大功率直流开关电源设计
开关直流降压电源(BUCK)设计
开关直流降压电源(BUCK)设计摘要随着电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多,电子设备与人们的工作、生活的关系日益密切。
近年来,随着功率电子器件(如IGBT、MOSFET)、PWM技术以及电源理论发展,新一代的电源开始逐步取代传统的电源电路。
该电路具有体积小,控制方便灵活,输出特性好、纹波小、负载调整率高等特点。
开关电源中的功率调整管工作在开关状态,具有功耗小、效率高、稳压范围宽、温升低、体积小等突出优点,在通信设备、数控装置、仪器仪表、视频音响、家用电器等电子电路中得到广泛应用。
开关电源的高频变换电路形式很多, 常用的变换电路有推挽、全桥、半桥、单端正激和单端反激等形式。
本论文采用双端驱动集成电路——TL494输的PWM脉冲控制器设计开关电源,利用MOSFET 管作为开关管,可以提高电源变压器的工作效率,有利于抑制脉冲干扰,同时还可以减小电源变压器的体积。
关键词:直流,降压电源,TL494,MOSFET1目录摘要 (1)Abstract........................................................... ........ 错误!未定义书签。
1.方案论证与比较 (4)1.1 总方案的设计与论证 ...................................... 错误!未定义书签。
1.2 控制芯片的选择 (4)1.3 隔离电路的选择 .............................................. 错误!未定义书签。
2. BUCK电路工作原理 ......................................... 错误!未定义书签。
3. 控制电路的设计及电路参数的计算 ................ 错误!未定义书签。
3.1 TL494控制芯片................................................ 错误!未定义书签。
300w开关电源方案
300W开关电源方案简介本文档介绍了一个300W的开关电源方案,用于提供稳定可靠的电源供应。
开关电源是一种将交流电转换为直流电的电源,通过开关管的开关动作来实现电压和电流的转换。
本方案采用了先进的电路设计和高效的开关管,以提高电源效率和稳定性。
方案设计输入电路300W开关电源的输入电压范围通常为220VAC或110VAC,本方案针对220VAC设计。
输入电路主要由滤波器、整流器和变压器组成。
滤波器用于滤除输入电压中的高频噪声,以保证输出电压的稳定性。
常见的滤波器电路包括Pi型滤波器和L型滤波器。
整流器将交流电转换为直流电,常见的整流器电路有全波整流和半波整流。
全波整流器可以实现较高的转换效率。
变压器用于将输入电压变换为适合开关电源工作的低压电压。
变压器一般由高频变压器和输出电感器组成,以提供高效的功率转换。
控制电路开关电源的控制电路主要包括开关管驱动电路和反馈控制电路。
开关管驱动电路负责控制开关管的开关动作,并控制输出电压。
常见的开关电源控制电路有固定频率PWM控制和变频控制。
反馈控制电路用于监测输出电压并调整开关管的开关动作,以稳定输出电压。
反馈控制电路一般由比较器、误差放大器和反馈元件组成。
输出电路输出电路主要由输出电感器、输出电容和负载组成。
输出电感器用于平滑输出电流,防止电流突变。
输出电容则用于平滑输出电压,提供稳定的负载。
负载是指连接在开关电源输出端的设备或电路,可以是各种电子设备、通信设备或其他电子装置。
负载的功率需小于或等于300W。
优点与特点高效率300W开关电源采用了高效率的开关管和控制电路,以减少功耗并提高转换效率。
高效率意味着更少的能量损耗,更低的温度和更长的使用寿命。
稳定性本方案采用了反馈控制电路来稳定输出电压,同时使用优质的电子元件和合理的电路布局,以提供稳定可靠的电源供应。
稳定的输出电压对各种设备和电路的正常运行至关重要。
可靠性300W开关电源采用了与国际标准相符的设计和制造工艺,确保产品的质量和可靠性。
大功率直流开关电源设计
大功率直流开关电源设计一、引言直流开关电源是一种广泛应用于通信、工业控制和电子设备等领域的电源,其特点是稳定性好、效率高、体积小、重量轻等优点。
本文将介绍大功率直流开关电源的设计过程,包括电源选型、拓扑结构、控制策略和保护电路等内容。
二、电源选型大功率直流开关电源的选型关键是选择合适的功率器件和电源拓扑结构。
功率器件一般选择IGBT或MOSFET,这两种器件都具有开关速度快、功耗低、温升低等特点。
电源拓扑结构可选用单路、多路或多路并联等形式,具体选择要根据实际需求和成本考虑。
三、拓扑结构常见的大功率直流开关电源拓扑结构有Boost、Buck、Buck-Boost、Cuk等。
Boost结构适合于电源输出电压高于输入电压的情况;Buck结构适合于电源输出电压低于输入电压的情况;Buck-Boost结构适合于电源输出电压既可以高于也可以低于输入电压的情况;Cuk结构适合于对输出电流要求较高的情况。
根据实际需求选择合适的拓扑结构。
四、控制策略大功率直流开关电源的控制策略一般采用PWM(脉宽调制)技术。
PWM技术通过调节开关管的导通时间和截止时间来控制输出电压。
在设计过程中需要考虑到输出稳定性、响应速度和抗干扰等因素,选择合适的PWM控制策略。
五、保护电路为了保护电源和加载电路安全可靠工作,大功率直流开关电源设计中需要考虑各种保护电路。
常见的保护电路包括过压保护、欠压保护、过流保护、过温保护等。
通过合理设计和配置相应保护电路,可以降低故障风险,提高系统可靠性。
六、性能要求大功率直流开关电源设计中需要满足一定的性能要求,如输出电压稳定性、效率、负载能力等。
输出电压稳定性要求越高时,需要采用更精确的控制策略和更优秀的器件;效率越高时,要选择低损耗的器件和优化设计;负载能力要求越高时,需考虑电路稳定性、散热设计等因素。
七、设计实例以下是一个大功率直流开关电源的设计实例:1.选型:-功率器件:采用IGBT,因其开关速度快,适合高频开关模式。
开关直流电源设计(原理及结构)
并联型高频开关直流电源的系统设计关键字:开关电源 PWM 并联均流模块随着模块化电源系统的发展,开关电源并联技术的重要性日见重要。
这里介绍了一种新型并联型高频开关电源整流模块的系统设计方案。
其中,对开关电源的驱动电路、缓冲电路、控制电路及主要磁元件进行优化、设计。
控制电路以UC3525为核心,构成电流内环、电压外环的双环控制模式,实现系统稳压和限流。
并且通过小信号模型分析,对电压电流环的PI调节器进行设计。
近几年来,各式各样的开关电源以其小巧的体积、较高的功率密度和高效率越来越得到广泛的应用。
随着电力系统自动化程度的提高,特别是其保护装置的微机化,通讯装置的程控化,对电源的体积和效率的要求不断提高。
电源中磁性元件和散热器件成了提高功率密度的巨大障碍。
开关频率的提高可以使开关变换器(特别是变压器、电感等磁性元件以及电容)的体积、重量大为减小,从而提高变换器的功率密度。
另外,提高开关频率可以降低开关电源的音频噪声和改善动态响应。
但是由于开关管的通断控制与开关管上流过的电流和两端所加的电压无关,而早期的脉宽调制(PWM)开关电源工作在硬开关模式,在硬开关中功率开关管的开通或关断是在器件上的电压或电流不等于零的状态下强迫进行的,电路的开关损耗很大,开关频率越高,损耗越大,不但增加了热设计的难度而且大大降低了系统得可靠性,这使得PWM开关技术的高频化受到了许多的限制。
