【硬件设计】上拉电阻和下拉电阻用法
下拉电阻和上拉电阻的作用
![下拉电阻和上拉电阻的作用](https://img.taocdn.com/s3/m/8fbdda16bc64783e0912a21614791711cc79790e.png)
下拉电阻和上拉电阻的作用引言:在电子电路中,拉电阻是一种常见的电子元件,它们被广泛应用于数字电路、模拟电路和通信电路中。
其中,以下拉电阻和上拉电阻是两种常见的配置方式,它们的作用是为了确保信号的正确传输和稳定性。
本文将详细介绍以下拉电阻和上拉电阻的作用及其应用。
一、以下拉电阻的作用以下拉电阻是将电路引脚连接到地(GND)的电阻。
以下拉电阻的作用主要有两个方面:1. 信号稳定性以下拉电阻通过将电路引脚连接到地,起到了稳定信号的作用。
在数字电路中,电平为高电平时,以下拉电阻将电路引脚连接到地,使电路引脚保持在低电平,防止电路因为悬空而受到干扰或误判。
在模拟电路中,以下拉电阻将电路引脚连接到地,起到了电流平衡的作用,保证信号的稳定传输。
2. 节省功耗以下拉电阻通过将电路引脚连接到地,可以有效地降低功耗。
在数字电路中,当电平为低电平时,以下拉电阻将电路引脚连接到地,使电路引脚处于低电平状态,从而降低功耗。
在通信电路中,以下拉电阻也可以用于降低功耗,例如在串行通信中,通过以下拉电阻将通信线路拉低,可以在无通信时降低功耗。
二、上拉电阻的作用上拉电阻是将电路引脚连接到正电源(VCC)的电阻。
上拉电阻的作用主要有两个方面:1. 信号稳定性上拉电阻通过将电路引脚连接到正电源,起到了稳定信号的作用。
在数字电路中,电平为低电平时,上拉电阻将电路引脚连接到正电源,使电路引脚保持在高电平,防止电路因为悬空而受到干扰或误判。
在模拟电路中,上拉电阻将电路引脚连接到正电源,起到了电流平衡的作用,保证信号的稳定传输。
2. 提供默认状态上拉电阻可以提供电路引脚的默认状态。
在数字电路中,当使用开关或其他控制信号控制某个引脚的状态时,如果没有外部信号作用,上拉电阻将引脚拉高,提供默认状态。
这样可以确保引脚在没有外部信号作用时保持在预定状态,避免电路故障或误操作。
三、以下拉电阻和上拉电阻的应用以下拉电阻和上拉电阻的应用非常广泛,下面将介绍几个常见的应用场景:1. 按键输入电路在按键输入电路中,为了确保按键的正确输入,通常会使用以下拉电阻或上拉电阻。
上拉电阻和下拉电阻的原理以及部分应用总结
![上拉电阻和下拉电阻的原理以及部分应用总结](https://img.taocdn.com/s3/m/22e21cb8fd0a79563c1e7220.png)
上拉电阻和下拉电阻的原理以及部分应用总结推荐图中上下两个电阻分别为下拉电阻和上拉电阻,上拉就是将A点的电位拉高,下拉就是将A点的电位拉低,图中的12k有些是没有画出来的,或者是没有的.他们的作用就是在电路驱动器关闭时,给该节点一个固定的电平.上拉电阻:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS 电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,才能使用。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1.驱动能力与功耗的平衡。
以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。
2.下级电路的驱动需求。
同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。
3.高低电平的设定。
不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。
以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。
电阻之上拉电阻与下拉电阻详解(转)
![电阻之上拉电阻与下拉电阻详解(转)](https://img.taocdn.com/s3/m/7ea11f9003d276a20029bd64783e0912a2167cf2.png)
电阻之上拉电阻与下拉电阻详解(转)上拉(Pull Up )或下拉(Pull Down)电阻(两者统称为“拉电阻”)最基本的作⽤是:将状态不确定的信号线通过⼀个电阻将其箝位⾄⾼电平(上拉)或低电平(下拉),⽆论它的具体⽤法如何,这个基本的作⽤都是相同的,只是在不同应⽤场合中会对电阻的阻值要求有所不同,从⽽也引出了诸多新的概念,本节我们就来⼩谈⼀下这些内容。
如果拉电阻⽤于输⼊信号引脚,通常的作⽤是将信号线强制箝位⾄某个电平,以防⽌信号线因悬空⽽出现不确定的状态,继⽽导致系统出现不期望的状态,如下图所⽰:在实际应⽤中,10K欧姆的电阻是使⽤数量最多的拉电阻。
需要使⽤上拉电阻还是下拉电阻,主要取决于电路系统本⾝的需要,⽐如,对于⾼有效的使能控制信号(EN),我们希望电路系统在上电后应处于⽆效状态,则会使⽤下拉电阻。
假设这个使能信号是⽤来控制电机的,如果悬空的话,此信号线可能在上电后(或在运⾏中)受到其它噪声⼲扰⽽误触发为⾼电平,从⽽导致电机出现不期望的转动,这肯定不是我们想要的,此时可以增加⼀个下拉电阻。
⽽相应的,对于低有效的复位控制信号(RST#),我们希望上电复位后处于⽆效状态,则应使⽤上拉电阻。
