函数极限的十种求法

合集下载

求极限的12种方法总结及例题

求极限的12种方法总结及例题

求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。

在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。

本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。

2. 利用极限的定义我们可以利用极限的定义来求解问题。

根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。

利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。

3. 利用夹逼准则夹逼准则是求极限常用的方法之一。

当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。

要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。

4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。

利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。

要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。

5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。

洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。

通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。

6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。

当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。

通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。

7. 利用换元法换元法是求解复杂函数极限的常用方法之一。

通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。

对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。

求极限方法总结

求极限方法总结
1. 利用极限的四则运算性质求极限 函数的和、差、积、商的极限等于函数极限的和、
差、积、商。
2. 换元法求极限 当一个函数的解析式比较复杂或不便于观察时,可
采用换元的方法加以变形。
3. 利用两个重要极限公式求极限 在利用重要极限求函数极限时,关键在于把要求的 函数极限化成重要极限标准型或者是它们的变形式。 若用到第一个重要极限来求极限时,往往要利用三 角公式对变量进行变形,设法化成标准型,如果是 用到第二个重要极限求极限时,有时要对自变量作 适当的代换,使所求的极限变成这一形式。
注意: 等价无穷小代换可以用于乘除运算的各因式, 而不能随意用于和差运算。
利用等价无穷小代换求函数的极限时,必须把分子 (或分母)看作一个整体,用整个分子(或分母)的等价 无穷小去代换。若分子(或分母)是两个等价无穷小 之差,就不能用各自的等价无穷小代换;若分子(或分 母)不是两个等价无穷小之差,就可以用穷大和无穷小的性质求极限 在同一极限过程中,无穷大与无穷小互为倒数。
无穷小与常量、有界函数的乘积仍为无穷小。 5. 利用函数的连续性求极限 求连续函数极限时,极限和函数符号可以交换顺序。
6. 利用等价无穷小的代换求极限
求两个无穷小量之比的极限时,分子,分母均可用等价 无穷小量之比的极限时,分子,分母均可用等价无穷小 量代替,从而使计算大大简化。

函数极限的十种求法

函数极限的十种求法

函数极限的十种求法信科2班江星雨20140202250 函数极限可以分成而运用ε-δ定义更多的见诸于已知极限值的证明题中。

掌握这类证明对初学者深刻理解运用极限定义大有裨益。

以的极限为例,f(x) 在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数,使得当x满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函数f(x)当x→x。

时的极限。

1.利用极限的四则运算法则:极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者。

方能利用极限四则运算法则进行求之。

不满足条件者,不能直接利用极限四则运算法则求之。

但是,井非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。

而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。

例 1求lim( x 2 − 3x + 5).x→ 2解:lim( x 2 − 3x + 5) = lim x 2 − lim 3x + lim 5= (lim x) 2 − 3 lim x + lim 5= 2 2 − 3 ⋅ 2 + 5 = 3.x→2 x →2 x →2 x →2 x →2 x →2 x →22.利用洛必达法则洛必达(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。

一般用在求导后为零比零或无穷比无穷的类型。

利用洛必达求极限应注意以下几点:设函数f(x)和F(x)满足下列条件:(1)x→a时,lim f(x)=0,lim F(x)=0;(2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0;(3)x→a时,lim(f'(x)/F'(x))存在或为无穷大则x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x))例1:1-cosx = 1-{1-2[sin(x/2)]^2} = 2[sin(x/2)]^2xsinx = 2xsin(x/2)cos(x/2)原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x对分子分母同时求导(洛必达法则)(tgx)' = 1 / (cosx)^2(x)' = 1原式= lim 1/(cosx)^2当x --> 0 时,cosx ---> 1原式= 13.利用两个重要极限:应用第一重要极限时,必须同时满足两个条件:①分子、分母为无穷小,即极限为0 ;②分子上取正弦的角必须与分母一样。

极限的求法总结

极限的求法总结

n2
11 lim (1 )
n2 n
1 2
.
例ln i m (1 133 15 ...4 n 1 2 1 )
拆 项 :4 n 2 1 1 ( 2 n 1 ) 1 ( 2 n 1 ) 1 2 (2 n 1 1 2 n 1 1 )
lim( 1 1 ... 1 )
n 13 35
4n2 1
x 0
x
e e e e. 11 lim 1x x 0 2x
x lim1x x 02x
lim 1 x 02(1x)
1 2
14. 将数列极限转化成函数极限求解
例:求极限
lim
n
n
sin
1 n
n2
【说明】这是 1 形式的极限,由于数列极限不能使用
解: 当0x1时,(积分不容易计算)
01xnssiinn33xx xn
故 01xnsin 3xd x1 xnd xxn 11, 01 sin 3x 0 n 10n 1
因为 lim0lim 1 0 x xn1
所以
lim 1xnsin3xdx0
x 01sin3x
10. 用等价无穷小量代换求极限
limx2( x2+93)3 x0 x2( x2+42) 2
9.利用夹逼准则(两边夹法)则求极限
说明:两边夹法则需要放大和缩小不等式,常用的方法 是都换成最大的和最小的。
例 求 li(m 11 1). n n 2 1 n 2 2 n 2 n

