课时跟踪检测(十六) 导数的应用(二)

合集下载

2020学年高中数学第四章导数应用2导数在实际问题中的应用2.1实际问题中导数的意义课时跟踪训练北

2020学年高中数学第四章导数应用2导数在实际问题中的应用2.1实际问题中导数的意义课时跟踪训练北

2019-2020学年高中数学第四章导数应用2 导数在实际问题中的应用2.1 实际问题中导数的意义课时跟踪训练北师大版选修1-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019-2020学年高中数学第四章导数应用2 导数在实际问题中的应用2.1 实际问题中导数的意义课时跟踪训练北师大版选修1-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019-2020学年高中数学第四章导数应用2 导数在实际问题中的应用2.1 实际问题中导数的意义课时跟踪训练北师大版选修1-1的全部内容。

2。

1 实际问题中导数的意义[A组基础巩固]1.已知函数y=f(x),x∈R,则f′(x0)表示( )A.自变量x=x0时对应的函数值B.函数值y在x=x0时的瞬时变化率C.函数值y在x=x0时的平均变化率D.无意义解析:由导数的概念可知选B。

答案:B2.速度v关于时间t的函数关系式为v=f(t)=t2-10t,则t=1时的加速度为( ) A.-9 B.-8C.9 D.8解析:f′(t)=2t-10,∴f′(1)=2×1-10=-8,即为t=1时的加速度.答案:B3.从时刻t=0开始的t s内,通过某导体的电量(单位:C)可由公式q=2t2+3t表示,则第5 s时电流强度为( )A.27 C/s B.20 C/sC.25 C/s D.23 C/s解析:某种导体的电量q在5 s时的瞬时变化率就是第5 s时的电流强度.∵q′=4t+3,∴当t=5时,电流强度为4×5+3=23(C/s).答案:D4.某公司的盈利y(元)和时间x(天)的函数关系是y=f(x),假设f(x)>0恒成立,且f′(10)=10,f′(20)=1,则这些数据说明第20天与第10天比较() A.公司已经亏损B.公司的盈利在增加,增加的幅度变大C.公司在亏损且亏损幅度变小D.公司的盈利在增加,但增加的幅度变小解析:导数为正说明盈利是增加的,导数变小说明增加的幅度变小了,但还是增加的.答案:D5.某汽车的紧急刹车装置在遇到特别情况时需在2 s内完成刹车,其位移(单位:m)关于时间(单位:s)的函数为s(t)=-错误!t3-4t2+20t+15,则s′(1)的实际意义为( )A.汽车刹车后1 s内的位移B.汽车刹车后1 s内的平均速度C.汽车刹车后1 s时的瞬时速度D.汽车刹车后1 s时的位移解析:由导数的实际意义知,位移关于时间的瞬时变化率为该时刻的瞬时速度.答案:C6.一质点沿直线运动,如果由始点起经过t秒后的位移为s=3t2+t,则速度v=10时的时刻t=________.解析:s′=6t+1,则v(t)=6t+1,令6t+1=10,则t=错误!。

2019-2020学年高中数学选修2-2人教A版课时跟踪检测:第1章 导数及其应用 1.1 1.1.

2019-2020学年高中数学选修2-2人教A版课时跟踪检测:第1章 导数及其应用 1.1 1.1.

第一章导数及其应用1.1 变化率与导数1.1.1 变化率问题1.1.2 导数的概念课时跟踪检测一、选择题1.自变量从x0变到x1时函数值的增量与相应自变量的增量之比是函数()A.在区间[x0,x1]上的平均变化率B.在x0处的变化率C.在x1处的变化量D.在区间[x0,x1]上的导数答案:A2.函数y=x2在x0到x0+Δx之间的平均变化率为k1,在x0-Δx到x0之间的平均变化率为k2,则k1与k2的大小关系为()A.k1>k2B.k1<k2C.k1=k2 D.不确定解析:k1=f(x0+Δx)-f(x0)Δx=(x0+Δx)2-x20Δx=2x0+Δx;k2=f(x0)-f(x0-Δx)Δx=x20-(x0-Δx)2Δx=2x0-Δx.因为Δx可正也可负,所以k1与k2的大小关系不确定.答案:D3.已知函数f(x)=x2+1的图象上一点(1,2)及邻近一点(1+Δx,2+Δy),则limΔx→0ΔyΔx等于()A.2 B.2xC.2+Δx D.2+Δx2解析:∵邻近一点的坐标为(1+Δx,2+Δy),∴2+Δy=f(1+Δx)=(1+Δx)2+1=2+2Δx+(Δx)2.∴Δy=(Δx)2+2Δx.∴ΔyΔx=2+Δx.∴lim Δx→0ΔyΔx=limΔx→0(2+Δx)=2.故选A.答案:A4.函数f(x)=ax3+3x2+2,若f′(-1)=4,则实数a的值是()A.193B.163C.133 D.103解析:∵f(x)=ax3+3x2+2,∴f′(-1)=limΔx→0f(-1+Δx)-f(-1)Δx=limΔx→0a(-1+Δx)3+3(-1+Δx)2+2-(-a+5)Δx=limΔx→0(aΔx2-3aΔx+3a+3Δx-6)=3a-6=4,解得a=103,故选D. 答案:D5.(2019·杭州二中月考)设函数f(x)可导,则limΔx→0f(1+Δx)-f(1)3Δx等于()A.f′(1)B.3f′(1)C.13f′(1) D.f′(3)解析:limΔx→0f(1+Δx)-f(1)3Δx=13limΔx→0f(1+Δx)-f(1)Δx=13f′(1).答案:C6.子弹在枪筒中运动可以看作是匀变速运动,如果它的加速度是a=5×105 m/s2,子弹从枪口射出时所用的时间为t0=1.6×10-3s,则子弹射出枪口时的瞬时速度为()A.1 000 m/s B.500 m/sC.1 600 m/s D.800 m/s解析:设运动方程为s=12at2,∴ΔsΔt=12a(t0+Δt)2-12at20Δt=at0+12aΔt,∴瞬时速度v=limΔx→0ΔsΔt=at0=5×105×1.6×10-3=800 m/s,故选D.答案:D二、填空题7.(2019·龙岩一中月考)给出下列结论:①函数y=2x2-1在x=3处的导数为11;②若物体的运动规律是s=f(t),则物体在时刻t0的瞬时速度v等于f′(t0);③物体做直线运动时,它的运动规律可以用函数v=v(t)描述,其中v表示瞬时速度,t表示时间,那么该物体运动的加速度为a=limΔx→0v(t+Δt)-v(t)Δt.其中正确的结论序号为________.解析:①函数y=2x2-1在x=3处的导数为12,故①错,根据变化率在物理学中的含义知②③正确.答案:②③8.若函数y=f(x)的图象如图所示,则函数f(x)在A,B两点间的平均变化率为________.解析:由Δy Δx =4-11-4=-1. 答案:-19.设f (x )在R 上可导,已知f (-x )在x =a 处的导数为A ,则f (x )在x =-a 处的导数为________.解析:∵f (-x )在x =a 处的导数为A ,∴A =lim Δx →0 f [-(a +Δx )]-f (-a )Δx, ∴f (x )在x =-a 处的导数f ′(-a )=lim Δx →0 f (-a -Δx )-f (-a )-Δx=-A . 答案:-A三、解答题10.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-32t 2+2t+1,求速度为零的时刻.解:∵Δs =s (t +Δt )-s (t )=13(t +Δt )3-32(t +Δt )2+2(t +Δt )+1-⎝ ⎛⎭⎪⎫13t 3-32t 2+2t +1= t 2Δt +t Δt 2+13Δt 3-3t Δt -32Δt 2+2Δt ,∴Δs Δt =t 2+t Δt +13Δt 2-3t -32Δt +2,∴lim Δt →0 Δs Δt=t 2-3t +2, 由t 2-3t +2=0,得t =1或t =2.所以速度为零的时刻为1秒末和2秒末.11.用定义求函数f (x )=1x在x =1处的导数. 解:Δy =f (1+Δx )-f (1)=11+Δx-1 =1-1+Δx 1+Δx =(1-1+Δx )(1+1+Δx )1+Δx (1+1+Δx ) =1-(1+Δx )1+Δx (1+1+Δx )=-Δx 1+Δx (1+1+Δx ), ∴Δy Δx =-11+Δx (1+1+Δx ),∴lim Δx →0 Δy Δx =lim Δx →0 -11+Δx (1+1+Δx )=-12. 即函数f (x )在x =1处的导数为-12.12.(2019·张家口期末)若一物体运动方程如下:(位移:m ,时间:s) s =⎩⎨⎧3t 2+2(t ≥3), ①29+3(t -3)2(0≤t <3). ②求:(1)物体在t ∈[3,5]内的平均速度;(2)物体的初速度v 0;(3)物体在t =1 s 时的瞬时速度.解:(1)因为物体在t ∈[3,5]内的时间变化量为Δt =5-3=2, 物体在t ∈[3,5]内的位移变化量为Δs =3×52+2-(3×32+2)=3×(52-32)=48, 所以物体在t ∈[3,5]上的平均速度为Δs Δt =482=24 m/s. (2)求物体的初速度v 0即求物体在t =0时的瞬时速度.因为物体在t =0附近的平均变化率为Δs Δt =f (0+Δt )-f (0)Δt=29+3[(0+Δt )-3]2-29-3(0-3)2Δt=3Δt -18. 所以物体在t =0处的瞬时变化率为lim Δt →0 Δs Δt =lim Δt →0 (3Δt -18)=-18.即物体的初速度为-18 m/s.(3)物体在t =1 s 时的瞬时速度即为函数在t =1处的瞬时变化率.因为物体在t =1附近的平均变化率为Δs Δt =f (1+Δt )-f (1)Δt= 29+3[(1+Δt )-3]2-29-3(1-3)2Δt=3Δt -12. 所以物体在t =1处的瞬时变化率为lim Δt →0 Δs Δt =lim Δt →0(3Δt -12)=-12. 即物体在t =1 s 时的瞬时速度为-12 m/s.13.已知函数y =f (x )在x =x 0处可导,则lim h →0 f (x 0+2h )-f (x 0)h等于( ) A .f ′(x 0) B .2f ′(x 0)C .-2f ′(x 0)D.0 解析:lim h →0 f (x 0+2h )-f (x 0)h =2lim 2h →0 f (x 0+2h )-f (x 0)2h=2f ′(x 0),故选B. 答案:B。

