SPSS第十讲 线性回归分析

合集下载

SPSS如何进行线性回归分析操作 精品

SPSS如何进行线性回归分析操作 精品

SPSS如何进行线性回归分析操作本节内容主要介绍如何确定并建立线性回归方程。

包括只有一个自变量的一元线性回归和和含有多个自变量的多元线性回归。

为了确保所建立的回归方程符合线性标准,在进行回归分析之前,我们往往需要对因变量与自变量进行线性检验。

也就是类似于相关分析一章中讲过的借助于散点图对变量间的关系进行粗略的线性检验,这里不再重复。

另外,通过散点图还可以发现数据中的奇异值,对散点图中表示的可能的奇异值需要认真检查这一数据的合理性。

一、一元线性回归分析用SPSS进行回归分析,实例操作如下:1.单击主菜单Analyze / Regression / Linear…,进入设置对话框如图7-9所示。

从左边变量表列中把因变量y选入到因变量(Dependent)框中,把自变量x选入到自变量(Independent)框中。

在方法即Method一项上请注意保持系统默认的选项Enter,选择该项表示要求系统在建立回归方程时把所选中的全部自变量都保留在方程中。

所以该方法可命名为强制进入法(在多元回归分析中再具体介绍这一选项的应用)。

具体如下图所示:2.请单击Statistics…按钮,可以选择需要输出的一些统计量。

如RegressionCoefficients(回归系数)中的Estimates,可以输出回归系数及相关统计量,包括回归系数B、标准误、标准化回归系数BETA、T值及显著性水平等。

Model fit 项可输出相关系数R,测定系数R2,调整系数、估计标准误及方差分析表。

上述两项为默认选项,请注意保持选中。

设置如图7-10所示。

设置完成后点击Continue返回主对话框。

回归方程建立后,除了需要对方程的显著性进行检验外,还需要检验所建立的方程是否违反回归分析的假定,为此需进行多项残差分析。

由于此部分内容较复杂而且理论性较强,所以不在此详细介绍,读者如有兴趣,可参阅有关资料。

3.用户在进行回归分析时,还可以选择是否输出方程常数。

SPSS的线性回归分析

SPSS的线性回归分析
18
多元线性回归方程的检验
(一)拟和优度检验:
(1)判定系数R2:
n 1 SSE 均方误差 R2 1 n k 1 SST 因变量的样本方差 – R是y和xi的复相关系数(或观察值与预测值的相关系数),测定 了因变量y与所有自变量全体之间线性相关程度 (2)调整的R2: R2 1
17
多元线性回归分析
(一)多元线性回归方程 多元回归方程: y= β0 +β1x1+β2x2+...+βkxk
– β1、β2、βk为偏回归系数。 – β1表示在其他自变量保持不变的情况下,自变量x1变动一个 单位所引起的因变量y的平均变动
(二)多元线性回归分析的主要问题
– 回归方程的检验 – 自变量筛选 – 多重共线性问题
• 于是: 因变量总变差=自变量引起的+其他因素引起的 • 即: 因变量总变差=回归方程可解释的+不可解释的 • 可证明:因变量总离差平方和=回归平方和+剩余平方和
6
一元线性回归方程的检验
(一)拟和优度检验:
(3)统计量:判定系数
R2 ˆ ( y
n
i 1 i 1 – R2=SSR/SST=1-SSE/SST. – R2体现了回归方程所能解释的因变量变差的比例;1-R2则体 现了因变量总变差中,回归方程所无法解释的比例。 – R2越接近于1,则说明回归平方和占了因变量总变差平方和 的绝大部分比例,因变量的变差主要由自变量的不同取值造 成,回归方程对样本数据点拟合得好 – 在一元回归中R2=r2; 因此,从这个意义上讲,判定系数能够 比较好地反映回归直线对样本数据的代表程度和线性相关性。
8
一元线性回归方程的检验
(三)回归系数的显著性检验:t检验 (1)目的:检验自变量对因变量的线性影响是否显著. (2)H0:β=0 即:回归系数与0无显著差异 (3)利用t检验,构造t统计量: i S ti S S i (x x )

