'cos y y x x x -=满足初始条件2|2x y ππ==-的特解。

4.判定级数14!nn n n n ∞=⋅∑的敛散性。

5.计算二重积分Dxdxdy ⎰⎰,其中D 是由直线y x =和圆周22(1)1x y +-=所围成且在直线y x =下方的闭区域。

6.设区域D 由,2,2y x y x x π===围成,sin()1DA x y dxdy +=⎰⎰,其中A 为常数,试求A 的值。

7.计算曲线积分Lxydx ⎰,其中L 为圆周222()(0)x a y a a -+=>及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行)。

四、解答题(本大题共3小题,每小题7分,共21分)1.要做一个具有体积为0V 的有盖圆柱形铁桶,问当高H 与底半径R 之比HR的值为多少时用料最省?2.设对任意的x 和y ,有224f f x y ⎛⎫∂∂⎛⎫+= ⎪ ⎪∂∂⎝⎭⎝⎭,用变量代换221()2x uv y u v =⎧⎪⎨=-⎪⎩将(,)f x y 变换成(,)g u v ,试求满足2222g g a b u v u v ∂∂⎛⎫⎛⎫-=+ ⎪ ⎪∂∂⎝⎭⎝⎭中的常数a 和b 。

3. 计已知()F x 是()f x 的一个原函数,而()F x 是微分方程'x xy y e +=满足初始条件0lim ()1x y x →=的解,试将()f x 展开成x 的幂级数,并求1(1)!n nn ∞=+∑。

华南农业大学期末考试试卷(A 卷)2009~2010学年第2学期 考试科目:高等数学A Ⅱ参考答案 一、单项选择题(本大题共5小题,每小题3分,共15分) 1.C 2、C 3、B 4、A 5、D二、填空题(本大题共5小题,每小题3分,共15分)1.212(cos sin )x y e C x C x =+ 2.(6,1,4)- 3.124.1ln x x y ydx xy dy -+ 5.18π-三、计算题(本大题共7小题,每小题7分,共49分)1.22211()z y yx x x y y∂==∂++……………………………3分 2222222222222()()z x y y x y x y x y x y ∂+--==∂∂++……………………7分 2.分离变量11y xy x e e dy dx e e =--+…………………………………….4分 积分ln(1)ln(1)ln y x e e C -=-++…………………………….6分 通解(1)(1)y x e e C -+=………………………………………….7分 3.原方程化为1'cos y y x x x-=……………………………………………….2分11(cos )(cos )dx dxx x y e x x e dx C x dx C -⎰⎰=⋅⋅+=+⎰⎰(sin )x x C =+……………………………………………5分由条件: (sin)222C πππ-=+得: 2C =-…………………………………………………6分特解为: (sin 2)y x x =-………………………………….7分4.111(1)4!lim lim 4(1)!n n n n n n n nu n n u n n +++→∞→∞+=⋅+…………………….5分11lim (1)144n n e n →∞=+=<所以原级数收敛……………………………………………7分5.2sin 40cos I d d πθθθρρ=⋅⎰⎰…………………………….5分344400821sin cos sin 336d ππθθθθ===⎰……………………..7分 6.220sin()sin()xxDA x y dxdy A dx x y dy π+=+⎰⎰⎰⎰………5分2220sin 2sin 3(cos 2cos3)()233xx A A x x dx A πππ=-=-=⎰ 由13A=, 得3A =……………………………………….7分 7.2cos 20cos a LDxydx xdxdy d d πθθρθρρ=-=-⋅⎰⎰⎰⎰⎰…..5分343208cos 32a d a ππθθ=-=-⎰……………………………….7分 四、解答题(本大题共3小题,每小题7分,共21分) 1、222A RH R ππ=+令22022()F RH R R H V ππλπ=++-………………….3分220242020R H F H R RH F R R R H Vπππλππλπ=++=⎧⎪=+=⎨⎪=⎩即202020H R RH R R H Vλλπ++=⎧⎪+=⎨⎪=⎩………………………………………..5分得: 2R H =, 即2HR=…………………………………7分 2、由题意221(,)(,())2g u v f uv u v =-……………………………..1分所以 ''12g f v f u u ∂=⋅+⋅∂,''12()g f u f v v ∂=⋅+⋅-∂……………………………..3分 因此有2222'222'2''121122()()()()2()g g a b u v av bu f au bv f uv a b f f u v ∂∂⎛⎫⎛⎫- ⎪ ⎪∂∂⎝⎭⎝⎭=-+-++=+………………..5分利用'2'212()()4f f +=,即'2'221()4()f f =-得22'222'2''121122'2''2211122()()()()2()()()()2()44av bu f au bv f uv a b f f a b v u f a b uvf f au bv u v -+-++=+-+++-=+由此得14a =,14b =-……………………………………………..7分 3、由'xxy y e +=得x e Cy x +=………………………………..2分根据0lim ()1x y x →=,有1C =-,故1()x e F x x -=……………….3分于是''1()(())()x e f x F x x-==………………………………..4分 而111!x n n e x x n -∞=-=∑……………………………………………..5分 故1''11()(())()(1)!x n n e nx f x F x x n -∞=-===+∑……………………..6分 于是'111[()]1(1)!x x n n e n x ∞==-==+∑…………………………..7分。

相关文档
最新文档