根据高频电力操作电源的设计要求,结合实际的经验和实验结果选择合适的开关器件,设计出稳定可靠、性能优越的控制电路、驱动电路、缓冲电路以及主要的磁性元器件。
对最大电流自动均流法的工作原理以及系统稳定性进行了较为深入的研究。
采用均流控制芯片UC3907设计了电源的均流控制电路,使模块单元具有可并联功能,可以实现多电源模块并联组成更大功率的电源系统。
1、系统原理的设计思想在设计大型的开关电源模块时,首先需要对系统有一个整体的规划,以便于设计整体结构及相应的辅助电源。
宽电压输入直流开关电源的设计
宽电压输入直流开关电源的设计一、引言随着电子技术的不断发展,人们对电源稳定性、高效性和可靠性的要求也越来越高。
而宽电压输入直流开关电源是一种能够在不同电压范围内提供稳定输出电压的电源设计方案。
本文将介绍宽电压输入直流开关电源的设计原理、关键技术及实现过程。
二、设计原理1.输入电压范围选择2.稳压控制电路稳压控制电路是保证输出电压稳定的核心部分。
常用的稳压控制电路包括电流反馈式稳压控制电路和电压反馈式稳压控制电路。
电流反馈式稳压控制电路适用于输出电流变化较大的情况,而电压反馈式稳压控制电路适用于输出电压波动较大的情况。
3.开关元件选择开关元件的选择直接影响到设计方案的可行性和效率。
常用的开关元件有晶体管、开关管和MOS管。
其中,MOS管具有开关速度快、控制电压低、导通电阻小等特点,是较为常用的开关元件。
三、关键技术1.输入电压稳定性输入电压的稳定性对于宽电压输入直流开关电源的稳定性和可靠性至关重要。
可以通过滤波电路和稳压电路来提高输入电压的稳定性。
2.输出电压稳定性相比传统电源设计,宽电压输入直流开关电源输出电压波动范围更广。
因此,输出电压的稳定性也需要得到保证。
可以通过稳压控制电路和输出滤波电路来提高输出电压的稳定性。
3.效率四、实现过程实现宽电压输入直流开关电源的过程主要包括以下几个步骤。
1.选择合适的输入电压范围。
根据实际需求选择适当的输入电压范围。
2.设计稳压控制电路。
根据所选的输入电压范围和输出电压要求,选择合适的稳压控制电路,并进行设计和优化。
3.选择合适的开关元件。
根据设计要求和性能要求,选择合适的开关元件,并进行电路设计和优化。
4.优化输入电压稳定性。
通过合理的输入电压滤波和稳压电路设计,提高输入电压的稳定性。
5.优化输出电压稳定性。
通过稳压控制电路和输出滤波电路设计,提高输出电压的稳定性。
5.优化电源效率。
通过合理的选材、电路设计和优化,提高电源的效率,减少能量损耗。
六、结论宽电压输入直流开关电源具有宽范围的输入电压和稳定的输出电压特点,可以适应不同电压范围的需求。
毕业设计(论文)-大功率直流稳压电源的设计[管理资料]
南京信息职业技术学院毕业论文作者学号系部电子信息工程系专业电子信息工程技术题目大功率直流稳压电源的设计指导教师评阅教师完成时间:2010 年05 月10 日毕业论文中文摘要毕业论文外文摘要目录1引言 (5)2概述 (5) (5) (6) (6) (7)3电源硬件系统设计 (7) (7) (8) (9) (9) (10) (13) (13) (13) (14) (15)4参数计算 (15) (15) (16) (18) (18)5辅助电路 (20) (20) (20) (21)6单片机控制系统的设计 (22) (22) (23)结论 (26)致谢 (27)参考文献 (27)附录A 电路图 (28)1引言自70年代末以来,国外迅速发展功率场效应晶闸管(Power MOSFET),绝缘门级双级性晶闸管(IGBT)和MOS栅控晶闸管(MCT)等新型功率开关器件,由于这些新型器件具有开关频率高,器件自身的功率损耗小,因而转换效率高,电路结构简单等优点,在加热电源领域中,正在得到广泛的应用。
其中IGBT器件,其输出管压降低,一般在3V以下,器件本身的功耗小,具有晶闸管的优点,适合于大电流工作,其控制端采用了场效应管的技术,驱动非常小,适应于高速开关,且没有二次击穿的问题,工作比较安全,因此属于目前国际上有限发展的大功率开关器件。
国外器件制造厂商推出了一系列大功率IGBT模块,其最大单管电流已达到1000A以上,耐压可达到1200V(有的可达到1400V),开关时间在600ns以下。
其实际工作频率可达到50KHz,功率较小时可达到100KHz,因此是极有前途的功率开关器件。
但是,上述这些新型功率开关器件也存在一些弱点,如电压与电流的过载能力弱,当工作参数超过其安全范围是,非常容易损坏。
因此给电路结构的设计与制造提出了新的要求,并且需要快速而有效的保护措施。
由于IGBT逆变器的逆变频率高,节能效果好,在各种电源中均有重要的应用。
200W开关电源功率级设计方案
200W开关电源功率级设计方案1. 导言新的功率在200W-500W 的交流电源设计,越来越需要功率因素校正(PFC),以在减少电源线上的能源浪费,并增加最多来自电源插座的功率。
这篇文章描述了一个用於液晶电视的200W 电源的设计与构造,所以提到了很多注意事项,以达到高效率,待机功率低於1W,外形小巧尤其是高度为25mm ,无风扇的简单冷却,低成本。
这些特徵对於将要应用的场合是不可或缺的。
2. 电路描述和设计设计指标如下∶交流输入电压∶85-265VRMS·功率因素∶> 0.95·总输出功率∶200W·三个直流输出∶5V/0.3A12V/5A24V/6A电源分为两个单元。
第一电源集成一个功率因素校正电路,内置在FAN4800 PFC/PWM(脉宽调制)二合一控制器周围,产生一个24V/6A 和12V/5A 的输出。
这个器件包含一个平均电流模式PFC 控制器和一个能够在电压和电流模式下工作的PWM控制器。
在描述的这项应用中,PWM工作在电流模式,控制一个双管正激变换器。
这种变换器能产生一个稳压的24V 输出。
12V输出则由一个采用MC34063A PWM控制器的Buck 变换器产生。
这个附加模块改善了12V输出校正,减少交叉调节问题,这对於多重输出正激变换器总是一个问题,当负载大范围变化时。
附加变换器成本不是很高,如果与一个双管输出变换器的更复杂、更大的耦合电感相比。
第二电源是一个基於飞兆半导体功率开关(FPS)的Flyback 变换器,它给FAN4800提供电源和5V 输出。
这个电源工作在待机模式下,它的无负载功耗低於500mW。
因此,即使对於省电模式下小负载情况,也有可能满足1W待机功耗的限制。
为了简洁,设计计算和电路图将在每个模组中单独给出。
最终完成的示意图和布局,可在附录中查到。
3. 功率因素校正本节回顾了功率因素校正电路的电源选择。
用来设立乘法器的工作点和差动放大器的增益和频率补偿的低功率部件的设计在[1]中给出。
基于SG3525的开关电源设计
1 引言随着电子技术的高速发展,电子设备的种类与日俱增。
任何电子设备都离不开可靠的供电电源,对电源供电质量的要求也越来越高,而开关电源在效率、重量、体积等方面相对于传统的晶体管线性电源具有显着优势。
正是由于开关电源的这些特点,它在新兴的电子设备中得到广泛应用,已逐渐取代了连续控制式的线性电源。
图1 功率主电路原理图2 功率主电路本电源模块采用半桥式功率逆变电路。
如图1 所示,三相交流电经EM I 滤波器滤波,大大减少了交流电源输入的电磁干扰,同时防止开关电源产生的谐波串扰到输入电源端。
