七年级数学上册第三单元试卷

合集下载

七年级上册数学第三单元测试卷【含答案】

七年级上册数学第三单元测试卷【含答案】

七年级上册数学第三单元测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是10厘米、6厘米和4厘米,那么它的体积是多少?A. 240立方厘米B. 120立方厘米C. 60立方厘米D. 48立方厘米4. 下列哪个数是偶数?A. 101B. 102C. 103D. 1045. 下列哪个图形是平行四边形?A. 正方形B. 长方形C. 梯形D. 圆形二、判断题(每题1分,共5分)1. 两个质数相乘的结果一定是合数。

()2. 一个等腰三角形的两个底角相等。

()3. 一个长方体的六个面都是长方形。

()4. 0是最小的自然数。

()5. 平行四边形的对边相等且平行。

()三、填空题(每题1分,共5分)1. 最大的两位数是______。

2. 一个等边三角形的三个角都是______度。

3. 一个长方体的体积是长×宽×______。

4. 6是______和______的公倍数。

5. 两条平行线的特点是对边______且______。

四、简答题(每题2分,共10分)1. 请简述质数和合数的区别。

2. 请解释等腰三角形的特点。

3. 请列举三个不同的长方体物品。

4. 请简述平行四边形的性质。

5. 请解释因数和倍数的概念。

五、应用题(每题2分,共10分)1. 一个长方体的长是10厘米,宽是6厘米,高是4厘米,求它的体积。

2. 一个等腰三角形的底边长是8厘米,腰长是10厘米,求它的周长。

3. 一个数的因数有1、2、3、4、6,请找出这个数。

4. 两个质数相乘,积是35,请找出这两个质数。

5. 一个平行四边形的对边分别是8厘米和12厘米,求它的面积。

六、分析题(每题5分,共10分)1. 请分析一个长方体和正方体的相同点和不同点。

最新人教版初中数学七年级数学上册第三单元《一元一次方程》测试(包含答案解析)

最新人教版初中数学七年级数学上册第三单元《一元一次方程》测试(包含答案解析)

一、选择题1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±82.某公司今年2月份的利润为x 万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)( )A .(x ﹣8%)(x+10%)B .(x ﹣8%+10%)C .(1﹣8%+10%)xD .(1﹣8%)(1+10%)x 3.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x ) 4.下列去括号正确的是( )A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ 5.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( )A .-7B .-1C .5D .116.下列各式中,符合代数书写规则的是( )A .273xB .14a ⨯C .126p -D .2y z ÷ 7.下列去括号运算正确的是( )A .()x y z x y z --+=---B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++ 8.下列说法正确的是( )A .单项式34xy -的系数是﹣3B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6 9.下列式子中,是整式的是( )A .1x +B .11x +C .1÷xD .1x x+ 10.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+31 11.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( ) A .A B > B .A B = C .A B < D .无法确定 12.下列各对单项式中,属于同类项的是( )A .ab -与4abcB .213x y 与212xyC .0与3-D .3与a二、填空题13.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______. 14.当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项.15.在一列数a 1,a 2,a 3,a 4,…a n 中,已知a 1=2,a 2111a =-,a 3211a =-,a 4311a =-,…a n n 111a -=-,则a 2020=___. 16.a -b ,b -c ,c -a 三个多项式的和是____________17.合并同类项(1)21123x x x --=____________________;(按字母x 升幂排列) (2)3222232223x y x y y x x y --+=_____________________;(按字母x 降幂排列) (3)222234256a b ab a b =_____________________;(按字母b 降幂排列) 18.王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是_____.19.多项式3x |m |y 2+(m +2)x 2y -1是四次三项式,则m 的值为______.20.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________三、解答题21.计算:(1)()()312⨯-+-(2)2235223x x x x -+-+-22.我们将不大于2020的正整数随机分为两组.第一组按照升序排列得到121010a a a <<<,第二组按照降序排列得到121010b b b >>>, 求112210101010a b a b a b -+-++-的所有可能值.23.学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当2a =-,2018b =,求222221(324)2(23)2()12a b ab a a b a ab a b -+--++-的值”.小明做完后对同桌说:“老师给的条件2018b =是多余的,这道题不给b 的值,照样可以求出结果来”.同桌不相信他的话.亲爱的同学们,你相信小明的说法吗?24.(规律探究题)用计算器计算下列各式,将结果填写在横线上.99999×11=__________;99999×12=__________;99999×13=__________;99999×14=__________.(1)你发现了什么?(2)不用计算器,你能直接写出99999×19的结果吗?25.已知,,a b c 在数轴上的位置如图所示,解答下列问题.(1)化简:||||||a b c b b a +--+-;(2)若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,求2()a b c a b c -++-+-的值.26.化简并求值:已知2232A a b ab abc =-+,小明错将“2A B -”看成“2A B +”,算得结果22434C a b ab abc =-+.(1)计算B 的表达式;(2)小强说正确结果的大小与c 的取值无关,对吗?请说明理由.(3)若18a =,15b = ,求正确结果的代数式的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据单项式的定义可得8mx y 和36n x y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36n x y 的和是单项式,得 3,1m n ==.()()333164m n +=+=,64的平方根为8±.故选D .【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数. 2.D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x ,4月份的产值为(1﹣8%)(1+10%)x . 故选:D .【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.3.B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.4.D解析:D【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确;故答案为:D .【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键. 5.A解析:A【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;第7次操作,a 7=|-7+4|-10=-7;…第2020次操作,a 2020=|-7+4|-10=-7.故选:A .【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.6.A解析:A【分析】根据代数式的书写要求判断各项.【详解】A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p,故选项C 错误; D 、应为2y z,故选项D 错误; 故选:A .【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.7.D解析:D【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A. ()x y z x y z --+=-+-,故错误;B. ()x y z x y z --=-+,故错误;C. ()222x x y x x y -+=--,故错误;D. ()()a b c d a b c d -----=-+++,正确.故选:D【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.8.C解析:C【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误;故选:C .【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.9.A解析:A【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可.【详解】解:A. 1x +是整式,故正确; B. 11x +是分式,故错误; C. 1÷x 是分式,故错误;D.1xx是分式,故错误.故选A.【点睛】本题主要考查了整式,关键是掌握整式的概念.10.C解析:C【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n(n+1)和12(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.【详解】∵A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.故选:C.【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.11.A解析:A【分析】作差进行比较即可.【详解】解:因为A-B=(x2-5x+2)-( x2-5x -6)=x2-5x+2- x2+5x +6=8>0,所以A>B.故选A.【点睛】本题考查了整式的加减和作差比较法,若A-B>0,则A>B,若A-B<0,则A<B,若A-B=0,则A=B.12.C解析:C【分析】根据同类项的定义逐个判断即可.【详解】A.﹣ab与4abc所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项;D .3与a 不是同类项.故选C .【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键. 二、填空题13.【分析】根据不含xy 项即xy 项的系数为0求出k 的值【详解】解:原式∵不舍项∴故答案为【点睛】本题考查了多项式要求多项式中不含有那一项应让这一项的系数为0 解析:19【分析】根据不含xy 项即xy 项的系数为0求出k 的值.【详解】 解:原式2213383x k xy y ⎛⎫=+--+ ⎪⎝⎭,∵不舍xy 项,∴1303k -=,19k =, 故答案为19. 【点睛】 本题考查了多项式,要求多项式中不含有那一项,应让这一项的系数为0.14.3【分析】先合并同类项然后使xy 的项的系数为0即可得出答案【详解】解:=∵多项式不含xy 项∴k-3=0解得:k=3故答案为:3【点睛】本题考查了多项式的知识属于基础题解答本题的关键是掌握合并同类项的解析:3【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案.【详解】解:()221325x k xy y xy +----=()22335x k xy y +---, ∵多项式不含xy 项,∴k-3=0,解得:k=3.故答案为:3.【点睛】本题考查了多项式的知识,属于基础题,解答本题的关键是掌握合并同类项的法则. 15.【分析】首先分别求出n=234…时的情况观察它是否具有规律再把2020代入求解即可【详解】∵a1=2∴a21;a3;a42;…发现规律:每3个数一个循环所以2020÷3=673…1则a2020=a1解析:【分析】首先分别求出n=2、3、4…时的情况,观察它是否具有规律,再把2020代入求解即可.【详解】∵a 1=2,∴a 2111a ==--1;a 32111a 2==-;a 4311a ==-2;…, 发现规律:每3个数一个循环,所以2020÷3=673…1,则a 2020=a 1=2.故答案为:2.【点睛】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.16.0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0故答案为0 解析:0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0,故答案为0.17.【分析】(1)先合并同类项再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项再将多项式按照字母b 的次数由大到小重新排 解析:256x x -+ 32222x y x y -- 221022b ab a -- 【分析】 (1)先合并同类项,再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项,再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项,再将多项式按照字母b 的次数由大到小重新排列即可.【详解】解:(1)2222111155232366x x x x x x x x x x ⎛⎫--=-+=-=-+ ⎪⎝⎭; 故答案为:256x x -+; (2)解:322223223222232x y x y y x x y x y x y --+=--; 故答案为:32222x y x y --;(3)解:222222223425621021022a b ab a b a b ab b ab a +--+=-+-=--; 故答案为:221022b ab a --.【点睛】此题考查整式的降幂及升幂排列,合并同类项法则,将多项式按照某个字母重新排列时注意该项的次数及符号,利用交换律将多项式重新排列.18.32【分析】根据用看错的数字减35发现差恰好就是原正确数字的2倍利用有理数的加减混合运算即可求解【详解】∵100以内的含两位小数的数看错了根据归纳猜想得:原数为1432看错的两位数为32143214解析:32.【分析】根据用看错的数字减3.5,发现差恰好就是原正确数字的2倍,利用有理数的加减混合运算即可求解.【详解】∵100以内的含两位小数的数看错了,根据归纳猜想得:原数为14.32,看错的两位数为32.14,32.14﹣3.5=28.64,14.32×2=28.64.∴32.14﹣3.5=2×14.32.故答案为14.32.【点睛】本题考查有理数的加减混合运算,解题的关键是利用探究猜想的方法进行计算.19.2【分析】根据四次三项式的定义可知该多项式的最高次数为4项数是3所以可确定m的值【详解】解:∵多项式3x|m|y2+(m+2)x2y-1是四次三项式∴+2=4∴m=2故答案为2【点睛】本题考查了与多解析:2【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m的值.【详解】解:∵多项式3x|m|y2+(m+2)x2y-1是四次三项式,m+≠∴m+2=4,20∴m=2.故答案为2.【点睛】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.20.-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.三、解答题21.(1)5-;(2)241x x --【分析】(1)直接根据有理数的混合运算法则即可求解.(2)直接根据整式的加减混合运算法则即可求解.【详解】解:(1)原式(3)(2)=-+-5=-;(2)原式2(32)(51)(23)x x =---+-241x x =--.【点睛】此题主要考查有理数的加减运算和整式的加减运算,熟练掌握运算法则是解题关键. 22.1020100【分析】由题意知,对于代数式的任何一项:|a k -b k |(k=1,2,…1010),较大的数一定大于1010,较小的数一定不大于1010,即可得出结论.【详解】解:(1)若a k ≤1010,且b k ≤1010,则a 1<a 2<…<a k ≤1010,1010≥b k >b k+1>…>b 1010,则a 1,a 2,…a k ,b k ,……,b 1010,共1011个数,不大于1010不可能;(2)若a k >1010,且b k >1010,则a 1010>a 1009>…>a k+1>a k >1010及b 1>b 2>…>b k >1010,则b 1,……,b k ,a k ……a 1010共1011个数都大于100,也不可能;∴|a 1-b 1|,……,|a 1010-b 1010|中一个数大于1010,一个数不大于1010,∴|a 1-b 1|+|a 2-b 2|+…+|a 1010-b 1010|=1020100.【点睛】本题考查数字问题,考查学生的计算能力,属于中档题.23.-21【分析】首先化简代数式,通过去括号、合并同类项,得出结论即含有b 的代数式相加为0,即可说明.【详解】解()()222221324223212a b ab a a b a ab a b ⎛⎫-+--++- ⎪⎝⎭ =222223244621a b ab a a b a ab a b -+-+++-=101a -当2a =-时原式=()1021⨯--=-21.【点睛】考查整式的化简求值,熟练掌握去括号法则以及合并同类项法则是解题的关键. 24.1099989;1199988;1299987;1399986;(1)如果n 是11,12,13,…,20中的任何一个数,则:99999×n =(n -1)9998(20-n ),其中(n -1)9998(20-n )是1个7位数,前2位是n -1,个位是20-n ,中间4个数字总是9998;(2)99999×19=1899981【分析】用计算器分别进行计算,再根据结果找出规律,最后根据规律即可直接写出99999×19的结果.【详解】解:99999×11=1099989;99999×12=1199988;99999×13=1299987;99999×14=1399986.故答案为:1099989;1199988;1299987;1399986.(1)通过计算观察可发现以下规律:如果n 是11,12,13,…,20中的任何一个数,则:99999×n =(n -1)9998(20-n ),其中(n -1)9998(20-n )是1个7位数,前2位是n -1,个位是20-n ,中间4个数字总是9998.(2)根据以上规律可直接写出:99999×19=1899981.【点睛】此题考查了计算器−有理数,解题的关键是通过用计算器计算,找出规律,通过规律进行解答.25.(1)2a b c -+;(2)-9(1)由数轴上的位置,先判断0,0,0+>-<-<a b c b b a ,再根据绝对值的意义进行化简,即可得到答案.(2)由绝对值的意义,倒数的定义,平方根的定义,先求出a 、b 、c 的值,再代入计算,即可得到答案.【详解】解:(1)由数轴可得:0c b a <<<,∴0,0,0+>-<-<a b c b b a ,∴原式2a b c b b a a b c =++--+=-+.(2)由题意,∵若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,∴2,1,2a b c ==-=-,∴2()2a b c a b c a b c a b c -++-+-=-++--+=224149a b c -++=---=-.【点睛】本题考查了数轴的定义,绝对值的意义,倒数的定义,平方根的定义等知识,解题的关键是利用数轴正确判断0c b a <<<,从而进行解题.26.(1)2222a b ab abc -++;(2)小强的说法对,正确结果的取值与c 无关,理由见解析;(3)0.【分析】(1)由2A+B=C 得B=C-2A ,将C 、A 代入根据整式的乘法计算可得B ;(2)将A 、B 代入2A-B ,根据整式的加减运算法则进行化简,由化简后的代数式中无字母c 可知其值与c 无关;(3)将a 、b 的值代入计算即可.【详解】解:(1)∵2A B C +=,∴2B C A =-.B 22224342(32)a b ab abc a b ab abc =-+--+2222434642a b ab abc a b ab abc =-+-+-2222a b ab abc =-++;(2)222222(32)(22)A B a b ab abc a b ab abc -=-+--++222264222a b ab abc a b ab abc =-++--2285a b ab =-.因正确结果中不含c ,所以小强的说法对,正确结果的取值与c 无关;(3)将18a =, 15b =代入(2)中的代数式,得: 22221111858()5()8585a b ab -=⨯⨯-⨯⨯0= . 【点睛】本题主要考查整式的乘法,熟练掌握整式的乘法法则是解题的关键.。