2020年高中数学课时跟踪检测含解析(全一册)新人教A版

2020年高中数学课时跟踪检测含解析(全一册)新人教A版

2020年高中数学课时跟踪检测含解析新人教A版课时跟踪检测一变化率问题导数的概念课时跟踪检测二导数的几何意义课时跟踪检测三几个常用函数的导数基本初等函数的导数公式及导数的运算法则课时跟踪检测四复合函数求导及应用课时跟踪检测五函数的单调性与导数课时跟踪检测六函数的极值与导数课时跟踪检测七函数的最大小值与导数课时跟踪检测八生活中的优化问题举例课时跟踪检测九定积分的概念课时跟踪检测十微积分基本定理课时跟踪检测十一定积分的简单应用课时跟踪检测十二合情推理课时跟踪检测十三演绎推理课时跟踪检测十四综合法和分析法课时跟踪检测十五反证法课时跟踪检测十六数学归纳法课时跟踪检测十七数系的扩充和复数的概念课时跟踪检测十八 复数的几何意义课时跟踪检测十九 复数代数形式的加减运算及其几何意义 课时跟踪检测二十 复数代数形式的乘除运算课时跟踪检测(一) 变化率问题、导数的概念一、题组对点训练对点练一 函数的平均变化率1.如果函数y =ax +b 在区间[1,2]上的平均变化率为3,则a =( ) A .-3 B .2 C .3 D .-2解析:选C 根据平均变化率的定义,可知Δy Δx =(2a +b )-(a +b )2-1=a =3.2.若函数f (x )=-x 2+10的图象上一点⎝ ⎛⎭⎪⎫32,314及邻近一点⎝ ⎛⎭⎪⎫32+Δx ,314+Δy ,则Δy Δx =( )A .3B .-3C .-3-(Δx )2D .-Δx -3解析:选D ∵Δy =f ⎝ ⎛⎭⎪⎫32+Δx -f ⎝ ⎛⎭⎪⎫32=-3Δx -(Δx )2,∴Δy Δx =-3Δx -(Δx )2Δx =-3-Δx . 3.求函数y =f (x )=1x在区间[1,1+Δx ]内的平均变化率.解:∵Δy =f (1+Δx )-f (1)=11+Δx-1=1-1+Δx 1+Δx =1-(1+Δx )(1+1+Δx )1+Δx=-Δx(1+1+Δx )1+Δx, ∴Δy Δx =-1(1+1+Δx )1+Δx. 对点练二 求瞬时速度4.某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 3-2表示,则此物体在t =1 s 时的瞬时速度(单位:m/s)为( )A .1B .3C .-1D .0 答案:B5.求第4题中的物体在t 0时的瞬时速度. 解:物体在t 0时的平均速度为v =s (t 0+Δt )-s (t 0)Δt=(t 0+Δt )3-2-(t 30-2)Δt =3t 20Δt +3t 0(Δt )2+(Δt )3Δt=3t 20+3t 0Δt +(Δt )2.因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20,故此物体在t =t 0时的瞬时速度为3t 20 m/s. 6.若第4题中的物体在t 0时刻的瞬时速度为27 m/s,求t 0的值.解:由v =s (t 0+Δt )-s (t 0)Δt =(t 0+Δt )3-2-(t 30-2)Δt=3t 20Δt +3t 0(Δt )2+(Δt )3Δt =3t 20+3t 0Δt +(Δt )2,因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20. 所以由3t 20=27,解得t 0=±3, 因为t 0>0,故t 0=3,所以物体在3 s 时的瞬时速度为27 m/s. 对点练三 利用定义求函数在某一点处的导数 7.设函数f (x )可导,则lim Δx →0 f (1+3Δx )-f (1)3Δx等于( )A .f ′(1)B .3f ′(1)C .13f ′(1) D .f ′(3)解析:选A lim Δx →0f (1+3Δx )-f (1)3Δx=f ′(1).8.设函数f (x )=ax +3,若f ′(1)=3,则a 等于( ) A .2 B .-2 C .3 D .-3 解析:选C ∵f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx=lim Δx →0a (1+Δx )+3-(a +3)Δx=a ,∴a =3.9.求函数f (x )=x 在x =1处的导数f ′(1).解:由导数的定义知,函数在x =1处的导数f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx,而f (1+Δx )-f (1)Δx =1+Δx -1Δx =11+Δx +1,又lim Δx →0 11+Δx +1=12,所以f ′(1)=12.二、综合过关训练1.若f (x )在x =x 0处存在导数,则lim h →0 f (x 0+h )-f (x 0)h( )A .与x 0,h 都有关B .仅与x 0有关,而与h 无关C .仅与h 有关,而与x 0无关D .以上答案都不对解析:选B 由导数的定义知,函数在x =x 0处的导数只与x 0有关.2.函数y =x 2在x 0到x 0+Δx 之间的平均变化率为k 1,在x 0-Δx 到x 0之间的平均变化率为k 2,则k 1与k 2的大小关系为( )A .k 1>k 2B .k 2<k 2C .k 1=k 2D .不确定解析:选D k 1=f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=2x 0+Δx ;k 2=f (x 0)-f (x 0-Δx )Δx =x 20-(x 0-Δx )2Δx=2x 0-Δx .因为Δx 可正也可负,所以k 1与k 2的大小关系不确定. 3.A ,B 两机关开展节能活动,活动开始后两机关的用电量W 1(t ),W 2(t )与时间t (天)的关系如图所示,则一定有( )A .两机关节能效果一样好B .A 机关比B 机关节能效果好C .A 机关的用电量在[0,t 0]上的平均变化率比B 机关的用电量在[0,t 0]上的平均变化率大D .A 机关与B 机关自节能以来用电量总是一样大解析:选B 由题图可知,A 机关所对应的图象比较陡峭,B 机关所对应的图象比较平缓,且用电量在[0,t 0]上的平均变化率都小于0,故一定有A 机关比B 机关节能效果好.4.一个物体的运动方程为s =1-t +t 2,其中s 的单位是:m,t 的单位是:s,那么物体在3 s 末的瞬时速度是( )A .7 m/sB .6 m/sC .5 m/sD .8 m/s解析:选C ∵Δs Δt =1-(3+Δt )+(3+Δt )2-(1-3+32)Δt=5+Δt ,∴lim Δt →0 Δs Δt =lim Δt →0 (5+Δt )=5 (m/s). 5.如图是函数y =f (x )的图象,则(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 解析:(1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12.(2)由函数f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1,x +1,1<x ≤3.所以,函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.答案:(1)12 (2)346.函数y =-1x在点x =4处的导数是________.解析:∵Δy =-14+Δx+14=12-14+Δx =4+Δx -224+Δx =Δx24+Δx (4+Δx +2). ∴Δy Δx =124+Δx (4+Δx +2). ∴lim Δx →0 Δy Δx =lim Δx →0124+Δx (4+Δx +2) =12×4×(4+2)=116.∴y ′|x =4=116.答案:1167.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2(位移:m ;时间:s). (1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度; (3)求t =0到t =2时平均速度.解:(1)初速度v 0=lim Δt →0 s (Δt )-s (0)Δt =lim Δt →0 3Δt -(Δt 2)Δt=lim Δt →0 (3-Δt )=3(m/s). 即物体的初速度为3 m/s. (2)v =lim Δt →0s (2+Δt )-s (2)Δt=lim Δt →0 3(2+Δt )-(2+Δt )2-(3×2-4)Δt=lim Δt →0 -(Δt )2-Δt Δt =lim Δt →0 (-Δt -1)=-1(m/s). 即此物体在t =2时的瞬时速度为1 m/s,方向与初速度相反. (3)v =s (2)-s (0)2-0=6-4-02=1(m/s).即t =0到t =2时的平均速度为1 m/s.8.若函数f (x )=-x 2+x 在[2,2+Δx ](Δx >0)上的平均变化率不大于-1,求Δx 的范围.解:因为函数f (x )在[2,2+Δx ]上的平均变化率为: Δy Δx =f (2+Δx )-f (2)Δx=-(2+Δx )2+(2+Δx )-(-4+2)Δx=-4Δx +Δx -(Δx )2Δx =-3-Δx ,所以由-3-Δx ≤-1, 得Δx ≥-2. 又因为Δx >0,即Δx 的取值范围是(0,+∞).课时跟踪检测(二) 导数的几何意义一、题组对点训练对点练一 求曲线的切线方程1.曲线y =x 3+11在点(1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9 D .15解析:选C ∵切线的斜率k =lim Δx →0 Δy Δx =lim Δx →0 (1+Δx )3+11-12Δx =lim Δx →0 1+3·Δx +3·(Δx )2+(Δx )3-1Δx =lim Δx →0[3+3(Δx )+(Δx )2]=3, ∴切线的方程为y -12=3(x -1). 令x =0得y =12-3=9.2.求曲线y =1x 在点⎝ ⎛⎭⎪⎫12,2的切线方程.解:因为y ′=lim Δx →0 Δy Δx =lim Δx →0 1x +Δx -1x Δx =lim Δx →0 -1x 2+x ·Δx =-1x 2, 所以曲线在点⎝ ⎛⎭⎪⎫12,2的切线斜率为k =y ′|x =12=-4.故所求切线方程为y -2=-4⎝ ⎛⎭⎪⎫x -12,即4x +y -4=0.对点练二 求切点坐标3.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A ∵点(0,b )在直线x -y +1=0上,∴b =1. 又y ′=lim Δx →0 (x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a , ∴过点(0,b )的切线的斜率为y ′|x =0=a =1.4.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则点P 坐标为________. 解析:设P (x 0,2x 20+4x 0),则f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0)Δx =lim Δx →0 2(Δx )2+4x 0Δx +4ΔxΔx=4x 0+4, 又∵f ′(x 0)=16,∴4x 0+4=16,∴x 0=3,∴P (3,30). 答案:(3,30)5.曲线y =f (x )=x 2的切线分别满足下列条件,求出切点的坐标. (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)切线的倾斜角为135°.解:f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,∴x 0=2,y 0=4,即P (2,4),显然P (2,4)不在直线y =4x -5上,∴符合题意.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,∴x 0=-32,y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94.(3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,∴x 0=-12,y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14. 对点练三 导数几何意义的应用 6.下面说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )点(x 0,f (x 0))处没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在解析:选C 根据导数的几何意义及切线的定义知曲线在(x 0,y 0)处有导数,则切线一定存在,但反之不一定成立,故A,B,D 错误.7.设曲线y =f (x )在某点处的导数值为0,则过曲线上该点的切线( ) A .垂直于x 轴B .垂直于y 轴C .既不垂直于x 轴也不垂直于y 轴D .方向不能确定解析:选B 由导数的几何意义知曲线f (x )在此点处的切线的斜率为0,故切线与y 轴垂直.8.如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数y =f (x )的图象是( )解析:选D 不妨设A 固定,B 从A 点出发绕圆周旋转一周,刚开始时x 很小,即弧AB 长度很小,这时给x 一个改变量Δx ,那么弦AB 与弧AB 所围成的弓形面积的改变量非常小,即弓形面积的变化较慢;当弦AB 接近于圆的直径时,同样给x 一个改变量Δx ,那么弧AB 与弦AB 所围成的弓形面积的改变量将较大,即弓形面积的变化较快;从直径的位置开始,随着B点的继续旋转,弓形面积的变化又由变化较快变为越来越慢.由上可知函数y =f (x )图象的上升趋势应该是首先比较平缓,然后变得比较陡峭,最后又变得比较平缓,对比各选项知D 正确.9.已知函数y =f (x )的图象如图所示, 则函数y =f ′(x )的图象可能是________(填序号).解析:由y =f (x )的图象及导数的几何意义可知,当x <0时f ′(x )>0,当x =0时,f ′(x )=0,当x >0时,f ′(x )<0,故②符合.答案:②二、综合过关训练1.函数f (x )的图象如图所示,则下列结论正确的是( ) A .0<f ′(a )<f ′(a +1)<f (a +1)-f (a ) B .0<f ′(a +1)<f (a +1)-f (a )<f ′(a ) C .0<f ′(a +1)<f ′(a )<f (a +1)-f (a ) D .0<f (a +1)-f (a )<f ′(a )<f ′(a +1)解析:选B f ′(a ),f ′(a +1)分别为曲线f (x )在x =a ,x =a +1处的切线的斜率,由题图可知f ′(a )>f ′(a +1)>0,而f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a表示(a ,f (a ))与(a +1,f (a+1))两点连线的斜率,且在f ′(a )与f ′(a +1)之间.∴0<f ′(a +1)<f (a +1)-f (a )<f ′(a ).2.曲线y =1x -1在点P (2,1)处的切线的倾斜角为( ) A .π6 B .π4 C .π3 D .3π4解析:选D Δy =12+Δx -1-12-1=11+Δx -1=-Δx 1+Δx ,lim Δx →0 Δy Δx =lim Δx →0 -11+Δx =-1,斜率为-1,倾斜角为3π4.3.曲线y =x 3-2x +1在点(1,0)处的切线方程为( ) A .y =x -1 B .y =-x +1 C .y =2x -2D .y =-2x +2解析:选 A 由Δy =(1+Δx )3-2(1+Δx )+1-(1-2+1)=(Δx )3+3(Δx )2+Δx 得lim Δx →0 Δy Δx =lim Δx →0 (Δx )2+3Δx +1=1,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得切线方程为y =x -1.4.设P 0为曲线f (x )=x 3+x -2上的点,且曲线在P 0处的切线平行于直线y =4x -1,则P 0点的坐标为( )A .(1,0)B .(2,8)C .(1,0)或(-1,-4)D .(2,8)或(-1,-4)解析:选C f ′(x )=lim Δx →0 (x +Δx )3+(x +Δx )-2-(x 3+x -2)Δx=lim Δx →0 (3x 2+1)Δx +3x (Δx )2+(Δx )3Δx =3x 2+1.由于曲线f (x )=x 3+x -2在P 0处的切线平行于直线y =4x -1,所以f (x )在P 0处的导数值等于4.设P 0(x 0,y 0),则有f ′(x 0)=3x 20+1=4,解得x 0=±1,P 0的坐标为(1,0)或(-1,-4).5.已知二次函数y =f (x )的图象如图所示,则y =f (x )在A 、B 两点处的导数f ′(a )与f ′(b )的大小关系为:f ′(a )________f ′(b )(填“<”或“>”).解析:f ′(a )与f ′(b )分别表示函数图象在点A 、B 处的切线斜率,故f ′(a )>f ′(b ).答案:>6.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程为____________.