n1 1n, n 2 nn 2 1 n 2 nn 2 1
(n1,2,3,)
(1)证明
lim
n
xn
存在;
(2)求
lim

例说中学数学极限问题解题常用十法

例说中学数学极限问题解题常用十法

例说中学数学极限问题解题常用十法作者:韩勇来源:《中学教学参考·理科版》2012年第12期中学数学解决极限问题的基本思路是先通过恒等变形化归为极限的基本问题,然后用极限四则运算法则进行处理,其恒等变形是解决极限问题的最关键一步.本文将结合实例介绍解决极限问题常用恒等变形的十种方法.一、利用约分零因子法【例1】求极限(-4-1x-2 )解析:分母有零因式的,首先分子、分母约去零因子,化归为连续函数的极限问题去求解.(-4-1x-2 )(2--4 )-1x+2 =-14 .二、利用分子、分母同除以相同因子法【例2】求极限-解析:∞∞ 型且分子、分母都是以多项式给出的极限,可以通过分子、分母同除以相同因子再求极限.--三、利用分子或分母有理化法【例3】求极限(x-)-解析:求含根式的极限,其主要方法为分子或分母有理化化去无理式,再求极限.(x-)-()()-四、利用数列公式求和法【例4】求极限().解析:对于数列的和、差或积求极限,若项数有限时可以直接利用极限的四则运算求极限,若项数为无限项时,应先把无限项化成有限项,如先求出前n项的和(差)或积再求极限.()-(13 )n+11-13 ]=32 .五、利用组合公式法【例5】求极限-n.解析:∵,∴-1-(14 )-1 =-12 .六、利用函数连续性法【例6】求极限-解析:初等函数(一次函数、二次函数、指数函数、对数函数、三角函数)在其定义域内是连续的,即在定义域内每一点均连续.如果函数f(x)、g(x)在某一点处连续,那么函数f(x)±g(x)、f(x)·g (x)、f(x)g(x)(g(x)≠0)在点处连续,则在点处的极限等于处的函数值.因为x=0是函数f(x)-的一个连续点,所以--=0.七、利用配凑法【例7】已知(3x)=2 ,求极限(2x)x.解析:把问题结合已知条件,从整体考虑,通过恰当的拼凑、配凑,使问题的解决能用已知条件,从而达到比较容易解决的目的.因为(3x)=2 ,所以(3x)=6 ,则(2x)=6 ,即(2x)2x=16 ,所以(2x)x=13.八、利用换元法【例8】求极限-1x.解析:因为当x→0时,直接从101+x-1x 的分子、分母中约去x比较困难,而101+x-1x 中当x→0时也趋近于0,因而可以考虑整体换元法,即设y=101+x,则x=y10-1,所以当x→0时,等价于y→1.解析:--1y10-1 =九、利用讨论法【例9】求极限(a为常数且a>0).解析:当数列中含有不确定的参数时,需要对参数进行分类讨论求解,其依据是:(|q|1或q=-1);(q=1).(1)当0() =01+0=0;(2)当a>1时,;(3)当a=1时,十、利用特殊观察法【例10】求极限(1)!= ;(2)()= .解析:(1)利用n→∞时,n!变化比变多得多,即n!的变化速率比的变化速率快得多,故!相当于1∞=0 ,所以!=0.(2)利用三角函数性质-,得-,又因为(-|x|),所以()=0.求极限问题时恒等变形方法灵活多样,要对题目进行全面分析,合理、恰当地选择方法,整体思考,往往可以化繁为简,在解题中起到事半功倍的效果.。

16种求极限的方法

16种求极限的方法

16种求极限的方法在微积分中,求极限是一项重要的技巧和方法,用于研究函数在其中一点或趋于其中一点时的行为。

求极限的方法有很多种,下面将介绍16种常见的求极限方法。

1.代入法:将待求极限中的变量替换成极限点处的值,如果代入后得到一个有界的数或者可数收敛,则该极限存在。

2.四则运算法则:利用加法、减法、乘法和除法的性质进行极限运算。

例如,如果两个函数的极限都存在,则它们的和、差、积以及商(除数非零)的极限均存在。

3.夹逼定理:如果两个函数在其中一点附近夹住一个函数,并且夹住的函数的极限存在,则被夹住的函数的极限也存在,并且等于夹住的函数的极限。

4.极限的唯一性:如果存在一个数L是函数f在其中一点的极限,那么该极限是唯一的。

5.极限的有界性:如果函数f在其中一点的极限存在,则函数f在该点附近必定有界。

反之,如果函数f在其中一点附近有界,那么该点处的极限必定存在。

6.无穷小量和无穷大量:无穷小量是指当自变量趋于其中一点时,函数值趋近于零的量,无穷大量是指当自变量趋于其中一点时,函数值趋近于无穷的量。

利用无穷小量和无穷大量的性质,可以简化极限的求解过程。

7. 根式求极限:使用L'Hopital法则来解决根式的极限问题,即将根式转化为分式,再求导数。

8.多项式求极限:将多项式的极限转化为无穷小量的极限,利用低阶无穷小量和高阶无穷小量的性质进行极限计算。

9.取对数法:将函数取对数后,利用对数的性质进行极限计算。

10.换元法:通过进行合适的变量替换,将待求极限转化为更容易求解的形式。

11.不等式运算法:通过使用不等式的性质,对函数进行合理的估计,从而求解极限。

12.导数法则:利用导数的性质,对函数进行极限计算。

例如,利用导数的定义和求导法则可以方便地求解一些函数的极限。

13.递推法:对于一些递归定义的数列或函数,可以通过递推法求解其极限。

14.泰勒展开法:利用函数对应点附近的泰勒展开式,将函数的极限转化为级数的极限,进而求解极限。

高数中求极限的16种方法

高数中求极限的16种方法

高数中求极限的16种方法——好东西首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)二、求极限的方法如下:1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。

全部熟记(x趋近无穷的时候还原成无穷小)2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0注意:罗比达法则分为3种情况0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!)E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则,最大项除分子分母!!!!!!!!!!!5.无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6.夹逼定理(主要对付数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

