详细版高中数学必修一函数知识点与典型例题总结(经典)(适合高一或高三复习).ppt

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B B,求实数a的取值范围
演示课件
2.设全集为R,集合 A {x | 1 x 3} ,
B {x | 2x 4 x 2}
(1)求: A∪B,CR(A∩B);(数轴法)
(2)若集合 C {x | 2x a 0} ,满足
B C C ,求实数a的取值范围。
演示课件
练习
1.集合A={1,0,x},且x2∈A,则x= -1 。
函数的复习主要抓住两条主线 1、函数的概念及其有关性质。 2、几种初等函数的具体性质。
演示课件
函数知识结构
函数
函数的概念
函数的基本性质
函数的单调性 函数的最值 函数的奇偶性
演示课件
一、函数的概念:
B
A
思考:函数 C
值域与集
x1 x2
A.B是两个非空的数集,如合果B的关 按照某种对应法则f,对于 系
3、空集:规定空集是任何集合的子集,是任
何非空集合的真子集
演示课件
三、集合的并集、交集、全集、补集
1、A B {x | x A或x B} A
B
2、A B {x | x A且x B}
3、CU A {x | x U且x A}
全集:某集合含有我们所研究的各个集合的全
部元素,用U表示
演示课件
(2) y 2 x (x 3)0
x2
2
(Βιβλιοθήκη Baidu) y log2 (2x 1)
演示课件
2、抽象函数的定义域
1)已知函数y=f(x)的定义域是[1,3], 求f(2x-1)的定义域 2)已知函数y=f(x)的定义域是[0,5), 求g(x)=f(x-1)- f(x+1)的定义域
(2)已知A {x 1 x 3}, B x x 0,或x 2 ,
求A B, A B.
演示课件
例5 设U=1,2,3,4,5,若A B=2,(CUA) B =4,(CUA) (CUB)=1,5,求A.
U
1
3
3 24
5A B
演示课件
例6 已知集合A {x | 1 x 2}, B {x | x k 0}, (1)若A I B ,求k的取值范围 (2)若A I B A,求k的取值范围
y1 y2
x3 集合A中的每一个元素x,
y3
在集合B中都有唯一的元素y
x4
和它对应,这样的对应叫做
y4
x5 从A到B的一个函数。
y5
函数的三要素:定义域,值域,对应法则 y6
演示课件
二、映射的概念
设A,B是两个非空的集合,如果按照某种确定 的对应关系f,使对于集合A中的任意一个元 素x,在集合B中都有唯一确定的元素y于之对 应,那么就称对应f:A→B为集合A到集合B的 一个映射
映射是函数的一种推广,本质是:任一对唯一
演示课件
使函数有意义的x的取值范围。
求 1、分式的分母不为零.
定 2、偶次方根的被开方数不小于零.
义 域
3、零次幂的底数不为零.
的 4、对数函数的真数大于零.
主 5、指、对数函数的底数大于零且不为1. 要
依 6、实际问题中函数的定义域

演示课件
(一)函数的定义域
1、具体函数的定义域
例7.求下列函数的定义域
(1) f (x) x 1 x2
(2) f (x) log2 (x2 1)
(3) f (x) log0.5 (4x 3)
1.【-1,2)∪(2,+∞)
2.(-∞,-1)∪(1,+∞)
3.(3∕4,1】
演示课件
练习:
(1) y 1 x 1 2x
演示课件
一、集合的含义与表示
(一)集合的含义 1、集合:把研究对象称为元素,把一些元素组成的
总体叫做集合
2、元素与集合的关系: 或 3、元素的特性:确定性、互异性、无序性 4、常用数集: N 、N、Z、Q、R
演示课件
(二)集合的表示 1、列举法:把集合中的元素一一列举出来,并
放在{ }内
2、描述法:用文字或公式等描述出元素的特性,
并放在{x| }内
3.图示法 Venn图,数轴
演示课件
二、集合间的基本关系
1、子集:对于两个集合A,B如果集合A中的任
何一个元素都是集合B的元素,我们称A为B的子集.
若集合中元素有n个,则其子集个数为 2n
真子集个数为
2n-1
非空真子集个数为
2n-2
2、集合相等: A B, B A A B
2.已知集合M -1,1,2集合N y y x2 ,x M,
则M∩N是( B )
A 1,2,4 B{1 } C{1,2} DΦ
3.满足{1,2} A {1,2,3,4}的集合A的个数
有3

演示课件
函数 定义域 值域 单调性 奇偶性 图象
一次函数 反比例函数
二次函数 指数函数 对数函数 幂函数
且A U B A,求m的值的集合.
解A:QUBAA2, 3,由A B A得B A
当mAIB0时B,B ,符合题意;
B A 转化的思想
当m
0时,B
1 m
,Q
B
A
1 m
2, 则m
1 ;或2
1 m
3, m
1. 3
m 0,或 1 ,或 1
2
3 演示课件
考查集合的运算 例(4 1)已知I {0,1,2,3,4}, A {0,1,2,3}, B {2,3},求CI B,CAB.
演示课件
返回
扩展提升
1.设 A {x x2 4x 0}, B {x x2 2(a 1)x a2 1 0},
其中 x R ,如果 A I
新疆 源头学子小屋
http://www.xjktyg.com/wxc/ 特级教师
王新敞 wxckt@126.com 新疆 源头学子小屋 http://www.xjktyg.com/wxc/ 特级教师 王新敞 wxckt@126.com
第一章 集合与函数概念 第二章 基本初等函数Ⅰ 第三章 函数应用
演示课件
,
,
——
永切隔数形数焉数
远莫离形少无能与
联忘分结数形分形
系几家合时时作本
华莫何万百难少两是
罗分代事般入直边相
庚离数休好微觉飞倚




演示课件
一、知识结构
集合
含义与表示
基本关系
基本运算
列举法 描述法 图示法 包含 相等 并集 交集 补集
题型示例
考查集合的含义
例1 已知x {1, 2, x2},则x 0或2
例2 A y y x2 , B x y x2 ,
求A B.
Q A [0, ), B R, A I B [0, ).
演示课件
考查集合之间的关系
例3 设A x | x2 x 6 0 , B x | mx 1 0,
相关文档
最新文档