解析:曲线y =3x 2-4x +2在点M (1,1)处的切线斜率k =y ′|x =1=lim Δx →03(1+Δx )2-4(1+Δx )+2-3+4-2Δx=lim Δx →0 (3Δx +2)=2.所以过点 P (-1,2)的直线的斜率为2.由点斜式得y-2=2(x+1),即2x-y+4=0.所以所求直线方程为2x-y+4=0.答案:2x-y+4=07.甲、乙二人跑步的路程与时间关系以及百米赛跑路程和时间关系分别如图①②,试问:(1)甲、乙二人哪一个跑得快?(2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?解:(1)图①中乙的切线斜率比甲的切线斜率大,故乙跑得快;(2)图②中在快到终点时乙的瞬时速度大,故快到终点时,乙跑得快.8.“菊花”烟花是最壮观的烟花之一,制造时通常期望它在达到最高时爆裂.如果烟花距地面的高度h(m)与时间t(s)之间的关系式为h(t)=-4.9t2+14.7t.其示意图如图所示.根据图象,结合导数的几何意义解释烟花升空后的运动状况.解:如图,结合导数的几何意义,我们可以看出:在t=1.5 s附近曲线比较平坦,也就是说此时烟花的瞬时速度几乎为0,达到最高点并爆裂;在0~1.5 s之间,曲线在任何点的切线斜率大于0且切线的倾斜程度越来越小,也就是说烟花在达到最高点前,以越来越小的速度升空;在1.5 s后,曲线在任何点的切线斜率小于0且切线的倾斜程度越来越大,即烟花达到最高点后,以越来越大的速度下降,直到落地.课时跟踪检测(三) 几个常用函数的导数、基本初等函数的导数公式及导数的运算法则一、题组对点训练对点练一 利用导数公式求函数的导数 1.给出下列结论:①(cos x )′=sin x ;②⎝ ⎛⎭⎪⎫sin π3′=cos π3;③若y =1x 2,则y ′=-1x ;④⎝ ⎛⎭⎪⎫-1x ′=12x x.其中正确的个数是( )A .0B .1C .2D .3解析:选B 因为(cos x )′=-sin x ,所以①错误.sin π3=32,而⎝ ⎛⎭⎪⎫32′=0,所以②错误.⎝ ⎛⎭⎪⎫1x 2′=0-(x 2)′x 4=-2x x 4=-2x 3,所以③错误.⎝ ⎛⎭⎪⎫-1x ′=-0-(x 12)′x =12x -12x =12x -32=12x x,所以④正确. 2.已知f (x )=x α(α∈Q *),若f ′(1)=14,则α等于( )A .13B .12C .18D .14 解析:选D ∵f (x )=x α,∴f ′(x )=αx α-1.∴f ′(1)=α=14.对点练二 利用导数的运算法则求导数 3.函数y =sin x ·cos x 的导数是( ) A .y ′=cos 2x +sin 2x B .y ′=cos 2x -sin 2x C .y ′=2cos x ·sin xD .y ′=cos x ·sin x解析:选B y ′=(sin x ·cos x )′=cos x ·cos x +sin x ·(-sin x )=cos 2x -sin 2x . 4.函数y =x 2x +3的导数为________.解析:y ′=⎝ ⎛⎭⎪⎫x 2x +3′=(x 2)′(x +3)-x 2(x +3)′(x +3)2=2x (x +3)-x 2(x +3)2=x 2+6x (x +3)2.答案:x 2+6x (x +3)25.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析:f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3, 所以a =3.答案:36.求下列函数的导数.(1)y =sin x -2x 2;(2)y =cos x ·ln x ;(3)y =exsin x.解:(1)y ′=(sin x -2x 2)′=(sin x )′-(2x 2)′=cos x -4x .(2)y ′=(cos x ·ln x )′=(cos x )′·ln x +cos x ·(ln x )′=-sin x ·ln x +cos xx.(3)y ′=⎝ ⎛⎭⎪⎫e x sin x ′=(e x )′·sin x -e x ·(sin x )′sin 2x =e x ·sin x -e x ·cos x sin 2x =e x(sin x -cos x )sin 2x. 对点练三 利用导数公式研究曲线的切线问题7.(2019·全国卷Ⅰ)曲线y =3(x 2+x )e x在点(0,0)处的切线方程为________. 解析:∵y ′=3(2x +1)e x +3(x 2+x )e x =e x (3x 2+9x +3), ∴切线斜率k =e 0×3=3,∴切线方程为y =3x . 答案:y =3x8.若曲线f (x )=x ·sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝ ⎛⎭⎪⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以根据题意得1×⎝ ⎛⎭⎪⎫-a 2=-1,解得a =2.答案:29.已知a ∈R,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a=(a -1)(x -1),令x =0,得y =1.答案:110.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +13上,且在第一象限内,已知曲线C 在点P 处的切线的斜率为2,求点P 的坐标.解:设点P 的坐标为(x 0,y 0),因为y ′=3x 2-10,所以3x 20-10=2,解得x 0=±2.又点P 在第一象限内,所以x 0=2,又点P 在曲线C 上,所以y 0=23-10×2+13=1,所以点P 的坐标为(2,1).二、综合过关训练1.f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N,则f 2 019(x )=( )A .sin xB .-sin xC .cos xD .-cos x解析:选D 因为f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=cos x ,所以循环周期为4,因此f 2 019(x )=f 3(x )=-cos x .2.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .12解析:选A 因为y ′=x 2-3x ,所以根据导数的几何意义可知,x 2-3x =12,解得x =3(x =-2不合题意,舍去).3.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12B .12C .-22D .22解析:选B y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin 2x ,把x =π4代入得导数值为12,即为所求切线的斜率.4.已知直线y =3x +1与曲线y =ax 3+3相切,则a 的值为( ) A .1 B .±1 C .-1D .-2解析:选A 设切点为(x 0,y 0),则y 0=3x 0+1,且y 0=ax 30+3,所以3x 0+1=ax 30+3…①.对y =ax 3+3求导得y ′=3ax 2,则3ax 20=3,ax 20=1…②,由①②可得x 0=1,所以a =1.5.设a 为实数,函数f (x )=x 3+ax 2+(a -3)x 的导函数为f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在点(2,f (2))处的切线方程为____________.解析:f ′(x )=3x 2+2ax +a -3, ∵f ′(x )是偶函数,∴a =0, ∴f (x )=x 3-3x ,f ′(x )=3x 2-3, ∴f (2)=8-6=2,f ′(2)=9,∴曲线y =f (x )在点(2,f (2))处的切线方程为y -2=9(x -2), 即9x -y -16=0. 答案:9x -y -16=06.设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=________. 解析:令g (x )=(x +1)(x +2)…(x +n ),则f (x )=xg (x ), 求导得f ′(x )=x ′g (x )+xg ′(x )=g (x )+xg ′(x ), 所以f ′(0)=g (0)+0×g ′(0)=g (0)=1×2×3×…×n . 答案:1×2×3×…×n7.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:法一:∵y =x +ln x , ∴y ′=1+1x,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2), ∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案:88.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R.求曲线y =f (x )在点(1,f (1))处的切线方程.解:因为f (x )=x 3+ax 2+bx +1,所以f ′(x )=3x 2+2ax +b . 令x =1,得f ′(1)=3+2a +b , 又f ′(1)=2a,3+2a +b =2a , 解得b =-3,令x =2得f ′(2)=12+4a +b , 又f ′(2)=-b , 所以12+4a +b =-b , 解得a =-32.则f (x )=x 3-32x 2-3x +1,从而f (1)=-52.又f ′(1)=2×⎝ ⎛⎭⎪⎫-32=-3, 所以曲线y =f (x )在点(1,f (1))处的切线方程为y -⎝ ⎛⎭⎪⎫-52=-3(x -1), 即6x +2y -1=0.9.已知两条直线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.解:不存在.由于y =sin x ,y =cos x ,设两条曲线的一个公共点为P (x 0,y 0),所以两条曲线在P (x 0,y 0)处的斜率分别为k 1=y ′|x =x 0=cos x 0,k 2=y ′|x =x 0=-sinx 0.若使两条切线互相垂直,必须使cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin 2x 0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.课时跟踪检测(四) 复合函数求导及应用一、题组对点训练对点练一 简单复合函数求导问题 1.y =cos 3x 的导数是( ) A .y ′=-3cos 2x sin x B .y ′=-3cos 2x C .y ′=-3sin 2xD .y ′=-3cos x sin 2x解析:选A 令t =cos x ,则y =t 3,y ′=y t ′·t x ′=3t 2·(-sin x )=-3cos 2x sin x . 2.求下列函数的导数. (1)y =ln(e x +x 2); (2)y =102x +3;(3)y =sin 4x +cos 4x .解:(1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =1u ·(e x +x 2)′=1e x +x 2·(e x+2x )=e x+2x e x +x2.(2)令u =2x +3,则y =10u,∴y ′x =y ′u ·u ′x =10u·ln 10·(2x +3)′=2×102x +3ln10.(3)y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x ·cos 2x =1-12sin 22x =1-14(1-cos 4x )=34+14cos 4x . 所以y ′=⎝ ⎛⎭⎪⎫34+14cos 4x ′=-sin 4x . 对点练二 复合函数与导数运算法则的综合应用 3.函数y =x 2cos 2x 的导数为( ) A .y ′=2x cos 2x -x 2sin 2x B .y ′=2x cos 2x -2x 2sin 2x C .y ′=x 2cos 2x -2x sin 2xD .y ′=2x cos 2x +2x 2sin 2x解析:选B y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x .4.函数y =x ln(2x +5)的导数为( ) A .ln(2x +5)-x2x +5B .ln(2x +5)+2x2x +5C .2x ln(2x +5)D .x2x +5解析:选 B y ′=[x ln(2x +5)]′=x ′ln(2x +5)+x [ln(2x +5)]′=ln(2x +5)+x ·12x +5·(2x +5)′=ln(2x +5)+2x 2x +5. 5.函数y =sin 2x cos 3x 的导数是________. 解析:∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′=2cos 2x cos 3x -3sin 2x sin 3x . 答案:2cos 2x cos 3x -3sin 2x sin 3x6.已知f (x )=e πxsin πx ,求f ′(x )及f ′⎝ ⎛⎭⎪⎫12.解:∵f (x )=e πxsin πx ,∴f ′(x )=πe πxsin πx +πe πxcos πx =πe πx(sin πx +cos πx ). f ′⎝ ⎛⎭⎪⎫12=πe π2⎝ ⎛⎭⎪⎫sin π2+cos π2=πe 2π. 对点练三 复合函数导数的综合问题7.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D 令y =ax -ln(x +1),则f ′(x )=a -1x +1.所以f (0)=0,且f ′(0)=2.联立解得a =3.8.曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( ) A. 5 B .2 5 C .3 5D .0解析:选A 设曲线y =ln(2x -1)在点(x 0,y 0)处的切线与直线2x -y +3=0平行. ∵y ′=22x -1,∴y ′|x =x 0=22x 0-1=2,解得x 0=1,∴y 0=ln(2-1)=0,即切点坐标为(1,0).∴切点(1,0)到直线2x -y +3=0的距离为d =|2-0+3|4+1=5,即曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是 5.9.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=( )A .5太贝克B .75ln 2太贝克C .150ln 2 太贝克D .150太贝克解析:选D M ′(t )=-130ln 2×M 02-t30,由M ′(30)=-130ln 2×M 02-3030=-10 ln 2,解得M 0=600, 所以M (t )=600×2-t 30,所以t =60时,铯137的含量为M (60)=600×2-6030=600×14=150(太贝克).二、综合过关训练1.函数y =(2 019-8x )3的导数y ′=( ) A .3(2 019-8x )2B .-24xC .-24(2 019-8x )2D .24(2 019-8x 2)解析:选C y ′=3(2 019-8x )2×(2 019-8x )′=3(2 019-8x )2×(-8)=-24(2 019-8x )2.2.函数y =12(e x +e -x)的导数是( )A .12(e x -e -x) B .12(e x +e -x) C .e x-e -xD .e x+e -x解析:选A y ′=12(e x +e -x )′=12(e x -e -x).3.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2解析:选B 设切点坐标是(x 0,x 0+1),依题意有⎩⎪⎨⎪⎧1x 0+a=1,x 0+1=ln (x 0+a ),由此得x 0+1=0,x 0=-1,a =2.4.函数y =ln ex1+ex 在x =0处的导数为________.解析:y =ln e x1+e x =ln e x -ln(1+e x )=x -ln(1+e x),则y ′=1-e x1+e x .当x =0时,y ′=1-11+1=12. 答案:125.设曲线y =e ax在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________. 解析:令y =f (x ),则曲线y =e ax在点(0,1)处的切线的斜率为f ′(0),又切线与直线x +2y +1=0垂直,所以f ′(0)=2.因为f (x )=e ax ,所以f ′(x )=(e ax )′=e ax ·(ax )′=a e ax,所以f ′(0)=a e 0=a ,故a =2.答案:26.f (x )=ax 2-1且f ′(1)=2,则a 的值为________.解析:∵f (x )=(ax 2-1)12,∴f ′(x )=12(ax 2-1)-12·(ax 2-1)′=ax ax 2-1 .又f ′(1)=2,∴aa -1=2,∴a =2. 答案:27.求函数y =a sin x3+b cos 22x (a ,b 是实常数)的导数.