⼤多数具备逻辑控制功能的芯⽚(如单⽚机、FPGA等)都会集成上拉或下拉电阻,⽤户可根据需要选择是否打开,STM32单⽚机GPIO模式即包含上拉或下拉,如下图所⽰(来⾃ST数据⼿册):根据拉电阻的阻值⼤⼩,我们还可以分为强拉或弱拉(weak pull-up/down),芯⽚内部集成的拉电阻通常都是弱拉(电阻⽐较⼤),拉电阻越⼩则表⽰电平能⼒越强(强拉),可以抵抗外部噪声的能⼒也越强(也就是说,不期望出现的⼲扰噪声如果要更改强拉的信号电平,则需要的能量也必须相应加强),但是拉电阻越⼩则相应的功耗也越⼤,因为正常信号要改变信号线的状态也需要更多的能量,在能量消耗这⼀⽅⾯,拉电阻是绝不会有所偏颇的,如下图所⽰:对于上拉电阻R1⽽⾔,控制信号每次拉低L都会产⽣VCC/R1的电流消耗(没有上拉电阻则电流为0),相应的,对于下拉电阻R2⽽⾔,控制信号每次拉⾼H也会产⽣VCC/R2R 电流消耗(本⽂假设⾼电平即为VCC)。
最经典解析:上拉电阻、下拉电阻、拉电流、灌电流
![最经典解析:上拉电阻、下拉电阻、拉电流、灌电流](https://img.taocdn.com/s3/m/101059f8f61fb7360b4c65e1.png)
(一)上拉电阻的使用场合:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,才能使用。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
同時管脚悬空就比较容易接受外界的电磁干扰(MOS器件为高输入阻抗,极容易引入外界干扰)。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
(二)上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大:电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小:电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理。
(三)对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1.驱动能力与功耗的平衡。
以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。
2.下级电路的驱动需求。
同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。
3.高低电平的设定。
不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。
以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。
4.频率特性。
以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。
上拉电阻和下拉电阻的作用
![上拉电阻和下拉电阻的作用](https://img.taocdn.com/s3/m/09b19b190b4e767f5bcfce09.png)
一、定义:上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流;弱强只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
二、上下拉电阻作用:1、提高电压准位:a.当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
b.OC门电路必须加上拉电阻,以提高输出的搞电平值。
2、加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
3、N/A pin防静电、防干扰:在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
同時管脚悬空就比较容易接受外界的电磁干扰。
4、电阻匹配,抑制反射波干扰:长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
5、预设空间状态/缺省电位:在一些 CMOS 输入端接上或下拉电阻是为了预设缺省电位. 当你不用这些引脚的时候, 这些输入端下拉接 0 或上拉接 1。
在I2C总线等总线上,空闲时的状态是由上下拉电阻获得6. 提高芯片输入信号的噪声容限:输入端如果是高阻状态,或者高阻抗输入端处于悬空状态,此时需要加上拉或下拉,以免收到随机电平而影响电路工作。
同样如果输出端处于被动状态,需要加上拉或下拉,如输出端仅仅是一个三极管的集电极。
从而提高芯片输入信号的噪声容限增强抗干扰能力。
{电源到元件间的叫上拉电阻,作用是平时使该脚为高电平地到元件间的叫下拉电阻,作用是平时使该脚为低电平上拉电阻和下拉电阻的范围由器件来定(我们一般用10K)+Vcc+------+=上拉电阻|+-----+|元件||+-----++------+=下拉电阻-Gnd一般来说上拉或下拉电阻的作用是增大电流,加强电路的驱动能力比如说51的p1口还有,p0口必须接上拉电阻才可以作为io口使用上拉和下拉的区别是一个为拉电流,一个为灌电流一般来说灌电流比拉电流要大也就是灌电流驱动能力强一些}三、上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
上拉与下拉电阻讲解