沪科版数学七年级上第三单元测试卷原创

沪科版数学七年级上第三单元测试卷原创

沪科版数学七年级(上)第三章单元测试卷一、选择题(每题3分,共30分)1、若关于x 的方程2x -4=3m 与x+2=m 有相同的根,则m 的值是( )A. 10 B.-8 C.-10 D. 82、代数式 2k-13 与代数式 14k +3 的值相等时,k 的值为( )A. 7 B. 8 C. 9 D. 103、满足方程组⎩⎨⎧=++=+ay x a y x 32253解的x 与y 之与为2,则a 的值为( )A 、一4 B 、4 C 、0 D 、任意数4、某商店有两个进价不同的计数器都卖了64元,其中一个盈利60℅,另一个亏本20℅,在这次买卖中,这家商店( ) A.不赔不赚 B. 赚了8元 C. 赔了8元 D. 赚了32元5、如图1,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一 个小长方形的面积为( )A 、400 cm 2B 、500 cm 2C 、600 cm 2D 、4000 cm 26、.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场 B.4场 C.5场 D.6场 7.方程325x y+=与下面那个方程所组成的方程组的解是22x y =⎧⎨=-⎩ ( ) A.25x y -= B.434x y += C.1y x += D.432x y -=8、小明在解关于x 的方程5a +x=10时,误将“+x ”看作“-x ”,得方程的解为x=3,则原方程的解为( )A 、x=-4 B 、x=-3 C 、x=-2 D 、x=-19、有m 辆客车及n 名乘客,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘45人,则有一辆客车缺少15人,下列四个等式,其中正确的是( ) ①、40m+10=45m-15 ②45154010-=+n n ③40m-10=45m+15 ④45154010+=-n n A 、①② B 、②③ C 、③④ D 、①④10、古代有这样一个寓言故事:驴子与骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是( )A 、5 B 、6 C 、7 D 、8二、 填空题(每题5分,共30分).11、已知关于x 的方程3x + a = 0的解比方程2x – 3 = x + 5的解大2,则a = . 12.若23,x y a x y a +=⎧⎨-=⎩则x y= 。

人教版七年级上册数学第三章检测试卷(附答案)

人教版七年级上册数学第三章检测试卷(附答案)

人教版七年级上册数学第三章检测试卷(附答案)一、单选题(共5题;共10分)1.若与kx-1=15的解相同则k的值为().A. 2B. 8C. -2D. 62.已知a=b,则下列等式不成立的是()A. a﹣=b﹣B. 5﹣a=5﹣bC. ﹣4a﹣1=﹣1﹣4bD. +2= ﹣23.下列说法正确的是()A. 半圆是弧,弧也是半圆B. 三点确定一个圆C. 平分弦的直径垂直于弦D. 直径是同一圆中最长的弦4.七年级男生入住的一楼有x间,如果每间住6人,恰好空出一间;如果每间住5人就有4人没有房间住,则一楼共有()间.A. .7B. .8C. .9D. 105.李阿姨存入银行2000元,定期一年,到期后扣除20%的利息税后得到本息和为2120元,若该种储蓄的年利率为x,那么可得方程()A. 2000(1+x)=2120B. 2000(1+x%)=2120C. 2000(1+x•80%)=2120D. 2000(1+x•20%)=2120二、填空题(共2题;共2分)6.“*”是规定的一种运算法则:a*b=a2-b2,则(-3)*4=________.7.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c >0;④2c<3b;⑤b2>4ac;其中正确的结论有________.(填序号)三、计算题(共3题;共25分)8.解方程:(1)10 - x = 3x - 2 (2) = 1 - .9.解方程:4x﹣3(5﹣x)=6;10.(1);(2).四、综合题(共2题;共30分)11.(2011•梧州)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a应取何值?12.某中学对七年级学生数学学期成绩的评价规定如下:学期评价得分由期末测试成绩(满分100分)和期中测试成绩(满分100分)两部分组成,其中期末测试成绩占70%,期中测试成绩占30%,当学期评价得分大于或等于85分时,该生数学学期成绩评价为优秀.(1)小明的期末测试成绩和期中成绩两项得分之和为170分,学期评价得分为87分,则小明期末测试成绩和期中测试成绩各得多少分?(2)某同学期末测试成绩为75分,他的综合评价得分有可能达到优秀吗?为什么?(3)如果一个同学学期评价得分要达到优秀,他的期末测试成绩至少要多少分(结果保留整数)?答案一、单选题1. B2.D3.D4. D5.C二、填空题6.-77. ③④⑤三、计算题8. (1)解:10 - x = 3x - 2移项,得10+2=3x+x,合并同类项,得4x=12,系数化为1 ,得x=3;(2)解:方程两边都乘以21 ,得3(x-3)=21-7(2-5x),去括号,得3x-9=21-14+35x ,移项合并同类项,得32x=-16,系数化为1 ,得x=-.9.解:4x﹣3(5﹣x)=6,4x﹣15+3x=6,7x=21,x=310.(1)解:,,(2)解:.,四、综合题11. (1)解:设今年甲型号手机每台售价为x元,由题意得,.解得x=1500.经检验x=1500是方程的解,且符合题意.故今年甲型号手机每台售价为1500元.(2)解:设购进甲型号手机m台,由题意得,17600≤1000m+800(20﹣m)≤18400,8≤m≤12.因为m只能取整数,所以m取8、9、10、11、12,共有5种进货方案.(3)解:设总获利W元,购进甲型号手机m台,则W=(1500﹣1000)m+(1400﹣800﹣a)(20﹣m),W=(a﹣100)m+12000﹣20a.所以当a=100时,(2)中所有的方案获利相同.12.(1)解:设小明同学期末测试成绩为x分,期中测试成绩为y分,由题意,得,解得.答:小明同学期末测试成绩为90分,期中测试成绩为80分.(2)解:不可能.由题意可得:85-75×70%=32.5,32.5÷30% >100,故不可能.(3)解:设他的期中测试成绩为满分,即100分,则学期评价得分期中部分为100×30%=30.设期末测试成绩为a分,根据题意,可得30+70%a≥85,解得a≥78.6答:他的期末测试成绩应该至少为79分.。

七年级上册数学第三单元试卷【含答案】

七年级上册数学第三单元试卷【含答案】

七年级上册数学第三单元试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 30答案:B2. 一个等腰三角形的底边长为8厘米,腰长为5厘米,那么这个三角形的周长是多少厘米?A. 18厘米B. 20厘米C. 22厘米D. 24厘米答案:C3. 下列哪个数是偶数?A. 101B. 102C. 103D. 104答案:D4. 一个正方形的边长为6厘米,那么这个正方形的面积是多少平方厘米?A. 24平方厘米B. 36平方厘米C. 48平方厘米D. 60平方厘米答案:B5. 下列哪个数是奇数?A. 120B. 121C. 122D. 123答案:D二、判断题(每题1分,共5分)1. 两个质数的和一定是偶数。

(×)2. 一个三角形的两边之和一定大于第三边。

(√)3. 一个数的因数一定比这个数小。

(×)4. 两个奇数的和一定是偶数。

(×)5. 两个偶数的和一定是偶数。

(√)三、填空题(每题1分,共5分)1. 23和29之间的质数是______。

答案:292. 一个等边三角形的周长是15厘米,那么它的边长是______厘米。

答案:53. 一个数的最大因数是它本身,这个数是______。

答案:任何数4. 一个正方形的对角线长度是10厘米,那么它的边长是______厘米。

答案:约7.075. 下列哪个数既是偶数又是合数?______答案:4四、简答题(每题2分,共10分)1. 请列举出前五个质数。

答案:2, 3, 5, 7, 112. 请简述等边三角形的性质。

答案:等边三角形的三条边都相等,三个角也都相等,每个角都是60度。

3. 请简述偶数和奇数的区别。

答案:偶数是2的倍数,奇数不是2的倍数。

4. 请简述正方形的性质。

答案:正方形的四条边都相等,四个角也都相等,每个角都是90度。

5. 请简述因数和倍数的区别。

答案:因数是能够整除一个数的数,倍数是一个数的整数倍。

(好题)初中数学七年级数学上册第三单元《一元一次方程》检测(答案解析)

(好题)初中数学七年级数学上册第三单元《一元一次方程》检测(答案解析)
(1)单项式中的数字因数叫做这个单项式的系数;
(2)多项式中不含字母的项叫常数项;
(3)多项式里次数最高项的次数,叫做这个多项式的次数.
10.D
解析:D
【分析】
根据N=M+N-M列式即可解决此题.
【详解】
依题意得,N=M+N-M= ;
故选D.
【点睛】
此题考查的是整式的加减,列式是关键,注意括号的运用.
6.D
解析:D
【分析】
根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.
【详解】
A. ,故错误;
B. ,故错误;
C. ,故错误;
D. ,正确.
故选:D
【点睛】
本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.
7.D
解析:D
【分析】
根据合并同类项系数相加字母及指数不变,可得答案.
【详解】
解:A、x3与x2不是同类项,不能合并,故A错误;
B、合并同类项错误,正确的是2x﹣3x=﹣x,故B错误;
C、合并同类项错误,正确的是﹣a2﹣2a2=﹣3a2,故C错误;
D、系数相加字母及指数不变,故D正确;
故选:D.
【点睛】
一、选择题
1.如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A—B—C为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为( )
A.5次B.6次C.7次D.8次
2.某养殖场2018年年底的生猪出栏价格是每千克a元.受市场影响,2019年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克()

人教版七年级数学上册第三单元测试题及答案(第三章 一元一次方程)

人教版七年级数学上册第三单元测试题及答案(第三章 一元一次方程)