SPSS的线性回归分析分析

SPSS的线性回归分析分析

SPSS的线性回归分析分析SPSS是一款广泛用于统计分析的软件,其中包括了许多功能强大的工具。

其中之一就是线性回归分析,它是一种常用的统计方法,用于研究一个或多个自变量对一个因变量的影响程度和方向。

线性回归分析是一种用于解释因变量与自变量之间关系的统计技术。

它主要基于最小二乘法来评估自变量与因变量之间的关系,并估计出最合适的回归系数。

在SPSS中,线性回归分析可以通过几个简单的步骤来完成。

首先,需要加载数据集。

可以选择已有的数据集,也可以导入新的数据。

在SPSS的数据视图中,可以看到所有变量的列表。

接下来,选择“回归”选项。

在“分析”菜单下,选择“回归”子菜单中的“线性”。

在弹出的对话框中,将因变量拖放到“因变量”框中。

然后,将自变量拖放到“独立变量”框中。

可以选择一个或多个自变量。

在“统计”选项中,可以选择输出哪些统计结果。

常见的选项包括回归系数、R方、调整R方、标准误差等。

在“图形”选项中,可以选择是否绘制残差图、分布图等。

点击“确定”后,SPSS将生成线性回归分析的结果。

线性回归结果包括多个重要指标,其中最重要的是回归系数和R方。

回归系数用于衡量自变量对因变量的影响程度和方向,其值表示每个自变量单位变化对因变量的估计影响量。

R方则反映了自变量对因变量变异的解释程度,其值介于0和1之间,越接近1表示自变量对因变量的解释程度越高。

除了回归系数和R方外,还有其他一些统计指标可以用于判断模型质量。

例如,标准误差可以用来衡量回归方程的精确度。

调整R方可以解决R方对自变量数量的偏向问题。

此外,SPSS还提供了多种工具来检验回归方程的显著性。

例如,可以通过F检验来判断整个回归方程是否显著。

此外,还可以使用t检验来判断每个自变量的回归系数是否显著。

在进行线性回归分析时,还需要注意一些统计前提条件。

例如,线性回归要求因变量与自变量之间的关系是线性的。

此外,还需要注意是否存在多重共线性,即自变量之间存在高度相关性。

SPSS第十讲_线性回归分析

SPSS第十讲_线性回归分析

点击“OK”,结果一:确定系数表
结果一告诉我们什么?
表中调整后的R平方=0.044,表示整 个方程能够解释收入变化的4.4%。 与例1中的确定系数相比,提高了1.1 个百分点。
结果二:方差分析表
结果二告诉我们什么?
表中显著度(Sig)<0.001,表明整个方程 是显著的,也就是说自变量与因变量之间 具有显著的线性关系。 但这并不意味着每个自变量与因变量都具 有显著的线性关系,具体的结论还需要看 后面对每个自变量的回归系数的检验结果。
结果三告诉我们什么?
由此我们可以得到回归方程式: y=534.493+137.048×性别-112.371× 小学- 79.864×初中- 65.704×高中- 1.749×年龄
结果三告诉我们什么?
表中 Beta 栏的标准化回归系数的绝对值可 以用于比较各个自变量之间对因变量的贡 献大小:
性别(0.184) > 小学(0.117) > 初中(0.103) > 高中(0.082) > 年龄(0.061)
步骤1:点击“Recode”,弹出对话框
步骤2:将四分类的教育变量拖入中间空白框
步骤3:在Name栏中填写第一个虚拟变量edu1
步骤4:在Label栏中填写变量名标签-小学
步骤5:点击“Change”按钮
步骤6:点击“Old and New Values”按 钮
步骤7:将原变量中表示小学的“1”设为新变量的“1”
点击“OK”,结果一:确定系数表
结果一告诉我们什么?
表格中的R、R Square和Adjusted R Square都 是用于表示模型的解释能力
通常选择Adjusted R Square作为我们的结论依 据,调整后的R平方越大,说明性别和收入的线 性关系越强,即性别对收入的解释力越强