求极限的13种方法

求极限的13种方法

求极限的13种方法求极限的方法有很多种,以下列举了常见的13种方法和技巧,以帮助解决各种极限问题。

1.代入法:将极限中的变量代入表达式中,简化计算。

这通常适用于简单的多项式函数。

2.夹逼定理:当一个函数夹在两个趋向于相同极限的函数之间时,函数的极限也趋向于相同的值。

3.式子分解:通过将复杂的函数分解成更简单的部分,可以更容易地计算极限。

4.求导法则:使用导数的性质和规则来计算函数的极限。

这适用于涉及导数的函数。

5.递归关系:如果一个函数的递归关系式成立,可以使用递归关系来计算函数的极限。

6.级数展开:将函数展开成无穷级数的形式,可以使用级数的性质来计算函数的极限。

7.泰勒级数:对于可微的函数,可以通过使用泰勒级数来近似计算函数的极限。

8. 洛必达法则:如果一个函数的极限形式是$\frac{0}{0}$或$\frac{\infty}{\infty}$,可以使用洛必达法则来计算极限。

该法则涉及对分子分母同时求导的操作。

9.极限存在性证明:通过证明一个函数在一些点上的左极限和右极限存在且相等,可以证明函数在该点上的极限存在。

10.收敛性证明:对于一个序列极限,可以通过证明序列是有界且单调递增或单调递减的来证明其极限存在。

11.极限值的判断:根据函数的性质,可以判断函数在一些点上的极限是多少。

12.替换法:通过将变量替换为一个新的变量,可以使函数更容易计算极限。

13.反证法:通过假设极限不存在或不等于一些特定值,来推导出矛盾的结论,从而证明极限存在或等于一些特定值。

这些方法并非完整的极限求解技巧列表,但是它们是最常见和基本的方法。

在实际问题中,可能需要结合使用多种方法来求解复杂的极限。

求极限的方法总结

求极限的方法总结

求极限的方法总结求极限是数学分析中的一个重要概念,用于描述函数在某一点的变化趋势,包括函数趋于无穷大、无穷小、某一常数以及其他特殊情况等。

在解题过程中,需要灵活运用各种极限的计算方法,掌握不同类型极限的求解技巧。

下面将对常见极限的求解方法进行总结。

一、几种常见的极限类型1. 无穷大与无穷小极限当自变量趋于无穷大或无穷小时,函数的极限值称为无穷大或无穷小极限。

在计算过程中,可以利用以下方法求解:(1)使用等价无穷小替换法,将复杂的函数替换为更简单的无穷小,从而求出极限;(2)利用夹逼准则,通过找到两个函数夹住待求函数,确定其极限范围;(3)使用洛必达法则,计算函数的导数与求导后函数的极限,进而求得原函数的极限。

2. 常数极限当自变量趋于某一常数时,函数的极限称为常数极限。

常见的求解方法包括:(1)直接计算法,将自变量带入表达式中,求解对应的极限值;(2)利用函数的连续性,根据定义进行计算;(3)使用复合函数的性质,将函数分解为多个部分,然后计算各部分的极限。

3. 极限的两侧性质当自变量趋于某一点的左右两侧时,函数的极限可能存在不同的值。

这时可根据函数的性质和定义来判断其左右极限是否相等,常用的方法有:(1)利用函数的连续性,判断函数在特定点处是否连续,以及左右极限是否相等;(2)使用夹逼准则,确定左右极限的取值范围。

4. 极限存在性的判定在有些情况下,函数的极限可能不存在。

判断函数是否存在极限的方法有多种:(1)使用保号性质,判断是否存在有界变量和无穷小数列;(2)利用函数的性质,如奇偶性、周期性等,判断函数在某一点的趋势。

二、极限的计算方法1.常用求极限的基本运算法则(1)常数运算法则:如果f(x)和g(x)的极限都存在,那么常数c * f(x)和f(x) ± g(x)的极限也存在,并且满足以下关系:lim(c * f(x)) = c * lim(f(x)),lim(f(x) ± g(x)) = lim(f(x)) ± lim(g(x))。