人教版七年级数学上册第三单元测试卷(第三章 一元一次方程)(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列方程中,是一元一次方程的是( D )A .5x -2y =9B .x 2-5x +4=0 C.5x +3=0 D.x 5-1=32.当1-(3m -5)2取得最大值时,关于x 的方程5m -4=3x +2的解是( A ) A.79 B.97 C .-79 D .-973.下列方程变形中,正确的是( D )A .方程3x -2=2x +1,移项,得3x -2x =-1+2B .方程3-x =2-5(x -1),去括号,得3-x =2-5x -1C .方程23t =32,未知数系数化为1,得t =1D .方程x -10.2-x0.5=1化成3x =6 4.用“”“”“”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“”的个数为( A )A .5个B .4个C .3个D .2个5.将方程0.9+0.5x -0.20.2=1.5-5x0.5变形正确的是( D )A .9+5x -22=15-50x 5B .0.9+5x -22=15-5x5C .9+5x -22=15-5x 5D .0.9+5x -22=3-10x6.下列运用等式的性质,变形不正确的是( D )A .若x =y ,则x +5=y +5B .若a =b ,则ac =bcC .若a c =b c ,则a =bD .若x =y ,则x a =y a7.已知关于x 的方程(2a +b)x -1=0无解,那么ab 的值是( D ) A .负数 B .正数 C .非负数 D .非正数8.超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( A )A .0.8x -10=90B .0.08x -10=90C .90-0.8x =10D .x -0.8x -10=909.当x =1时,代数式12ax 3-3bx +4的值是7,则当x =-1时,这个代数式的值是( C )A .7B .3C .1D .-710.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则只有1人不能上车.有下列四个等式:①40m +10=43m -1;②n +1040=n +143;③n -1040=n -143;④40m +10=43m +1.其中正确的是( D )A .①②B .②④C .②③D .③④ 二、填空题(每小题3分,共24分)11.方程(a -2)x |a|-1+3=0是关于x 的一元一次方程,则a =__-2__. 12.已知x -2y +3=0,则代数式-2x +4y +2017的值为__2023__.13.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/小时,水速为2千米/小时,则A 港和B 港相距__504__千米.14.已知x -42与25互为倒数,则x 等于__9__.15.王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材买了__5__千克.16.已知a 5=b 7=c8,且3a -2b +c =9,则2a +4b -3c =__14__.17.对于实数a ,b ,c ,d ,规定一种数的运算:错误!))=ad -bc ,那么当错误!))=10时,x =__-1__.18.某车间原计划13小时生产一批零件,后来每小时多生产了10件,用了12小时不但完成了任务,而且还多生产了60件.设原计划每小时生产y 个零件,则可列方程为__12(y +10)=13y +60__.三、解答题(共66分) 19.(10分)解下列方程:(1)x -12=4x 3+1; (2)0.1x -0.20.02-x +10.5=3.解:x =-95解:x =520.(8分)已知方程2-3(x +1)=0的解与关于x 的方程k +x2-3k -2=2x 的解互为倒数,求k 的值.解:解方程2-3(x +1)=0,得x =-13,则k +x 2-3k -2=2x 的解为x =-3,代入得k -32-3k -2=-6,解得k =121.(8分)已知x =3是方程3[(x 3+1)+m (x -1)4]=2的解,m ,n 满足关系式|2n +m|=1,求m +n的值.解:把x =3代入方程3[(x3+1)+m (x -1)4]=2,得m =-83,将m =-83代入|2n +m|=1,得|2n -83|=1,解得n =116或56,所以m +n =-56或-11622.(8分)小明在做家庭作业时发现练习册上一道解方程的题目被墨水污染了:x +12-5x -□3=-12,“□”是被污染的数,他很着急,翻开书后面的答案,这道题的解是x =2,你能帮他补上“□”的数吗?解:设“□”的数为m ,因为所给方程的解是x =2,所以2+12-5×2-m 3=-12,解得m =4.所以“□”的数为423.(10分)甲、乙两人同时从相距25千米的A 地去B 地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B 地停留40分钟,然后从B 地返回A 地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?解:设乙的速度为x 千米/小时,则甲的速度为3x 千米/小时,依题意得(3-4060)×3x +3x =25×2,解得x =5,所以3x =15,答:甲、乙两人的速度分别为15千米/小时和5千米/小时24.(10分)某工厂第一车间人数比第二车间人数的45少30人,如果从第二车间调10人到第一车间,那么第一车间人数就是第二车间人数的34,求原来每个车间的人数.解:设原来第二车间有x 人,则第一车间有(45x -30)人,依题意得45x -30+10=34(x -10),解得x =250,所以45x -30=170,答:原来第一车间有170人,第二车间有250人25.(12分)“中国竹乡”安吉县有着丰富的毛竹资源,某企业已收购毛竹52.5吨.根据市场信息,将毛竹直接销售,每吨可获得100元;如果对毛竹进行粗加工,每天可加工8吨,每吨可获得1000元;如果进行精加工,每天可加工0.5吨,每吨可获得5000元.由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售.为此研究了两种方案:方案一:将毛竹全部粗加工后销售,则可获利__1000×52.5=52500__元;方案二:30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利__0.5×30×5000+(52.5-0.5×30)×100=78750__元.问:是否存在第三种方案,将部分毛竹精加工,其余毛竹粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.解:存在,方案三:设粗加工x天,则精加工(30-x)天,依题意得8x+0.5(30-x)=52.5,解得x =5,所以30-x=25,则1000×5×8+5000×25×0.5=102500(元),答:销售后所获利润为102500元人教版七年级数学上册第四单元测试卷(第四章几何图形初步)(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是( C)2.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB 的度数为( C)A.69° B.111° C.141° D.159°,第2题图) ,第3题图),第4题图)3.如图,点A,B,C顺次在直线l上,点M是线段AC的中点,点N是线段BC的中点,若想求出MN 的长度,那么只需条件( A)A.AB=12 B.BC=4 C.AM=5 D.CN=24.如图,将4×3的网格图剪去5个小正方形后,图中还剩下7个小正方形,为了使余下的部分 (小正方形之间至少有一条边相连)恰好能折成一个正方体,需要再剪去1个小正方形,则应剪去的小正方形的编号是( C)A.7 B.6 C.5 D.45.如图,点O在直线l上,∠1与∠2互余,∠α=116°,则∠β的度数是( C)A.144° B.164° C.154° D.150°,第5题图) ,第6题图) ,第7题图)6.(2016·凉山州)如图,是由若干个大小相同的正方体搭成的几何体,从不同方向看所得到的平面图形,该几何体所用的正方体的个数是( A)A.6个 B.4个 C.3个 D.2个7.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( D)A.垂线段最短 B.经过一点有无数条直线C.经过两点,有且仅有一条直线 D.两点之间,线段最短8.已知线段AB=10 cm,点C是直线AB上一点,BC=4 cm,若M是AC的中点,N是BC的中点,则线段MN的长度是( D)A.7 cm B.3 cm C.7 cm或3 cm D.5 cm9.钟表在8:25时,时针与分针的夹角是( B)度.A.101.5 B.102.5 C.120 D.12510.如果∠1与∠2互补,∠2与∠3互余,那么∠1与∠3的关系是( C)A.∠1=∠3 B.∠1=180°-∠3 C.∠1=90°+∠3 D.以上都不对二、填空题(每小题3分,共24分)11.用“度分秒”来表示:8.31度=__8__度__18__分__36__秒.12.一个角的余角比这个角的补角的一半小40°,则这个角为__80__度.13.已知A,B,C三点在同一条直线上,M,N分别为线段AB,BC的中点,且AB=60,BC=40,则MN 的长为__50或10__.14.如图,点O在直线AB上,射线OC平分∠DOB,若∠COB=35°,则∠AOD=__110__°.,第14题图) ,第15题图) ,第17题图) ,第18题图)15.如图,两块三角板的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD的度数是__135__度.16.平面内三条直线两两相交,最多有a个交点,最少有b个交点,则a+b=__4__.17.把一张长方形纸条按如图的方式折叠后,量得∠AOB′=110°,则∠B′OC=__35°__.18.如图,OA的方向是北偏东15°,OC的方向是北偏西40°,若∠AOC=∠AOB,则OB的方向是__北偏东70°__.三、解答题(共66分)19.(8分)根据下列语句,画出图形.已知四点A,B,C,D.①画直线AB;②连接AC,BD,相交于点O;③画射线AD,BC,交于点P.解:略20.(8分)一个角的余角比这个角的12少30°,请你计算出这个角的大小.解:设这个角为x ,则它的余角为(90°-x ),依题意得12x -(90°-x )=30°,解得x =80°,答:这个角是80°21.(8分)如图,点M 是线段AC 的中点,点B 在线段AC 上,且AB =4 cm ,BC =2AB ,求线段MC 和线段BM 的长.解:因为AB =4 cm ,BC =2AB ,所以BC =8 cm ,所以AC =AB +BC =12 cm ,因为M 是线段AC 中点,所以MC =AM =12AC =6 cm ,所以BM =AM -AB =2 cm22.(8分)如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB ,CD 的中点E ,F 之间的距离是10 cm ,求AB ,CD 的长.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm ,因为点E ,F 分别为AB ,CD 的中点,所以AE =12AB =1.5x cm ,CF =12CD =2x cm ,所以EF =AC -AE -CF =6x -1.5x -2x =2.5x (cm ),因为EF =10 cm ,所以2.5x =10,解得x =4,所以AB =12 cm ,CD =16 cm23.(10分)如图,已知直线AB 和CD 相交于点O ,∠COE 是直角,OF 平分∠AOE ,∠COF =34°,求∠BOD 的度数.解:因为∠COE 是直角,∠COF =34°,所以∠EOF =56°,又因为OF 平分∠AOE ,所以∠AOF =∠EOF =56°.因为∠COF =34°,所以∠AOC =∠AOF -∠COF =22°,所以∠BOD =∠AOC =22°24.(12分)如图,点C 在线段AB 上,AC =8 cm ,CB =6 cm ,点M ,N 分别是AC ,BC 的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任意一点,满足AC +CB =a cm ,其他条件不变,你能猜想出MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC -CB =b cm ,点M ,N 分别为AC ,BC 的中点,你能猜想出MN 的长度吗?请画出图形,写出你的结论,并说明理由.解:(1)因为点M ,N 分别是AC ,BC 的中点,所以MC =12AC =4 cm ,NC =12BC =3 cm ,所以MN =MC +NC =7 cm (2)MN =MC +NC =12AC +12BC =12AB =12a cm (3)图略,MN =12b cm.理由:MN =MC -NC =12AC -12BC =12(AC -BC )=12b cm25.(12分)如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图①,当∠AOB 是直角,∠BOC =60°时,∠MON 的度数是多少? (2)如图②,当∠AOB =α,∠BOC =60°时,猜想∠MON 与α的数量关系;(3)如图③,当∠AOB =α,∠BOC =β时,猜想∠MON 与α,β有数量关系吗?如果有,写出你的结论,并说明理由.解:(1)∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC )=12∠AOB =45° (2)∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC )=12∠AOB =12α (3)∠MON =12α.理由:∠MON =∠MOC-∠NOC =12(α+β)-12β=12α。

(典型题)初中数学七年级数学上册第三单元《整式及其运算》测试题(有答案解析)

(典型题)初中数学七年级数学上册第三单元《整式及其运算》测试题(有答案解析)
25.某校举办了主题为“畅想十四五共筑新征程”的2021年元旦晚会,七年级一班同学利用彩纸条自己制作彩带.将一些长30厘米,宽10厘米的长方形纸条,按图所示方法粘合起来,粘合部分的宽为3厘米.
(1)求8张彩纸条粘合后的彩带总长度为多少厘米?
(2)设x张彩纸条粘合后的彩带总长度为y厘米,请写出y与x之间的表达式?
(3)求当 时,彩带一面的面积.
26.用火柴棒按下面的方式搭图形
(1)把下表填完整:
图形编号



火柴棒根数
7
(2)第n个图形需要火柴棒的根数为s,则 _____(用含字母n的代数式表示)
(3)是否存在一个图形共有117根火柴棒?若存在,求出是第几个图形,如不存在,请说明理由.
【参考答案】***试卷处理标记,请不要删除
解得c=-1,
a+b+c=b+c+2,
解得a=2,
所以数据从左到右依次为-1、2、b、-1、2、b,
22.已知多项式 , ,当 , 时,求 的值.
23.计算
(1)
(2)
(3)
(4)
24.滴滴快车已成为我们日常出行的一种便捷工具,某市滴滴快车计价方式如下表:
计费项目
起程价
里程价
停车等待时长价
价格(单价)
6元(2千米)
1.4元/千米
0.3元/分
注:车费由起程价、里程价、停车等待时长价三部分构成.其中,起程价为6元,2千米以内(包括2千米)的车费为6元;里程价为:超过2千米后,每行驶1千米收费1.4元(不足1千米按1千米计算);停车等待时长价为:在等待红灯或堵车时,按车辆停止时间收费,每分钟0.3元(不足1分钟按1分钟计算).如,行驶里程为3千米,停车等待2分钟的计价方式为:6+1.4×(3-2)+0.3×2=8元.

七年级上册数学第三单元测试卷及答案

七年级上册数学第三单元测试卷及答案

七年级上册数学第三单元测试卷及答案人教版七年级数学上册第三单元测试题一、填空题(每题2分,共32分)1.在① ;② ;③ ;④ 中,等式有_______,方程有_______.(填入式子的序号)2.如果,那么a=,其根据是.3.方程的解是 _______.4.当x=时,代数式的值是 .5.已知等式是关于x的一元一次方程,则m=____________.6.当x=时,代数式与代数式的值相等.7.根据“ 的倍与的和比的小”,可列方程为______ _.8.若与有相同的解,那么 _______.9.关于方程的解为___________________________.10.若关于x的方程的解是,则代数式的值是_________.11.代数式与互为相反数,则 .12.已知三个连续奇数的和是,则中间的那个数是_______.13.某工厂引进了一批设备,使今年单位成品的成本较去年降低了 .已知今年单位成品的成本为元,则去年单位成品的成本为_______元.14.小李在解方程 (x为未知数)时,误将看作,解得方程的解,则原方程的解为___________________________.15.假定每人的工作效率都相同,如果个人天做个玩具熊,那么个人做个玩具熊需要______天.16.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距______千米.二、解答题(共68分)17.解下列方程(每题2分,共8分)(1) ;Com](2)(3)(4)18.(6分)老师在黑板上出了一道解方程的题,小明马上举手,要求到黑板上做,他是这样做的:…………………①………………………②………………………③…………………………………④…………………………………⑤老师说:小明解一元一次方程的一般步骤都知道却没有掌握好,因此解题时有一步出现了错误,请你指出他错在_________(填编号);然后,你自己细心地解下面的方程:(1) (2)19.(3分)如果方程的解是,求的值.20. (3分)已知等式是关于的一元一次方程(即未知),求这个方程的解.21.(4分)初一学生王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,_________________________________?请你将这道作业题补充完整并列出方程解答.22.( 4分)某人共收集邮票若干张,其中是2000年以前的国内外发行的邮票,是2001年国内发行的,是2002年国内发行的,此外尚有不足100张的国外邮票.求该人共有多少张邮票.23.(4分)某商场在元旦期间,开展商品促销活动.将某型号的电视机按进价提高后,打折另送元路费的方式销售,结果每台电视机仍获利元,问每台电视机的进价是多少元?24.(6分)某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,筹出票款6920元,且每张成人票8元,学生票5元.(1)问成人票与学生票各售出多少张?(2)若票价不变,仍售出1000张票,所得的票款可能是7290元吗?为什么?25.(6分)你坐过出租车吗?请你帮小明算一算.杭州市出租车收费标准是:起步价( 千米以内) 元,超过千米的部分每千米元,小明乘坐了千米的路程.(1)请写出他应该去付费用的表达式;(2)若他支付的费用是元,你能算出他乘坐的路程吗?26.(6分)公园门票价格规定如下表:购票张数 1~50张 51~100张 100张以上每张票的价格 13元 11元 9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足5 0人.]经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?27.(9分)有一些相同的房间需要粉刷,一天3傅去粉刷8个房间,结果其中有40m2墙面未来得及刷;同样的时间内5名徒弟粉刷了9个房间的墙面.每傅比徒弟一天多刷30m2的墙面.(1)求每个房间需要粉刷的墙面面积;(2)张老板现有36个这样的房间需要粉刷,若请1傅带2名徒弟去,需要几天完成?(3)已知每傅,徒弟每天的工资分别是85元,65元,张老板要求在3天内完成,问如何在这8个人中雇用人员,才合算呢?28.(9分)某原料供应商对购买其原料的顾客实行如下优惠办法:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元,全部9折优惠;(3)一次购买的超过3万元,其中3万元9折优惠,超过3万元的部分8折优惠.某人因库容原因,第一次在供应商处购买原料付7800元,第二次购买付款26100元,如果他是一次购买同样数量的原料,则应付款多少元?可少付款多少元?人教版七年级数学上册第三单元测试题参考答案一、填空题1.②③④,②④2.,等号两边同时加3,等式仍然成立3.4.25.6.7.8.9.或10.11.12.1713.9.614.15.16.21二、解答题17.(1);(2);(3);(4)18.①,(1);(2)19.720.21.略22.152张23.1200元24.(1)成人票640张,学生票360张;(2)不可能25.(1);(2)13千米26:(1):初一(1)班48人,初一(2)班56人;(2):304元;(3):多买3张27.(1)50平方米;(2)5天;(3)师傅2人,徒弟6人28.应付32440元,少付1460元。