SPSS多元线性回归分析教程

SPSS多元线性回归分析教程

线性回归分析的SPSS操作本节内容主要介绍如何确定并建立线性回归方程。

包括只有一个自变量的一元线性回归和和含有多个自变量的多元线性回归。

为了确保所建立的回归方程符合线性标准,在进行回归分析之前,我们往往需要对因变量与自变量进行线性检验。

也就是类似于相关分析一章中讲过的借助于散点图对变量间的关系进行粗略的线性检验,这里不再重复。

另外,通过散点图还可以发现数据中的奇异值,对散点图中表示的可能的奇异值需要认真检查这一数据的合理性。

1、一元线性回归分析1.数据以本章第三节例3的数据为例,简单介绍利用SPSS如何进行一元线性回归分析。

数据编辑窗口显示数据输入格式如下图7-8(文件7-6-1.sav):图7-8:回归分析数据输入2.用SPSS进行回归分析,实例操作如下:2.1.回归方程的建立与检验(1)操作①单击主菜单Analyze / Regression / Linear…,进入设置对话框如图7-9所示。

从左边变量表列中把因变量y选入到因变量(Dependent)框中,把自变量x选入到自变量(Independent)框中。

在方法即Method一项上请注意保持系统默认的选项Enter,选择该项表示要求系统在建立回归方程时把所选中的全部自变量都保留在方程中。

所以该方法可命名为强制进入法(在多元回归分析中再具体介绍这一选项的应用)。

具体如下图所示:图7-9 线性回归分析主对话框②请单击Statistics…按钮,可以选择需要输出的一些统计量。

如Regression Coefficients(回归系数)中的Estimates,可以输出回归系数及相关统计量,包括回归系数B、标准误、标准化回归系数BETA、T值及显著性水平等。

Model fit项可输出相关系数R,测定系数R2,调整系数、估计标准误及方差分析表。

上述两项为默认选项,请注意保持选中。

设置如图7-10所示。

设置完成后点击Continue返回主对话框。

图7-10:线性回归分析的Statistics选项图7-11:线性回归分析的Options选项回归方程建立后,除了需要对方程的显著性进行检验外,还需要检验所建立的方程是否违反回归分析的假定,为此需进行多项残差分析。

SPSS线性回归分析

SPSS线性回归分析

SPSS分析技术:线性回归分析相关分析可以揭示事物之间共同变化的一致性程度,但它仅仅只是反映出了一种相关关系,并没有揭示出变量之间准确的可以运算的控制关系,也就是函数关系,不能解决针对未来的分析与预测问题。

回归分析就是分析变量之间隐藏的内在规律,并建立变量之间函数变化关系的一种分析方法,回归分析的目标就是建立由一个因变量和若干自变量构成的回归方程式,使变量之间的相互控制关系通过这个方程式描述出来。

回归方程式不仅能够解释现在个案内部隐藏的规律,明确每个自变量对因变量的作用程度。

而且,基于有效的回归方程,还能形成更有意义的数学方面的预测关系。

因此,回归分析是一种分析因素变量对因变量作用强度的归因分析,它还是预测分析的重要基础。

回归分析类型回归分析根据自变量个数,自变量幂次以及变量类型可以分为很多类型,常用的类型有:线性回归;曲线回归;二元Logistic回归技术;线性回归原理回归分析就是建立变量的数学模型,建立起衡量数据联系强度的指标,并通过指标检验其符合的程度。

线性回归分析中,如果仅有一个自变量,可以建立一元线性模型。

如果存在多个自变量,则需要建立多元线性回归模型。

线性回归的过程就是把各个自变量和因变量的个案值带入到回归方程式当中,通过逐步迭代与拟合,最终找出回归方程式中的各个系数,构造出一个能够尽可能体现自变量与因变量关系的函数式。