再经过桥式整流电路、滤波电路变成直流电压加在P、N 两点间。
P、N 之间接入一个小容量、高耐压的无感电容,起到高频滤波的作用。
半桥式功率变换电路与全桥式功率变换电路类似,只是其中两个功率开关器件改由两个容量相等的电容C1 和C2代替。
在实际应用中为了提高电容的容量以及耐压程度, C1 和C2 往往采用由多个等值电容并联组成的电容组。
C1、C2 的容量选值应尽可能大,以减小输出电压的纹波系数和低频振荡。
由于对体积和重量的限制, C1和C2 的值不可能无限大,为使输出电压的纹波达到规定的要求,该电容值有一个计算公式 , 即:式中, IL 为输出负载电流, V L 为输出负载电压,V M 为输入交流电压幅值, f 为输入交流电频率, VU为输出的纹波电压值。
这是一个理论上的计算公式,得到的满足要求的电容计算值比较大,实际取的电容应尽量大一些,由于输出端电压较小,也可以在二次整流滤波时加大电容,这样折算到该公式的电容值也不小。
C1 和C2 在这里实现了静态时分压,使V A= V in/2。
当VT1导通、VT2截止时,输入电流方向为图中虚线方向,向C2 充电,同时C1通过V T1 放电;当V T 2 导通、V T 1 截止时,输入电流方向为图中实线方向,向C1 充电,同时C2 通过V T 2 放电。
当V T1 导通、V T 2 截止时,V T 2 两端承受的电压为输入直流电压V in。
10kw直流开关电源设计-学位论文
摘要开关电源具有效率高、体积小、重量轻等显著特点。
目前世界各国都有广泛的应用,特别是对大容量高频开关电源的研究和开发已成为当今电力电子学的主要研究领域,并派生了很多新的研究方向。
本设计的题目为10kW直流开关电源的设计,直流开关电源的工作原理:电网输送来的交流电经整流滤波电路变为直流,经过高频逆变电路变为高频交流,通过高频变压器将高频交流电变压,然后高频交流电经单相桥式整流滤波电路变为直流。
根据直流开关电源的工作原理确定设计方案,选择三相桥式不控整流滤波电路作为主电路的输入级电路,通过分析比较各种变化器的优缺点,选用移相式全桥变换器,设计了高频变压器,选择单相桥式整流电路作为主电路的输出级电路,在电压调节环节上,详细分析了基于UC3825控制芯片的PWM控制电路。
并根据任务要求完成了IGBT驱动电路、系统反馈电路的、保护电路、辅助电源以及均流电路的设计。
本次设计的10kW直流开关电源具有输出电压可调、输出电流大、纹波小等特点。
实验结果表明它基本达到设计要求,从而验证了理论分析的正确性,具有广阔的应用前景。
关键词:变换器;开关电源;高频变压器;PWM控制AbstractSwitching power supply with high efficiency, small size, light weight and other significant characteristics. At present, all the countries in the world have a wide range of applications, especially in the research and development of large capacity and high frequency switching power supply has become a main research field of modern power electronics, and derive a lot of new research directions.The subject of this design is the design of 10kW DC switching power supply, the working principle of DC switching power supply: the grid to the AC rectified filter circuit into a DC, after high frequency inverter circuit into a high-frequency alternating current, high frequency alternating current transformer by high-frequency transformer will, then high frequency AC single-phase bridge rectifier filter circuit for dc. According to the design scheme to determine the working principle of DC switching power supply, selection of three-phase uncontrolled rectifier filter circuit as the input circuit of main circuit, comparing the advantages and disadvantages of various changes through the analysis, selection of phase-shift full bridge converter, high frequency transformer design, selection of single phase bridge rectifier circuit as output circuit of the main circuit, on the voltage regulation part, a detailed analysis of the UC3825 control chip control circuit based on PWM. And the IGBT drive circuit, feedback circuit, protection circuit, auxiliary power supply and a flow equalization circuit is designed according to the requirement of the task.The design of 10kW DC switching power supply has the characteristics of adjustable output voltage, output current, low ripple. The experimental results show that it meets the design requirement, which verifies the correctness of the theoretical analysis, has a broad application prospect.Keywords: converter;Switching power supply;high-frequency transformer;PWM control目录第1章绪论 (1)1.1 开关电源的简介 (1)1.2 开关电源的发展及国外现状 (1)1.3 国内开关电源的发展及现状 (3)第2章系统分析和设计方案确定 (5)2.1系统整体概述 (5)2.2变换器的选择 (6)2.3控制电路的实现 (6)2.4 整流滤波电路的选择 (8)2.4.1 