![上拉与下拉电阻讲解](https://img.taocdn.com/s3/m/6418ab2ab4daa58da0114a44.png)
数字电路的应用中,时常会听到上拉电阻、下拉电阻这两个词,上拉电阻、下拉电阻在电路中起着稳定电路工作状恣的作用。
1.下拉电阻电路
图1-107所示是下拉电阻电路,这是数字电路中的反相器,输入端U通过下拉电阻R1接地,这样在没有高电平输入时,可以使输入端稳定地处于低电平状态,防止了可能出现的高电平干扰使反相器误动作。
如果没有下拉电阻Rl,反相器输入端悬空,为高阻抗,外界的高电平干扰很容易从输入端加入到反相器中,从而引起反相朝输出低电平方向翻转的误动作。
在接入下拉电阻R1后,电源电压为+5V时,下拉电阻Rl一般取值在100~470Ω,由于Rl阻值很小,所以将输入端的各种高电平干扰短接到地,达到抗干扰的目的。
2.上拉电阻电路
图1-108所示是上拉电阻电路,这是数字电路中的反相器,当反相器输入端U没有输入低电平时,上拉电阻R可以使反相器输入端稳
定地处于高电平状态,防止了可能出现的低电平干扰使反相器出现误动作。
如果没有上拉电阻Rl,反相器输入端悬空,KI661- KI662外界的低电平干扰很容易从输入端加入到反相器中,从而引起反相器朝输出高电平方向翻转的误动作。
在接入上拉电阻R1后,电源电压为+5V时,上拉电阻R1一般取值在4.7~10kΩ之间,上拉电阻Rl使输入端为高电平状态,没有足够的低电平融发,反相器不会翻转,达到抗干扰的目的。
上拉电阻和下拉电阻
![上拉电阻和下拉电阻](https://img.taocdn.com/s3/m/480e7a0c240c844768eaee4e.png)
上拉电阻和下拉电阻上拉电阻:1、当TTL电路驱动COMS电路时,假定TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需求在TTL的输出端接上拉电阻,早年进输出高电平的值。
2、OC门电路有必要加上拉电阻,才调运用。
3、为加大输出引脚的驱动才调,有的单片机管脚上也常运用上拉电阻。
4、在COMS芯片上,为了避免静电构成损坏,不必的管脚不能悬空,一般接上拉电阻发作下降输入阻抗,供给泄荷通路。
5、芯片的管脚加上拉电阻来跋涉输出电平,然后跋涉芯片输入信号的噪声容限增强抗烦扰才调。
6、跋涉总线的抗电磁烦扰才调。
管脚悬空就比照简略承受外界的电磁烦扰。
7、长线传输中电阻不匹配简略致使反射波烦扰,加上下拉电阻是电阻匹配,有用的按捺反射波烦扰。
上拉电阻阻值的挑选准则包含:1、从节省功耗及芯片的灌电流才调思考应当满意大;电阻大,电流小。
2、从确保满意的驱动电流思考应当满意小;电阻小,电流大。
3、关于高速电路,过大的上拉电阻或许边际变峻峭。
归纳思考以上三点,一般在1k到十k之间挑选。
对下拉电阻也有相似道理对上拉电阻和下拉电阻的挑选应联络开关管特性和下级电路的输入特性进行设定,首要需求思考以下几个要素:1.驱动才调与功耗的平衡。
以上拉电阻为例,一般地说,上拉电阻越小,驱动才调越强,但功耗越大,方案是应留神两者之间的均衡。
2.下级电路的驱动需求。
相同以上拉电阻为例,当输出高电往常,开关管断开,上拉电阻应恰当挑选以能够向下级电路供给满意的电流。
3.凹凸电平的设定。
纷歧样电路的凹凸电平的门槛电平会有纷歧样,电阻应恰当设定以确保能输出精确的电平。
以上拉电阻为例,当输出低电往常,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。
4.频率特性。
以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会构成RC推延,电阻越大,推延越大。
上拉电阻的设定应思考电路在这方面的需求。
下拉电阻的设定的准则和上拉电阻是相同的。
上拉电阻、下拉电阻详细解读
![上拉电阻、下拉电阻详细解读](https://img.taocdn.com/s3/m/a0115ed2a5e9856a57126026.png)
上拉电阻、下拉电阻详细解读电阻在电路中起限制电流的作用。
上拉电阻和下拉电阻是经常提到也是经常用到的电阻,在每个系统的设计中都用到了大量的上拉电阻和下拉电阻。
在上拉电阻和下拉电阻的电路中,经常有的疑问是:上拉电阻为何能上拉?下拉电阻为何能下拉?下拉电阻旁边为何经常会串一个电阻?简单概括为:●电源到器件引脚上的电阻叫上拉电阻,作用是平时使该引脚为高电平;●地到器件引脚上的电阻叫下拉电阻,作用是平时使该引脚为低电平。
●低电平在IC内部与GND相连接;●高电平在IC内部与超大电阻相连接。
上拉就是将不确定的信号通过一个电阻钳位在高电平,电阻同时起限流作用,下拉同理。
对于非集电极(或漏极)开路输出型电路(如普通门电路,其提升电流和电压的能力是有限的,上拉和下拉电阻的主要功能是为集电极开路输出型电路提供输出电流通道。
上拉是对器件注入电流,下拉是输出电流;强弱只是上拉或下拉电阻的阻值不同,没有什么严格区分。
当IC的I/O端口,节点为高电平时:节点处和GND之间的阻抗很大,可以理解为无穷大,这个时候通过上拉电阻(如4.7K欧,10K欧电阻)接到VCC上,上拉电阻的分压几乎可以忽略不计;当I/O端口节点需要为低电平时:直接接GND就可以了,这个时候VCC与GND 是通过刚才的上拉电阻(如4.7K欧,10K欧电阻)连接的,通过的电流很小,可以忽略不计。
电平值的大小、高低是相对于地电平来说的,因此在看电平值的大小时要参考地的电平值来看。