新人教版初中数学七年级上册第三单元《代数式》单元测试卷(解析版)

新人教版初中数学七年级上册第三单元《代数式》单元测试卷(解析版)

新⼈教版初中数学七年级上册第三单元《代数式》单元测试卷(解析版)⼀⼆三四总分⼀、选择题(每题3分,共30分)(共10题;共30分)1.(3分)(2024七上·曲阳期末)代数式a−b2的意义表述正确的是( )A.a减去b的平方的差B.a与b差的平方C.a、b平方的差D.a的平方与b的平方的差2.(3分)(2023七上·槐荫期中)下列各式符合代数式书写规范的是( )A.a9B.x﹣3元C.st D.227x3.(3分)(2021七上·永州月考)下列式子不是代数式的是( )A.xy+4B.a+bx C.-8+2=-6D.1x+54.(3分)(2023七上·雁峰月考)按如图所示的程序计算,若开始输入的值为x=3,则最后输出的结果是( )A.156B.231C.6D.215.(3分)(2023九上·大埔期末)十八世纪伟大的数学家欧拉最先用记号f(x)的形式来表示关于x的多项式,把x等于某数n时一的多项式的值用f(n)来表示.例如x=1时,多项式f(x)=2x2−x+3的值可以记为f(1),即f(1)=4.我们定义f(x)=ax3+3x2−2bx−5.若f(3)=18,则f(−3)的值为( )A.−18B.−22C.26D.326.(3分)(2023七上·高州期中)按如图所示的运算程序,若开始输入x的值为343,则第2023次输出的结果为( )A.7B.1C.343D.497.(3分)(2023八上·开州期中)若x+2y=6,则多项式2x+4y−5的值为( )A.5B.6C.7D.88.(3分)(2019七上·高县期中)“a与b两数平方的和”的代数式是( )A.a2+b2;B.a+b2;C.a2+b;D.(a+b)2;9.(3分)﹣|﹣a|是一个( )A.正数B.正数或零C.负数D.负数或零10.(3分)(2024·常州模拟)当x=2时,代数式ax3+bx+1的值为6,那么当x=−2时,这个代数式的值是( )A.1B.−5C.6D.−4⼆、填空题(每题3分,共15分)(共5题;共15分)11.(3分)(2017七上·黄陂期中)笔记本每本a元,圆珠笔每本b元,买5本笔记本和8支圆珠笔共需 元12.(3分)(2022七上·江油月考)若x−1与2−y互为相反数,则(x−y)2022= .13.(3分)父亲的年龄比儿子大28岁.如果用×表示儿子现在的年龄,那么父亲现在的年龄为  岁.14.(3分)(2024八下·兴国期末)当x=1 .15.(3分)一组按规律排列的代数式:a+2b,a2−2b3,a3+2b5,a4−2b7,⋯,则第n个代数式为 .三、解答题(共5题,共37分)(共5题;共37分)16.(6分)若x+y=1,求x3+y3+3xy的值.17.(6分)(2020七上·增城期中)已知a,b互为相反数,c,d互为倒数,|m|=6,求a+b3﹣5cd+m的值.18.(6分)(2024七下·西城期末)将非负实数x“四舍五入”到个位的值记为x,当n为非负整数时,①若n−12≤x<n+12,则x=n:②若x=n,则n−12≤x<n+12.如0=0.49=0,0.64=1.49=1,2=2.(1)(1分)π=;(2)(1分)若t+1=32t,则满足条件的实数t的值是.18.(6分)如果四个不同的整数a,b,c,d满足(10-a)×(10-b)×(10-c)×(10-d)= 121,求a+b+c+d的值.19.(13分)(2023七下·顺义期中)已知x−y=3,求代数式(−x+y)(−x−y)+(y−1)2−x(x−2)的值.四、实践探究题(共3题,共38分)(共3题;共13分)21.(2分)(2024七下·陕西期中)在“趣味数学”的社团活动课上,学生小白给大家分享了一个自己发现的关于8的倍数和最近学习的平方差公式之间的有趣关系.小白同学的具体探究过程如下,请你根据小白同学的探究思路,解决下面的问题:(1)(4分)观察下列各式并填空:8×1=32−12;8×2=52−32;8×3=72−52;8×4=92−72;8×5= −92;8× =132−112;…(2)(4分)通过观察、归纳,请你用含字母n(n为正整数)的等式表示上述各式所反映的规律;(3)(4分)请验证(2)中你所写的规律是否正确.22.(9分)(2023七上·安吉期中)探索代数式a2-2ab+b2与代数式(a-b)2的关系.(1)(4.5分)当a=2,b=1时分别计算两个代数式的值.(2)(4.5分)当a=3,b=-2时分别计算两个代数式的值.(3)(1分)你发现了什么规律?(4)(1分)利用你发现的规律计算:20232-2×2023×2022+20222.23.(2分)(2023七上·宁江期中)某中学附近的水果超市新进了一批百香果,为了促销这种百香果,特推出两种销售方式方式一:购买不超过5斤百香果,每斤12元,超出5斤的部分,每斤打8折;方式二:每斤售价10元.(1)(4.5分)顾客买a(a>5)斤百香果,则按照方式一购买需要 元;按照方式二购买需要 元(请用含a的代数式表示).(2)(4.5分)于老师决定买35斤百香果,通过计算说明用哪种方式购买更省钱.答案解析部分1.【答案】A【知识点】代数式的实际意义2.【答案】C【知识点】代数式的书写规范【解析】【解答】A:a9 应写成9a,选项错误,不合题意;B:x-3元应写成(x-3)元,选项错误,不合题意;C:st符合代数式书写要求,选项正确,符合题意;D:227x中带分数应写成假分数,选项错误,不合题意;故答案为:C.【分析】本题考查代数式的书写要求:(1)数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;(2)数字要写在前面;(3)带分数一定要写成假分数;(4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式;(5)式子后面有单位时,和差形式的代数式要在单位前把代数式括起来。

【新教材】人教版(2024)七年级上册数学第三章 代数式 综合素质评价试卷(Word版,含答案)

【新教材】人教版(2024)七年级上册数学第三章 代数式 综合素质评价试卷(Word版,含答案)

【新教材】人教版(2024)七年级上册数学第三章代数式 综合素质评价试卷时间:90分钟 满分:120分一、选择题(每题3分,共30分)1.下列数与式子:①2x -y +1;②1a +1b ;③2x +1=3;④ 3>2;⑤ a ;⑥ 0,其中是代数式的有( ) A .2个B .3个C .4个D .6个2.如果a ÷b =c ,那么当a 一定时,b 与c ( ) A .成正比例 B .成反比例 C .不成比例 D .无法确定比例关系 3.代数式x -y 2的意义是( )A . x 与y 的一半的差B . x 的一半与y 的差C . x 与y 的差的一半D .以上答案均不对4.如果某种药降价40%后的价格是a 元,那么此药的原价是( ) A .(1+40%)a 元B .(1-40%)a 元C .a1+40%元 D .a1-40%元5.下列表示图中阴影部分面积的代数式是( )(第5题)A . ad +bcB . c (b -d )+d (a -c )C . ad +c (b -d )D . ab -cd6.[情境题 生活应用]某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( ) A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )7.[2024烟台莱州市期末]有长为l 的篱笆,利用它和房屋的一面墙围成如图所示的长方形园子,园子的宽为t ,则所围成的园子面积为( )(第7题)A .(l -2t )tB .(l -t )tC . (l2-t)tD . (l -t2)t8.[新考法 整体代入法]若代数式2x 2+3x 的值是5,则代数式4x 2+6x -9的值是( )A .10B .1C .-4D .-89.如果|5-a |+(b +3)2=0,那么代数式1a(1-2b )的值为( ) A .57B .58C .75D .8510.[新视角 规律探究题 2024 北京西城区月考]如图为手的示意图,在各个手指间标记字母A ,B ,C ,D ,请你按图中箭头所指方向(即A ⇒B ⇒C ⇒D ⇒C ⇒B ⇒A ⇒B ⇒C ⇒…)从A 开始数连续的正整数1,2,3,4,…,当字母C 第2 024次出现时,恰好数到的数是( )(第10题)A .6 072B .6 071C .6 065D .6 066二、填空题(每题4分,共24分) 11.[2024锦州凌海市期中]下列书写:①1y ;②123x 2y ;③7m 2n 3;④n 23;⑤2 024×a ×b ;⑥m+3千克,其中正确的是 (填序号). 12.写出7(a -3)的意义: .13.一台电脑原价为a 元,降价20%后,又降低m 元,现售价为 元.14.[2024佛山顺德区期中]某地海拔高度h (km)与温度T (℃)的关系可用T =20-6h 来表示,则该地某海拔高度为2 000 m 的山顶上的温度为 .15.[教材P7习题T10变式 2024泰州兴化市期中]一个两位数x ,还有一个两位数y ,若把x 放在y 前面,组成一个四位数,则这个四位数为 (用含x ,y 的代数式表示). 16.[新视角 程序计算题]按如图所示的程序流程计算,若开始输入的值为x =3,则最后输出的结果是 .三、解答题(共66分)17.(6分)表中的两个量是否成比例关系,成什么比例关系? (1)每支圆珠笔的价钱/元 3 2 1.5 1.2 购买圆珠笔的支数10152025(2)每天的运货量/吨 100 120 150 200 需要的天数60504030(3)。

浙教版七年级数学上册第三单元测试卷(附答案)

浙教版七年级数学上册第三单元测试卷(附答案)

部编七年级上册数学第三单元实数测试卷温馨提示:本卷满分120分,考试时间120分钟.一.选择题(共10小题,满分30分,每小题3分)1.下列对实数的说法其中错误的是()A. 实数与数轴上的点一一对应B. 两个无理数的和不一定是无理数C. 负数没有平方根也没有立方根D. 算术平方根等于它本身的数只有0或12.若某数的立方根等于这个数的算术平方根,则这个数等于( )A. 0B. ±1C. -1或0D. 0或13.所有和数轴上的点组成一一对应的数组成()A. 整数B. 有理数C. 无理数D. 实数4.比较2, , 的大小,正确的是()A. 2< <B. 2< <C. <2<D. < <25.下列说法正确的是()A. 的算术平方根是2B. 互为相反数的两数的立方根也互为相反数C. 平方根是它本身的数有0和1D. 的立方根是±6.若5x+19的立方根是4,则2x+7的平方根是( )A. 25B. -5C. 5D. ±57.如图,表示的点在数轴上表示时,应在哪两个字母之间()A. C与DB. A与BC. A与CD. B与C8.以下是小明的计算过程,请你仔细观察,错误的步骤是()解:原式= ①= ②=3﹣4﹣③=3﹣4﹣﹣1+2④=﹣.A. ①B. ②C. ③D. ④9.估计8- 的整数部分是()A. 3B. 4C. 5D. 610.下列说法:①;②数轴上的点与实数成一一对应关系;③-2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A. 2个B. 3个C. 4个D. 5个二.填空题(共6小题,满分24分,每小题4分)11.,3.141 592 65, 0.222 2…,π-3,- ,- ,- ,0.101 001 000 1…(每两个1之间依次增加一个0)中,其中是有理数的有________个.12.的平方根=________.13.比较大小:- ________-14.如果=3.873,=1.225,那么= ________15.在两个连续整除a和b之间,a<<b,,那么a+b的值是________.16.观察下列各式:=2 ,=3 ,=4 ,…请你找出其中规律,并将第n(n≥1)个等式写出来________.三.解答题(共8小题,满分66分)17.(6分)计算下列各题:(1)-32×1-(-3)2÷(-1)29(2)18.(6分)已知一个正数的平方根是3a+1和a+11,求这个数的立方根.19.(8分)我家客厅的面积为21.6m2,要想用240块相同的正方形地砖铺设,问每块地砖的边长应为多少?20.(8分)已知2a-1的算术平方根是3,3a+b+4的立方根是2,求3a+b的平方根.21.(8分)一块正方体形状的橡皮泥的体积是343 cm3,现将它分割成27块同样大小的小正方体,求每块小正方体的表面积.22.(10分)已知:﹣是a的一个平方根,b是平方根等于本身的数,c是的整数部分,求的平方根.23.(10分)阅读下列材料:∵,即,∴的整数部分为2,小数部分为.请你观察上述的规律后试解下面的问题:如果的小数部分为a,的整数部分为b,求的值.24.(10分)如图1,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长.(3)把正方形ABCD放到数轴上,如图2,使得A与﹣1重合,那么D在数轴上表示的数为________.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.下列对实数的说法其中错误的是()A. 实数与数轴上的点一一对应B. 两个无理数的和不一定是无理数C. 负数没有平方根也没有立方根D. 算术平方根等于它本身的数只有0或1 解:A. 实数与数轴上的点一一对应,故A不符合题意;B. =2,故B不符合题意;C. 负数立方根是负数,故C符合题意;D. 算术平方根等于它本身的数只有0或1,故D不符合题意;故答案为:C.2.若某数的立方根等于这个数的算术平方根,则这个数等于( )A. 0B. ±1C. -1或0D. 0或1 解:∵算术平方根与立方根都等于它本身的数是0和1.故答案为:D3.所有和数轴上的点组成一一对应的数组成()A. 整数B. 有理数C. 无理数D. 实数解:∵实数与数轴上的点成一一对应。