输入整流滤波回路 (8)2.4.2 输出整流滤波回路 (8)第3章开关电源主电路的设计 (9)3.1 开关电源的设计要求 (9)3.2 主电路组成框图 (9)3.2.1 输入整流滤波电路 (10)3.2.2移相式全桥变换器的设计 (12)3.2.3 输出整流滤波电路 (16)第4章控制电路的设计 (19)4.1 PWM集成控制器的基本原理 (19)4.2 高速脉宽调制器UC3825 (19)4.2.1 主要特点 (21)4.2.2 极限参数 (21)4.2.3 内部电路工作原理 (22)4.3 UC3825的调试 (24)4.4 反馈电路的设计 (25)第5章保护电路的设计 (28)5.1 软启动电路的设计 (28)5.2 过流过压保护 (29)第6章辅助电源设计 (32)第7章均流电路设计 (34)7.1 均流电路概述 (34)7.2 开关电源并联系统常用的均流方法 (34)第8章结论 (37)参考文献 (38)致谢 (39)附录1 (40)附录2 (41)第1章绪论1.1开关电源的简介开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,一般由脉冲宽度调制(PWM)控制IC和MOSFET 构成。
大功率直流开关电源设计毕业论文
摘要开关电源具有效率高、体积小、重量轻等显著特点。
目前世界各国都有广泛的应用,特别是对大容量高频开关电源的研究和开发已成为当今电力电子学的主要研究领域,并派生了很多新的研究方向。
本文的主要内容就是研制一种高性能、大功率直流开关电源。
本文详细分析了高性能、大功率直流开关电源的工作原理,并提出了主电路和控制电路的详细设计方案。
在此基础上,完成了整个系统的硬件电路设计和软件程序的编制,并对电源装置的硬件和软件进行了调试和修改。
在分析原理的基础上,本文从三相桥式不控整流、全桥变换器、高频变压器、滤波电路等环节对该系统的主电路进行了阐述,同时探讨了该电源系统实现大功率的解决方案,即采用多个电源模块并联运行。
本文还探讨了多个电源模块并联运行时的自动均流技术,并详细介绍了基于平均值的自动均流电路。
在电压调节环节上,详细分析了基于UC3825控制芯片的PWM控制电路。
本文研制的直流开关电源具有输出电压可调、输出电流大、纹波小等特点,而且还具有换档、远程控制等功能。
实验结果表明它基本达到设计要求,从而验证了理论分析的正确性,具有广阔的应用前景。
关键词:DC-DC变换器,开关电源,均流,高频变压器,PWM控制目录摘要 .............................................. 错误!未定义书签。
ABSTRACT ........................................... 错误!未定义书签。
第1章绪论 ........................................ 错误!未定义书签。
开关电源的发展及国外现状........................ 错误!未定义书签。
国内开关电源的发展及现状........................ 错误!未定义书签。
第2章系统的整体分析和选择 ........................ 错误!未定义书签。
直流开关电源的设计
直流开关电源的设计1. 引言直流开关电源是一种根据输入电源的电压转换为特定输出电压的电源装置,常用于电子设备、通信设备和工业设备中。
本文将介绍直流开关电源的设计原理、关键参数和设计步骤。
2. 设计原理直流开关电源设计的核心是使用开关元件(如MOSFET)进行电压转换。
其工作原理如下:1.输入电压通过整流电路进行整流,并经过滤波电路去除杂散波动,得到一个平滑的直流电压。
2.转换电路使用开关元件将直流电压转换为高频脉冲信号。
3.输出滤波电路平滑高频脉冲信号并降低输出电压纹波。
4.控制电路根据输出电压反馈信号控制开关元件的导通和断开,以维持稳定的输出电压。
3. 关键参数在直流开关电源设计中,有几个关键参数需要考虑:3.1 输入电压范围输入电压范围决定了直流开关电源能够适应的外部电源情况。
一般情况下,输入电压范围应根据应用需求选择合适的数值范围。
3.2 输出电压和电流输出电压和电流是直流开关电源的最重要的输出参数。
根据不同的应用需求,需要确定合适的输出电压和电流数值。
3.3 效率直流开关电源的效率是指输出功率与输入功率之间的比值,通常以百分比表示。
高效率是设计过程中需要追求的目标之一,可通过优化电路拓扑和选择合适的元件来提高效率。
3.4 纹波与噪声直流开关电源输出电压的纹波和噪声对于一些敏感的应用来说是非常重要的指标。
纹波是指输出电压的小幅度波动,而噪声是指随机的杂散信号。
设计过程中需要注意控制纹波和噪声,以满足不同应用的需求。
4. 设计步骤以下是直流开关电源的设计步骤:4.1 确定输出电压和电流需求根据具体的应用需求,确定直流开关电源的输出电压和电流数值。
4.2 选择开关元件根据输出电压和电流要求,选择合适的开关元件,如MOSFET。
4.3 设计输出滤波器设计输出滤波器以降低输出电压的纹波和噪声。
可以使用电容和电感元件组成滤波器。
4.4 设计控制电路设计控制电路以测量输出电压,并根据反馈信号控制开关元件的导通和断开,以维持稳定的输出电压。
26421436_基于推挽电路的大功率直流电源设计
电气传动2016年第46卷第5期基于推挽电路的大功率直流电源设计姜艳姝,郭东,徐兴(哈尔滨理工大学自动化学院,黑龙江哈尔滨150080)摘要:基于PWM 控制的推挽式DC-DC 直流升压电路的系统结构,设计了一款2kW 大功率直流升压变换器。
该推挽拓扑结构采用2组高频变压器并联的升压方式,用1组驱动信号同时驱动2个开关管,转换效率高,对器件的参数要求不高。
最后研制出了额定直流48V 输入,直流310V 输出,2kW 功率的DC/DC 变换器。
通过实验证明该变换器具有较高的效率与实用价值。
关键词:PWM 控制;高频变压器;开关管;DC/DC 中图分类号:TM433文献标识码:ADesign a DC Power Supply Based on Two Series Transformer of Push⁃pull CircuitJIANG Yanshu ,GUO Dong ,XU Xing(Automation Institute ,Harbin University of Science and Technology ,Harbin 150080,Heilongjiang ,China )Abstract:Based on PWM control of push⁃pull DC-DC booster circuit system structure ,a 2000W DC boostconverter was designed.The push ⁃pull topology adopted two sets of high frequency transformer in parallel way ofbooster ,with a set of driving signal to drive both switch tube ,high conversion efficiency ,and the parameters of the request was not too high to the device.Finally 2000W DC/DC converter was developed with DC 48V input ,DC310V output.Experiments show that the converter has more efficiency and practical value.Key words:PWM controller ;high⁃frequency transformer ;switching tube ;DC-DC作者简介:姜艳姝(1971-),女,博士,教授,Email :*********************.cn开关型DC/DC 变换器采用功率半导体器件作为开关,其功耗小,效率高,转换效率可达70%~95%。