看看那些引脚是否接到地上,与自己是否连接外围器件没有关系,因为其实高电平还是低电平是相对于地平面来说的。
在节点与+5V之间接10K欧或4.7K欧的上拉电阻,能够把这个节点的电位拉上来,往往这个节点要求应用单片机或其它控制器来控制它(及这个节点与I/O连接)为高电平或低电平。
如果单纯的想要使这个节点成为高电平,并且输出阻抗非常大,则直接接电源也无妨,但是如果单片机要使这个节点拉低,即单片机内部使节点接地,这样5V电源和地之间就短路了。
上拉电阻与下拉电阻的概念与用法解释
![上拉电阻与下拉电阻的概念与用法解释](https://img.taocdn.com/s3/m/9024edfd9e31433239689364.png)
上拉电阻定义:上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流;弱强只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
上拉:1TTL驱动CMOS时,如果TTL输出最低高电平低于CMOS最低高电平时,提高输出高电平值2 OC门必须加上拉,提高电平值3 加大输出的驱动能力(单片机较常用)4 CMOS芯片中(特别是门的芯片),为防静电干扰,不用的引脚也不悬空,一般上拉,降低阻抗,提供泄荷通路5 提高输出电平,提高芯片输入信号的噪声容限,增强抗干扰6 提高总线抗电磁能力,空脚易受电磁干扰7 长线传输中加上拉,是阻抗匹配抑制反射干扰原则:1 从节约功耗和芯片的电流、能力应是电阻尽量大,R大,I小啊2 从确保驱动能力,应当电阻足够小,R小,I大啊3 对高速电路,加上拉可能边沿平缓(上升时间延长)建议可以在1K---10K之间选(可根据实际情况)信号输入端上拉电阻的工作原理(从电路原理的角度分析输入端口电压为何会被提高)假如信号输入端是外界电路送来的低电平,那么输入端的电压不是应该被锁定在低电平吗,为什么加了个上拉电阻和电源,输入端的电压就被提高了呢?这个问题一直很困惑,希望能耐心解答。
问题补充:我想问的是上拉电阻如何实现电压上拉的,而不是问的上拉电阻的使用目的和必要性,我很清楚上拉电阻的作用和目的。
提问者:michael6810 - 二级其实你不清楚上拉电阻的作用和目的。
否则你不会困惑。
你的困惑,yao311yan805 已经说出来了。
只是你没有细心看,或者没有想到你该专著的重点。
yao311yan805 :最后一句话--“一般大家都习惯默认无信号为低电平,所以下拉电阻一般的应用较为普遍”,好像应该改一下吧。
回答者:562738047 - 九级2008-11-7 22:24上拉电阻的目的是为了保证在无信号输入时输入端的电平为高电平。
单片机上拉电阻和下拉电阻做作用和接线方法图解
![单片机上拉电阻和下拉电阻做作用和接线方法图解](https://img.taocdn.com/s3/m/1f5ed2f4b0717fd5360cdcf3.png)
单片机上拉电阻和下拉电阻做作用和接线方法图解摘要: 是不是经常听别人讲,加个试试看,加个下拉电阻试试看,是不是还在疑惑上下拉电阻是什幺,该怎幺用,什幺时候用,有什幺用途? 1.什幺是上下拉电阻:把一个不确定的信号通过电阻连接到高电平,使该信号...是不是经常听别人讲,加个试试看,加个下拉电阻试试看,是不是还在疑惑上下拉电阻是什幺,该怎幺用,什幺时候用,有什幺用途?1.什幺是上下拉电阻:把一个不确定的信号通过电阻连接到高电平,使该信号初始为高电平;下拉电阻:把一个不确定的信号通过电阻连接到低电平,使该信号初始为低电平;2.上下拉电阻的接线方法如下图所示:电阻R12 将KEY1 网络标识上拉到高电平,在按键S2 没有按下的情况下KEY1 将被钳制在高电平,从而避免了引脚悬空而引起的误动作;下拉电阻如下图所示:电阻R29 将DIR 网络标识下拉到低电平,在光耦没有导通的情况下DIR将被钳制在低电平,从而避免了引脚悬空而引起的误动作;3.上下拉电阻的作用提高电路稳定性,避免引起误动作。
第一图中的按键如果不通过电阻上拉到高电平,那幺在上电瞬间可能就发生误动作,因为在上电瞬间的引脚电平是不确定的,上拉电阻R12 的存在保证了其引脚处于高电平状态,而不会发生误动作。
提高输出管脚的带载能力。
受其他外围电路的影响在输出高电平时能力不足,达不到VCC 状态,这会影响整个系统的正常工作,上拉电阻的存在就可以使管脚的驱动能力增强。
这里特别强调如下:带片上I2C 资源的,其SCL和SDA 引脚是开漏引脚,如果当做普通的GPIO 来用的话,你会发现该引脚输出高电平极不稳定甚至因为负载的关系都无法正常输出高电平,这时候就需要在这两个引脚上加上拉电阻了。
通过上面的讲解,不知道困扰你多时的上下拉电阻你明白了吗?。
上拉电阻与下拉电阻用在什么场合
![上拉电阻与下拉电阻用在什么场合](https://img.taocdn.com/s3/m/5bc7d612f78a6529647d5350.png)
上拉电阻与下拉电阻用在什么场合?
答:用在数字电路中,存在高低电平的场合。
上拉电阻与下拉电阻怎么接线?
上拉电阻:电阻一端接VCC,一端接逻辑电平接入引脚(如单片机引脚) 下拉电阻:电阻一端接GND,一端接逻辑电平接入引脚(如单片机引脚)
如上图,R13和R14,一端接到了3.3V,一端通过J17连接到单片机引脚,这两个电阻就是上拉电阻。
如上图,R18的一端连接到了GND,一端连接到了单片机的引脚(只不过是串了一个电阻后连接到了单片机引脚)。
所以这个就是下拉电阻。
上拉电阻和下拉电阻有什么用?