在一元线性回归中,回归方程的确立就是逐步确定唯一自变量的系数和常数,并使方程能够符合绝大多数个案的取值特点。

在多元线性回归中,除了要确定各个自变量的系数和常数外,还要分析方程内的每个自变量是否是真正必须的,把回归方程中的非必需自变量剔除。

名词解释线性回归方程:一次函数式,用于描述因变量与自变量之间的内在关系。

根据自变量的个数,可以分为一元线性回归方程和多元线性回归方程。

观测值:参与回归分析的因变量的实际取值。

对参与线性回归分析的多个个案来讲,它们在因变量上的取值,就是观测值。

利用SPSS10进行多元线性回归分析

利用SPSS10进行多元线性回归分析

3 利用SPSS10.0进行多元线性回归分析【例】同上例。

第一步,录入或调入数据。

完全类同于一元线性回归分析,不赘述(图1)。

图1 录入或调入的数据第二步,回归操作。

多元线性分析的详细步骤的基本进程与一元线性回归分析相似,稍有不同。

⑴打开线性回归对话框。

即沿着主菜单的Analyse→Regression→Linear…路径打开Linear Regression选项框(图2)。

⑵将“运输业产值”置于因变量(Dependent)的空白栏,将“工业产值”、“农业产值”和“固定资产投资”置于自变量(Independent(s))的空白栏(图3)。

⑶在统计(Statistics)选项框中,除了选择“Durbin-Watson”外,还应该选择“Part and partial correlations”(部分与偏相关,给出零阶相关系数、偏相关系数和部分相关系数)以及“Collinearity diagnostics(共线性诊断)”。

然后继续。

⑷在Plot选项框中,除了可以选择“Histogram”(直方图)和“Normal probability plot”(正态概率图)外,还可选择“Produce all partial plot(s)”(给出所有自变量与因变量的残差散点图)。

然后继续。

⑸修改显著性水平或置信度,可以进入Save对话框,改变Prediction intervals的Confidence intervals(置信区间);修改逐步回归的F临界值,可以进入Option选项框,改变Stepping method criteria中的F值或者F概率。

如果对此缺乏足够的知识,可由系统默认。

然后继续。

⑹在线性回归对话框中,Method一栏由系统默认为enter(让所有的自变量都参入回归)。

完成上述设置以后,点击“OK”确定(图3),立即可以得到回归结果(Output)。

图2 线性回归对话框图3 设置变量图4 统计选项框的设置图5 图形对话框的设置在Variables Entered/Removed (变量取舍即变量的输入或剔除)表中,给出的采用的变量、剔除的变量和回归方法(enter ),此表中没有剔除变量。

Spss线性回归分析讲稿ppt课件

Spss线性回归分析讲稿ppt课件
绘制各自变量与因变量之间的关系散点图,观
察其与因变量之间是否具有线性关系。然后,
将自变量进行组合,生成若干自变量的子集,再
针对每一个自变量的子集生成回归分析报告。
比较调整后的R2值,挑选最优的自变量子集,
生成回归分析模型。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
①一元线性回归:y=a+bx (有一个自变量)
②多元线性回归:
(有两个或两个以上的自变量)
(2)按回归曲线的形态分
①线性(直线)回归
②非线性(曲线)回归
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
回归分析
(二)回归分析的主要内容
即销售量的95%以上的变动都可以被该模型所解释,拟和优度较高。
表3
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
一元线性回归分析
表4给出了回归模型的方差分析表,可以看到,F统计量为
734.627,对应的p值为0,所以,拒绝模型整体不显著的
图1
奖金-销售量表
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
一元线性回归
以奖金-销售量表图1做回归分析
2、绘制散点图
打开数据文件,选择【图形】-【旧对话框】-【散点/点状】
图2
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去