5v1a开关电源方案
5v1a开关电源方案开关电源是一种将交流电转化为直流电供给电子设备使用的电源装置。
5V1A开关电源方案是指输出电压为5V,输出电流为1A的开关电源设计方案。
下面将介绍一种适用于5V1A开关电源的方案。
一、设计方案1. 输入电压范围:100-240VAC2. 输出电压:5V DC3. 输出电流:1A4. 开关频率:50-60Hz5. 效率:大于90%6. 过载保护7. 短路保护8. 过温保护二、设计原理5V1A开关电源的设计原理主要包括输入电压的变换、整流、滤波、功率变换和输出电压稳压等过程。
1. 输入电压的变换:使用变压器将输入电压从AC变换为AC,并通过变压器的变换比例实现输出电压的变换。
常用的变压器类型有单相变压器和开关电源变压器。
2. 整流:使用整流器将AC电压转换为脉冲波形的DC电压。
常用的整流器有单相桥式整流器和双极性整流器。
3. 滤波:通过电容器和电感器对脉冲波形进行滤波,使其转换为稳定的直流电压。
滤波电路主要包括输入滤波、输出滤波和绕组滤波等。
4. 功率变换:使用开关管(如MOSFET)通过开关控制来实现功率变换,将滤波后的直流电压转换为高频脉冲信号。
5. 输出电压稳压:通过控制开关管的开关频率和占空比,调节输出电压的稳定性,以满足负载要求。
三、设计要点1. 选择高效率的开关电源芯片,以提高电源整体效率。
2. 合理设计输入和输出过滤电路,降低噪声干扰。
3. 对开关管进行适当的保护措施,以确保电源的稳定性和可靠性。
4. 严格控制输出电压和电流的精度,以满足终端设备的需求。
5. 在设计过程中考虑过载、短路和过温等异常情况的保护措施。
四、成本控制在选择元器件和设计方案时,需要综合考虑成本和性能。
以下几点可参考:1. 选择经济实惠的开关电源芯片,同时注意其稳定性和可靠性。
2. 根据实际需求合理选取元器件的型号和参数。
3. 控制电源的功率损耗,降低能量消耗。
4. 优化PCB布局,以降低成本和提高生产效率。
直流开关电源的设计
直流开关电源的设计概述直流开关电源是一种常用的电源类型,用于在电子设备中提供稳定的直流电压。
它由三个关键部分组成:变压器、整流器和稳压器。
在本文中,我们将探讨直流开关电源的设计原理和步骤。
设计原理直流开关电源的设计原理基于功率转换和电路控制技术。
其基本工作原理如下:1.变压器将交流输入电压变换为所需的直流输出电压。
2.整流器将变压器输出的交流电压转换为脉冲电压。
3.稳压器通过对脉冲电压进行滤波和稳压,将其转换为稳定的直流输出电压。
设计步骤设计直流开关电源的步骤如下:第一步:确定电源需求首先,需要确定直流开关电源的输入和输出要求。
输入要求包括输入电压和频率,输出要求包括输出电压和电流。
第二步:选择变压器根据电源需求选择适当的变压器。
变压器的选取应考虑到输入和输出电压之间的变换比,以及变压器的功率容量。
第三步:选择整流器整流器将变压器输出的交流电压转换为脉冲电压。
常见的整流器类型有半波整流和全波整流。
根据功率要求,选择合适的整流器。
第四步:选择稳压器稳压器通过对脉冲电压进行滤波和稳压,将其转换为稳定的直流输出电压。
选择合适的稳压器应考虑到输出电压稳定性,负载调节性能以及效率等因素。
第五步:设计控制电路设计控制电路以实现对直流开关电源的稳定输出。
控制电路一般使用反馈控制原理,通过对输出电压进行采样并与参考电压进行比较,调整开关器件的导通时间来实现稳定输出。
第六步:布局与连线在设计完成后,需要进行电路的布局与连线。
布局应合理安排各个元件的位置,以保证电路的稳定性和可靠性。
连线应遵循电路设计原则,避免干扰和回路。
第七步:测试与调试完成电路布局后,需要进行测试与调试,以确保直流开关电源的正常工作。
测试过程中应注意安全措施,并对异常情况进行排查和修复。
总结通过以上步骤,我们可以完成直流开关电源的设计。
设计过程中需要考虑电源需求、选择合适的变压器、整流器和稳压器,并设计控制电路实现稳定输出。
布局与连线应合理安排,测试与调试确保电路正常工作。
150w开关电源方案
150w开关电源方案一、项目概述开关电源是现代电子设备中常用的电源供应方式之一,它具有高效、稳定、可靠等优点,在各个领域广泛应用。
本文旨在提出一种150w开关电源方案,满足电子设备的高功率需求。
二、设计原理开关电源是通过调整开关管的导通和截止时间,将输入的直流电转换为高频脉冲电流,并经过滤波、变压、稳压等环节得到稳定的直流输出电压。
150w开关电源方案主要包括输入电路、变压器、整流滤波电路、开关管、控制电路以及输出电路等几个关键模块。
1. 输入电路输入电路用于将交流电源转换为直流电源,并提供给后续模块进行处理。
输入电路主要由整流器和滤波器组成,其中整流器将交流电转换为直流电,滤波器则对直流电进行滤波,消除输出电压的纹波。
2. 变压器变压器是开关电源中的核心部分,起到将输入交流电源变压成适合开关电源工作的电压的作用。
150w开关电源通常采用高频变压器,通过变压器的绕组比例来调整输入输出电压的大小。
3. 整流滤波电路整流滤波电路用于将高频脉冲电流转换为直流电流,并对其进行滤波平均,以充分消除纹波和噪声。
整流器通常采用二极管桥式整流电路,滤波器则使用电容器和电感器组成的RC滤波网络。
4. 开关管和控制电路开关电源的核心部分是开关管和控制电路,通过调整开关管的导通和截止时间,实现对输入电压的调节。
控制电路通常采用PWM调制技术,通过对开关管的有效控制,使得输出电压能够保持稳定。
5. 输出电路输出电路将经过整流和滤波的直流电转换为稳定的输出电压,并提供给电子设备使用。
输出电路通常包括稳压器、电感和电容等元件,以确保输出电压的稳定性和抗干扰性。
三、技术参数150w开关电源方案的主要技术参数如下:1. 输入电压:AC 220V2. 输出电压:DC 12V3. 输出电流:12.5A4. 输出功率:150W5. 效率:≥85%6. 纹波电流:≤200mV四、安全性设计为确保开关电源的安全性和可靠性,需在设计中考虑以下几个方面:1. 过流保护:当输出电流超过设定值时,开关电源应及时切断输出并进行保护,以防止电器设备损坏或发生危险情况。
毕业设计9DC直流开关电源
摘要本设计是DC/DC直流开关电源设计,首先将开关电源与线性电源进行对比,总结了开关电源的优点,并对其当前的发展以及在发展中存在的问题进行了描述,然后在对开关电源的整体结构进行了介绍的基础上,对开关电源的主回路和控制回路进行设计:在主回路中整流电路采用单相桥式、功率转换电路采用单端正激功率转换电路、采用增加副边绕组的方法实现多路输出,其中功率转换电路(DC/DC变换器)是开关电源的核心部分,对此部分进行了重点设计;控制电路采用PWM控制,控制器采用开关电源集成控制器GW1524、设计了过压保护电路、电压检测电路和电流检测电路,对各个部分的参数进行了计算并进行了元器件的选型。