提高驱动能力:
例如,用单片机输出高电平,但由于后续电路的影响,输出的高电平不高,就是达不到VCC,影响电路工作。
所以要接上拉电阻。
下拉电阻情况相反,让单片机引脚输出低电平,结果由于后续电路影响输出的低电平达不到GND,所以接个下拉电阻。
在单片机引脚电平不定的时候,让后面有一个稳定的电平:
例如上面接下拉电阻的情况下,在单片机刚上电的时候,电平是不定的,还有就是如果你连接的单片机在上电以后,单片机引脚是输入引脚而不是输出引脚,那这时候的单片机电平也是不定的,R18的作用就是如果前面的单片机引脚电平不定的话,强制让电平保持在低电平。
如果IE_DATA那个地方,不连接任何引脚,那么由于R18的下拉作用,IE_DATA就是低电平,所以三极管就不会导通。
上拉电阻、下拉电阻的作用你知道吗?直接影响到产品设计的成败
![上拉电阻、下拉电阻的作用你知道吗?直接影响到产品设计的成败](https://img.taocdn.com/s3/m/dd7d391f443610661ed9ad51f01dc281e53a56c1.png)
上拉电阻、下拉电阻的作用你知道吗?直接影响到产品设计的成败我们把连接到VCC的电阻叫做上拉电阻,把连接到GND的电阻叫做下拉电阻。
在数字电路中,我们需要准确的识别高电平“1”和低电平“0”,未知的状态会产生不确定的因素,上拉电阻和下拉电阻可以消除这些不确定的因素。
希望本文能起到抛砖引玉的作用,给大家带来一些帮助。
输入电路加入上拉电阻或者下拉电阻非常重要以按键输入为例•电路图A没有加入上拉电阻,电路图B加入了上拉电阻,轻触开关没有按下时,输入端口B由于受上拉电阻影响,电平为确定的高电平;但输入端口A的电平是未知的。
上拉电阻电路•同样,在电路图C中没有加入下拉电阻,电路图D加入了下拉电阻,在轻触开关没有按下时,输入端口D受下拉电阻影响,可以确定为低电平;但输入端口C却是未知状态。
下拉电阻电路•单片机的输入端口一般可以设置为内部上拉或者下拉,此时,外部的上拉或者下拉电阻可以省略,但有些单片机输入口是开漏输入的,这时候就要在外部放置上拉或者下拉电阻了,设计的时候一定要特别注意。
输出电路加入上拉电阻或者下拉电阻非常重要以三极管输出为例•电路图A没有加入上拉电阻,电路图B加入了上拉电阻,很明显输出端口A是没有输出能力的,输出的电平信号也是未知的;但输出端口B受上拉电阻影响,当三极管导通时,输出端口B为低电平,三极管截止时,输出端口B为低电平。
输出上拉电阻•同样,电路C没有加入下拉电阻,电路D加入了下拉电阻。
输出端口C的状态也是未知的;但输出端口D在三极管导通时为高电平,三极管截止时为低电平。
输出下拉电阻•在单片机输出口设置时需要特别注意,如果输出口是开漏输出,一定要在外部加入上拉或者下拉电阻。
三极管驱动电路加入上拉电阻或者下拉电阻非常重要以三极管驱动继电器为例•强烈建议在三极管的基极(b)加入下拉或者上拉电阻,NPN型三极管加入下拉,PNP型三极管加入上拉电阻。
•在没有驱动信号的时候,加入上拉电阻或者下拉电阻,可以有效的钳制三极管的基极(b)的信号,避免意外导通。
上拉电阻电路和下拉电阻电路
![上拉电阻电路和下拉电阻电路](https://img.taocdn.com/s3/m/c37bc34cc850ad02de8041e4.png)
上拉电阻电路和下拉电阻电路数字电路的应用中,时常会听到上拉电阻、下拉电阻这两个词,上拉电阻、下拉电阻在电路中起着稳定电路工作状恣的作用。
1.下拉电阻电路图1-107所示是下拉电阻电路,这是数字电路中的反相器,输入端U通过下拉电阻R1接地,这样在没有高电平输入时,可以使输入端稳定地处于低电平状态,防止了可能出现的高电平干扰使反相器误动作。
如果没有下拉电阻Rl,反相器输入端悬空,为高阻抗,外界的高电平干扰很容易从输入端加入到反相器中,从而引起反相朝输出低电平方向翻转的误动作。
在接入下拉电阻R1后,电源电压为+5V时,下拉电阻Rl一般取值在100~470Ω,由于Rl阻值很小,所以将输入端的各种高电平干扰短接到地,达到抗干扰的目的。
2.上拉电阻电路图1-108所示是上拉电阻电路,这是数字电路中的反相器,当反相器输入端U没有输入低电平时,上拉电阻R可以使反相器输入端稳定地处于高电平状态,防止了可能出现的低电平干扰使反相器出现误动作。
如果没有上拉电阻Rl,反相器输入端悬空,KI661- KI662外界的低电平干扰很容易从输入端加入到反相器中,从而引起反相器朝输出高电平方向翻转的误动作。
在接入上拉电阻R1后,电源电压为+5V时,上拉电阻R1一般取值在4.7~10kΩ之间,上拉电阻Rl使输入端为高电平状态,没有足够的低电平融发,反相器不会翻转,达到抗干扰的目的。
开关式电容器电路现场可编程模拟阵列中,通常使用开关式电容器电路( switched-capacitor circuits)在只含电容器的IC芯片里,去实现各式的模拟电路。
在芯片中,使用电容器比使用电阻简单许多。
电容器也提供其他优点,如没有功率的消耗。
在一伞电路中,假如需要电阻时,开关式电容器就可以被仿效当作成电阻。
可编程开关式电容器可以改变其电阻值,达到更精确及稳定的电阻。
然而,当你设计一个FPAA时,软件会将你隔离出复杂的电路细节中。
在学完本节后,我们应该能够:描述开关式电容器电路的基本操作;说明开关式电容器电路如何代替电阻。
上拉电阻,下拉电阻
![上拉电阻,下拉电阻](https://img.taocdn.com/s3/m/82962c23192e45361066f5b6.png)
上、下拉电阻一、定义1、上拉就是将不确定的信号通过一个电阻嵌位在高电平!“电阻同时起限流作用”!下拉同理!2、上拉是对器件注入电流,下拉是输出电流3、弱强只是上拉电阻的阻值不同,没有什么严格区分4、对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
二、拉电阻作用1、一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一电阻。
2、数字电路有三种状态:高电平、低电平、和高阻状态,有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使处于稳定状态,具体视设计要求而定!3、一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有的是需要外接,I/O端口的输出类似与一个三极管的C,当C接通过一个电阻和电源连接在一起的时候,该电阻成为上C拉电阻,也就是说,如果该端口正常时为高电平;C通过一个电阻和地连接在一起的时候,该电阻称为下拉电阻,使该端口平时为低电平,作用吗:比如:“当一个接有上拉电阻的端口设为输入状态时,他的常态就为高电平,用于检测低电平的输入”。