函数极限的十种求法

函数极限的十种求法

函数极限的十种求法设 f (x )=xsin 1/x + a,x<0,b+1,x=0,x^2-1,x<0,试求: 当a ,b 为何值时,f (x )在x=0处的极限存在? 当a ,b 为何值时,f (x )在x=0处连续? 注:f (x )=xsin 1/x +a, x< 0 b+1, x=0 X^2-1, x>0 解:f(0)=b+1左极限:lim(x→0-) f(x)=lim(x→0-) (xsin(1/x)+a)=0+a =a 左极限:lim(x→0+) f(x)=lim(x→0+) (x^2-1)=0-1=-1f(x)在x =0处连续,则lim(x→0-) f(x)=lim(x→0+) f(x)=f(0), 所以a =-1=b+1, 所以a =-1,b =-27.利用等价无穷小量代换求极限例 8 求极限30tan sin lim sin x x xx→-. 解 由于()s i n t a ns i n 1c os c o s xx x x x-=-,而 ()sin ~0x x x →,()21cos ~02x x x -→,()33sin ~0x x x →故有23300tan sin 112lim lim sin cos 2x x x x x x x x x →→⋅-=⋅=. 注 在利用等价无穷小量代换求极限时,应注意只有对所求极限式中相乘或相除的因式才能用等价无穷小量替代,而对极限式中的相加或相减部分则不能随意替代,如在例题中,若因有()t a n ~0x x x →,()s i n ~0x x x →,而推出 3300tan sin limlim 0sin sin x x x x x xx x→→--==, 则得到的式错误的结果.附 常见等价无穷小量()sin ~0x x x →,()tan ~0x x x →,()21cos ~02x x x -→,()arcsin ~0x x x →,()arctan ~0x x x →,()1~0x e x x -→, ()()ln 1~0x x x +→,()()11~0x x x αα+-⋅→. 8 利用洛比达法则求极限洛比达法则一般被用来求00型不定式极限及∞∞型不定式极限.用此种方法求极限要求在点0x 的空心领域()00U x 内两者都可导,且作分母的函数的导数不为零.例1 求极限21cos limtan x xxπ→+.解 由于()2l i m 1c o s l i m t a n 0x x x x ππ→→+==,且有()1cos 'sin x x +=-,()22tan '2tan sec 0x x x =≠,由洛比达法则可得21cos lim tan x xxπ→+2s i nl i m 2t a n s e cx x x x π→-=3cos lim 2x x π→⎛⎫=- ⎪⎝⎭12=. 8.利用定义求极限1.()()()000'limx x f x f x f x x x →-=-,2.()()()0000'limh f x h f x f x h→+-=.其中h 是无穷小,可以是()0x x x x ∆∆=-,x ∆的函数或其他表达式.例1 求极限2222x x p p x q q→+-+-()0,0p q >>.分析 此题是0x →时00型未定式,在没有学习导数概念之前,常用的方法是消去分母中的零因子,针对本题的特征,对分母分子同时进行有理化便可求解.但在学习了导数的定义式之后,我们也可直接运用导数的定义式来求解.解 令()f x =()g x =则x → ()()()()000lim00x f x f x g x g x →--=--()()'0'0f g =p q=.9. 利用归结原则求极限归结原则设f 在()00;'U x δ内有定义,()0lim x x f x →存在的充要条件是:对任何含于()00;'U x δ且以0x 为极限的数列{}n x ,极限()lim n n f x →∞都存在且相等.例1求极限211lim 1nn n n →∞⎛⎫++ ⎪⎝⎭.分析 利用复合函数求极限,令()21211x x x u x x ++⎛⎫=+ ⎪⎝⎭,()1x v x x+=求解. 解 令()21211x x x u x x ++⎛⎫=+ ⎪⎝⎭,()1x v x x+=则有 ()lim n u x e →+∞=;()lim 1n v x →+∞=,由幂指函数求极限公式得()()211lim 1lim xv x x x u x e x x →+∞→+∞⎛⎫++== ⎪⎝⎭, 故由归结原则得221111lim 1lim 1n xn x e n n x x →∞→+∞⎛⎫⎛⎫++=++= ⎪ ⎪⎝⎭⎝⎭. 注 1 归结原则的意义在于把函数归结为数列极限问题来处理,对于0x x +→,0x x -→,x →+∞和x →-∞这四种类型的单侧极限,相应的归结原则可表示为更强的形式.注 2 若可找到一个以0x 为极限的数列{}n x ,使()lim n n f x →∞不存在,或找到两个都以0x 为极限的数列{}'n x 与{}''n x ,使()'lim n n f x →∞与()"lim n n f x →∞都存在而不相等,则()0lim x x f x →不存在10.利用泰勒公式求极限在此种求极限的方法中,用得较多的是泰勒公式在00x =时的特殊形式,即麦 克劳林公式.也可称为带有佩亚诺余项的麦克劳林公式()()()()()()()2"000'02!!n nn f f f x f f x x x x n ο=+++⋯⋯++.例1 求极限2240cos limx x x e x -→-.解 由于极限式的分母为4x ,我们用麦克劳林公式表示极限的分子,取4n =:()245cos 1224x x x x ο=-++,()22452128x x x ex ο-=-++,()2452cos 12x x x ex ο--=-+.因而求得()24524400cos 112limlim 12x x x x x x ex x ο-→→-+-==-.利用此种方法求极限时,必须先求函数的麦克劳林公式,选取恰当的n . 2.10用导数的定义求极限常用的导数定义式,设函数()y f x =在点0x 处可导,则下列式子成立: 1.()()()00'limx x f x f x f x x x →-=-,2.()()()0000'limh f x h f x f x h→+-=.其中h 是无穷小,可以是()0x x x x ∆∆=-,x ∆的函数或其他表达式.例1证明()()211lim 212x x x x →-=--.分析 当1x ≠时,10x -≠,故()()211122x x x x x-+=---,于是有 ()()23111332212222x x x x x x x x x --+--=-==-----, 取112δ=,当101x δ<-<时1322x <<,故有122x ->,从而有()()21212x x x ----61x <-,取26εδ=即可.证明 对于0ε∀>,取1m i n ,26εδ⎧⎫=⎨⎬⎩⎭,于是当01x δ<-<时,有 ()()2126112x x x x ε--<-<--,由定义知()()211lim 212x x x x →-=--成立.注 函数()f x 在点0x 处是否有极限,与函数()f x 在点0x 处是否有定义无关.。

求极限的16个方法总结

求极限的16个方法总结

求极限的16个方法总结求极限的16个方法总结总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,因此我们需要回头归纳,写一份总结了。

你所见过的总结应该是什么样的?以下是小编为大家整理的求极限的16个方法总结,仅供参考,大家一起来看看吧。

首先对极限的总结如下。

极限的保号性很重要就是说在一定区间内函数的正负与极限一致。

1、极限分为一般极限,还有个数列极限(区别在于数列极限时发散的,是一般极限的一种)。

2、解决极限的方法如下1)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1或者(1+x)的a次方-1等价于Ax等等。

全部熟记。

(x趋近无穷的时候还原成无穷小)2)洛必达法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提。

必须是X趋近而不是N趋近。

(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件。

还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用无疑是死路一条)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。

洛必达法则分为三种情况1)0比0无穷比无穷时候直接用2)0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成1中的形式了3)0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0当他的幂移下来趋近于无穷的时候LNX趋近于0)3、泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!)e的x展开sina展开cos展开ln1+x展开对题目简化有很好帮助4、面对无穷大比上无穷大形式的解决办法。

高数中求极限的16种方法

高数中求极限的16种方法

高数中求极限的16种方法——好东西首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)二、求极限的方法如下:1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。

全部熟记(x趋近无穷的时候还原成无穷小)2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0注意:罗比达法则分为3种情况0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!)E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则,最大项除分子分母!!!!!!!!!!!5.无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6.夹逼定理(主要对付数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

极限的求法

极限的求法

极限的求法摘要: 极限论作为数学分析的基础,一直是高等数学教育中的一个核心部分,本文主要介绍一些求极限的方法,主要目的是在了解了什么是极限的基础上系统地探讨各类极限问题的求解方法.由于极限分布于高等数学的始终,许多重要的概念都是由极限定义的。