【关键词】DC/DC变换器、PWM控制、整流、滤波。
AbstractIn this paper,I designed a switch power supply system with three outputs: Compare the switch power with linear power at first , has summarized the advantage of the switch power ,have described its present development and there are natural questions in development. On the basis of the thing that the whole structure to the switch power has made an introduction, to the main return circuit and controlling the return circuit to design of the switch power: The rectification circuit adopts the single-phase bridge type in the main return circuit, the power changes the circuit and adopts and defies the power to change the circuit , realize by increasing the winding of one pair of sides single and well that many ways are exported, it is a key part of the switch power supply that the power changes circuit (DC/DC transformer ), have designed this part especially ; The control circuit adopts PWM to control, the controller adopts the switch power integrated controller GW1524, design the circuit to measure voltage and the circuit to el measure ectric current, selecting type of calculating and carrying on the components and parts the parameter of each part.Keyword:DC/DC transformer , PWM control , rectification , straining waves.目录1 概述 ------------------------------------------------------- 11.1开关电源的基本原理-------------------------------------------------------- 11.2开关电源与线性电源的比较----------------------------------------------- 21.3开关电源的发展与应用----------------------------------------------------- 21.4 开关电源当前存在的问题 ------------------------------------------------- 32 整流电路的设计 --------------------------------------------- 52.1整流电路的选择 -------------------------------------------------------------- 52.1.1单相半波整流电路 (6)2.1.2单相桥式整流电路 (7)2.2 防止电流冲击的设计 ------------------------------------------------------- 72.3 参数计算以及元器件的选型 ---------------------------------------------- 82.3.1整流管参数计算 (9)2.3.2 变压器参数 (9)2.3.3 电容参数计算 (10)3 DC/DC变换器的设计----------------------------------------- 113.1控制方式的选择 ------------------------------------------------------------- 113.2 功率转换电路的选择 ------------------------------------------------------ 123.2.1 推挽式功率转换电路 (12)3.2.2 全桥式功率转换电路 (13)3.2.3 半桥式功率转换电路 (13)3.2.4 正向激励功率转换电路 (14)3.2.5 反向激励功率转换电路 (15)3.3单端正激变换器的设计---------------------------------------------------- 153.3.1工作原理 (16)3.3.2能量再生线圈P2的工作原理 (17)3.3.3 多路输出的设计 (17)3.3.4 变压器设计 (17)3.3.5电感的参数计算 (19)3.3.6 二极管和电容器的选择 (21)3.3.7 开关管的选择 (21)4 控制电路的设计 -------------------------------------------- 224.1控制模式的选择 ------------------------------------------------------------- 224.1.1电压模式控制 (22)4.1.2平均电流模式控制 (23)4.1.3 峰值电流模式控制 (24)4.1.4滞环电流模式控制 (25)4.1.5相加模式控制 (26)4.2 开关电源集成控制器 ------------------------------------------------------ 264.2.1 GWl524的特点 (27)4.2.2 1524 的极限使用值和主要电性能 (27)4.2.3 GW1524的内部结构 (27)4.2.4 GW1524工作过程 (30)4.3电压检测电路 ---------------------------------------------------------------- 314.4电流检测电路 ---------------------------------------------------------------- 324.4.1电阻检测 (32)4.4.2电流互感器检测 (33)4.5 启动和集成电路供电电路设计 ------------------------------------------ 344.6 保护电路的设计 ------------------------------------------------------------ 355 结论及设想 ------------------------------------------------ 37致谢 -------------------------------------------------------- 38参考文献 ---------------------------------------------------- 39附录1:开关电源原理图--------------------------------------- 40附录2:元器件清单------------------------------------------- 411 概述电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。