4、上拉电阻是用来解决总线驱动能力不足时提供电流的。
一般说法是拉电流,下拉电阻是用来吸收电流的,也就是我们通常所说的灌电流5、接电阻就是为了防止输入端悬空6、减弱外部电流对芯片产生的干扰7、保护cmos内的保护二极管,一般电流不大于10mA8、通过上拉或下拉来增加或减小驱动电流9、改变电平的电位,常用在TTL-CMOS匹配10、在引脚悬空时有确定的状态11、增加高电平输出时的驱动能力。
12、为OC门提供电流三、上拉电阻应用原则1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3。
5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
上拉、下拉电阻的作用硬件
![上拉、下拉电阻的作用硬件](https://img.taocdn.com/s3/m/edfca94ce45c3b3567ec8b9c.png)
下拉电阻的设定的原则和上拉电阻是一样的。
OC门输出高电平时是一个高阻态,其上拉电流要由上拉电阻来提供,设输入端每端口不大于100uA,设输出口驱动电流约500uA,标准工作电压是5V,输入口的高低电平门限为0.8V(低于此值为低电平);2Vቤተ መጻሕፍቲ ባይዱ高电平门限值)。
6、提高总线的抗电磁干扰能力。管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值的选择原则包括:
1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
2、OC门电路必须加上拉电阻,才能使用。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
比如:当一个接有上拉电阻的端口设为输如状态时,他的常态就为高电平,用于检测低电平的输入。
l 上拉电阻是用来解决总线驱动能力不足时提供电流的。一般说法是拉电流,下拉电阻是用来吸收电流的,也就是你同学说的灌电流
l 一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有的是需要外接,I/O端口的输出类似与一个三极管的C,当C接通过一个电阻和电源连接在一起的时候,该电阻成为上C拉电阻,也就是说,如果该端口正常时为高电平,C通过一个电阻和地连接在一起的时候,该电阻称为下拉电阻,使该端口平时为低电平,作用吗:
上拉电阻与下拉电阻详解
![上拉电阻与下拉电阻详解](https://img.taocdn.com/s3/m/f5ed4b5abe23482fb4da4c30.png)
上拉电阻:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,才能使用。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1.驱动能力与功耗的平衡。
以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。
2.下级电路的驱动需求。
同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。
3.高低电平的设定。
不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。
以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在低电平门槛之下。
4.频率特性。
以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。
上拉电阻的设定应考虑电路在这方面的需求。
下拉电阻的设定的原则和上拉电阻是一样的。
一次性说清上拉电阻和下拉电阻
![一次性说清上拉电阻和下拉电阻](https://img.taocdn.com/s3/m/bab538776d175f0e7cd184254b35eefdc8d315cf.png)
一次性说清上拉电阻和下拉电阻在电子元件中,没有上拉电阻和下拉电阻等物理电阻。
之所以这样称呼它们,是因为它们是根据使用电阻的不同场景来定义的,它们的本质仍然是电阻。
常用于偏置数字门的输入,以防止它们在没有输入时随机浮动。
当你使用它们时,你会得到一个稳定的“高”或“低”状态。
相反,如果没有发生这种情况,则引脚上没有连接,程序读取高阻抗的“浮动”状态。
上拉电阻的定义:通过电阻将不确定的信号连接到VCC电源,并将其固定在高电平。
功能:向上拉动将电流注入器件;灌电流;当带有上拉电阻器的IO 端口设置为输入状态时,其正常状态为高电平,如下图。
图1同理,下拉电阻的定义:通过电阻将某个信号线连接到固定的低电平GND,以将其空闲状态保持在低电平。
功能:下拉是从器件输出电源;拉电流。
当带有下拉电阻的IO端口设置为输入状态时,其正常状态为低,如下图。
图2上拉电阻和下拉电阻2者共同的作用是:避免电压的“悬浮”,造成电路的不稳定。
如下图所示,R1为上拉电阻,R2为下拉电阻。
当R1的电阻在数百K时,它可以向信号线提供非常小的负载电流,负载电容器的充电相对较慢。
在这一点上,电阻被称为弱上拉。
同样,如果下拉电阻很大,下拉速度相对较慢,此时的电阻称为弱下拉。
如果上拉和下拉电平可以为芯片提供大电流,则此时的电阻称为强上拉或强下拉图3上拉电阻的作用1、提高输出的高电平:当TTL电路驱动COMS电路时,当TTL电路的输出电平低于COMS电路的最低高电平(通常为3.5V)时,必须在TTL的输出端连接上拉电阻,以提高输出值的输出电平。
2、OC(集电极开路,TTL)门电路必须加上拉电阻,才能使用,因为管子没有电源就不能输出高电平了。
3、为了提高输出引脚的驱动能力,一些MCU通常在引脚上使用上拉电阻。
4、在COMS芯片上,为了避免静电造成的损坏,不用的管脚不能悬空,通常,连接上拉电阻以降低输入阻抗并提供放电路径。
同时,当引脚悬空时,相对容易接受外部电磁干扰(MOS器件具有高输入阻抗,非常容易受到外部干扰)。