反过来,我们也可以利用这些概念来求一些极限。

本文整理的极限运算方法有如下十种:1、用极限的定义求极限。

2、四则运算求极限。

3、利用两个重要极限求极限。

4、利用函数的连续性求极限。

5利用单调有界定理求极限。

6、利用无穷小量的有关性质求极限。

7、用左右极限与极限关系求极限。

8、利用罗比塔法则求极限。

9、利用麦克劳林公式求极限。

10、利用泰勒公式求极限 关键词: 极限 四则运算 罗比塔法则The General Method in Calculating LimitTu yue(Department of Mathematics Bohai University Liaoning Jinzhou 121000 China)Abstract : Limit as a mathematical analysis on the basis of the math education has always been one of the core of this paper mainly introduces some way to limit, the main goal is to know what is a limit on the basis of a systematic way to limit the problem of methods of solution. owing to the limit in mathematics, many important concepts are defined by the end. in turn, we can also use of these concepts to find some limit. this limits the methods of operation there are ten kinds of :1, with a limit to the definition of extreme. 2 and to limit the operation. three, the use of two important to the maximum limit. 4, the use of relese the continuity to limit the use of flat. five have to define truth to the limit. 6 and the nature of infinity 小量 to limit. 7, with maximum limit relations with or to limit. 8, the use of 罗比塔法 is to limit. 9, the use of the work of the formula for the extreme. 10, using taylor's formula for maximumKey wrods: Limit the operation The operation of the four L ’Hospital引 言极限问题在我国古代就有着深渊的研究。

函数极限的十种求法

函数极限的十种求法

函数极限的十种求法函数极限是高等数学中的一个重要概念,在数学分析、微积分、实变函数、复变函数等领域均有应用。

函数极限的求法有很多种,以下将介绍其中的十种方法。

一、代数方法利用现有函数的代数性质,根据极限的定义求解。

例如,对于函数 f(x)=2x+1-x,当 x 趋近于 1 时,有:lim f(x) = lim (2x+1-x) = lim x+1 = 2x→1 x→1 x→1 x→1二、夹逼定理夹逼定理也称为夹逼准则或夹逼定律。

当f(x)≤g(x)≤h(x),且lim f(x)=lim h(x)=l 时,有 lim g(x)=l。

例如,对于函数 f(x)=sin(x)/x 和 g(x)=1,当 x 趋近于 0 时,有:-1 ≤sin(x)/x ≤ 1lim -1 ≤ lim sin(x)/x ≤ lim 1x→0 x→0 x→0 x→0lim sin(x)/x = 1三、单调有界准则单调有界准则也称收敛定理。

当一个数列同时满足单调有界性质,即数列单调递增或单调递减且有上(下)界时,该数列必定收敛。

对于函数而言,只需要证明其单调有界的性质,即可用该准则求出其极限值。

例如,对于函数 f(x)=sin(x)/x,当 x 趋近于 0 时,此时 f(x) 没有极限值,但是根据单调有界准则,可以求得其极限是 1。

四、洛必达法则洛必达法则是一种有效的求函数极限值的方法,通常用在0/0形式的极限中。

对于连续可导的函数 f(x) 和 g(x),若 lim f(x)/g(x)存在,则有:lim f(x) lim f'(x)lim ——— = lim ———x→a g(x) x→a g'(x)其中“lim” 表示极限符号,f'(x) 表示 f(x) 的导数,g'(x) 表示 g(x) 的导数。

如果上式右边的极限存在,那么左边的极限也存在,并且二者相等。

例如,对于函数 f(x)=x^2+2x 和 g(x)=x+1,当 x 趋近于 1 时,有:lim (x^2+2x) lim (2x+2)lim ———— = lim ———— = 4x→1 x+1 x+1五、泰勒公式泰勒公式是求解函数在某点处的极限值的有效方法之一。

求极限的21个方法总结

求极限的21个方法总结

求极限的21个方法总结1. 直接代入法:将变量的值代入极限表达式中,计算极限的值。

2. 分子分母同除以最高次项的方法:可以使得分子和分母的最高次项的系数为1,简化计算。

3. 消去法:利用性质将某些项消去,使得表达式更容易计算。

4. 因式分解法:将极限表达式中的因式进行分解,简化计算。

5. 分数分解法:将极限表达式中的分数进行分解,简化计算。

6. 奇偶性性质:利用函数的奇偶性质,简化计算。

7. 倍角、半角、和差公式:利用三角函数的相关公式,简化计算。

8. 幂函数性质:利用幂函数的性质,简化计算。

9. 对数函数性质:利用对数函数的性质,简化计算。

10. 指数函数性质:利用指数函数的性质,简化计算。

11. 三角函数性质:利用三角函数的性质,简化计算。

12. 极坐标法:将极限表达式转化为极坐标形式,简化计算。

13. 无穷小代换法:将极限表达式中的变量代换为无穷小量,简化计算。

14. 夹逼定理:利用夹逼定理确定极限的值。

15. L'Hopital法则:当计算的极限为0/0或者∞/∞形式时,可以利用L'Hopital 法则进行计算。

16. 泰勒展开法:将极限表达式进行泰勒展开,取较低阶项进行计算。

17. 递推法:将极限表达式中的各项逐步推导出来,从而得到极限的值。

18. 积分法:将极限表达式转化为积分形式,利用积分的性质计算极限的值。

19. 微分法:将极限表达式转化为微分形式,利用微分的性质计算极限的值。

20. 反函数法:将极限表达式中的函数进行反函数变换,简化计算。

21. 几何法:利用几何图形的性质计算极限的值。

求极限方法总结

求极限方法总结

求极限方法总结求极限方法总结一,求极限的方法横向总结:1带根式的分式或简单根式加减法求极限:1)根式相加减或只有分子带根式:用平方差公式,凑平方(有分式又同时出现未知数的不同次幂:将未知数全部化到分子或分母的位置上)2)分子分母都带根式:将分母分子同时乘以不同的对应分式凑成完全平方式(常用到2分子分母都是有界变量与无穷大量加和求极限:分子与分母同时除以该无穷大量凑出无穷小量与有界变量的乘积结果还是无穷小量。