大功率开关电源设计
2016届毕业设计方案课题名称:《大功率开关电源的设计》所在学院牵引与动力学院班级动车134班姓名李升学号 ************指导老师2016届毕业设计任务书一、课题名称:多路输出单端反激式开关电源设计二、指导老师:邓小木三、设计内容与要求:1、课题概述:开关电源是通过控制开关晶体管开通和关断时间比率,维持稳定输出电压的一种电源。
开关电源被誉为高效节能电源,它代表着稳压电源的发展方向,现已成为稳压电源的主流产品。
开关电源内部关键元器件工作在高频开关状态,本身消耗的能量很低,电源效率可达80%一90%,比普通线性稳压电源效率提高近一倍。
本课题是设计多路输出单端反激式开关稳压电源。
主电路采用多路输出单端反激变换器结构,采用控制芯片UC3844实现电压电流双闭环控制,系统工作频率在50kHZ,输出+/-5V/0.5A(共4路),+/-12V/1A,,24V/1A 共7路隔离的电压。
2、设计内容与要求:1. 设计任务1)多路输出高频开关变压器设计;2)UC3844外围电路设计;3)开关电源保护电路设计;4)用PROTEL DXP绘制电路原理图,并制作PCB;5)开关电源焊接、调试;2.技术指标1)开关电源的输入电压:AC 185~250V2)开关电源输出电压及电流:+/-5V/0.5A(共4路),+/-12V/1A,,24V/1.5A3)开关电源的开关频率:50kHZ4)开关电源的效率:≥80%四、设计参考书1)张占松,蔡宣三.开关电源的原理与设计[M],北京:电子工业出版社,2004.2)周志敏,周纪海,纪爱华.开关电源实用电路[M],北京:中国电力出版社,2006. 3)黄继昌.电源专用集成电路及其应用[M],北京:人民邮电出版社,2006.4)王增福,李昶,魏永明.新编常用稳压电源电路[M],北京:电子工业出版社,2006. 5)黄俊,王兆安.电力电子变流技术[M],北京:机械工业出版社,2006.五、设计说明书要求1、封面2、目录3、内容摘要(200-400字左右,中英文)4、引言5、正文(设计方案比较与选择,设计方案原理、分析、论证,设计结果的说明及特点)6、结束语7、附录(参考文献、图纸、材料清单等)六、设计进程安排第1周:资料准备与借阅,了解课题思路。
大功率开关电源方案
大功率开关电源方案概述大功率开关电源是一种用于将输入电源转换为所需输出电压的电源系统。
它通过开关器件的开关操作来调节输入电源的能量传输,从而实现输出电压的调整。
本文将介绍大功率开关电源的工作原理、设计考虑因素以及一种常见的大功率开关电源方案。
工作原理大功率开关电源的工作原理基于开关器件的开关操作。
开关器件使用高频脉冲信号控制开关时间,使得输入电源能够以高效率进行能量传输。
以下是大功率开关电源的基本工作流程:1.输入电源首先经过整流器将交流电转换为直流电。
2.直流电进入开关电源的开关器件。
开关器件周期性地打开和关闭,产生高频脉冲。
3.脉冲信号进入输出变压器,通过变压器的绕组传递给输出负载。
4.输出负载将电能转化为所需的形式,如电流或电压。
设计考虑因素在设计大功率开关电源时,需要考虑以下几个因素:1. 输出功率要求大功率开关电源的设计首先需要确定所需的输出功率。
输出功率决定了开关器件和变压器的选型,以及决定了电源的整体尺寸和散热需求。
2. 效率和能量损耗大功率开关电源的效率是一个重要考虑因素。
效率高的设计可以减少电源的热损耗,提高电源的使用寿命。
此外,减少能量损耗还能节省电能成本。
3. 输入电压和输出电压范围大功率开关电源需要适应不同的输入电压和输出电压要求。
设计时需要考虑输入电压范围的波动和输出电压的稳定性。
4. 稳定性和过载保护开关电源需要具备良好的稳定性和过载保护功能。
稳定性可以确保输出电压在负载变化时保持稳定,而过载保护可以防止过大的电流损坏电源或输出负载。
5. 散热和温度控制大功率开关电源在工作过程中会产生一定的热量。
设计时需要考虑散热和温度控制措施,以确保电源在工作过程中保持适当的温度。
一种常见的大功率开关电源方案以下是一种常见的大功率开关电源方案的设计流程:1.确定输出功率要求。
根据实际需求确定所需的输出功率。
2.选取合适的开关器件。
根据输出功率和效率要求,选择适合的开关器件,如MOSFET或IGBT。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大功率直流开关电源设计
前言
开关电源的发展及国外现状
随着通信用开关电源技术的广泛应用和不断深入,实际工作中人们对开关电源提出了更高的要求,提出了应用技术的高频化、硬件结构的模块化、软件控制的数字化、产品性能的绿色化、新一代电源的技术含量大大提高,使之更加可靠、稳定、高效、小型、安全。
在高频化方面,为提高开关频率并克服一般的PWM和准谐振、多谐振变换器的缺点,又开发了相移脉宽调制零电压开关谐振变换器,这种电路克服了PWM方式硬开关造成的较大的开关损耗的缺点,又实现了恒频工作,克服了准谐振和多谐振变换器工作频率变化及电压、电流幅度大的缺点。
采用这种工作原理,大大减小了开关管的损耗,不但提高了效率也提高了工作频率,减小了体积,更重要的是降低了变换电路对分布参数的敏感性,拓宽了开关器件的安全工作区,在一定程度上降低了对器件的要求,从而显著提高了开关电源的可靠性。
1. 开关电源主电路的设计
开关电源最重要的两部分就是主电路和控制电路。
本章将根据大功率直流开关电源的要求对主电路各部分进行性能分析并计算各项参数,根据计算所得的数据结果选择各元器件,设计出各个独立模块,最后组装成开关电源的主电路。
1.1 开关电源的设计要求
在本课题研究的过程中,主要对大功率开关直流电源的工作原理、电路的拓扑结构和运行模式进行了深入研究,并结合系统的技术参数,确定系统主电路的拓扑,设计出主电路,即分别设计出滤波、整流、DC-DC变换器、软启动和保护控制等部分。
下面就对电源主电路的设计进行详细说明。
1.2 主电路组成框图
根据需要设计大功率开关电源的技术要求,本文进行了方案的验证与比较,设计如图2-1所示的软开关直流开关电源的主电路框图。
虚线以上是主电路,主电路主要分为输入整流滤波、逆变开关电路、逆变变压器和输出整流滤波;虚线以下为控制回路,控制回路主要包括信息检测电路、控制和保护单元、监控单元和辅助电源。
本电源采用ZVZCS- PWM 拓扑,原边加箝位二极管,三相交流输入整流后,加LC 滤波,以提高输入功率因数,主功率管选用IGBT ,控制电路采用UC3875移相控制专用集成芯片,电流电压双闭环控制。
具体设计主电路如图2-2所示,包括三个部分:(1) 输入整流滤波电路;(2) 单相逆变桥;(3) 输出整流滤波电路.