上拉电阻、下拉电阻 - 拉电流、灌电流 - 扇出系数知识
![上拉电阻、下拉电阻 - 拉电流、灌电流 - 扇出系数知识](https://img.taocdn.com/s3/m/ea9969efb9f3f90f76c61bd6.png)
上拉电阻、下拉电阻/ 拉电流、灌电流/ 扇出系数
知识
(一)上拉电阻:
1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,才能使用。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一
般接上拉电阻产生降低输入阻抗,提供泄荷通路。
同时管脚悬空就比较容易
接受外界的电磁干扰(MOS器件为高输入阻抗,极容易引入外界干扰)。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
(二)上拉电阻阻值的选择原则包括:
1、从节约功耗及芯片的灌电流能力考虑应当足够大:电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小:电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理。
上拉电阻
![上拉电阻](https://img.taocdn.com/s3/m/5642b830eefdc8d376ee3268.png)
上拉电阻与下拉电阻上下拉电阻:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS 电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,以提高输出的高电平值。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
*4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大:电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小:电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理。
拉电流输出和灌电流输出在使用数字集成电路时,拉电流输出和灌电流输出是一个很重要的概念,例如在使用反向器作输出显示时,图1是拉电流输出,即当反向器输出端为高电平时才符合发光二极管正向连接的要求,但这种拉电流输出对于反向器只能输出零点几毫安的电流用这种方法想驱动二极管发光是不合理的(因发光二极管正常工作电流为5~10mA)。
图2为灌电流输出,即当反向器输出端为低电平时,发光二极管处于正向连接情况,在这种情况下,反向器一般能输出5~10mA的电流,足以使发光二极管发光,所以这种灌电流输出作为驱动发光二极管的电路是比较合理的。
因为发光二极管发光时,电流是由电源+5V通过限流电阻R、发光二极管流入反向器输出端,好像往反向器里灌电流一样,因此习惯上称它为“灌电流”输出。
在数字电路中我们经常可以看到上、下拉电阻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【硬件设计】上拉电阻和下拉电阻的用法一、什么是上拉电阻?什么是下拉电阻?上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流;弱强只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
二、上拉电阻及下拉电阻作用:1、提高電壓准位:a.当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
b.OC门电路必须加上拉电阻,以提高输出的搞电平值。
2、加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
3、N/A pin防靜電、防干擾:在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
同時管脚悬空就比较容易接受外界的电磁干扰。
4、电阻匹配,抑制反射波干扰:长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
5、預設空閒狀態/缺省電位:在一些 CMOS 输入端接上或下拉电阻是为了预设缺省电位. 当你不用这些引脚的时候, 这些输入端下拉接 0 或上拉接 1。
在I2C 总线等总线上,空闲时的状态是由上下拉电阻获得。
6. 提高芯片输入信号的噪声容限:输入端如果是高阻状态,或者高阻抗输入端处于悬空状态,此时需要加上拉或下拉,以免收到随机电平而影响电路工作。
同样如果输出端处于被动状态,需要加上拉或下拉,如输出端仅仅是一个三极管的集电极。
从而提高芯片输入信号的噪声容限增强抗干扰能力。
三、上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理。
四、原理上拉电阻实际上是集电极输出的负载电阻。
不管是在开关应用和模拟放大,此电阻的选则都不是拍脑袋的。
工作在线性范围就不多说了,在这里是讨论的是晶体管是开关应用,所以只谈开关方式。
找个TTL器件的资料单独看末级就可以了,内部都有负载电阻根据不同驱动能力和速度要求这个电阻值不同,低功耗的电阻值大,速度快的电阻值小。
但芯片制造商很难满足应用的需要不可能同种功能芯片做许多种,因此干脆不做这个负载电阻,改由使用者自己自由选择外接,所以就出现OC、OD输出的芯片。
由于数字应用时晶体管工作在饱和和截止区,对负载电阻要求不高,电阻值小到只要不小到损坏末级晶体管就可以,大到输出上升时间满足设计要求就可,随便选一个都可以正常工作。
但是一个电路设计是否优秀这些细节也是要考虑的。
集电极输出的开关电路不管是开还是关对地始终是通的,晶体管导通时电流从负载电阻经导通的晶体管到地,截止时电流从负载电阻经负载的输入电阻到地,如果负载电阻选择小点功耗就会大,这在电池供电和要求功耗小的系统设计中是要尽量避免的,如果电阻选择大又会带来信号上升沿的延时,因为负载的输入电容在上升沿是通过无源的上拉电阻充电,电阻越大上升时间越长,下降沿是通过有源晶体管放电,时间取决于器件本身。
因此设计者在选择上拉电阻值时,要根据系统实际情况在功耗和速度上兼顾。