浙教版初中数学七年级上册第三单元《实数》单元测试卷(困难)(含答案解析)

浙教版初中数学七年级上册第三单元《实数》单元测试卷(困难)(含答案解析)

浙教版初中数学七年级上册第三单元《实数》单元测试卷考试范围:第三章;考试时间:120分钟;总分:120分第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.如果y=√x−2+√2−x+3,那么y x的算术平方根是( )A. 2B. 3C. 9D. ±32.爸爸为颖颖买了一个密码箱,并告诉其密码(密码为自然数)是1、2、4、6、8、9六个数中的三个数的算术平方根,则这个密码箱的密码可能是( )A. 123B. 189C. 169D. 2483.下列说法正确的是( )A. −81的平方根是±9B. 任何数的平方是非负数,因而任何数的平方根也是非负数C. 任何一个非负数的平方根都不大于这个数D. 2是4的平方根4.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2019次后,数轴上数2019所对应的点是( )A. 点CB. 点DC. 点AD. 点B5.在下列各数中是无理数的有( )0.333…,√4,√5,1,2π,3.14,2.0101010…(相邻两个1之间有1个0)3A. 2个B. 3个C. 4个D. 6个6.下列各数:3.14159,−√9,4.2˙1˙,π,22,1.010010001…,√5中,无理数有( )7A. 1个B. 2个C. 3个D. 4个7.下列说法正确的有()(1)带根号的数都是无理数;(2)立方根等于本身的数是0和1;(3)−a 一定没有平方根;(4)实数与数轴上的点是一一对应的; (5)两个无理数的差还是无理数.A. 1个B. 2个C. 3个D. 4个8. 在227,−π,√89,3.1.4.,√−273,0.1010010001…(每两个1之间,逐次多一个0)中,无理数的个数是( )A. 2B. 3C. 4D. 59. 下列式子中,正确的是( )A. √−83=−√83B. −√3.6=−0.6C. √(−3)2=−3D. √36=±610. 计算 10−(12)2010×(−2)2011的结果是( )A. −2B. −1C. 2D. 311. 数轴上A ,B 两点表示的数分别为−1和√5,点B 关于点A 的对称点为C ,则点C 所表示的数为( )A. −2+√5B. −1−√5C. −2−√5D. 1+√512. 在下列5个式子①ab =0 ②a +b =0 ③ab =0④a 2=0 ⑤a 2+b 2=0中,a 一定是零的式子有个( )A. 5B. 4C. 3D. 2第II 卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 一个数的平方根等于本身,这个数是__________. 14. 当 时,有平方根.15. 若|a|=√6,则−√a 2−2的相反数是______.16. 若我们规定[x)表示大于x 的最小整数,例如[3)=4,[−1.2)=−1,则下列结论:①[0)=0;②[x)−x 的最小值是0;③[x)−x 的最大值是0;④存在实数x ,使[x)−x =0.5成立.其中正确的是 .(填写所有正确结论的序号)三、解答题(本大题共9小题,共72.0分。

(必考题)初中数学七年级数学上册第三单元《整式及其运算》测试(包含答案解析)

(必考题)初中数学七年级数学上册第三单元《整式及其运算》测试(包含答案解析)