解:∵⎝⎛⎭⎪⎫a sin x 3′=a cos x 3·⎝ ⎛⎭⎪⎫x 3′=a 3cos x3,又(cos 22x )′=⎝ ⎛⎭⎪⎫12+12cos 4x ′=12(-sin 4x )×4=-2sin 4x , ∴y =a sin x3+b cos 22x 的导数为y ′=⎝ ⎛⎭⎪⎫a sin x 3′+b (cos 22x )′=a 3cos x 3-2b sin 4x .8.曲线y =e 2xcos 3x 在(0,1)处的切线与l 的距离为5,求l 的方程. 解:由题意知y ′=(e 2x)′cos 3x +e 2x(cos 3x )′ =2e 2x cos 3x +3(-sin 3x )·e 2x=2e 2x cos 3x -3e 2xsin 3x ,所以曲线在(0,1)处的切线的斜率为k =y ′|x =0=2. 所以该切线方程为y -1=2x ,即y =2x +1. 设l 的方程为y =2x +m ,则d =|m -1|5= 5.解得m =-4或m =6.当m =-4时,l 的方程为y =2x -4;当m=6时,l的方程为y=2x+6.综上,可知l的方程为y=2x-4或y=2x+6.课时跟踪检测(五)函数的单调性与导数一、题组对点训练对点练一函数与导函数图象间的关系1.f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是下列选项中的( )解析:选C 题目所给出的是导函数的图象,导函数的图象在x轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在x轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由x∈(-∞,0)时导函数图象在x轴的上方,表示在此区间上,原函数的图象呈上升趋势,可排除B、D两选项.由x∈(0,2)时导函数图象在x轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除A选项.故选C.2.若函数y=f′(x)在区间(x1,x2)内是单调递减函数,则函数y=f(x)在区间(x1,x2)内的图象可以是( )解析:选B 选项A中,f′(x)>0且为常数函数;选项C中,f′(x)>0且f′(x)在(x1,x2)内单调递增;选项D中,f′(x)>0且f′(x)在(x1,x2)内先增后减.故选B.3.如图所示的是函数y=f(x)的导函数y=f′(x)的图象,则在[-2,5]上函数f(x)的递增区间为________.解析:因为在(-1,2)和(4,5]上f′(x)>0,所以f(x)在[-2,5]上的单调递增区间为(-1,2)和(4,5].答案:(-1,2)和(4,5]对点练二判断(证明)函数的单调性、求函数的单调区间4.函数f(x)=(x-3)e x的单调递增区间是( )A.(-∞,2)B.(0,3)C.(1,4) D.(2,+∞)解析:选D f′(x)=(x-3)′e x+(x-3)(e x)′=e x(x-2).由f′(x)>0得x>2,∴f(x)的单调递增区间是(2,+∞).5.函数f (x )=2x 2-ln x 的递增区间是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-12,0和⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝⎛⎭⎪⎫-∞,-12和⎝ ⎛⎭⎪⎫0,12解析:选C 由题意得,函数的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x=(2x +1)(2x -1)x ,令f ′(x )=(2x +1)(2x -1)x >0,解得x >12,故函数f (x )=2x 2-ln x 的递增区间是⎝ ⎛⎭⎪⎫12,+∞.故选C. 6.已知f (x )=ax 3+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x . (1)求y =f (x )的解析式; (2)求y =f (x )的单调递增区间.解:(1)∵f (x )=ax 3+bx 2+c 的图象经过点(0,1),∴c =1,f ′(x )=3ax 2+2bx ,f ′(1)=3a +2b =1,切点为(1,1),则f (x )=ax 3+bx 2+c 的图象经过点(1,1),得a +b +c =1,解得a =1,b =-1,即f (x )=x 3-x 2+1.(2)由f ′(x )=3x 2-2x >0得x <0或x >23,所以单调递增区间为(-∞,0)和⎝ ⎛⎭⎪⎫23,+∞.对点练三 与参数有关的函数单调性问题7.若函数f (x )=x -a x 在[1,4]上单调递减,则实数a 的最小值为( ) A .1 B .2 C .4D .5解析:选C 函数f (x )=x -a x 在[1,4]上单调递减,只需f ′(x )≤0在[1,4]上恒成立即可,令f ′(x )=1-12ax -12≤0,解得a ≥2x ,则a ≥4.∴a min =4.8.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,2),则b =________,c =________.解析:f ′(x )=3x 2+2bx +c ,由题意知-1<x <2是不等式f ′(x )<0的解,即-1,2是方程3x 2+2bx +c =0的两个根,把-1,2分别代入方程,解得b =-32,c =-6.答案:-32-69.已知函数f (x )=(x -2)e x+a (x -1)2.讨论f (x )的单调性. 解:f ′(x )=(x -1)e x+2a (x -1)=(x -1)·(e x+2a ).(1)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.(2)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).①若a =-e 2,则f ′(x )=(x -1)(e x-e),所以f (x )在(-∞,+∞)上单调递增;②若-e2<a <0,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0;当x∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a ))∪(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减;③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1)∪(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减.二、综合过关训练1.若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( )A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos x解析:选A 对于选项A,f (x )=2-x=⎝ ⎛⎭⎪⎫12x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫12x =⎝ ⎛⎭⎪⎫e 2x ,∵e 2>1,∴e x f (x )在R 上单调递增,∴f (x )=2-x具有M 性质.对于选项B,f (x )=x 2,e xf (x )=e x x 2,[e xf (x )]′=e x(x 2+2x ),令e x (x 2+2x )>0,得x >0或x <-2;令e x (x 2+2x )<0,得-2<x <0,∴函数e xf (x )在(-∞,-2)和(0,+∞)上单调递增,在(-2,0)上单调递减,∴f (x )=x 2不具有M 性质.对于选项C,f (x )=3-x=⎝ ⎛⎭⎪⎫13x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫13x =⎝ ⎛⎭⎪⎫e 3x ,∵e3<1, ∴y =⎝ ⎛⎭⎪⎫e 3x在R 上单调递减,∴f (x )=3-x不具有M 性质.对于选项D,f (x )=cos x ,e xf (x )=e xcos x ,则[e x f (x )]′=e x (cos x -sin x )≥0在R 上不恒成立,故e x f (x )=e xcos x 在R 上不是单调递增的,∴f (x )=cos x 不具有M 性质.故选A.2.若函数f (x )=x -eln x,0<a <e<b ,则下列说法一定正确的是( ) A .f (a )<f (b ) B .f (a )>f (b ) C .f (a )>f (e)D .f (e)>f (b )解析:选C f ′(x )=1-e x =x -ex,x >0,令f ′(x )=0,得x =e,f (x )在(0,e)上为减函数,在(e,+∞)上为增函数,所以f (a )>f (e),f (b )>f (e),f (a )与f (b )的大小不确定.3.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一直角坐标系中,不可能正确的是( )解析:选D 对于选项A,若曲线C 1为y =f (x )的图象,曲线C 2为y =f ′(x )的图象,则函数y =f (x )在(-∞,0)内是减函数,从而在(-∞,0)内有f ′(x )<0;y =f (x )在(0,+∞)内是增函数,从而在(0,+∞)内有f ′(x )>0.因此,选项A 可能正确.同理,选项B 、C 也可能正确.对于选项D,若曲线C 1为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为增函数,与C 2不相符;若曲线C 2为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为减函数,与C 1不相符.因此,选项D 不可能正确.4.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )解析:选C 因为⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2,又因为f ′(x )g (x )-f (x )g ′(x )<0,所以f (x )g (x )在R 上为减函数.又因为a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ),又因为f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).5.(2019·北京高考)设函数f (x )=e x +a e -x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________.解析:∵f (x )=e x +a e -x(a 为常数)的定义域为R, ∴f (0)=e 0+a e -0=1+a =0,∴a =-1.∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x-ae x .∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立, 即e x≥ae x 在R 上恒成立,∴a ≤e 2x在R 上恒成立.又e 2x>0,∴a ≤0,即a 的取值范围是(-∞,0]. 答案:-1 (-∞,0]6.如果函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x.由f ′(x )>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞;由f ′(x )<0,得函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12.由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0.解得:1≤k <32.答案:⎣⎢⎡⎭⎪⎫1,32 7.已知函数f (x )=x ln x .(1)求曲线f (x )在x =1处的切线方程;(2)讨论函数f (x )在区间(0,t ](t >0)上的单调性. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=ln x +1. 曲线f (x )在x =1处的切线的斜率为k =f ′(1)=1.把x =1代入f (x )=x ln x 中得f (1)=0,即切点坐标为(1,0).所以曲线f (x )在x =1处的切线方程为y =x -1.(2)令f ′(x )=1+ln x =0,得x =1e.①当0<t <1e时,在区间(0,t ]上,f ′(x )<0,函数f (x )为减函数.②当t >1e 时,在区间⎝ ⎛⎭⎪⎫0,1e 上,f ′(x )<0,f (x )为减函数;在区间⎝ ⎛⎭⎪⎫1e ,t 上,f ′(x )>0,f (x )为增函数.8.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解:h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.因为h (x )在[1,4]上单调递减,所以x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立,令G (x )=1x 2-2x,则a ≥G (x )max .而G (x )=⎝ ⎛⎭⎪⎫1x-12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x =(7x -4)(x -4)16x .因为x ∈[1,4],所以h ′(x )=(7x -4)(x -4)16x ≤0,即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.课时跟踪检测(六) 函数的极值与导数一、题组对点训练对点练一 求函数的极值1.函数y =x 3-3x 2-9x (-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值D .极小值-27,无极大值解析:选C 由y ′=3x 2-6x -9=0, 得x =-1或x =3.当x <-1或x >3时,y ′>0; 当-1<x <3时,y ′<0.∴当x =-1时,函数有极大值5; 3∉(-2,2),故无极小值.2.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0 B .0,427C .-427,0D .0,-427解析:选A f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427,当x =1时f (x )取极小值0.3.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的序号是________. ①当x =32时,函数取得极小值;②f (x )有两个极值点; ③当x =2时,函数取得极小值; ④当x =1时,函数取得极大值.解析:由题图知,当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,所以f (x )有两个极值点,分别为1和2,且当x =2时函数取得极小值,当x =1时函数取得极大值.只有①不正确.答案:①对点练二 已知函数的极值求参数4.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( )A .1,-3B .1,3C .-1,3D .-1,-3解析:选A f ′(x )=3ax 2+b , 由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3.5.若函数f (x )=x 2-2bx +3a 在区间(0,1)内有极小值,则实数b 的取值范围是( ) A .b <1 B .b >1 C .0<b <1 D .b <12解析:选C f ′(x )=2x -2b =2(x -b ),令f ′(x )=0,解得x =b ,由于函数f (x )在区间(0,1)内有极小值,则有0<b <1.当0<x <b 时,f ′(x )<0;当b <x <1时,f ′(x )>0,符合题意.所以实数b 的取值范围是0<b <1.6.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是________.解析:f ′(x )=3x 2+6ax +3(a +2),∵函数f (x )既有极大值又有极小值,∴方程f ′(x )=0有两个不相等的实根,∴Δ=36a 2-36(a +2)>0.即a 2-a -2>0,解之得a >2或a <-1.答案:(-∞,-1)∪(2,+∞) 对点练三 函数极值的综合问题7.设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R. (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 则g ′(x )=1x -2a =1-2ax x.当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,函数g (x )单调递减.所以当a ≤0时,g (x )的单调增区间为(0,+∞); 当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞. (2)由(1)知,f ′(1)=0.。