SPSS第十讲线性回归分析

SPSS第十讲线性回归分析

SPSS第十讲线性回归分析线性回归分析是一种常用的统计方法,用于研究变量之间的关系。

它建立了一个线性模型,通过最小化误差平方和来估计自变量和因变量之间的关系。

在本次SPSS第十讲中,我将介绍线性回归分析的基本原理、假设条件、模型评估方法以及如何在SPSS中进行线性回归分析。

一、线性回归模型线性回归模型是一种用于预测连续因变量的统计模型,与因变量相关的自变量是线性的。

简单线性回归模型可以表示为:Y=β0+β1X+ε其中,Y表示因变量,X表示自变量,β0表示截距,β1表示自变量的斜率,ε表示误差项。

二、假设条件在线性回归分析中,有三个重要的假设条件需要满足。

1.线性关系:自变量和因变量之间的关系是线性的。

2.独立性:误差项是相互独立的,即误差项之间没有相关性。

3.常态性:误差项服从正态分布。

三、模型评估在线性回归分析中,常用的模型评估方法包括参数估计、显著性检验和拟合优度。

1.参数估计:通过最小二乘法估计回归系数,得到截距和斜率的值。

拟合优度和调整拟合优度是评价线性回归模型拟合程度的重要指标。

2.显著性检验:检验自变量对因变量的影响是否显著。

常用的检验方法包括t检验和F检验。

t检验用于检验单个自变量的系数是否显著,F检验用于检验整体模型的显著性。

3.拟合优度:拟合优度用于评估模型对数据的解释程度。

常见的拟合优度指标有R平方和调整的R平方,R平方表示因变量的变异程度能被自变量解释的比例,调整的R平方考虑了模型的复杂性。

SPSS是一款常用的统计软件,它提供了丰富的功能用于线性回归分析。

1.数据准备:首先,我们需要将数据导入SPSS中并进行数据准备。

将自变量和因变量分别作为列变量导入,可以选择将分类自变量指定为因子变量。

2.线性回归模型的建立:在“回归”菜单下选择“线性”选项,在“依赖变量”中选择因变量,在“独立变量”中选择自变量。

3.结果解读:SPSS会输出回归系数、显著性检验的结果和拟合优度指标。

通过解读这些结果,我们可以判断自变量对因变量的影响是否显著,以及模型对数据的解释程度如何。

SPSS多元线性回归分析报告实例操作步骤

SPSS多元线性回归分析报告实例操作步骤

SPSS多元线性回归分析报告实例操作步骤步骤1:导入数据首先,打开SPSS软件,并导入准备进行多元线性回归分析的数据集。

在菜单栏中选择"File",然后选择"Open",在弹出的窗口中选择数据集的位置并点击"Open"按钮。

步骤2:选择变量在SPSS的数据视图中,选择需要用于分析的相关自变量和因变量。

选中的变量将会显示在变量视图中。

确保选择的变量是数值型的,因为多元线性回归只适用于数值型变量。

步骤3:进行多元线性回归分析在菜单栏中选择"Analyze",然后选择"Regression",再选择"Linear"。

这将打开多元线性回归的对话框。

将因变量移动到"Dependent"框中,将自变量移动到"Independent(s)"框中,并点击"OK"按钮。

步骤4:检查多元线性回归的假设在多元线性回归的结果中,需要检查多元线性回归的基本假设。

这些假设包括线性关系、多重共线性、正态分布、独立性和等方差性。

可以通过多元线性回归的结果来进行检查。

步骤5:解读多元线性回归结果多元线性回归的结果会显示在输出窗口的回归系数表中。

可以检查各个自变量的回归系数、标准误差、显著性水平和置信区间。

同时,还可以检查回归模型的显著性和解释力。

步骤6:完成多元线性回归分析报告根据多元线性回归的结果,可以编写一份完整的多元线性回归分析报告。

报告应包括简要介绍、研究问题、分析方法、回归模型的假设、回归结果的解释以及进一步分析的建议等。

下面是一个多元线性回归分析报告的示例:标题:多元线性回归分析报告介绍:本报告基于一份数据集,旨在探究x1、x2和x3对y的影响。

通过多元线性回归分析,我们可以确定各个自变量对因变量的贡献程度,并检验模型的显著性和准确性。

研究问题:本研究旨在探究x1、x2和x3对y的影响。

SPSS的相关分析和线性回归分析课堂PPT

SPSS的相关分析和线性回归分析课堂PPT
其中;SSR是由x和y的直线回归关系引起的,可以由回归 直线做出解释;SSE是除了x对y的线性影响之外的随机因素所 引起的Y的变动,是回归直线所不能解释的。
30
2、可决系数(判定系数、决定系数)
回归平方和在总离差平方和中所占的比例可以作为一个统 计指标,用来衡量X与Y 的关系密切程度以及回归直线的代表 性好坏,称为可决系数。 对于一元线性回归方程:
原因有两个:
由于x的取值不同,使得与x有线性关系的y值不同; 随机因素的影响。
28
y
( y0 y)
y
yˆ a bx
( y0 yˆ )
( yˆ y)
x
29
总离差平方和可分解为
y y 2 y y2 y y 2
即:总离差平方和(SST)=剩余离差平方和(SST) +回归 离差平方和(为偏相关系数,n为样本数,q为阶数。 T统计量服从n-q-2个自由度的t分布。
20
8.3.2 偏相关分析的基本操作
1.选择菜单Analyze-Correlate-Partial
21
2.把参与分析的变量选择到Variables框中。 3.选择一个或多个控制变量到Controlling for框
相关关系,设计思想与Pearson简单相关系数相同, 只是数据为非定距的,故计算时并不直接采用原始数
据 (xi , yi ),而是利用数据的秩,用两变量的秩(Ui ,Vi ) 代替 (xi , yi ) 代入Pearson简单相关系数计算公式中
,于是其中的 xi 和 yi 的取值范围被限制在1和n之间
在完全负相关;r=0表示两变量不相关 |r|>0.8表示两变量有较强的线性关系; |r|<0.3表示
两变量之间的线性关系较弱

SPSS线性回归分析

SPSS线性回归分析

消减误差比例表达式:
E1
不知道X与Y的关系,在预测Y 值时所产生的全部误差是E1 。
E2
E1-E2
知道X与Y之间的关系,据此 来预测Y值,误差总数是E2 。
在知道X与Y的关系模式的情况下,所消 解掉的的误差=E1-E2
E1 — E2 PRE E1
消减误差比例 (PRE的取值及其意义)
1、PRE数值的取值范围是[o,1] 2、PRE=1,或E2=o,即以X预测Y不会产生任何误 差,则反映X与Y是完全相关 3、PRE=o ,或E2=E1,即以X预测Y所产生的误差相 等于不以X来预测y所产的误差,反映X与Y是不相关。 4、PRE数值越接近1,就表示以X预测Y可以减少的 误差越多,反映二者的相关程度越高;PRE值越 接近0,反映二者的相关程度越低。
a. Predicto r s: (Constant ), 社会资本存量, 集体资产, 治理水平 b. Depend ent V ariable: 总水平
_ y y i 2
• • • •
Total Sum of Squares = Residual Sum of Squares = y a b x b x Regression Sum of Squares R2 = SSR/TSS
如果有多个自变量,检验的是全部自变量的联合作用不为 0,至少有一个自变量对因变量的影响不为0。
4、回归方程表:
Coefficientsa
Stand ard ized Co efficients Beta t 4 5.2 60 .4 63 1 7.0 50 Sig. .0 00 .0 00 Un stand ard ized Coefficien ts Mod el 1 (Co n stant) Hig h est Year Scho o l Co mpleted, Father B 9 .92 6 .3 22 Std. Erro r .2 19 .0 19

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤在数据分析的领域中,多元线性回归分析是一种强大且常用的工具,它能够帮助我们理解多个自变量与一个因变量之间的线性关系。

下面,我们将通过一个具体的实例来详细介绍 SPSS 中多元线性回归分析的操作步骤。

假设我们正在研究一个人的体重与身高、年龄和每日运动量之间的关系。

首先,打开 SPSS 软件,并将我们收集到的数据输入或导入到软件中。

数据准备阶段是至关重要的。

确保每个变量的数据格式正确,没有缺失值或异常值。

如果存在缺失值,可以根据具体情况选择合适的处理方法,比如删除包含缺失值的样本,或者使用均值、中位数等进行填充。

对于异常值,需要仔细判断其是否为真实的数据错误,如果是,则需要进行修正或删除。

接下来,点击“分析”菜单,选择“回归”,然后再选择“线性”。

在弹出的“线性回归”对话框中,将我们的因变量(体重)选入“因变量”框中,将自变量(身高、年龄、每日运动量)选入“自变量”框中。

然后,我们可以在“方法”选项中选择合适的回归方法。

SPSS 提供了几种常见的方法,如“进入”“逐步”“向后”“向前”等。

“进入”方法会将所有自变量一次性纳入模型;“逐步”方法则会根据一定的准则,逐步选择对因变量有显著影响的自变量进入模型;“向后”和“向前”方法则是基于特定的规则,逐步剔除或纳入自变量。