五、从IC(MOS工艺)的角度,分别就输入/输出引脚做一解释:1. 对芯片输入管脚, 若在系统板上悬空(未与任何输出脚或驱动相接)是比较危险的.因为此时很有可能输入管脚内部电容电荷累积使之达到中间电平(比如1.5V), 而使得输入缓冲器的PMOS管和NMOS管同时导通, 这样一来就在电源和地之间形成直接通路, 产生较大的漏电流, 时间一长就可能损坏芯片. 并且因为处于中间电平会导致内部电路对其逻辑(0或1)判断混乱. 接上上拉或下拉电阻后, 内部点容相应被充(放)电至高(低)电平, 内部缓冲器也只有NMOS(PMOS)管导通, 不会形成电源到地的直流通路. (至于防止静电造成损坏, 因芯片管脚设计中一般会加保护电路, 反而无此必要).2. 对于输出管脚:1)正常的输出管脚(push-pull型), 一般没有必要接上拉或下拉电阻.2)OD或OC(漏极开路或集电极开路)型管脚,这种类型的管脚需要外接上拉电阻实现线与功能(此时多个输出可直接相连. 典型应用是: 系统板上多个芯片的INT(中断信号)输出直接相连, 再接上一上拉电阻, 然后输入MCU的INT引脚, 实现中断报警功能).其工作原理是:在正常工作情况下, OD型管脚内部的NMOS管关闭, 对外部而言其处于高阻状态, 外接上拉电阻使输出位于高电平(无效中断状态); 当有中断需求时, OD型管脚内部的NMOS管接通, 因其导通电阻远远小于上拉电阻, 使输出位于低电平(有效中断状态). 针对MOS 电路上下拉电阻阻值以几十至几百K为宜.(注: 此回答未涉及TTL工艺的芯片, 也未曾考虑高频PCB设计时需考虑的阻抗匹配, 电磁干扰等效应.)1, 芯片引脚上注明的上拉或下拉电阻, 是指设计在芯片引脚内部的一个电阻或等效电阻. 设计这个电阻的目的, 是为了当用户不需要用这个引脚的功能时, 不用外加元件, 就可以置这个引脚到缺省的状态. 而不会使 CMOS 输入端悬空. 使用时要注意如果这个缺省值不是你所要的, 你应该把这个输入端直接连到你需要的状态.2, 这个引脚如果是上拉的话, 可以用于 "线或" 逻辑. 外接漏极开路或集电极开路输出的其他芯片. 组成负逻辑或输入. 如果是下拉的话, 可以组成正逻辑"线或", 但外接只能是 CMOS 的高电平漏极开路的芯片输出, 这是因为 CMOS 输出的高, 低电平分别由 PMOS 和 NMOS 的漏极给出电流, 可以作成 P 漏开路或 N 漏开路. 而 TTL 的高电平由源极跟随器输出电流, 不适合 "线或".3, TTL 到 CMOS 的驱动或反之, 原则上不建议用上下拉电阻来改变电平, 最好加电平转换电路. 如果两边的电源都是 5 伏, 可以直接连但影响性能和稳定, 尤其是 CMOS 驱动 TTL 时. 两边逻辑电平不同时, 一定要用电平转换. 电源电压 3 伏或以下时, 建议不要用直连更不能用电阻拉电平.4, 芯片外加电阻由应用情况决定, 但是在逻辑电路中用电阻拉电平或改善驱动能力都是不可行的. 需要改善驱动应加驱动电路. 改变电平应加电平转换电路. 包括长线接收都有专门的芯片.上拉电阻、下拉电阻的作用1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,才能使用。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1.驱动能力与功耗的平衡。
以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。
2.下级电路的驱动需求。
同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。
3.高低电平的设定。
不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。
以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。
4.频率特性。
以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。
上拉电阻的设定应考虑电路在这方面的需求。
下拉电阻的设定的原则和上拉电阻是一样的。
OC门输出高电平时是一个高阻态,其上拉电流要由上拉电阻来提供,设输入端每端口不大于100uA,设输出口驱动电流约500uA,标准工作电压是5V,输入口的高低电平门限为0.8V(低于此值为低电平);2V(高电平门限值)。
选上拉电阻时:500uA x 8.4K= 4.2即选大于8.4K时输出端能下拉至0.8V以下,此为最小阻值,再小就拉不下来了。
如果输出口驱动电流较大,则阻值可减小,保证下拉时能低于0.8V即可。
当输出高电平时,忽略管子的漏电流,两输入口需200uA200uA x15K=3V即上拉电阻压降为3V,输出口可达到2V,此阻值为最大阻值,再大就拉不到2V了。
选10K可用。
COMS门的可参考74HC系列设计时管子的漏电流不可忽略,IO口实际电流在不同电平下也是不同的,上述仅仅是原理,一句话概括为:输出高电平时要喂饱后面的输入口,输出低电平不要把输出口喂撑了(否则多余的电流喂给了级联的输入口,高于低电平门限值就不可靠了)。
在数字电路中不用的输入脚都要接固定电平,通过1k电阻接高电平或接地。
1. 电阻作用:接电组就是为了防止输入端悬空;减弱外部电流对芯片产生的干扰;保护cmos 内的保护二极管,一般电流不大于10mA 。
上拉和下拉、限流;改变电平的电位,常用在TTL-CMOS匹配;在引脚悬空时有确定的状态;增加高电平输出时的驱动能力;为OC门提供电流:那要看输出口驱动的是什么器件,如果该器件需要高电压的话,而输出口的输出电压又不够,就需要加上拉电阻。
如果有上拉电阻那它的端口在默认值为高电平你要控制它必须用低电平才能控制如三态门电路三极管的集电极,或二极管正极去控制把上拉电阻的电流拉下来成为低电平。
反之,尤其用在接口电路中,为了得到确定的电平,一般采用这种方法,以保证正确的电路状态,以免发生意外,比如,在电机控制中,逆变桥上下桥臂不能直通,如果它们都用同一个单片机来驱动,必须设置初始状态.防止直通!2、定义:上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流弱强只是上拉电阻的阻值不同,没有什么严格区分对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。