3等差数列与等比数列和求极限:用求和公式。

4分母是乘积分子是相同常数的n项的和求极限:列项求和5分子分母都是未知数的不同次幂求极限:看未知数的幂数,分子大为无穷大,分子小为无穷小或须先通分。

6运用重要极限求极限(基本)。

7乘除法中用等价无穷小量求极限。

8函数在一点处连续时,函数的极限等于极限的函数。

9常数比0型求极限:先求倒数的极限。

10根号套根号型:约分,注意别约错了。

11三角函数的加减求极限:用三角函数公式,将sin化cos二,求极限的方法纵向总结:1未知数趋近于一个常数求极限:分子分母凑出(x-常数)的形式,然后约分(因为x不等于该常数所以可以约分)最后将该常数带入其他式子。

2未知数趋近于0或无穷:1)将x放在相同的位置2)用无穷小量与有界变量的乘积3)2个重要极限4)分式解法(上述)高数解题技巧。

高数(上册)期末复习要点高数(上册)期末复习要点第一章:1、极限2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法 2、分部积分法(注意加C )定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面4、空间旋转面(柱面)高数解题技巧。

高等数学求极限的各种方法

高等数学求极限的各种方法

求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。

【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。

【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a n nm m m m n n n n x 0lim 011011ΛΛ 3.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,就是通过有理化化去无理式。

【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limxxx x +-+→【解】xx x xx x x x x x sin 1tan 1sin tan limsin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........就是解题的关键 4.应用两个重要极限求极限两个重要极限就是1sin lim 0=→xxx 与e x n x x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。

16种求极限的方法

16种求极限的方法

16种求极限的方法 <网上找的仅供参考>首先说下我的感觉,假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。

树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。

函数的性质表现在各个方面首先对极限的总结如下极限的保号性很重要就是说在一定区间内函数的正负与极限一致1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。

全部熟记(x趋近无穷的时候还原成无穷小)2落笔他法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)必须是 0比0 无穷大比无穷大!!!!!!!!!当然还要注意分母不能为0落笔他法则分为3中情况1 0比0 无穷比无穷时候直接用2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成1中的形式了3 0的0次方 1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)3泰勒公式 (含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开 sina 展开 cos 展开 ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

求函数极限的方法和技巧

求函数极限的方法和技巧

求函数极限的方法和技巧在数学剖析和微积分学中 , 极限的观点据有主要的地位并以各样形式出现而贯串所有内容 , 所以掌握好极限的求解方法是学习数学剖析和微积分的重点一环。

本文就对于求函数极限的方法和技巧作一个比较全面的归纳、综合 , 力争在方法的正确灵巧运用方面 , 对读者有所助益。

一、求函数极限的方法 1、运用极限的定义:例 : 用极限制义证明: lim x 2 3x 2 1x 2x 2x23 x 2x24 x 42证 : 由1x 2x2x2x x 220 ,取,则当 0x 2时 , 就有 x23x 2 1x 2由函数极限定义有 :x 2 3x 2 1。

limx2x 22、利用极限的四则运算性质:若 lim f ( x) A lim g (x) Bx x 0x x 0(I) limf (x) g( x)lim f ( x)lim g( x)A Bx x 0xx 0x x 0lim f ( x ) g x )lim f x ) lim g x ) A B(II)x x 0x x 0x x 0f (x) lim f ( x)A(III)若 B ≠0则: limx x 0g (x)lim g( x) Bx x 0xx 0( IV ) lim c f ( x)c lim f ( x) cA( c 为常数)xx 0x x 0上述性质对于 x, x, x时也相同建立例:求 lim x23x 5x 2 x 4解 :lim x 2 3x 5 223255x 4 = 242x 23、约去零因式(此法合用于xx 0时 , 0型 )x3x 2例 :求 lim16x 20x2 x37 x 2 16 x 12解 : 原式 = lim x 33x 210x ( 2x 2 6x 20)x2x 3 5x 26x (2x 210x 12)=lim (x 2)( x 2 3x 10)x 2 (x2)( x 25x 6)= lim(x23x 10)= lim ( x 5)( x 2)= lim x57x 2 (x2 5x 6) x 2 ( x 2)( x 3) x2x 3 4、通分法(合用于型)例 :求 lim (44 2 1 )x 2 x 2x解 :原式 = lim 4 (2 x)= lim ( 2 x) 1 1 x) (2 x)( 2 = lim4x2 ( 2 x) x 2 (2 x) x 2 2 x 5、利用无量小量性质法(特别是利用无量小量和有界量之乘积仍为无量小量的性质)设函数 f(x) 、 g(x) 知足:( I ) lim f (x)0 (II)g( x) M (M 为正整数 )x x 0则: lim( ) f( x ) 0x x 0 g x例 : 求 lim x1sinx 0x解: 由lim x 0 而x 06、利用无量小量和无量大批的关系。

极限求法总结

极限求法总结

极限的求法1、利用极限的定义求极限2、直接代入法求极限3、利用函数的连续性求极限4、利用单调有界原理求极限5、利用极限的四则运算性质求极限6.利用无穷小的性质求极限7、无穷小量分出法求极限8、消去零因子法求极限9、利用拆项法技巧求极限10、换元法求极限11、利用夹逼准则求极限[3]12、利用中值定理求极限13、利用罗必塔法则求极限14、利用定积分求和式的极限15、利用泰勒展开式求极限16、分段函数的极限1、利用极限的定义求极限用定义法证明极限,必须有一先决条件,即事先得知道极限的猜测值A,这种情况一般较困难推测出,只能对一些比较简单的数列或函数推测分析出极限值,然后再去用定义法去证明,在这个过程中,放缩法和含绝对值的不等式总是密切相连的。