高中数学课时跟踪训练十六导数的几何意义新人教B版选修142

高中数学课时跟踪训练十六导数的几何意义新人教B版选修142

课时跟踪训练(十六) 导数的几何意义1.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直 D.与x轴斜交2.已知函数y=f(x)的图像如图,则f′(x A)与f′(x B)的大小关系是( ) A.0>f′(x A)>f′(x B)B.f′(x A)<f′(x B)<0C.f′(x A)=f′(x B)D.f′(x A)>f′(x B)>03.若曲线f(x)=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( ) A.a=1,b=1 B.a=-1,b=1C.a=1,b=-1 D.a=-1,b=-14.曲线y=x3-3x2+1在点P处的切线平行于直线y=9x-1,则切线方程为( ) A.y=9xB.y=9x-26C.y=9x+26D.y=9x+6或y=9x-265.已知函数f(x)=ax+4,若f′(1)=2,则a=________.6.如图是函数f(x)及f(x)在点P处切线的图像,则f(2)+f′(2)=________.7.在抛物线y=x2上求一点P,使在该点处的切线垂直于直线2x-6y+5=0.8.已知曲线y =1t -x 上两点P (2,-1),Q ⎝⎛⎭⎪⎫-1,12. 求:(1)曲线在点P 处、点Q 处的切线的斜率;(2)曲线在点P 、Q 处的切线方程.答 案1.选B f ′(x 0)=0,说明曲线y =f (x )在点(x 0,f (x 0))处的切线斜率为0,所以与x 轴平行或重合.2.选B f ′(x A )和f ′(x B )分别表示函数图像在点A 、B 处的切线斜率,故f ′(x A )<f ′(x B )<0.3.选A ∵Δy Δx =0+Δx 2+a 0+Δx +b -b Δx=Δx +a , ∴f ′(0)=li m Δx →0 Δy Δx=a , 由曲线在点(0,b )处的切线方程可知a =1.又(0,b )在切线上,∴0-b +1=0,∴b =1.4.选DΔy Δx =f x 0+Δx -f x 0Δx =x 0+Δx 3-3x 0+Δx2+1-x 30+3x 20-1Δx=(Δx )2+3x 0Δx -3Δx +3x 20-6x 0.所以f ′(x 0)=li m Δx →0[(Δx )2+3x 0Δx -3Δx +3x 20-6x 0] =3x 20-6x 0,于是3x 20-6x 0=9,解得x 0=3或x 0=-1,因此,点P 的坐标为(3,1)或(-1,-3).又切线斜率为9,所以曲线在点P 处的切线方程为y =9(x -3)+1或y =9(x +1)-3,即y =9x -26或y =9x +6.5.解析:因为f ′(x 0)=li m Δx →0 a x 0+Δx +4-ax 0-4Δx =a , f ′(1)=2,所以a =2.答案:26.解析:由图可知,点P 处切线的斜率为k =4.5-00-4=-98,即f ′(2)=-98. 切线方程为y =-98(x -4),将x =2代入得f (2)=94. 则f (2)+f ′(2)=94-98=98. 答案:987.解:设点P (x 0,y 0),则抛物线y =x 2在点P 处的切线斜率为f ′(x 0)=li m Δx →0 x 0+Δx2-x 20Δx =2x 0.直线2x -6y +5=0的斜率为13, 由题设知2x 0·13=-1,解得x 0=-32,此时y 0=94, 所以点P 的坐标为⎝ ⎛⎭⎪⎫-32,94. 8.解:将P (2,-1)代入y =1t -x ,得t =1, ∴y =11-x. y ′=li m Δx →0f x +Δx -f x Δx =li m Δx →0 11-x +Δx -11-x Δx=li m Δx →0 Δx [1-x +Δx ]1-x Δx =li m Δx →0 11-x -Δx 1-x =11-x 2.(1)曲线在点P 处的切线斜率为y ′|x =2=11-22=1; 曲线在点Q 处的切线斜率为y ′|x =-1=14. (2)曲线在点P 处的切线方程为y -(-1)=x -2,即x -y -3=0;曲线在点Q 处的切线方程为y -12=14[x -(-1)], 即x -4y +3=0.。