EMI
全桥整流滤波
高频逆变
整流滤波
辅助电源
控制和保护单元
反馈
监控单元
交流输入
集中监控单元
直流输出
图2-1 直流开关电源的主电路框图
1.2.1 输入整流滤波电路
三相交流电经电源内部EMI 滤波后,加到整流滤波模块。
EMI 滤波器的作用是滤除功率管开关产生的电压电流尖峰和毛刺,减小电源内部对电网的干扰,同时又能减小其他用电设备通过电网传向电源的干扰。
滤波电路采用LC 滤波,电感的作用是拓开电流导通时间,限制电流峰值,可以提高电源的输入功率因数。
滤波电容采用四个电解电容,两个串联后并联使用,满足三相整流后的高压要求。
电阻R1、R2是平衡串联电容上的电压,高频电容与电解电容并联使用,滤除高频谐波,弥补电解电容高频特性差的缺陷。
D L -10
E A X 1
U
V
W
Q
4C8
D 14U o u t
R L
电流采样
E 7C 21E 6
C 19C 20L 2C 18E 5
D 12
D 13D 10D 11
T 1
T 2
C 15C 16C 17
I r
Q 2
Q 1
Q 3
D 1D 2I r
E 1E 2E 3E 4R 1R 2C 5C 6C 7
图2-2 电源主电路结构
1.2.2 单相逆变桥
单相逆变桥采用IGBT ,以满足高压、高功率的要求。
无感电
容(C7、C8)并联在两桥臂之间,降低两桥臂之间电压尖峰的干扰,谐波电感L r ,隔直电容15C 、16C 、17C 防止变压器的直流偏磁,原边箝位二极管减轻副边振荡,主变压器起到原、副边的隔离、耦合作用,原、副边各一副绕组,以满足副边采用全桥整流的要求,原边加交流互感器,检测原边电流作保护用。
1.2.3 输出整流滤波电路
采用全桥整流满足高压的要求,高频滤波电感L f ,电解电容(E5、E6、E7),高频电容(18C ,21C )滤除高频谐波分量,共模电感(2L ),Y 电容(19C 、20C ),抑制共模分量,电流采样电阻3R ~
R 5,输出二极管D14,防止电池电流反灌。
2. 控制电路的设计
2.1 PWM 集成控制器的基本原理
PWM 集成控制器通常分为电压型控制器和电流型控制器两种。
电压型控制器只有电压反馈控制,可满足稳定电压的要求,电流型控制器增加了电流反馈控制,除了稳定输出电压外,还有以下优点:
1. 当流过开关管的电流达到给定值时,开关自动关断;
2. 自动消除工频输入电压经整流后的纹波电压,并开关电源输出端3OOHz 以下的纹波电压很低,因此可减小输出滤波电容的容量;
3. 多台开关电源并联工作时,PWM 开关控制器具有内在的均流能力;
4. 具有更快的负载动态响应:
常用的脉宽调制(PWM)型集成控制器的几个部分组成。
基准电压和采样反馈信号通过误差放大器比较放大后,输出的差值信号和锯齿波(或三角波)比较,从而改变输出脉冲的宽度,以实现稳压。
有些控制器仅有一个输出端,而多数控制器都设有用触发器
和“与”门电路组成的相位分离器,用它来将单-脉冲变换成交替变化的二路脉冲输出,用于供驱动推挽和桥式变换器中的功率开关管,此时变换器的工作频率等于控制器内部锯齿波振荡器振荡频率的一半。
当然也可将控制器的两路输出并联起来去驱动单端变换器或串联调整型开关稳压电源中的功率开关管,此时开关稳压电源的工作频率就等于控制器内部锯齿波振荡器的频率。
6. 总结与展望
近年来,随着电力电子技术飞速的发展,一些直流用电设备对直流电源系统的要求越来越高,不但输出电流大,而且对电压纹波、稳压精度、过载能力、效率等指标要求也很高,因此,研究大容量、高性能直流电源系统是很有必要的。
通过对高频开关电源基本理论的研究,对开关变换器各种拓扑结构的分析论证,期望设计出一种实用于电力系统直流操作电源的高频开关电源整流模块,以替代现在使用的相控整流电源,为电力系统提供一种重量更轻、体积更小、效率更高、安全性更好的一种整流模块。
参考文献
[1]王水平.武芒.开关电源及其发展动态.电子科技.1996(2): 3~10
[2]张占松.蔡宣三.开关电源的原理与设计.北京:电子工业出版社,1998: 295~302
[3]张占松.蔡宣三.开关电源的原理与设计(修订版).北京:电子工业出版社,2004: 6~15
[4]贾正春.马志源.电力电子学.北京:中国电力出版社,2002: 270~279
[5]李爱文.现代通信基础开关电源的原理和设计.北京:科学出版社,2001: 1~10
[6]汪阳.智能高频开关电源的研究,武汉大学硕士学位论文,2002
[7]唐敏.黄刚.开关电源及其功率材料的现状与发展.科技动态,1999(2):23~24。