一、选择题1.任意大于1的正整数m 的三次幂均可“分裂”成m 个连接奇数的和,如:3235=+,337911=++,3413151719=+++,…按此规律,若3m 分裂后,其中一个奇数是2021,则m 的值是( )A .46B .45C .44D .432.下列图形都是由同样大小的笑脸按一定的规律组成,其中第①个图形一共有2个笑脸,第②个图形一共有8个笑脸,第③个图形一共有18 个笑脸…按此规律,则第⑥个图形中笑脸的个数为( )A .98B .72C .50D .363.下面两个多位数1248624…,6248624…,都是按照如下方法得到的:从首位数字开始,将左边数字乘以2,若积为一位数,将其写在右边数位上,若积为两位数,则将其个位数字写在右边数位上.依次再进行如上操作得到第3位数字…后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,按如上操作得到一个多位数,则这个多位数前2020位的所有数字之和是( )A .10091B .10095C .10099D .10107 4.按照规律排列的一列数:-1,2,-4,8,-16,32,……则第2020个数应为( ). A .20192- B .20192 C .20202- D .20202 5.将连续正整数按如图所示的位置顺序排列:根据排列规律,则2021应在( )A .A 处B .B 处C .C 处D .D 处6.如图所示,直线,AB CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为1,2,3,4,5,6---….那么标记为“2021”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上 7.下列计算正确的是( ) A .3a +2a =5a 2 B .﹣2ab +2ab =0 C .2a 3+3a 2=5a 5 D .3a ﹣a =3 8.如图是一个运算程序的示意图,若开始输入的x 值为81,我们看到第一次输出的结果为27,第二次输出的结果为9,…,第2021次输出的结果为( )A .1B .3C .9D .279.下列说法正确的是( )A .绝对值是本身的数都是正数B .单项式23x y 的次数是2C .除以一个不为0的数,等于乘以这个数的相反数D .3是一个单项式 10.如图,四张大小不一的正方形纸片,,,A B C D 分别放置于长方形的角落或边上,其中B C 、和D 纸片之间既不重叠也无空隙,在长方形的周长已知的情况下,知道下列哪个正方形的边长,就可以求得阴影部分的周长( ).A .AB .BC .CD .D11.下列计算正确的是( )A .325a b ab +=B .22550ab a b -=C .277a a a +=D .32ab ba ab -+=12.如图,平面内有公共端点的六条射线OA 、OB 、OC ,OD 、OE 、OF ,从射线OA 开始按逆时针方向依次在射线上写出数字1、2、3、4、5、6、7、…,则数字“2020”在射线( )A .OB 上 B .OC 上 C .OD 上 D .OE 上二、填空题13.观察下面的式子:111122=-⨯,1112323=-⨯,1113434=-⨯,…,可以发现它们的计算规律是()11111n n n n =-++(n 为正整数).若一容器装有1升水,按照如下要求把水倒出:第一次倒出12升水,第二次倒出的水量是12升水的13,第三次倒出的水量是13升水的14,第四次倒出的水量是14升水的15,…,第n 次倒出的水量是1n 升水的11n +,…按这种倒水方式,前n 次倒出水的总量为______升.14.一列数a 1,a 2,a 3,…,a n (n 为正整数),从第一个数开始.后面的每个数等于它前一个数的相反数的2倍,即a 2=﹣2a 1,a 3=﹣2a 2,…,a n =﹣2a n ﹣1,若a 1=1,则a 2020=_____.15.已知A ,B ,C 三点在数轴上的位置如图所示,它们表示的数分别是a ,b ,c .若a =﹣3且点B 到点A ,C 的距离相等,P 是数轴上B ,C 两点之间的一个动点,设点P 表示的数为x ,当P 点在运动过程中,bx+cx+|x ﹣c|﹣10|x+a|的值保持不变,则b 的值为_____.16.若210m m +-=,则2222022m m +-=______.17.化简()33ππ---的结果为_______.18.已知点A 、B 、C 、D 、E 在数轴上的位置如图所示,它们对应的数分别为a 、2-、b 、1、c 、且AB CD =.则244a b b c c +--+的值为_______.19.如图,正五边形五个顶点标有数字1,2,3,4,5,一只青蛙在五个顶点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若它停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从标有数字3的顶点开始跳,第一次跳后落在标有数字5的顶点上记为15a =,第二次跳后落在标有数字2的顶点上记为22a =,…,第n 次跳后所停的顶点对应的数字记为n a ,那么122021a a a +++=_______.20.历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式()35f x mx nx =++,当3x =时,多项式的值为()32735f m n =++,若()36f =,则()3f -的值为__________.三、解答题21.先化简,再求值:()()222232214a b aba b a b +----,其中23a =,12b =-. 22.先化简,再求值:222233222x y xy xy x y x y ⎡⎤⎫⎛---+ ⎪⎢⎥⎝⎭⎣⎦,其中2(1)|5|0x y ++-=.23.(1)化简:2a 2﹣12(ab+a 2)﹣8ab . (2)先化简再求值:﹣(x 2y+3xy ﹣4)+3(x 2y ﹣xy+2),其中|x ﹣2|+(y+1)2=0. 24.计算:(1)2751()(6)9126-+⨯-; (2)2212412(2)2m m m m -+-+-.25.先化简,再求值:22222(32)43a b a b abc ac ac abc ⎡⎤-----⎣⎦,其中1=1,3,2a b c =-=. 26.先化简,再求值: 222212516242xy xy x y xy x y ,其中12x =-,4y =.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m 3的所有奇数的个数的表达式,再求出奇数2021的是从3开始的第1010个数,然后确定出1007所在的范围即可得解.【详解】解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m 3分裂成m 个奇数,所以,到m 3的奇数的个数为:2+3+4+…+m=(2)(1)2m m +-, ∵2n+1=2021,n=1010,∴奇数2021是从3开始的第1010个奇数, ∵(442)(441)(452)(451)989,103422+⨯-+⨯-==, ∴第1010个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选:B .【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.2.B解析:B【分析】先根据题意求找出其中的规律,即可求出第⑥个图形中笑脸的个数.【详解】解:第①个图形一共有2个笑脸,第②个图形一共有:2+(3×2)=8个笑脸,第③个图形一共有8+(5×2)=18个笑脸,……第n 个图形一共有:1×2+3×2+5×2+7×2+…+2(2n-1)=2[1+3+5+…+(2n-1)],=[1+(2n-1)]×n=2n2,则第⑥个图形一共有:2×62=72个笑脸;故选:B.【点睛】本题考查了规律型:图形变化类,把图形分成三部分进行考虑,并找出第n个图形的个数的表达式是解题的关键.3.B解析:B【分析】根据题意进行计算,找到几个数字一循环,然后乘以循环的次数加上非循环的部分即可得到结果.【详解】解:当第一个数字为3时,这个多位数是362486248…,即从第二位起,每4个数字一循环,(2020﹣1)÷4=504…3,前2020个数字之和为:3+(6+2+4+8)×504+6+2+4=10095.故选:B.【点睛】本题考查循环类数字规律题,根据题意找到循环次数,即可求解;本题易错点为是否能找对几个数字循环,易错数目为505次,由于第一个数字不参与循环即易错点为2020漏减1.4.B解析:B【分析】从所给的数中,不难发现:-1=(-1)1,2=(-1)2×21,-4=(-1)3×22…进而得出这一列数的第2020个数.【详解】解:∵-1=(-1)1×20,2=(-1)2×21,-4=(-1)3×22…∴这一列数的第2020个数是:(-1)2020×22019=22019.故选:B.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.5.D解析:D设第n个A位置的数为An,第n个B位置的数为Bn,第n个C位置的数为Cn,第n个D 位置的数为Dn,根据给定部分An,Bn,Cn,Dn的值找出规律,An=4n-2,Bn=4n-1,Cn=4n,Dn=4n+1(n为自然数),以此规律即可得出结论.【详解】解:设第n个A位置的数为An,第n个B位置的数为Bn,第n个C位置的数为Cn,第n 个D位置的数为Dn,观察,发现规律:A1=2,B1=3,C1=4,D1=5,A2=6,B2=7,C2=8,D2=9,A3=10,…,∴An=4n-2,Bn=4n-1,Cn=4n,Dn=4n+1(n为自然数).∵2021=505×4+1,∴2021应在D处.故选D.【点睛】点睛:本题考查了规律型中的数字变化类,解题的关键是根据给定的数值的变化找出变化规律,本题属于灵活题,难度一般.6.A解析:A【分析】由图可观察出奇数项在OA或OB射线上,根据每四条射线为一组,即可得出答案.【详解】解:观察图形的变化可知:奇数项:1、3、5、7,…,2n-1(n为正整数),偶数项:-2、-4、-6、-8,…,-2n(n为正整数),∵2021是奇数项,∴2n-1=2021,∴n=1011,∵每四条射线为一组,始边为OC,∴1011÷4=252...3,∴标记为“2021”的点在射线OA上,故选:A.【点睛】本题考查了规律型图形的变化类,解决本题的关键是观察图形的变化寻找规律.7.B解析:B【分析】先分析是否为同类项,再计算判断.A 、3a+2a=5a ,故该选项不符合题意;B 、-2ab+2ab=0,故该项符合题意;C 、2a 3与3a 2不是同类项,不能合并,故该项不符合题意;D 、3a-a=2a ,故该项不符合题意;故选:B .【点睛】此题考查同类项的定义及合并同类项法则,熟记同类项定义是解题的关键.8.B解析:B【分析】分别求出第一次输出27,第二次输出9,第三次输出3,第四次输出1,第五次输出3,第六次输出1, 由此可得,从第三次开始,每两次一个循环.【详解】解:由题可知,第一次输出27,第二次输出9,第三次输出3,第四次输出1,第五次输出3,第六次输出1,由此可得,从第三次开始,每两次一个循环,()20212210091-÷=, 第2021次输出结果与第3次输出结果一样, 第2021次输出的结果为3,故选:B .【点睛】 本题考查数字的变化规律,找到循环规律是解题的关键.9.D解析:D【分析】根据绝对值的意义、有理数的除法法则、单项式的定义进行判断即可.【详解】解:A 选项,绝对值是本身的数是正数或0,故原说法错误;B 选项,单项式23x y 的次数是3,故原说法错误;C 选项,除以一个不为0的数,等于乘这个数的倒数,故原说法错误;D 选项,3π表示一个数,是一个单项式,故正确; 故选:D .【点睛】本题主要考查了绝对值、单项式的定义以及有理数的除法,熟记相关定义和法则是解答本题的关键.10.B解析:B【分析】先表示出阴影部分所有竖直的边长之和和所有水平的边长之和,再表示出阴影部分的周长,然后进行整理即可得出答案.【详解】解:根据题意得:阴影部分所有竖直的边长之和=2×长方形的宽,所有水平的边长之和=2×(长方形的长-B 的边长),则阴影部分的周长=2×长方形的宽+2×(长方形的长-B 的边长)=长方形的周长-B 的边长×2所以知道B 的边长,就可以求得阴影部分的周长;故选:B .【点睛】本题考查了整式的加减和长方形的周长公式,根据长方形的周长公式推导出所求的答案是解题的关键.11.D解析:D【分析】根据合并同类项法则计算并判断.【详解】A 、3a 与2b 不是同类项,不能合并,故该项不符合题意;B 、5ab 2与5a 2b 不是同类项,不能合并,故该项不符合题意;C 、7a+a=8a ,故该项不符合题意;D 、32ab ba ab -+=,故该项符合题意;故选:D .【点睛】此题考查合并同类项,掌握同类项的判断方法是解题的关键.12.C解析:C【分析】由题意知,6个数字循环一次,则可求2020与4在一条射线上;【详解】由题意可知,6个数字循环一次,∵20206=3364÷,∴2020与4在一条射线上,∴“2020”在射线OD 上;故答案选C .【点睛】本题主要考查了规律型数字变化类,准确分析判断是解题的关键.二、填空题13.【分析】根据题意列出关系式利用得出的规律化简即可;【详解】前n 次倒出的水总量为11【点睛】本题考查规律型:数字的变化类解答本题的关键是根据所给式子找出规律并利用规律解答 解析:1n n + 【分析】根据题意列出关系式,利用得出的规律化简即可;【详解】前n 次倒出的水总量为()1111223341n n ++++=⨯⨯+11111111223341n n -+-+-++-=+1111n n n -=++,【点睛】 本题考查规律型:数字的变化类,解答本题的关键是根据所给式子找出规律,并利用规律解答.14.﹣22019【分析】根据题意先求出前几个数字然后可得an =﹣2an ﹣1=(﹣2)n ﹣1进而得结果【详解】∵a1=1∴a2=﹣2a1=﹣2=(﹣2)1a3=﹣2a2=4=(﹣2)2a4=﹣2a3=﹣8解析:﹣22019【分析】根据题意先求出前几个数字,然后可得a n =﹣2a n ﹣1=(﹣2)n ﹣1,进而得结果.【详解】∵a 1=1,∴a 2=﹣2a 1=﹣2=(﹣2)1,a 3=﹣2a 2=4=(﹣2)2,a 4=﹣2a 3=﹣8=(﹣2)3,…,a n =﹣2a n ﹣1=(﹣2)n ﹣1,∴a 2020=(﹣2)2019=﹣22019.故答案为:﹣22019【点睛】本题考查数字类变化规律,根据前几个数字得出a n =(﹣2)n ﹣1的规律是解题关键. 15.【分析】由bx+cx+|x ﹣c|﹣10|x+a|结果是定值说明与x 无关可得出b 与c的关系再根据中点得出b 与c 的另一个关系联立求出b 即可【详解】解:∵点P 在BC 上∴b <x <c ∴bx+cx+|x ﹣c|﹣ 解析:83【分析】由bx+cx+|x ﹣c|﹣10|x+a|结果是定值,说明与x 无关,可得出b 与c 的关系,再根据中点得出b 与c 的另一个关系,联立求出b 即可.【详解】解:∵点P 在BC 上,∴b <x <c ,∴bx+cx+|x ﹣c|﹣10|x+a|=bx+cx+c ﹣x ﹣10x ﹣10a =(b+c ﹣10﹣1)x+c ﹣10a , ∵结果与x 无关,∴b+c =11,又∵a =﹣3且点B 到点A ,C 的距离相等,∴c ﹣b =b+3,即c =2b+3,∴b =83. 故答案为:83. 【点睛】本题考查了整式的加减、数轴、绝对值、有理数的乘法,解决本题的关键是综合运用以上知识.16.【分析】先把变形得到m2+m=1再把2m2+2m-2022变形为2(m2+m )-2022然后利用整体代入的方法计算【详解】解:∵m2+m-1=0∴m2+m=1∴2m2+2m-2022=2(m2+m )解析:2020-【分析】先把210m m +-=变形得到m 2+m=1,再把2m 2+2m-2022变形为2(m 2+m )-2022,然后利用整体代入的方法计算【详解】解:∵m 2+m-1=0,∴m 2+m=1,∴2m 2+2m-2022=2(m 2+m )-2022=2×1-2022=-2020.故答案为:-2020.【点睛】此题主要考查了代数式求值,熟练掌握运用整体代入计算是解答此题的关键.17.【分析】根据去括号的法则和绝对值的化简求解即可【详解】解:=3-π-(π-3)=3-π-π+3=故答案为:【点睛】本题主要考查了去括号和绝对值的化简解题的关键是掌握去括号的法则和绝对值的化简运算解析:62π-【分析】根据去括号的法则和绝对值的化简求解即可.【详解】解:()33ππ---=3-π-(π-3)=3-π-π+3=62π-,故答案为:62π-.【点睛】本题主要考查了去括号和绝对值的化简,解题的关键是掌握去括号的法则和绝对值的化简运算.18.6【分析】由<<<<<><<化简再由可得再整体代入求值即可得到答案【详解】解:由题意得:<<<<<><<原式故答案为:【点睛】本题考查的是绝对值的化简整式的加减运算代数式的值掌握以上知识是解题的关键 解析:6【分析】由a <2-<0<b <1<,c a >,b +a b <0, b c -<0,化简24 4 a b b c c +--+,再由AB CD =,可得3,a b -=-再整体代入求值即可得到答案.【详解】解: 由题意得:a <2-<0<b <1<,c a >,ba b ∴+<0,b c -<0, ∴ 24 4 a b b c c +--+()()244a b b c c =-+---+⎡⎤⎣⎦22444a b b c c =--+-+22a b =-+AB CD =,21,a b ∴--=-3,a b ∴-=-原式()2a b =--()23 6.=-⨯-=故答案为:6.【点睛】本题考查的是绝对值的化简,整式的加减运算,代数式的值,掌握以上知识是解题的关键.19.5560【分析】根据题意分析可得青蛙的跳动规律为5-2-1-34个数依次循环;又由2021=4×505+1进而可求的值【详解】解:∵由3起跳3是奇数沿顺时针下一次能跳2个点落在5上;由5起跳5是奇数解析:5560【分析】根据题意,分析可得青蛙的跳动规律为5-2-1-3,4个数依次循环;又由2021=4×505+1,进而可求122021a a a +++的值. 【详解】解:∵由3起跳,3是奇数,沿顺时针下一次能跳2个点,落在5上;由5起跳,5是奇数,沿顺时针下一次能跳2个点,落在2上;由2起跳,2是偶数,沿逆时针下一次只能跳一个点,落在1上;由1起跳,1是奇数,沿顺时针跳两个点,落在3上;由3起跳,3是奇偶数,沿顺时针跳两个点,落在5上;…,∴所停的顶点对应的数字为5-2-1-3,4个数依次循环,又∵2021=4×505+1,∴122021a a a +++=(5+2+1+3) ×505+5=5560. 故答案为:5560. 【点睛】此题主要考查了数的变化规律,得到青蛙落在数字上的循环规律是解决本题的关键. 20.4【分析】由得到整体代入求出结果【详解】解:∵∴即∴故答案是:4【点睛】本题考查代数式求值解题的关键是掌握整体代入求值的思想 解析:4【分析】由()36f =得到2731m n +=,整体代入()32735f m n -=--+求出结果.【详解】解:∵()36f =,∴27356m n ++=,即2731m n +=,∴()()327352735154f m n m n -=--+=-++=-+=.故答案是:4.【点睛】本题考查代数式求值,解题的关键是掌握整体代入求值的思想.三、解答题21.262ab -,-1【分析】先根据整式的混合运算顺序和运算法则化简原式,再将a 、b 的值代入计算可得;【详解】解:()()222232214a b ab a b a b +---- = 222236224a b ab a b a b +-+--=262ab - 当23a =,12b =-时,原式=2216212132⎛⎫⨯⨯--=-=- ⎪⎝⎭【点睛】此题考查了整式的加减-化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.22.22x y -;-25【分析】首先对已知式子进行去括号、合并同类项,将其化简为22x y -,然后根据非负数和为0求出x 、y 的值,最后代入化简后的式子中进行计算即可.【详解】 解:222233222x y xy xy x y x y ⎡⎤⎫⎛---+ ⎪⎢⎥⎝⎭⎣⎦22223223x y xy xy x y x y =-+--22x y =-. 2(1)|5|0x y ++-=,10x ∴+=,50y -=,1x ∴=-,5y =,2222(1)525x y ⨯∴-=--=-.【点睛】本题考查了整式的化简求值,整式的加减乘除混合运算,绝对值的非负性,解题的关键是熟练掌握运算法则,正确的进行化简.23.(1)32 a 2﹣172ab ,(2)2 x 2y-6xy+10,14. 【分析】(1)按照整式加减的法则进行计算即可;(2)先化简,求出x 、y 值,代入即可.【详解】解:(1)2a 2﹣12(ab+a 2)﹣8ab , =2a 2﹣12ab-12a 2﹣8ab , =32a 2﹣172ab ,(2)﹣(x 2y+3xy ﹣4)+3(x 2y ﹣xy+2),=﹣x 2y-3xy+4+3x 2y ﹣3xy+6,=2 x 2y-6xy+10.∵|x ﹣2|+(y+1)2=0,∴x=2,y=-1,把x=2,y=-1,代入,原式=2×22×(-1)-6×2×(-1)+10=14.【点睛】本题考查了整式的运算和化简求值,解题关键是熟练进行整式计算和求值.24.(1)19;(2)﹣8m+2【分析】(1)先算乘方,再利用分配律计算即可;(2)先去括号,再合并同类项即可.【详解】(1)解:原式=751()369126-+⨯ =7513636369126⨯-⨯+⨯ =28﹣15+6=19;(2)解:2212412(2)2m m m m -+-+-=2m 2﹣4m+1﹣2m 2﹣4m+1=﹣8m+2.【点睛】本题主要考查了有理数的混合运算及整式的加减,正确掌握运算法则是解题的关键. 25.93,2abc - 【分析】先去中括号,然后去小括号,合并同类项进行计算即可,化简后将a 、b 、c 的值代入即可【详解】解:原式2222(644)3a b a b abc ac ac abc =--+-- 2263a b a b abc abc =-+-3abc = .当 1132a b c ==-=,,时, 原式3abc =1931322=⨯⨯-⨯=-(). 【点睛】本题考查了整式的化简,熟练掌握运算法则是解本题的关键;26.32xy ,3-. 【分析】 根据整式的运算法则,先将式子化简,然后在将即12x =-,4y =代入可求出答案. 【详解】 解:222212516242xyxy x y xy x y 2222528282xy xy x y xy x y122xy xy =-32xy = 当12x =-,4y =时,原式314322.【点睛】本题考查整式的运算,熟练运用整式的运算法则是解题的关键.。

人教版数学七年级上册第三单元测试试卷(含答案)(2)

人教版数学七年级上册第三单元测试试卷(含答案)(2)