课时跟踪检测(二) 导数的几何意义

课时跟踪检测(二) 导数的几何意义

课时跟踪检测(二) 导数的几何意义层级一 学业水平达标1.曲线y =f (x )在点(x 0,f (x 0))处的切线方程为2x -y +1=0,则( )A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在解析:选A 因为曲线y =f (x )在点(x 0,f (x 0))处的导数就是切线的斜率,又切线2x -y +1=0的斜率为2,所以f ′(x 0)>0.2.曲线f (x )=-2x 在点M (1,-2)处的切线方程为( )A .y =-2x +4B .y =-2x -4C .y =2x -4D .y =2x +4解析:选C Δy Δx =-21+Δx +2Δx =21+Δx,所以当Δx →0时,f ′(1)=2,即k =2.所以直线方程为y +2=2(x -1).即y =2x -4.故选C.3.曲线y =13x 3-2在点⎝⎛⎭⎫1,-53处切线的倾斜角为( ) A .1B .π4 C.5π4 D .-π4解析:选B ∵y ′=lim Δx →0 ⎣⎡⎦⎤13(x +Δx )3-2-⎝⎛⎭⎫13x 3-2Δx=lim Δx →0 ⎣⎡⎦⎤x 2+x Δx +13(Δx )2=x 2, ∴切线的斜率k =y ′|x =1=1.∴切线的倾斜角为π4,故应选B. 4.曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( )A .1B .12C .-12D .-1解析:选A ∵y ′|x =1=lim Δx →0 a (1+Δx )2-a ×12Δx= lim Δx →0 2a Δx +a (Δx )2Δx=lim Δx →0 (2a +a Δx )=2a , ∴2a =2,∴a =1.5.过正弦曲线y =sin x 上的点⎝⎛⎭⎫π2,1的切线与y =sin x 的图象的交点个数为( )A .0个B .1个C .2个D .无数个解析:选D 由题意,y =f (x )=sin x ,则f ′⎝⎛⎭⎫π2=lim Δx →0 sin ⎝⎛⎭⎫π2+Δx -sin π2Δx=lim Δx →0 cos Δx -1Δx. 当Δx →0时,cos Δx →1,∴f ′⎝⎛⎭⎫π2=0.∴曲线y =sin x 的切线方程为y =1,且与y =sin x 的图象有无数个交点.6.已知f (x )=x 2+ax ,f ′(1)=4,曲线f (x )在x =1处的切线在y 轴上的截距为-1,则实数a 的值为________.解析:由导数的几何意义,得切线的斜率为k =f ′(1)=4.又切线在y 轴上的截距为-1,所以曲线f (x )在x =1处的切线方程为y =4x -1.从而切点坐标为(1,3),所以f (1)=1+a =3,即a =2.答案:27.曲线y =x x +2在点(-1,-1)处的切线方程为________. 解析:因为Δy =-1+Δx -1+Δx +2-(-1)=Δx -11+Δx +1=2Δx 1+Δx,所以Δy Δx =2Δx (1+Δx )·Δx =21+Δx , 所以f ′(-1)=lim Δx →0Δy Δx =lim Δx →021+Δx =2, 故曲线y =x x +2在点(-1,-1)处的切线方程为y +1=2(x +1),即y =2x +1. 答案:y =2x +18.曲线y =x 2-3x 的一条切线的斜率为1,则切点坐标为________.解析:设f (x )=y =x 2-3x ,切点坐标为(x 0,y 0),f ′(x 0)=lim Δx →0 (x 0+Δx )2-3(x 0+Δx )-x 20+3x 0Δx=lim Δx →0 2x 0Δx -3Δx +(Δx )2Δx=2x 0-3=1,故x 0=2, y 0=x 20-3x 0=4-6=-2,故切点坐标为(2,-2). 答案:(2,-2)9.求曲线y =f (x )=1x-x 上点P ⎝⎛⎭⎫4,-74处的切线方程. 解:因为f ′(4)=lim Δx →0 f (4+Δx )-f (4)Δx=lim Δx →0 14+Δx -4+Δx -⎝⎛⎭⎫14-2Δx=lim Δx →0 ⎝⎛⎭⎫14+Δx -14-(4+Δx -2)Δx=lim Δx →0 -Δx 4(4+Δx )-Δx 4+Δx +2Δx=lim Δx →0 ⎝ ⎛⎭⎪⎫-14(4+Δx )-14+Δx +2=-516, 所以所求切线的斜率为-516. 所以所求的切线方程为5x +16y +8=0.10.已知曲线y =2x 2-7,求曲线过点P (3,9)的切线方程.解:可知点P (3,9)不在曲线上,故设所求切线的切点为A (x 0,y 0),由题意得f ′(x 0)=li m Δx →0 Δy Δx=lim Δx →0 2(x 0+Δx )2-7-(2×x 20-7)Δx=lim Δx →0(4x 0+2Δx )=4x 0. 故所求的切线方程为y -y 0=4x 0(x -x 0),将P (3,9)及y 0=2x 20-7代入上式得9-(2x 20-7)=4x 0(3-x 0).解得x 0=2或x 0=4.所以切点为(2,1)或(4,25).从而所求切线方程为y -1=8(x -2)或y -25=16(x -4).即y =8x -15或y =16x -39.层级二 应试能力达标1.已知y =f (x )的图象如图,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(xB )B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定 解析:选B 由图可知,曲线在点A 处的切线的斜率比曲线在点B 处的切线的斜率小,结合导数的几何意义知f ′(x A )<f ′(x B ),选B.2.曲线f (x )=2x -1x在x =1处的切线的斜率为( ) A .-1B .1C .2D .3解析:选D 因为Δy =f (1+Δx )-f (1)=2(1+Δx )-11+Δx-()2×1-1 =2Δx +1-11+Δx =2Δx +Δx 1+Δx, 所以Δy Δx =2Δx +Δx 1+Δx Δx =2+11+Δx , 所以lim Δx →0 Δy Δx =lim Δx →0 ⎝⎛⎭⎫2+11+Δx =2+1=3. 3.设f (x )存在导函数,且满足lim Δx →0f (1)-f (1-2Δx )2Δx =-1,则曲线y =f (x )上点(1,f (1))处的切线斜率为( )A .2B .-1C .1D .-2 解析:选B lim Δx →0f (1)-f (1-2Δx )2Δx =lim Δx →0 f (1-2Δx )-f (1)-2Δx=f ′(1)=-1. 4.已知直线ax -by -2=0与曲线y =x 3在点P (1,1)处的切线互相垂直,则a b 为( )A .13B .23C .-23D .-13解析:选D 由导数的定义可得y ′=3x 2,∴y =x 3在点P (1,1)处的切线斜率k =y ′|x =1=3,由条件知,3×a b =-1,∴a b =-13. 5.如图,函数f (x )的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则lim Δx →0 f (1+Δx )-f (1)Δx=______.解析:由导数的概念和几何意义知,lim Δx →0 f (1+Δx )-f (1)Δx =f ′(1)=k AB =0-42-0=-2. 答案:-26.已知曲线f (x )=x ,g (x )=1x 过两曲线交点作两条曲线的切线,则曲线f (x )在交点处的切线方程为____________________.解析:由⎩⎪⎨⎪⎧ y =x ,y =1x 得⎩⎪⎨⎪⎧x =1,y =1, ∴两曲线的交点坐标为(1,1).由f (x )=x ,得f ′(1)=lim Δx →0 1+Δx -1Δx =lim Δx →0 11+Δx +1=12, ∴y =f (x )在点(1,1)处的切线方程为y -1=12(x -1). 即x -2y +1=0,答案:x -2y +1=07.求曲线y =1x 和y =x 2在它们交点处的两条切线与x 轴所围成的三角形的面积.解:联立两曲线方程⎩⎪⎨⎪⎧ y =1x ,y =x 2,解得⎩⎪⎨⎪⎧x =1,y =1, 即交点坐标为(1,1).曲线y =1x在点(1,1)的切线斜率为 f ′(1)=lim Δx →0 11+Δx -1Δx=lim Δx →0 -11+Δx =-1, 所以曲线y =1x 在点(1,1)处的一条切线方程为y -1=-(x -1),即y =-x +2.同理,曲线y =x 2在点(1,1)处的切线斜率为g ′(1)=lim Δx →0 (1+Δx )2-12Δx =lim Δx →0 2Δx +(Δx )2Δx=lim Δx →0(2+Δx )=2.所以曲线y =x 2在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.两条切线y =-x +2和y =2x -1与x 轴所围成的图形如图所示,所以所求三角形面积S =12×1×⎝⎛⎭⎫2-12=34.8.已知曲线y =x 2+1,是否存在实数a ,使得经过点(1,a )能够作出该曲线的两条切线?若存在,求出实数a 的取值范围;若不存在,请说明理由.解:∵Δy Δx =(x +Δx )2+1-x 2-1Δx=2x +Δx , ∴y ′=lim Δx →0 Δy Δx =lim Δx →0(2x +Δx )=2x . 设切点为P (x 0,y 0),则切线的斜率为k =y ′|x =x 0=2x 0,由点斜式可得所求切线方程为y -y 0=2x 0(x -x 0).又∵切线过点(1,a),且y0=x20+1,∴a-(x20+1)=2x0(1-x0),即x20-2x0+a-1=0.∵切线有两条,∴Δ=(-2)2-4(a-1)>0,解得a<2.故存在实数a,使得经过点(1,a)能够作出该曲线的两条切线,a的取值范围是(-∞,2).。