在这个例子中,我们先选择“进入”方法,以便直观地看到所有自变量对因变量的影响。

接下来,点击“统计”按钮。

在弹出的“线性回归:统计”对话框中,我们通常会勾选“描述性”,以获取自变量和因变量的基本统计信息,如均值、标准差等;勾选“共线性诊断”,用于检查自变量之间是否存在严重的多重共线性问题;勾选“模型拟合度”,以评估回归模型的拟合效果。

然后,点击“绘制”按钮。

在“线性回归:图”对话框中,我们可以选择绘制一些有助于分析的图形,比如“正态概率图”,用于检验残差是否服从正态分布;“残差图”,用于观察残差的分布情况,判断模型是否满足线性回归的假设。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

步骤21:重新点击“Recode”,弹出对话框
步骤22:将四分类的教育变量拖入中间空白框
步骤23:在Name栏中填写第二个虚拟变量edu3
步骤24:在Label栏中填写变量名标签-高中
步骤25:点击“Change”按钮
步骤26:点击“Old and New Values”按 钮
步骤27:将原变量中代表高中的“3”设为新变量的 “1”
步骤8:将原变量的其余取值都设为“0”
步骤9:点击“Continue”,回到主对话框
步骤10:点击“OK”,生成表示小学的虚拟变量edu1
步骤11:重新点击“Recode”,弹出对话框
步骤12:将四分类的教育变量拖入中间空白框
步骤13:在Name栏中填写第二个虚拟变量edu2
步骤14:在Label栏中填写变量名标签-初中
变量的测量尺度
因变量:定距变量 自变量:定类、定序变量或定距变量, 对于分类变量需要转换成虚拟变量
回归方程
一元线性回归
Y=A+BX+ε
多元线性回归
Y=B0+B1X1+B2X2 +…+ BnXn +ε
线性回归的位置
一元线性回归
实例1 对受访者的性别和月收入进行 一元线性回归分析
注意
当自变量是分类变量时,需要将原 变量转换成虚拟变量,所有虚拟变量都 是 “1”和“0”取值的二分变量。(当原 变量是二分类变量时,我们只需要设定 一个“1”、“0”取值的虚拟变量,并且 把取值为“0”的那个类别作为参照项)
步骤7:将原变量的“2”设为新变量的“0”
步骤8:点击“Continue”,回到主对话框
步骤8:点击“OK”,生成新的虚拟性别变量
注意
在设置完虚拟量后,我们才 能正式开始回归分析。
步骤9:点击“Regression”中的“Linear”,弹出对话框
步骤10:选择因变量“月收入”和自变量“性 别”
– 用一元线性回归分析种族对职业声望的影响 – 用一元线性回归分析教育对职业声望的影响 – 用多元线性回归分析种族、性别、年龄和教育对职 业声望的影响
步骤28:将原变量的其余取值都设为“0”
步骤29:点击“Continue”,回到主对话框
步骤30:点击“OK”,生成表示高中的虚拟变量edu3
步骤31:点击“Regression”中的“Linear”,弹出对话 框
步骤32:选择因变量“月收入”
步骤32:选择自变量“虚拟性别”,“edu1”,“edu2”,“edu3”和年龄
步骤1:点击“Recode”,弹出对话框
注 意
通常选择Recode into Different Variable
步骤2:将性别拖入中间空白框
步骤3:在Name栏中填写虚拟变量名
步骤4:点击“Change”按钮
步骤5:点击“Old and New Values”按 钮
步骤6:将原变量的“1”设为新变量的“1”
结果三告诉我们什么?
Sig栏中每个回归系数的显著度水平,表明 各自所对应的那个自变量与因变量之间是 否存在显著的线性相关关系
从结果看,所有回归系数的显著度(即P值) 都小于0.05,由此,我们可以认为性别、 教育和年龄都会影响受访者的月收入。
练习题
利用spss自带的1991的美国GSS数据,进 行以下分析:
结果三告诉我们什么?
由此我们可以得到回归方程式: y=534.493+137.048×性别-112.371× 小学-79.864×初中-65.704×高中- 1.749×年龄
结果三告诉我们什么?
表中Beta栏的标准化回归系数的绝对值可 以用于比较各个自变量之间对因变量的贡 献大小:
性别(0.184) > 小学(0.117) > 初中(0.103) > 高中(0.082) > 年龄(0.061)
从表中B=135.406,可以发现男性比女性的平均 月收入多135.406元(由于在设定虚拟变量时, 将女性取值为“0”,因此这里以女性为参照项)。 由此我们可以得到回归方程: y=396.656+135.406X
结果三告诉我们什么?
表中的t检验是针对回归系数的显著度检验,而结 果二中的方差分析是对整个回归方程的检验,在 一元回归分析中,这两种检验结果是等同的。而 在多元回归分析中,则有可能是不同的。整体方 程的显著并不意味着每个回归系数都显著,但每 个系数的显著一定意味着整体方程是显著的。
点击“OK”,结果一:确定系数表
结果一告诉我们什么?
表中调整后的R平方=0.044,表示整 个方程能够解释收入变化的4.4%。 与例1中的确定系数相比,提高了1.1 个百分点。
结果二:方差分析表
结果二告诉我们什么?
表中显著度(Sig)<0.001,表明整个方程 是显著的,也就是说自变量与因变量之间 具有显著的线性关系。 但这并不意味着每个自变量与因变量都具 有显著的线性关系,具体的结论还需要看 后面对每个自变量的回归系数的检验结果。
结果三:回归系数表
结果三告诉我们什么?
表中B栏的非标准化回归系数表明:
– 第一,在控制了其他变量之后,男性比女性 的月收入高约137元;
– 第二,小学、初中和高中程度的受访者的月 收入,与大专及以上教育程度的受访者月收 入相比,分别低了约112元、80元和66元;
– 第三,年龄每增加一年,月收入就降低约2元
结果二:方差分析表
结果二告诉我们什么?
结果二是对回归方程进行显著度检验的方 差分析,即判断总体回归系数中至少有一 个不等于0
表中显著度(Sig)<0.001,表明性别与收 入之间具有显著的线性关系。
结果三:回归系数表
结果三告诉我们什么?
与结果一中的确定系数不同,回归系数是回归方 程中x的斜率,表示x每变化一个单位,y的平均 变化。
步骤15:点击“Change”按钮
步骤16:点击“Old and New Values”按 钮
步骤17:将原变量中代表初中的“2”设为新变量的 “1”
步骤18:将原变量的其余取值都设为“0”
步骤19:点击“Continue”,回到主对话框
步骤20:点击“OK”,生成表示初中的虚拟变量edu2
步骤1:点击“Recode”,弹出对话框
步骤2:将四分类的教育变量拖入中间空白框
步骤3:在Name栏中填写第一个虚拟变量edu1
步骤4:在Label栏中填写变量名标签-小学
步骤5:点击“Change”按钮
步骤6:点击“Old and New Values”按 钮
步骤7:将原变量中表示小学的“1”设为新变量的“1”
从表中显著度<0.001,可以发现性别对收入的影 响是非常显著的。
多元线性回归
实例2 将受访者的性别、教育程度 (四分类的教育程度)和年龄作为 自变量,通过多元线性回归,分析 其对月收入的影响。
注意
由于例题中的教育变量是个四分类的定 序变量,因此我们需要设置三个“1”、“0” 取值的虚拟教育变量:edu1、edu2和edu3, 分别用来表示“小学”、“初中”和“高 中”,将“大专及以上”教育类别作为参照 项,其余三个类别分别与其进行比较。
点击“OK”,结果一:确定系数表
结果一告诉我们什么?
表格中的R、R Square和Adjusted R Square都 是用于表示模型的解释能力
通常选择Adjusted R Square作为我们的结论依 据,调整后的R平方越大,说明性别和收入的线 性关系越强,即性别对收入的解释力越强
表中调整后的R平方=0.033,表示性别能够解 释收入3.3%的变化
第十讲 线性回归分析
线性回归的作用
用变量的观测数据拟合所关注的变量和影 响其变化的变量之间的线性关系式 检验影响变量的显著程度 比较影响变量的作用大小 用一个或多个变量的变化解释和预测另一 个变量的变化
线性回归的类型
一元线性回归,针对一个影响变量 (自变量)的回归分析 多元线性回归,针对多个影响变量 (自变量)的回归分析
相关文档
最新文档