人教版数学7年级上册第3单元·时间:120分钟满分:120分班级__________姓名__________得分__________一、选择题(共10小题,满分30分,每小题3分)1.(3分)下列各式中是一元一次方程的是( )A.x﹣3y=4B.4x+8=0C.2x=4D.3x2﹣4x=12.(3分)解方程x22=1―2x13,嘉琪写出了以下过程:①去分母,得3(x﹣2)=6﹣2(2x﹣1);②去括号,得3x﹣6=6﹣4x﹣2;③移项、合并同类项,得7x=10;④系数化为1,得x=10 7.开始出错的一步是( )A.①B.②C.③D.④3.(3分)小王去早市为餐馆选购蔬菜,他指着标价为每千克5元的豆角问摊主:“这豆角能便宜吗?”摊主说:“多买按八折,你要多少千克?”小王报了质量后,摊主同意按八折卖给小王,并说:“之前有一个人只比你少买5kg就是按标价,还比你多花了10元呢!”小王购买豆角的质量是( )A.25kg B.2.20kg C.30kg D.35kg4.(3分)在下列方程:①3x﹣y=2,②x2﹣2x﹣3=0,③2x1=1,④x32=1,⑤23m―5=m中,一元一次方程的个数为( )A.1个B.2个C.3个D.4个5.(3分)小华想找一个解是2的方程,那么他会选择( )A.3x+6=0B.23x=2C.3(x﹣1)=x+1D.5﹣3x=16.(3分)在数学活动课上,兴趣小组的同学用一根质地均匀的轻质木杆和若干个钩码做实验.如图所示,在轻质木杆O处用一根细线悬挂,左端A处挂一重物,右端B 处挂钩码,每个钩码质量是50g.若OA=20cm,OB=40cm,挂3个钩码可使轻质木杆水平位置平衡.设重物的质量为xg,根据题意列方程得( )A .20x =40×50×3B .40x =20×50×3C .3×20x =40×50D .3×40x =20×507.(3分)如图的框图表示解方程x 12=8x 4的流程,其中第①步和第⑤步变形的依据相同,这两步变形的依据是( )A .乘法分配律B .分数的基本性质C .等式的基本性质1D .等式的基本性质28.(3分)下列方程的变形中,正确的是( )A .由﹣2x =9,得x =―29B .由13x =0,得x =3C .由7=﹣2x ﹣5,得2x =5﹣7D .由1+12x =﹣3x ,得x +6x =﹣29.(3分)一个天平的托盘中形状相同的物体质量相等,如图①、图②所示的两个天平处于平衡状态,要使图③的天平也保持平衡,则需要在它的右盘中放置( )A.3个〇B.4个〇C.5个〇D.6个〇10.(3分)某商场为促销对顾客实行优惠,规定:(1)如一次性购物不超过200元,则不予优惠;(2)如一次性购物超过200元,但不超过500元的,按标价给予9折优惠;(3)如一次性购物超过500元的,其中500元按(2)给予优惠,超过500元的部分则给予8折优惠.某人两次购物,分别付款160元与360元,如果他一次性购买这些商品,则应付( )A.468元B.498元C.504元D.520元二、填空题(共5小题,满分15分,每小题3分)11.(3分)在边长为9cm的正方形ABCD中,放置两张大小相同的正方形纸板,边EF 在AB上,点K,I分别在BC,CD上,若区域I的周长比区域Ⅱ与区域Ⅲ的周长之和还大6cm,则正方形纸板的边长为 cm.12.(3分)已知n为正整数),则原方程的解为 .13.(3分)如果关于x的方程(m2﹣1)x=1无实数解,那么m满足的条件是 .14.(3分)如图所示,敦煌莫高窟最大石窟的高为 米.15.(3分)x的取值与代数式ax+b的对应值如表:x…﹣2﹣10123…ax +b …97531﹣1…根据表中信息,得出了如下结论:①b =5;②关于x 的方程ax +b =﹣1的解是x =3;③a +b >﹣a +b ;④ax +b 的值随着x 值的增大而增大.其中正确的是 .(写出所有正确结论的序号)三、解答题(共10小题,满分75分)16.(7分)某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a 千瓦时则超过部分除缴纳基本电价外,另增收20%的费用.某户八月份用电84千瓦时,共缴纳电费35.52元,求a 的数值.17.(7分)解下列方程:(1)2x ﹣(x +10)=3x +2(x +1);(2)x 12―2x 13=x +1.18.(7分)一题多解是培养我们发散思维的重要方法,方程“6(4x ﹣3)+2(3﹣4x )=3(4x ﹣3)+5”可以有多种不同的解法,观察此方程,假设4x ﹣3=y .(1)则原方程可变形为关于y 的方程: ,通过先求y 的值,从而可得x = ;(2)利用上述方法解方程:3(x ﹣1)―13(x ﹣1)=2(x ﹣1)―12(x +1).19.(7分)对a 、b 、c 、d 规定一个运算法则为:|a b c d |=ad ―bc (等号右边是普通的减法运算).(1)计算:|1234|= ,|2m ―n ―42m +n |= ;(2)求出满足等式|x ―2x ―116|=|11―x 121|的x 的值.20.(7分)“虎年大吉,岁岁平安”,为了喜迎新春,某水果店在春节期间推出水果篮和坚果礼盒,每个水果篮的成本为200元,每盒坚果礼盒的成本为150元,每个水果篮的售价比每盒坚果礼盒的售价多100元,售卖1个水果篮获得的利润和售卖2盒坚果礼盒获得的利润相同.(1)求每个水果篮和每盒坚果礼盒的售价;(2)在年末时,该水果店购进水果篮1250个和坚果礼盒1200盒,进行“新春特惠”促销活动.水果店规定,每人每次最多购买水果篮1个或坚果礼盒1盒,每个水果篮在售价的基础上打九折后再参与店内“每满100元减m 元”的活动,每盒坚果礼盒直接参与店内“每满100元减m元”的活动.售卖结束时,坚果礼盒全部售卖完,售卖过程中由于部分水果变质导致水果篮有50个没办法售出.若该水果店获得的利润率为20%,求m 的值.21.(8分)喜迎党的二十大胜利召开,八年级全体师生前往陕甘边照金革命根据地纪念馆研学.活动当天,大家在学校集合,1号车先出发,0.5小时后,2号车沿同样路线出发,结果两辆车同时到达目的地.已知学校到陕甘边照金革命纪念馆的路程是150km ,2号车的平均速度是1号车平均速度的54倍.(1)求1号车从学校到目的地所用的时间;(2)参观结束之后,同学们分组进行了党史小剧场展演活动.为鼓励大家,学校决定从当地购买A ,B 两种纪念品共40件奖励给参演同学.已知A 种纪念品的单价为12元/件,B 种纪念品的单价为10元/件,且A 种纪念品数量不少于B 种的32,求购买A 种纪念品多少件可使购买纪念品的总价最少.22.(8分)定义:如果两个一元一次方程的解之和为1,我们就称这两个方程为“美好方程”.例如:方程2x ﹣1=3和x +1=0为“美好方程”.(1)请判断方程4x ﹣(x +5)=1与方程﹣2y ﹣y =3是否互为“美好方程”;(2)若关于x 的方程x 2+m =0与方程3x ﹣2=x +4是“美好方程”,求m 的值;(3)若关于x 方程12022x ﹣1=0与12022x +1=3x +k 是“美好方程”,求关于y 的方程12022(y +2)+1=3y +k +6的解.23.(8分)对于有理数a ,b ,定义了一种新运算”※”为:a ※b =2a ―b(a ≥b)a ―23b(a <b),如:5※3=2×5﹣3=7,1※3=1―23×3=﹣1.(1)计算:①2※(﹣1)= ;②(4)※(﹣3)= ;(2)若3※m =﹣1+3x 是关于x 的一元一次方程,且方程的解为x =2,求m 的值;(3)若A <B ,A =﹣x 3+4x 2﹣x +1,B =﹣x 3+6x 2﹣x +2,且A ※B =﹣3,求2x 3+2x 的值.24.(8分)定义:对于一个有理数x ,我们把[x ]称作x 的对称数.若x ≥0,则[x ]=x ﹣2;若x <0,则[x ]=x +2.例:[1]=1﹣2=﹣1,[﹣2]=﹣2+2=0.(1)求[32],[﹣1]的值;(2)已知有理数a >0,b <0,且满足[a ]=[b ],试求代数式(b ﹣a )3﹣2a +2b 的值;(3)解方程:[2x ]+[x +1]=1.25.(8分)阅读材料:我们知道,一般情况下,式子m n 34与m 3+n 4是不相等的(m ,n 均为整数),但当m ,n 取某些特定整数时,这两个式子的值可以相等,我们把使m n 34=m 3+n 4成立的数对“m ,n ”叫做“兄弟数”,记作[m ,n ],例如,当m =n =0时,m n 34=m 3+n 4是成立的,则数对“0,0”就是“兄弟数”,记作[0,0].解答下列问题:(1)通过计算,判断数对“3,4”是否是“兄弟数”;(2)求“兄弟数”[x ,﹣32]中x 的值;(3)请写出一对“兄弟数”[9, ];(4)对于“兄弟数”[a ,b ],如果a =9k (k 为整数),则b = (用含k 的代数式表示).参考答案一、选择题(共10小题,满分30分,每小题3分)1.B;2.B;3.D;4.B;5.C;6.A;7.D;8.D;9.C;10.B;二、填空题(共5小题,满分15分,每小题3分)11.51213.±114.4015.①②三、解答题(共10小题,满分75分)16.解:由题意得0.4a+(84﹣a)⋅0.40⋅(1+20%)=35.52,解得a=60.答:a的数值是60.17.解:(1)2x﹣(x+10)=3x+2(x+1),去括号,得2x﹣x﹣10=3x+2x+2,移项,得2x﹣x﹣3x﹣2x=2+10,合并同类项,得﹣4x=12,系数化为1,得x=﹣3;(2)x12―2x13=x+1,去分母,得3(x﹣1)﹣2(2x﹣1)=6x+6,去括号,得3x﹣3﹣4x+2=6x+6,移项,得3x﹣4x﹣6x=6+3﹣2,合并同类项,得﹣7x=7,系数化为1,得x=﹣1.18.解:(1)假设4x﹣3=y,则原方程可变形为关于y的方程:6y﹣2y=3y+5,解得y=5,∴4x﹣3=5,解得x=2;故答案为:6y﹣2y=3y+5,2;(2)设x﹣1=y,则原方程可变形为关于y的方程:3y―13y=2y―12(y+2),去括号,得3y ―13y =2y ―12y ﹣1,移项,得3y ―13y ﹣2y +12y =﹣1,合并同类项,得76y =﹣1,系数化为1,得y =―67,∴x ﹣1=―67,解得x =17.19.解:(1)|1234|=1×4﹣2×3=﹣2,|2m ―n ―42m +n |=2(2m +n )﹣(m ﹣n )×(﹣4)=8m ﹣2n ,故答案为:﹣2,8m ﹣2n ;(2)由题意得,x 26+x =1―1x 2,解得x =54.20.解:(1)设每个水果篮的售价为x 元,则每盒坚果礼盒的售价为(x ﹣100)元,根据题意得x ﹣200=2(x ﹣100﹣150),解得x =300,∴300﹣100=200(元),答:每个水果篮的售价为300元,每盒坚果礼盒的售价为200元.(2)(1250×200+1200×150)×(1+×20%)=516000(元),∴这次销售活动的总销售额为516000元,根据题意得(1250﹣50)(300×0.9﹣2m )+1200(200﹣2m )=516000,解得m =10,答:m 的值为10.21.解:(1)设1号车的速度为xkm /h ,则2号车的速度为54xkm /h ,由题意可得:150x ―0.5=15054x ,解得x =60,经检验,x =60是原分式方程的解,∴1号车从学校到目的地所用的时间为150÷60=2.5(小时),即1号车从学校到目的地所用的时间是2.5小时;(2)设购买A 种纪念品a 件,则购买B 种纪念品(40﹣a )件,总费用为w 元,由题意可得:w =12a +10(40﹣a )=2a +400,∴w 随a 的增大而增大,∵A 种纪念品数量不少于B 种的32,∴a ≥32(40﹣a ),解得a ≥24,∴当a =24时,w 取得最小值,此时w =448,答:购买A 种纪念品24件可使购买纪念品的总价最少.22.解:(1)方程4x ﹣(x +5)=1与方程﹣2y ﹣y =3是互为“美好方程”,理由:解方程4x ﹣(x +5)=1得:x =2,方程﹣2y ﹣y =3的解为:y =﹣1.∵x +y =2﹣1=1,∴方程4x ﹣(x +5)=1与方程﹣2y ﹣y =3是互为“美好方程”;(2)关于x 的方程x 2+m =0的解为:x =﹣2m ,方程3x ﹣2=x +4的解为:x =3,∵关于x 的方程x 2+m =0与方程3x ﹣2=x +4是“美好方程”,∴﹣2m +3=1,∴m =1;(3)方程12022x ﹣1=0的解为:x =2022,∵关于x 方程12022x ﹣1=0与12022x +1=3x +k 是“美好方程”,方程12022x +1=3x +k 的解为:x =﹣2021.∵关于y 的方程12022(y +2)+1=3y +k +6就是:12022(y +2)+1=3(y +2)+k ,∴y +2=﹣2021,∴y =﹣2023.∴关于y 的方程12022(y +2)+1=3y +k +6的解为:y =﹣2023.23.解:(1)①2※(﹣1)=2×2﹣(﹣1)=5,②4※(﹣3)=2×4﹣(﹣3)=11.故答案为:5,11.(2)∵若3※m=﹣1+3x是关于x的一元一次方程.∴当m≤3时,6﹣m=﹣1+3x,∵方程的解为x=2,∴6﹣m=﹣1+6,∴m=1,符合题意.当m>3时,方程为:3―23m=﹣1+3x.∵方程的解为x=2,∴3―23m=﹣1+6,∴m=﹣3,不合题意,舍去.∴m=1.(3)∵A<B,且A※B=﹣3,∴A﹣B=﹣3.∴(﹣x3+4x2﹣x+1)―23(﹣x3+6x2﹣x+2)=﹣3,―13x3―13x―13=―3,∴x3+x=8.∴2x3+2x=16.24.解:(1)[32]=32―2=―12,[﹣1]=﹣1+2=1;(2)a>0,b<0,[a]=[b],即a﹣2=b+2,解得:a﹣b=4,故(b﹣a)3﹣2a+2b=(b﹣a)3﹣2(a﹣b)=(﹣4)3﹣8=﹣72;(3)当x≥0时,方程为:2x﹣2+x+1﹣2=1,解得:x=4 3;当﹣1≤x<0时,方程为:2x+2+x+1﹣2=1,解得:x=0(舍弃);当x<﹣1时,方程为:2x+2+x+1+2=1,解得:x=―4 3;故方程的解为:x=±4 3.25.解:(1)当m=3,n=4时,左边=3434=1,右边=33+44=1+1=2,∵左边≠右边,∴数对“3,4”不是“兄弟数”;(2)∵数对“x,﹣32”是“兄弟数”,∴x3234=x3+324,解得:x=18;(3)设[9,b]是一对“兄弟数”,依题意得:9b 34=93+b4,解得:b=﹣16,故答案为:﹣16;(4)∵[a,b]是一对“兄弟数”,∴a b34=a3+b4,∵a=9k(k为整数),∴9k b7=9k3+b4,解得:b=﹣16k.故答案为:﹣16k.。