高三数学一轮复习课时跟踪训练:第三章 导数及其应用 课时跟踪训练16

高三数学一轮复习课时跟踪训练:第三章 导数及其应用 课时跟踪训练16

课时跟踪训练(十六)[基础巩固]一、选择题1.(2016·四川卷)已知a 为函数f (x )=x 3-12x 的极小值点,则a =( )A .-4B .-2C .4D .2[解析] 由题意得f ′(x )=3x 2-12,由f ′(x )=0得x =±2,当x ∈(-∞,-2)时,f ′(x )>0,函数f (x )单调递增,当x ∈(-2,2)时,f ′(x )<0,函数f (x )单调递减,当x ∈(2,+∞)时,f ′(x )>0,函数f (x )单调递增,所以a =2.[答案] D2.设函数f (x )=2x +ln x ,则( ) A .x =12为f (x )的极大值点 B .x =12为f (x )的极小值点 C .x =2为f (x )的极大值点 D .x =2为f (x )的极小值点[解析] ∵f (x )=2x +ln x ,∴f ′(x )=-2x 2+1x =x -2x 2(x >0),由f ′(x )=0得x =2.当x ∈(0,2)时,f ′(x )<0,f (x )为减函数;当x ∈(2,+∞)时,f ′(x )>0,f (x )为增函数,∴x =2为f (x )的极小值点.[答案] D3.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y=-x3+27x+123(x>0),则获得最大利润时的年产量为() A.1百万件B.2百万件C.3百万件D.4百万件[解析]y′=-3x2+27=-3(x+3)(x-3),当0<x<3时,y′>0;当x>3时,y′<0.故当x=3时,该商品的年利润最大.[答案] C4.设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-2)和极小值f(2)[解析]由图可知当x<-2时,(1-x)f′(x)>0;当-2<x<1时,(1-x)f′(x)<0;当1<x<2时,(1-x)f′(x)>0;当x>2时,(1-x)f′(x)<0.所以x<-2或x>2时f′(x)>0;-2<x<1或1<x<2时f′(x)<0,所以函数f(x)在(-∞,-2)和(2,+∞)上单调递增;在(-2,1)和(1,2)上单调递减.所以当x=-2时函数f(x)取得极大值;当x=2时函数f(x)取得极小值.故D正确.[答案] D5.(2017·河北三市二联)若函数f (x )=13x 3-⎝ ⎛⎭⎪⎫1+b 2x 2+2bx 在区间[-3,1]上不是单调函数,则函数f (x )在R 上的极小值为( )A .2b -43 B .32b -23 C .0D .b 2-16b 3[解析] f ′(x )=x 2-(2+b )x +2b =(x -b )·(x -2),∵函数f (x )在区间[-3,1]上不是单调函数,∴-3<b <1,则由f ′(x )>0,得x <b 或x >2,由f ′(x )<0,得b <x <2,∴函数f (x )的极小值为f (2)=2b -43.[答案] A6.若函数f (x )=x 3-3x 在(a,6-a 2)上有最小值,则实数a 的取值范围是( )A .(-5,1)B .[-5,1)C .[-2,1)D .(-2,1)[解析] 由f ′(x )=3x 2-3=0,得x =±1,且x =-1为函数的极大值点,x =1为函数的极小值点.若函数f (x )在区间(a,6-a 2)上有最小值,则函数f (x )的极小值点必在区间(a,6-a 2)内,且左端点的函数值不小于f (1),即实数a 满足⎩⎪⎨⎪⎧ a <1<6-a 2,f (a )≥f (1),得⎩⎪⎨⎪⎧-5<a <1,a 3-3a +2≥0,解得-2≤a <1,故选C. [答案] C 二、填空题7.f (x )=2x +1x 2+2的极小值为________.[解析] f ′(x )=2(x 2+2)-2x (2x +1)(x 2+2)2=-2(x +2)(x -1)(x 2+2)2.令f ′(x )<0,得x <-2或x >1. 令f ′(x )>0,得-2<x <1.∴f (x )在(-∞,-2),(1,+∞)上是减函数,在(-2,1)上是增函数,∴f (x )极小值=f (-2)=-12. [答案] -128.函数f (x )=e x -x (e 为自然对数的底数)在区间[-1,1]上的最大值是________.[解析] 因为f (x )=e x -x ,所以f ′(x )=e x -1.令f ′(x )=0,得x =0.且当x >0时,f ′(x )=e x -1>0,x <0时,f ′(x )=e x -1<0,即函数在x =0处取得极小值,f (0)=1,又f (-1)=1e +1,f (1)=e -1,综合比较得函数f (x )=e x -x 在区间[-1,1]上的最大值是e -1.[答案] e -19.若f (x )=x (x -c )2在x =2处有极大值,则常数c 的值为________.[解析] f ′(x )=(x -c )2+2(x -c )x =(x -c )(3x -c ), 因为函数f (x )在x =2处有极大值, 所以f ′(2)=0,得c =6或c =2,当c =6时,由f ′(x )>0,得x <2或x >6;由f ′(x )<0,得2<x <6,所以f (x )在x =2处取得极大值.当c =2时,由f ′(x )>0,得x <23或x >2;由f ′(x )<0,得23<x <2,所以f (x )在x =2处取得极小值.不合题意.综上所述,c =6.[答案] 6三、解答题10.已知函数f(x)=x-a ln x(a∈R),(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;(2)求函数f(x)的极值.[解]函数f(x)的定义域为(0,+∞),f′(x)=1-a x.(1)当a=2时,f(x)=x-2ln x,f′(x)=1-2x(x>0),因而f(1)=1,f′(1)=-1,所以曲线y=f(x)在点A(1,f(1))处的切线方程为y-1=-(x-1),即x+y-2=0.(2)由f′(x)=1-ax=x-ax,x>0知:①当a≤0时,f′(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f′(x)=0,解得x=a.又当x∈(0,a)时,f′(x)<0;当x∈(a,+∞)时,f′(x)>0,从而函数f(x)在x=a处取得极小值,且极小值为f(a)=a-a ln a,无极大值.综上,当a≤0时,函数f(x)无极值;当a>0时,函数f(x)在x=a处取得极小值a-a ln a,无极大值.[能力提升]11.(2017·浙江金华、丽水、衢州十二校联考)如图,已知直线y =kx+m与曲线y=f(x)相切于两点,则F(x)=f(x)-kx有()A.1个极大值点,2个极小值点B.2个极大值点,1个极小值点C.3个极大值点,无极小值点D.3个极小值点,无极大值点[解析]F′(x)=f′(x)-k,如图所示,从而可知F′(x)共有三个零点x1,x2,x3,由图可知,F(x)在(-∞,x1)上单调递减,在(x1,x2)上单调递增,在(x2,x3)上单调递减,在(x3,+∞)上单调递增,∴x1,x3为极小值点,x2为极大值点,即F(x)有1个极大值点,2个极小值点,故选A.[答案] A12.(2018·河北唐山一模)直线y=a分别与曲线y=2(x+1),y=x+ln x交于A,B,则|AB|的最小值为()A .3B .2C .324D .32[解析] 当y =a 时,2(x +1)=a ,x =a2-1.设方程x +ln x =a 的根为t ,则t +ln t =a ,则|AB |=⎪⎪⎪⎪⎪⎪t -a 2+1=⎪⎪⎪⎪⎪⎪t -t +ln t 2+1=⎪⎪⎪⎪⎪⎪t 2-ln t 2+1.设g (t )=t 2-ln t 2+1(t >0),则g ′(t )=12-12t =t -12t ,令g ′(t )=0,得t =1.当t ∈(0,1),g ′(t )<0;t ∈(1,+∞),g ′(t )>0,所以g (t )min =g (1)=32,所以|AB |≥32,即|AB |的最小值为32. [答案] D13.(2017·全国卷Ⅱ)设函数f (x )=(1-x 2)e x . (1)讨论f (x )的单调性;(2)当x ≥0时,f (x )≤ax +1,求a 的取值范围. [解] (1)f ′(x )=(1-2x -x 2)e x .令f ′(x )=0得x =-1-2,x =-1+ 2.当x ∈(-∞,-1-2)时,f ′(x )<0;当x ∈(-1-2,-1+2)时,f ′(x )>0;当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)单调递减,在(-1-2,-1+2)单调递增.(2)f (x )=(1+x )(1-x )e x .当a ≥1时,设函数h (x )=(1-x )e x ,h ′(x )=-x e x <0(x >0),因此h (x )在[0,+∞)单调递减,而h (0)=1,故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1.当0<a <1时,设函数g (x )=e x -x -1,g ′(x )=e x -1>0(x >0),所以g (x )在[0,+∞)单调递增,而g (0)=0,故e x ≥x +1.当0<x <1时,f (x )>(1-x )(1+x )2,(1-x )(1+x )2-ax -1=x (1-a -x -x 2),取x 0=5-4a -12,则x 0∈(0,1),(1-x 0)·(1+x 0)2-ax 0-1=0,故f (x 0)>ax 0+1.不合题意.当a ≤0时,取x 0=5-12,则x 0∈(0,1),f (x 0)>(1-x 0)(1+x 0)2=1≥ax 0+1.不合题意.综上,a 的取值范围是[1,+∞).14.(2018·山东潍坊模拟)设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R . (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. [解] (1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 则g ′(x )=1x -2a =1-2ax x .当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增. 当a >0时,x ∈⎝⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增;x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减. 所以当a ≤0时,g (x )的单调增区间为(0,+∞); 当a >0时,g (x )的单调增区间为⎝⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞.(2)由(1)知,f ′(1)=0.①当a ≤0时,f ′(x )单调递增,所以,当x ∈(0,1)时,f ′(x )<0,f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增. 所以f (x )在x =1处取得极小值,不合题意.②当0<a <12时,12a >1,由(1)知f ′(x )在⎝ ⎛⎭⎪⎫0,12a 内单调递增, 可得,当x ∈(0,1)时,f ′(x )<0,x ∈⎝ ⎛⎭⎪⎫1,12a 时,f ′(x )>0. 所以f (x )在(0,1)内单调递减,在⎝ ⎛⎭⎪⎫1,12a 内单调递增. 所以f (x )在x =1处取得极小值,不合题意. ③当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减.所以当x ∈(0,+∞)时,f ′(x )≤f ′(1)=0,f (x )单调递减,不合题意.④当a >12时,0<12a <1,当x ∈⎝ ⎛⎭⎪⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减, 所以f (x )在x =1处取得极大值,符合题意.综上可知,实数a 的取值范围为⎝⎛⎭⎪⎫12,+∞.[延伸拓展](2017·海南华侨中学考前模拟)已知函数f (x )=x 3+ax 2+bx +c 在定义域x ∈[-2,2]上表示的曲线过原点,且在x =±1处的切线斜率均为-1.有以下命题 :①f (x )是奇函数;②若f (x )在[s ,t ]内递减,则|t -s |的最大值为4;③若f (x )的最大值为M ,最小值为m ,则M +m =0;④若对∀x ∈[-2,2],k ≤f ′(x )恒成立,则k 的最大值为2.其中正确命题的个数为( ) A .1 B .2 C .3D .4[解析] 由题意得函数过原点,则c =0.又f ′(x )=3x 2+2ax +b ,则⎩⎪⎨⎪⎧ f ′(1)=3+2a +b =-1,f ′(-1)=3-2a +b =-1,解得⎩⎪⎨⎪⎧a =0,b =-4. 所以f (x )=x 3-4x ,f ′(x )=3x 2-4=0.①因为f (-x )=-x 3+4x =-f (x ),即f (x )是奇函数,①正确;②由f ′(x )≥0得x ≥233或x ≤-233,f (x )在⎣⎢⎡⎦⎥⎤-233,233内单调递减.若f (x )在[s ,t ]内递减,则t ≤233,s ≥-233时,|t -s |的最大值为433,②错误;③由奇函数的图象关于原点对称可知,最大值与最小值互为相反数,f (x )的最大值为M ,最小值为m ,则M +m =0,③正确;④若对∀x ∈[-2,2],由于f ′(x )=3x 2-4∈[-4,8],则k ≤f ′(x )恒成立,则k ≤-4,则k 的最大值为-4,④错误.故正确的个数为2,故选B.[答案] B。