例:lim f x A的ε-δ 定义是指:ε>0,δ=δ( x0,ε) >0,0< |x- x0| x x<δ |f(x)-A| <ε 为了求δ 可先对x0 的邻域半径适当限制,如然后适当放大|f(x)-A |≤φ (x) ( 必然保证φ (x) 为无穷小) ,此时往往要用含绝对值的不|x+a|=|(x- x0)+( x0 +a)| ≤|x- x0|+| x0+a| <|x0 +a|+δ1 域|x+a|=|(x- x0)+( x0 +a)| ≥| x0 +a|-|x- x0|>| x0 +a|- δ1 从φ(x)<δ 2,求出δ 2后,取δ=min( δ1,δ2) ,当0<|x- x0 | <δ 时,就有|f(x)-A| <ε.例:设lim x n a 则有 lim x 1x2...xna.n n n证明:因为lim x a , 对,N1N1() ,当n N1 时,x n -a于是当n 2n N1时,x1 x2 (x)nax1 x2 (x)nnan n其中 A x1 a x2 a x N1 是一个定数再由A,n2解得 n 2A,故取N max N1, 2A 当n N时,x1 x2 ... x n +n 2 22、直接代入法求极限适用于分子、分母的极限不同时为零或不同时为例 1.求分析由于所以采用直接代入法解原式=3、利用函数的连续性求极限定理[2]:一切连续函数在其定义区间内的点处都连续,即如果x0是函数f(x)的定义区间内的一点,则有 lim f(x) f (x0)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数极限的十种求法信科2班江星雨20140202250 函数极限可以分成而运用ε-δ定义更多的见诸于已知极限值的证明题中。

掌握这类证明对初学者深刻理解运用极限定义大有裨益。

以的极限为例,f(x) 在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数,使得当x满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函数f(x)当x→x。

时的极限。

1.利用极限的四则运算法则:极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者。

方能利用极限四则运算法则进行求之。

不满足条件者,不能直接利用极限四则运算法则求之。

但是,井非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。

而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。

例 1求lim( x 2 − 3x + 5).x→ 2解:lim( x 2 − 3x + 5) = lim x 2 − lim 3x + lim 5= (lim x) 2 − 3 lim x + lim 5= 2 2 − 3 ⋅ 2 + 5 = 3.x→2 x →2 x →2 x →2 x →2 x →2 x →22.利用洛必达法则洛必达(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。

一般用在求导后为零比零或无穷比无穷的类型。

利用洛必达求极限应注意以下几点:设函数f(x)和F(x)满足下列条件:(1)x→a时,lim f(x)=0,lim F(x)=0;(2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0;(3)x→a时,lim(f'(x)/F'(x))存在或为无穷大则x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x))例1:1-cosx = 1-{1-2[sin(x/2)]^2} = 2[sin(x/2)]^2xsinx = 2xsin(x/2)cos(x/2)原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x对分子分母同时求导(洛必达法则)(tgx)' = 1 / (cosx)^2(x)' = 1原式= lim 1/(cosx)^2当x --> 0 时,cosx ---> 1原式= 13.利用两个重要极限:应用第一重要极限时,必须同时满足两个条件:①分子、分母为无穷小,即极限为0 ;②分子上取正弦的角必须与分母一样。

应用第二重要极限时,必须同时满足四个条件:①带有“1”;②中间是“+ ”号;③“+ ”号后面跟无穷小量;④指数和“+ ”号后面的数要互为倒数。

例1:求lim(arcsinx/x),x趋于0解A.令x=sint,则当t 趋于0时,x趋于0,且arcsinx=t所以 B.lim(arcsinx/x),x趋于0.=lim(t/sint),t趋于0=14.利用等价无穷小代换定理利用此定理求函数的极限时,一般只在以乘除形式出现时使用。

若以和或差形式出现时,不要轻易代换,因为经此代换后,往往会改变无穷小之比的阶数。

要用好等价无穷小代换定理,必须熟记一些常用的等价无穷小。

例1lim<x→0->√(1-cosx)/tanx=lim<x→0->-√2sin(x/2)/tanx=lim<x→0->-√2/2x/x=-√2/2lim<x→0+>√(1-cosx)/tanx=lim<x→0->√2sin(x/2)/tanx=lim<x→0->√2/2x/x=√2/2因为lim<x→0->√(1-cosx)/tanx≠lim<x→0+>=√(1-cosx)/tanx所以极限不存在5.柯西收敛准则数列{Xn}收敛的充分必要条件是对于任意给定的正数ε存在着这样的正整数N使得当m>N,n>N时就有|Xn-Xm|<ε这个准则的几何意义表示,数列{Xn}收敛的充分必要条件是:该数列中足够靠后的任意两项都无限接近。

例1证明:xn=1-1/2+1/3-1/4+......+ [(-1)^(n+1)]/n 有极限证:对于任意的m,n属于正整数,m>n|xn-xm|=| [(-1)^(n+2)]/(n+1)+......+[(-1)^(m+1)]/m |当m-n为奇数时|xn-xm|=| [(-1)^(n+2)]/(n+1)+......+[(-1)^(m+1)]/m |<1/n(n+1)+1/(n+1)(n+2)+......+1/(m-1)m=(1/n-1/m)→0由收敛原理得{xn}收敛当m-n为偶数时|xn-xm|=| [(-1)^(n+2)]/(n+1)+......+[(-1)^(m+1)]/m |<1/n(n+1)+1/(n+1)(n+2)+......+1/(m-2)(m-1)-1/m=(1/n-1/(m-1)-1/m)→0由柯西收敛原理得{xn}收敛综上{xn}收敛,即{xn}存在极限6.利用函数连续性:(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)描述函数的一种连绵不断变化的状态,即自变量的微小变动只会引起函数值的微小变动的情况。