七年级数学上册第三单元测试题

七年级数学上册第三单元测试题

七年级数学上册第三单元测试题第Ⅰ卷 选择题共30分一、选择题每小题3分.共30分1.下列代数式中,单项式共有 a+1,一2ab,3x ,x y +,22x y +,一1,2312ab c A .2个 B .3个 C .4个 D .5个 2.下列各式中,与2x y 是同类项的是A .2xyB .2xyC .2x y - D .223x y 3.下列去括号错误的共有 ①()a b c ab c ++=+ ②()a b c d a b c d -+-=--+③2()2a b c a b c +-=+- ④[]22()a a b a a b ---+=-- A .1个 B .2个 C .3个 D .4个4.下列说法错误的是A .-3的相反数是3B .+3的相反数是3C .-8的相反数是-8D .+1/8的相反数是85.如果两个有理数在数轴上的对应点在原点的同一侧,那么这两个有理数的积A .一定为正,B .一定为负数C .为零D .可能为正,也可能为负6.0.082457表示成四个有效数字的近似数是A .0.08246B .0.082C .0.0824D .0.08257.某校有在校师生共2000人,如果每人借阅10册书,那么中国国家图书馆共2亿书,可以供多少所这样的学校借阅A .1000所B .10000所C .100000所D .2000所8.图1中表示阴影部分面积的代数式是A .ab bc +B .()()c b d d a c -+-C .()ad c b d +-D .ab cd -9.今天,和你一起参加全省课改实验区初中毕业学业考试的同学约有15万人,其中男生约有a 万人,则女生约有A .15+a 万人B .15a -万人C .15a 万人D .15a万人 10.某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍;前年这个学校购买了多少台计算机;A .20台B .23台C .15台D .50台第Ⅱ卷 非选择题共90分二、填空每小题4分,共24分11.用代数式表示:1x 的3倍与4的商: ;2x 与4的和的3倍: ;3a 与b 的差的相反数: .12. 的相反数是它本身, 的绝对值是它本身, 的绝对值是它的相反数;13.小明今年在银行中办理了7笔储蓄业务:取出9.5元,存进5元,取出8元,存进12元,存进25元,取出1.25元,取出2元,这是银行现款增加了14.化简:-5a+3a-2-3a-7 = .15.去括号:43(2)5x x y y --++= .16.观察下列顺序排列的等式:9011⨯+=9×1+1=119×2+1=219×3+1=319×4+1=41……猜想:第n 个等式n 为正整数应为 .三、解答题共66分17.合并同类项.15分1 2x-3y+5x+4y 2-5a+3a-2-3a-732x ²-1/2+3x-4x-x ²+1/218.化简并求值.12分1-x+2x-2-3x+5,其中3x =-.2 22225(37)(25)x y xy y x -++-,其中x =0.1,y=0.2-.19.某校七年级1班共有学生48人,其中女生人数比男生人数的4/5多3人,这个班有男生多少人 10分20.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母;1个螺钉21.王芳和李丽同时采栽摘桃,王芳平均每小时采摘8千克,李丽平均每小时采摘7千克;采摘结束后王芳从她采摘的樱桃中取出0.25千克给了李丽,这时两人的樱桃一样多;她们采摘用了多少时间。

七年级上数学试卷第三单元

七年级上数学试卷第三单元

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()。

A. √9B. πC. √-1D. 2√22. 如果a > 0,b < 0,那么()。

A. a + b > 0B. a - b > 0C. a × b > 0D. a ÷ b > 03. 下列各数中,属于正数的是()。

A. -2B. 0C. -3.14D. 1.54. 若a = -3,b = 4,则a² + b²的值为()。

A. 7B. 9C. 16D. 255. 下列各数中,绝对值最大的是()。

A. -5B. -3C. 2D. 16. 下列各数中,是负数的是()。

A. -|3|B. |0|C. |3|D. -|0|7. 若a = -2,b = 3,则a² - b²的值为()。

A. -1B. 1C. 5D. 78. 下列各数中,不是有理数的是()。

A. 0.5B. -3/4C. √9D. π9. 下列各数中,绝对值最小的是()。

A. -5B. -3C. 2D. 010. 若a = -2,b = 4,则a - b的值为()。

A. -6B. -2C. 2D. 6二、填空题(每题3分,共30分)11. 有理数a的绝对值是3,那么a的值可以是()。

12. 如果|a| = 5,那么a的值可以是()。

13. 下列各数中,正数是()。

14. 下列各数中,负数是()。

15. 下列各数中,有理数是()。

16. 下列各数中,无理数是()。

17. 如果a = -3,b = 4,那么a² + b²的值为()。

18. 如果a = -2,b = 3,那么a² - b²的值为()。

19. 下列各数中,绝对值最大的是()。

20. 下列各数中,绝对值最小的是()。

三、解答题(每题10分,共40分)21. 判断下列各数是否为有理数,并说明理由。

七年级上册数学第三章专项试卷及答案人教版

七年级上册数学第三章专项试卷及答案人教版

去括号,,最后移项,,合并同类项,,系数化为1,.5.已知:,则方程的解为A. B. C. D.【答案】B解:,,,将,代入方程,得移项,得.6.某种商品原先的利润率为,为了促销,现降价10元销售,此时利润率下降为,那么这种商品的进价是A. 100元B. 110元C. 120元D. 130元【答案】A解:设这件产品的进价为x元,,解得,即这件商品的进价为100元,7.一项工程甲单独做要40天完成,乙单独做需要60天完成,甲先单独做4天,然后甲乙两人合作x天完成这项工程,则可以列的方程是A. B.C. D.【答案】C【解析】解:设整个工程为1,根据关系式甲完成的部分两人共同完成的部分列出方程式为:.8.下列说法中,正确的是A. 若,则B. 若,则C. 若,则D. 若,则【答案】B【解析】解:若,当,则,故此选项错误;B.若,则,正确;C.若,则,故此选项错误;D.若,则,故此选项错误;9.某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利相对于进价,另一台空调调价后售出则亏本相对于进价,而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出 A. 要亏本 B. 可获利C. 要亏本D. 既不获利也不亏本【答案】A【解析】解:设这两台空调调价后的售价为x ,两台空调进价分别为a 、b .调价后两台空调价格为:;.解得:,,调价后售出利润为:,10.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是A. B. C. D.【答案】B二、填空题11.若代数式、b为常数的值与字母x、y的取值无关,则方程的解为________【答案】1解:代数式、b为常数的值与字母x、y的取值无关,,,,为,,解得:.故答案为1.12.如果a,b为定值,关于x的一次方程,无论k为何值时,它的解总是1,则.【答案】【解析】解:将代入方程,,,,,由题意可知:,,,,.故答案为:13.若是关于x的一元一次方程,则______.【答案】【解析】解:是关于x的一元一次方程,,,解得.14.一件衣服先按成本提高标价,再以8折标价的出售,结果获利28元,那么这件衣服的成本是__________元.【答案】140解:设这件衣服的成本是x元,根据题意得:,解得:.答:这件衣服的成本是140元;故答案为140.15.小明按标价的八折购买了一双鞋,比按标价购买节省了40元,这双鞋的实际售价为______元.【答案】200【解析】解:设这双鞋的实际售价为x元,根据题意,得.16.已知关于x的方程与方程的解互为倒数,则的值为_________.【答案】0解:,解得:,加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

七年级上册数学第三章测试卷【含答案】

七年级上册数学第三章测试卷【含答案】

七年级上册数学第三章测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm和4dm,那么它的体积是多少?A. 24立方分米B. 20立方分米C. 18立方分米D. 22立方分米4. 下列哪个分数是最简分数?A. $\frac{4}{6}$B. $\frac{5}{7}$C. $\frac{6}{8}$D. $\frac{7}{9}$5. 一个等腰三角形的底边长是10厘米,腰长是13厘米,那么这个三角形的周长是多少?A. 36厘米B. 26厘米C. 46厘米D. 42厘米二、判断题(每题1分,共5分)6. 任何两个偶数相加的和都是偶数。

()7. 一个正方形的对角线把它分成两个相等的直角三角形。

()8. 任何一个合数都可以分解为几个质数的乘积。

()9. 如果两个角是对顶角,那么这两个角一定相等。

()10. 在三角形中,最长边所对的角一定是直角。

()三、填空题(每题1分,共5分)11. 一个数的因数是______和______。

12. 一个长方体的表面积是______。

13. 等边三角形的每个内角是______度。

14. 如果一个数是6的倍数,那么这个数最小可能是______。

15. 1千米等于______米。

四、简答题(每题2分,共10分)16. 请简述质数和合数的区别。

17. 什么是等腰三角形?它有什么特点?18. 请解释长方体的体积是如何计算的。

19. 什么是比例?请给出一个比例的例子。

20. 请解释什么是平行线,并给出一个例子。

五、应用题(每题2分,共10分)21. 一个长方形的长是15厘米,宽是8厘米,求这个长方形的面积。

22. 一个等边三角形的周长是24厘米,求这个三角形的边长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0.540. 结果是_______
2 4/9 . 13.如图|x-2|+(y-3)2=0,那么 yx=________ 14.已知 31=3,32=9,33=27,34=81,35=243,36=729,37
1 . =2 187,……,推测 32 016 的个位数字是____
三、解答题(共 44 分) 15.(12 分)计算: 2 3 1 (1)42×(-3)+(-4)÷(-4); 1 1 (2)(-15)÷(3-12-3)×6;
(3)根据上面猜想的结论,求 212-211-210-29-28-27-26 的值.
原式=64
7.下列说法:①0 是绝对值最小的有理数;②a2=(-a)2;③若|a| >b,则 a2>b2;④当 n 为正整数时,(-1)2n+1 与(-1)2n 互为相反数; ⑤若 a<b,则 a3<b3.其中正确的个数有( D ) A.1 个 B.2 个 C.3 个 D.4 个
8.有一列数 a1,a2,a3,…,an,从第二个数开始每个数都等于 1 与它前面那个数的倒数的差,若 a1=2,则 a2 016 为( D ) 1 A.2 016 B.2 C.2 D.-1 二、填空题(每小题 4 分,共 24 分) a+b -1. 9.新定义一种运算:a*b= ,则 2*3=____ 1-ab
2. 10.若 a3=-8,则 a 的绝对值是____
11.(2016· 营口)在网络上搜索“奔跑吧,兄弟”,能搜索到与之 相关的结果为 35 800 000 个,将 35 800 000 用科学记数法表示为
7 3.58×10 ________ .
12.近似数 40.31 万精确到_____ 百 位,把 0.539 5 精确到千分位的
一、选择题(每小题 4 分,共 32 分) 1 1.(2016· 东营)-2的倒数是( A ) 1 1 A.-2 B.2 C.2 D.-2
1 1 2. 下列计算: ①(-6)×(-8)=-48; ②(-4)×[-(-2)]=-4×2 -12 1 1 =-2;③(-6)÷(-6)=1;④ 36 =3;⑤(-0.75)÷(-0.25)=3.其中正 确的个数有( B ) A.1 个 B.2 个 C.3 个 D.4 个
解:(15-1)÷0.8×100=1750(米)
|a| |b| |ab| 17.(10 分)已知 ab>0,试求 a + b + ab 的值.
解:由 ab>知 a,b 同号且 a,b 都不为 0.当 a>0,b>0 时,|a| a b ab =a,|b|=b,|ab|=ab,∴原式= + + =3;当 a<0,b<0 时, b b ab -a -b ab |a|=-a,|b|=-b,|ab|=ab,∴原式= + + =-1 a b ab
3 3.若[(-3.4)-△]÷(-65)=0,则△表示的数为( B ) 3 A.3.4 B.-3.4 C.65 D.0 x 4.|x|=3,|y|=5,若 xy<0,则y的值等于( B ) 3 3 5 5 A.5 B.-5 C.3 D.-3
5.设 a=-3×42,b=(3×4)2,c=-(3×4)2,则 a,b,c 的大小 关系为( B ) A.a<c<b B.c<a<b C.c<b<a D.a<b<c 6.计算(-2)11+(-2)10 的结果是( D ) A.-2 B.(-2)21 C.0 D.-210
18.(12 分)探究规律: (1)计算:
1 ; ①2-1=____ 1; ②22-2-1=____ 1 ; ③23-22-2-1=____
④24-23-22-2-1=____ 1 ;
1 . ⑤25-24-23-22-2-1=____
(2)根据上面的计算结果猜想:
1; 22 016-22 015-22 014-…-22-2-1 的值为____ 1 . 2n-2n-1-2n-2-…-22-2-1 的值为____
108 5
-25
52 (3)-3 +(-2) -(-2)2+|-2)-2 -[(-3) -2 ×4-8.5]÷(-2) .
3 2 2
-6
16.(10 分)十一期间,小红与小莉姐妹俩同爸爸、妈妈一起去游 武当山,他们想知道山的高度,小红说可以利用温差测量山峰的高 度.他们在山脚下测得气温为 15 ℃,坐缆车到达山顶后测得气温为 1 ℃,已知该地区的高度每增加 100 m,气温大约降低 0.8 ℃.聪明的你 算一算,武当山的高度大约是多少米?
相关文档
最新文档