确切说来,函数在某点连续是指:当自变量趋于该点时,函数值的极限与函数在该点所取的值一致。

例1设 f (x )=xsin 1/x + a,x<0,b+1,x=0,x^2-1,x<0,试求:当a ,b 为何值时,f (x )在x=0处的极限存在?当a ,b 为何值时,f (x )在x=0处连续?注:f (x )=xsin 1/x +a, x< 0b+1, x=0X^2-1, x>0解:f(0)=b+1左极限:lim(x→0-) f(x)=lim(x→0-) (xsin(1/x)+a)=0+a =a左极限:lim(x→0+) f(x)=lim (x→0+) (x^2-1)=0-1=-1f(x)在x =0处连续,则lim(x→0-) f(x)=lim(x→0+) f(x)=f(0),所以a =-1=b+1,所以a =-1,b =-27.利用等价无穷小量代换求极限例 8 求极限30tan sin lim sin x x x x →-. 解 由于()sin tan sin 1cos cos x x x x x-=-,而 ()sin ~0x x x →,()21cos ~02x x x -→,()33sin ~0x x x → 故有23300tan sin 112lim lim sin cos 2x x x x x x x x x →→⋅-=⋅=. 注 在利用等价无穷小量代换求极限时,应注意只有对所求极限式中相乘或相除的因式才能用等价无穷小量替代,而对极限式中的相加或相减部分则不能随意替代,如在例题中,若因有()tan ~0x x x →,()sin ~0x x x →,而推出3300tan sin lim lim 0sin sin x x x x x x x x→→--==, 则得到的式错误的结果.附 常见等价无穷小量()sin ~0x x x →,()tan ~0x x x →,()21cos ~02x x x -→, ()arcsin ~0x x x →,()arctan ~0x x x →,()1~0x e x x -→,()()ln 1~0x x x +→,()()11~0x x x αα+-⋅→.8 利用洛比达法则求极限洛比达法则一般被用来求00型不定式极限及∞∞型不定式极限.用此种方法求极限要求在点0x 的空心领域()00Ux 内两者都可导,且作分母的函数的导数不为零. 例1求极限21cos lim tan x x xπ→+. 解 由于()2lim 1cos lim tan 0x x x x ππ→→+==,且有()1cos 'sin x x +=-,()22tan '2tan sec 0x x x =≠,由洛比达法则可得21cos lim tan x x xπ→+ 2sin lim 2tan sec x x x xπ→-= 3cos lim 2x x π→⎛⎫=- ⎪⎝⎭ 12=. 8.利用定义求极限1.()()()000'lim x x f x f x f x x x →-=-, 2.()()()0000'lim h f x h f x f x h→+-=. 其中h 是无穷小,可以是()0x x x x ∆∆=-,x ∆的函数或其他表达式.例1求极限0x →()0,0p q >>.分析 此题是0x →时00型未定式,在没有学习导数概念之前,常用的方法是消去分母中的零因子,针对本题的特征,对分母分子同时进行有理化便可求解.但在学习了导数的定义式之后,我们也可直接运用导数的定义式来求解.解 令()f x =()g x = 则0x → ()()()()000lim 00x f x f x g x g x →--=-- ()()'0'0f g = p q =. 9. 利用归结原则求极限归结原则设f 在()00;'U x δ内有定义,()0lim x x f x →存在的充要条件是:对任何含于()00;'U x δ且以0x 为极限的数列{}n x ,极限()lim n n f x →∞都存在且相等. 例1 求极限211lim 1nn n n →∞⎛⎫++ ⎪⎝⎭. 分析 利用复合函数求极限,令()21211x x x u x x ++⎛⎫=+ ⎪⎝⎭,()1x v x x+=求解. 解 令()21211x x x u x x ++⎛⎫=+ ⎪⎝⎭,()1x v x x +=则有 ()lim n u x e →+∞=;()lim 1n v x →+∞=,由幂指函数求极限公式得()()211lim 1lim xv x x x u x e x x →+∞→+∞⎛⎫++== ⎪⎝⎭, 故由归结原则得221111lim 1lim 1n x n x e n n x x →∞→+∞⎛⎫⎛⎫++=++= ⎪ ⎪⎝⎭⎝⎭. 注 1 归结原则的意义在于把函数归结为数列极限问题来处理,对于0x x +→,0x x -→,x →+∞和x →-∞这四种类型的单侧极限,相应的归结原则可表示为更强的形式. 注 2 若可找到一个以0x 为极限的数列{}n x ,使()lim n n f x →∞不存在,或找到两个都以0x 为极限的数列{}'n x 与{}''n x ,使()'lim n n f x →∞与()"lim n n f x →∞都存在而不相等,则()0lim x x f x →不存在10.利用泰勒公式求极限在此种求极限的方法中,用得较多的是泰勒公式在00x =时的特殊形式,即麦 克劳林公式.也可称为带有佩亚诺余项的麦克劳林公式()()()()()()()2"000'02!!n n n f f f x f f x x x x n ο=+++⋯⋯++. 例1 求极限2240cos lim x x x ex -→-.解 由于极限式的分母为4x ,我们用麦克劳林公式表示极限的分子,取4n =:()245cos 1224x x x x ο=-++, ()22452128x x x e x ο-=-++, ()2452cos 12x x x e x ο--=-+. 因而求得()24524400cos 112lim lim 12x x x x x x ex x ο-→→-+-==-. 利用此种方法求极限时,必须先求函数的麦克劳林公式,选取恰当的n .2.10用导数的定义求极限常用的导数定义式,设函数()y f x =在点0x 处可导,则下列式子成立: 1.()()()000'lim x x f x f x f x x x →-=-, 2.()()()0000'lim h f x h f x f x h →+-=. 其中h 是无穷小,可以是()0x x x x ∆∆=-,x ∆的函数或其他表达式.例1证明()()211lim 212x x x x →-=--. 分析 当1x ≠时,10x -≠,故()()211122x x x x x -+=---,于是有 ()()23111332212222x x x x x x x x x --+--=-==-----,取112δ=,当101x δ<-<时1322x <<,故有122x ->,从而有()()21212x x x ---- 61x <-,取26εδ=即可.证明 对于0ε∀>,取1min ,26εδ⎧⎫=⎨⎬⎩⎭,于是当01x δ<-<时,有 ()()2126112x x x x ε--<-<--, 由定义知()()211lim 212x x x x →-=--成立. 注 函数()f x 在点0x 处是否有极限,与函数()f x 在点0x 处是否有定义无关.。

相关文档
最新文档