人教A高中选修22数学浙江专课时跟踪检测二 导数的几何意义 含解析

人教A高中选修22数学浙江专课时跟踪检测二 导数的几何意义 含解析

课时跟踪检测(二) 导数的几何意义A 级——学考水平达标1.曲线y =f (x )在点(x 0,f (x 0))处的切线方程为2x -y +1=0,则( )A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在解析:选A 因为曲线y =f (x )在点(x 0,f (x 0))处的导数就是切线的斜率,又切线2x -y +1=0的斜率为2,所以f ′(x 0)>0.2.曲线f (x )=-2x在点M (1,-2)处的切线方程为( ) A .y =-2x +4B .y =-2x -4C .y =2x -4D .y =2x +4 解析:选C Δy Δx =-21+Δx +2Δx =21+Δx,所以当Δx →0时,f ′(1)=2,即k =2.所以直线方程为y +2=2(x -1).即y =2x -4.故选C.3.曲线y =13x 3-2在点⎝⎛⎭⎫1,-53处切线的倾斜角为( ) A .1B.π4C.5π4 D .-π4解析:选B ∵y ′=lim Δx →0 ⎣⎡⎦⎤13(x +Δx )3-2-⎝⎛⎭⎫13x 3-2Δx=lim Δx →0 ⎣⎡⎦⎤x 2+x Δx +13(Δx )2=x 2, ∴切线的斜率k =y ′|x =1=1.∴切线的倾斜角为π4,故应选B. 4.曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( )A .1 B.12C .-12D .-1解析:选A ∵y ′|x =1=lim Δx →0 a (1+Δx )2-a ×12Δx=lim Δx →0 2a Δx +a (Δx )2Δx=lim Δx →0 (2a +a Δx )=2a , ∴2a =2,∴a =1.5.过正弦曲线y =sin x 上的点⎝⎛⎭⎫π2,1的切线与y =sin x 的图象的交点个数为( )A .0个B .1个C .2个D .无数个解析:选D 由题意,y =f (x )=sin x ,则f ′⎝⎛⎭⎫π2=lim Δx →0 sin ⎝⎛⎭⎫π2+Δx -sin π2Δx=lim Δx →0 cos Δx -1Δx. 当Δx →0时,cos Δx →1,∴f ′⎝⎛⎭⎫π2=0.∴曲线y =sin x 的切线方程为y =1,且与y =sin x 的图象有无数个交点.6.已知f (x )=x 2+ax ,f ′(1)=4,曲线f (x )在x =1处的切线在y 轴上的截距为-1,则实数a 的值为________.解析:由导数的几何意义,得切线的斜率为k =f ′(1)=4.又切线在y 轴上的截距为-1,所以曲线f (x )在x =1处的切线方程为y =4x -1.从而切点坐标为(1,3),所以f (1)=1+a =3,即a =2.答案:27.曲线y =x x +2在点(-1,-1)处的切线方程为________. 解析:因为Δy =-1+Δx -1+Δx +2-(-1)=Δx -11+Δx +1=2Δx 1+Δx ,所以Δy Δx =2Δx (1+Δx )·Δx =21+Δx, 所以f ′(-1)=lim Δx →0 Δy Δx =lim Δx →0 21+Δx=2, 故曲线y =x x +2在点(-1,-1)处的切线方程为y +1=2(x +1),即y =2x +1. 答案:y =2x +18.曲线y =x 2-3x 的一条切线的斜率为1,则切点坐标为________.解析:设f (x )=y =x 2-3x ,切点坐标为(x 0,y 0),f ′(x 0)=lim Δx →0 (x 0+Δx )2-3(x 0+Δx )-x 20+3x 0Δx=lim Δx →0 2x 0Δx -3Δx +(Δx )2Δx=2x 0-3=1,故x 0=2, y 0=x 20-3x 0=4-6=-2,故切点坐标为(2,-2).答案:(2,-2)9.求曲线y =f (x )=1x -x 上点P ⎝⎛⎭⎫4,-74处的切线方程. 解:因为f ′(4)=lim Δx →0 f (4+Δx )-f (4)Δx=lim Δx →014+Δx -4+Δx -⎝⎛⎭⎫14-2Δx =lim Δx →0 ⎝ ⎛⎭⎪⎫14+Δx -14-(4+Δx -2)Δx=lim Δx →0-Δx 4(4+Δx )-Δx 4+Δx +2Δx =lim Δx →0 ⎝ ⎛⎭⎪⎪⎫-14(4+Δx )-14+Δx +2=-516, 所以所求切线的斜率为-516. 所以所求的切线方程为5x +16y +8=0.10.已知曲线y =2x 2-7,求曲线过点P (3,9)的切线方程.解:可知点P (3,9)不在曲线上,故设所求切线的切点为A (x 0,y 0),由题意得f ′(x 0)=lim Δx →0 Δy Δx=lim Δx →0 2(x 0+Δx )2-7-(2×x 20-7)Δx=lim Δx →0(4x 0+2Δx )=4x 0. 故所求的切线方程为y -y 0=4x 0(x -x 0),将P (3,9)及y 0=2x 20-7代入上式得9-(2x 20-7)=4x 0(3-x 0).解得x 0=2或x 0=4.所以切点为(2,1)或(4,25).从而所求切线方程为y -1=8(x -2)或y -25=16(x -4).即y =8x -15或y =16x -39.B 级——高考能力达标1.已知y =f (x )的图象如图,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(xB )B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定解析:选B 由图可知,曲线在点A 处的切线的斜率比曲线在点B 处的切线的斜率小,结合导数的几何意义知f ′(x A )<f ′(x B ),选B.2.曲线f (x )=2x -1x 在x =1处的切线的斜率为( )A .-1B .1C .2D .3 解析:选D 因为Δy =f (1+Δx )-f (1)=2(1+Δx )-11+Δx-()2×1-1 =2Δx +1-11+Δx =2Δx +Δx 1+Δx , 所以Δy Δx =2Δx +Δx 1+Δx Δx =2+11+Δx, 所以lim Δx →0 Δy Δx =lim Δx →0 ⎝ ⎛⎭⎪⎫2+11+Δx =2+1=3. 3.设f (x )存在导函数,且满足lim Δx →0f (1)-f (1-2Δx )2Δx=-1,则曲线y =f (x )上点(1,f (1))处的切线斜率为( )A .2B .-1C .1D .-2解析:选B lim Δx →0 f (1)-f (1-2Δx )2Δx =lim Δx →0 f (1-2Δx )-f (1)-2Δx =f ′(1)=-1. 4.已知直线ax -by -2=0与曲线y =x 3在点P (1,1)处的切线互相垂直,则a b 为( )A.13B.23C .-23D .-13解析:选D 由导数的定义可得y ′=3x 2,∴y =x 3在点P (1,1)处的切线斜率k =y ′|x =1=3,由条件知,3×a b =-1,∴a b =-13. 5.如图,函数f (x )的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则lim Δx →0 f (1+Δx )-f (1)Δx=______. 解析:由导数的概念和几何意义知,lim Δx →0 f (1+Δx )-f (1)Δx =f ′(1)=k AB =0-42-0=-2. 答案:-26.已知曲线f (x )=x ,g (x )=1x过两曲线交点作两条曲线的切线,则曲线f (x )在交点处的切线方程为____________________.解析:由⎩⎪⎨⎪⎧ y =x ,y =1x 得⎩⎪⎨⎪⎧x =1,y =1, ∴两曲线的交点坐标为(1,1).由f (x )=x ,得f ′(1)=lim △x →01+Δx -1Δx =lim △x →0 11+Δx +1=12,∴y =f (x )在点(1,1)处的切线方程为y -1=12(x -1). 即x -2y +1=0,答案:x -2y +1=07.求曲线y =1x 和y =x 2在它们交点处的两条切线与x 轴所围成的三角形的面积.解:联立两曲线方程⎩⎪⎨⎪⎧ y =1x ,y =x 2,解得⎩⎪⎨⎪⎧x =1,y =1, 即交点坐标为(1,1).曲线y =1x 在点(1,1)的切线斜率为f ′(1)=lim Δx →0 11+Δx -1Δx =lim Δx →0 -11+Δx=-1, 所以曲线y =1x 在点(1,1)处的一条切线方程为y -1=-(x -1),即y =-x +2.同理,曲线y =x 2在点(1,1)处的切线斜率为g ′(1)=lim Δx →0 (1+Δx )2-12Δx =lim Δx →0 2Δx +(Δx )2Δx=lim Δx →0(2+Δx )=2. 所以曲线y =x 2在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.两条切线y =-x +2和y =2x -1与x 轴所围成的图形如图所示,所以所求三角形面积S =12×1×⎝⎛⎭⎫2-12=34.8.已知曲线y =x 2+1,是否存在实数a ,使得经过点(1,a )能够作出该曲线的两条切线?若存在,求出实数a的取值范围;若不存在,请说明理由.解:∵ΔyΔx =(x+Δx)2+1-x2-1Δx=2x+Δx,∴y′=limΔx→0ΔyΔx=limΔx→0(2x+Δx)=2x.设切点为P(x0,y0),则切线的斜率为k=y′|x=x0=2x0,由点斜式可得所求切线方程为y-y0=2x0(x-x0).又∵切线过点(1,a),且y0=x20+1,∴a-(x20+1)=2x0(1-x0),即x20-2x0+a-1=0.∵切线有两条,∴Δ=(-2)2-4(a-1)>0,解得a<2.故存在实数a,使得经过点(1,a)能够作出该曲线的两条切线,a的取值范围是(-∞,2).。

高中数学 课时跟踪检测(二)导数的几何意义 新人教A版

高中数学 课时跟踪检测(二)导数的几何意义 新人教A版

课时跟踪检测(二) 导数的几何意义一、选择题1.若函数f (x )=-3x -1,则f ′(x )等于( ) A .0 B .-3x C .3 D .-3解析:选D法一:f ′(x )=lim Δx →0f x +Δx -f xΔx=lim Δx →0-x +Δx -1+3x +1Δx=li m Δx →0 (-3)=-3. 法二:由导数的几何意义可知,f ′(x )为直线y =-3x -1的斜率,∴f ′(x )=-3. 2.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在B .与x 轴平行或重合C .与x 轴垂直D .与x 轴相交但不垂直解析:选B ∵f ′(x 0)=0,∴曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率为0. 3.在曲线y =x 2上切线倾斜角为π4的点是( )A .(0,0)B .(2,4)C.⎝ ⎛⎭⎪⎫14,116 D.⎝ ⎛⎭⎪⎫12,14解析:选D ∵k =lim Δx →0 ΔyΔx =lim Δx →0x +Δx 2-x 2Δx=lim Δx →0(2x +Δx )=2x ,∴2x =tan π4=1,∴x =12,从而y =14.4.已知曲线y =-12x 2-2上一点P ⎝ ⎛⎭⎪⎫1,-52,则在点P 处的切线的倾斜角为( )A .30°B .45°C .135°D .165°解析:选C ∵点P ⎝ ⎛⎭⎪⎫1,-52在曲线y =f (x )=-12x 2-2上,∴在点P 处的切线斜率为k=f ′(1)=-1,∴在点P 处的切线的倾斜角为135°.5.已知y =f (x )的图象如下图,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定解析:选B 由题图可知,曲线在点A 处的切线的斜率比曲线在点B 处的切线的斜率小,结合导数的几何意义知f ′(x A )<f ′(x B ).二、填空题6.y =-1x 在点⎝ ⎛⎭⎪⎫12,-2处的切线方程是________.解析:先求y =-1x的导数:Δy =-1x +Δx +1x =Δx x x +Δx ,ΔyΔx =1x x +Δx,lim Δx →0 ΔyΔx =lim Δx →0 1x x +Δx =1x 2,即y ′=1x 2,所以y =-1x 在点⎝ ⎛⎭⎪⎫12,-2处的切线斜率为f ′⎝ ⎛⎭⎪⎫12=4,所以切线方程是y +2=4⎝ ⎛⎭⎪⎫x -12,即y =4x -4.答案:y =4x -47.对于函数f (x )=ax +4,若f ′(1)=2,则a =________. 解析:因为f ′(x 0)=lim Δx →0a x 0+Δx +4-ax 0-4Δx=a ,f ′(1)=2,所以a =2.答案:28.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则点P 的坐标为________. 解析:设P 点坐标为(x 0,2x 20+4x 0), 则f ′(x 0)=lim Δx →0f x 0+Δx -f xΔx=limΔx →0Δx2+4x 0Δx +4ΔxΔx=4x 0+4.又∵f ′(x 0)=16,∴4x 0+4=16,∴x 0=3,∴P 点坐标为(3,30). 答案:(3,30) 三、解答题9.已知f (x )=x 2,g (x )=x 3,求满足f ′(x )+2=g ′(x )的x 的值.解:f ′(x )=lim Δx →0x +Δx 2-x 2Δx =2x ,g ′(x )=lim Δx →0x +Δx 3-x 3Δx =3x 2.因为f ′(x )+2=g ′(x ),所以2x +2=3x 2, 解得x =1-73或x =1+73.10.已知曲线y =2x 2+a 在点P 处的切线方程为8x -y -15=0,求切点P 的坐标和实数a 的值.解:设切点P 的坐标为(x 0,y 0),切线斜率为k .由y ′=lim Δx →0 ΔyΔx =lim Δx →0 x +Δx2+a ]-x 2+aΔx=lim Δx →0 (4x +2Δx )=4x , 得k =f ′(x 0)=4x 0. 根据题意得4x 0=8,x 0=2. 分别代入y =2x 2+a 和y =8x -15, 解得y 0=1,a =-7,故所求切点P 的坐标为(2,1),a =-7.。

2020届高考数学一轮复习:课时作业16《导数的综合应用》(含解析)

2020届高考数学一轮复习:课时作业16《导数的综合应用》(含解析)

课时作业16 导数的综合应用1.(2019·天津调研)已知函数y =x 3-3x +c 的图象与x 轴恰有两个公共点,则c 等于( A )A .-2或2B .-9或3C .-1或1D .-3或1解析:∵y ′=3x 2-3,∴当y ′=0时,x =±1.则当x 变化时,y ′,y 的变化情况如下表: x(-∞,-1) -1 (-1,1) 1 (1,+∞) y ′+ 0 - 0 +y c +2c -2 或c -2=0,∴c =-2或c =2.2.已知函数f (x )=m ⎝ ⎛⎭⎪⎫x -1x -2ln x (m ∈R ),g (x )=-m x ,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的取值范围是( B )A .⎝ ⎛⎦⎥⎤-∞,2e B .⎝ ⎛⎭⎪⎫-∞,2e C .(-∞,0] D .(-∞,0)解析:由题意,不等式f (x )<g (x )在[1,e]上有解,∴mx <2ln x 在[1,e]上有解,即m 2<ln x x 在[1,e]上有解,令h (x )=ln x x ,则h ′(x )=1-ln x x 2,当1≤x ≤e 时,h ′(x )≥0,∴在[1,e]上,h (x )max =h (e)=1e ,∴m 2<1e ,∴m <2e ,∴m 的取值范围是⎝ ⎛⎭⎪⎫-∞,2e ,故选B . 3.定义在R 上的函数f (x )满足:f (x )+f ′(x )>1,f (0)=4,则不等式e x f (x )>e x +3(其中e 为自然对数的底数)的解集为( A )A .(0,+∞)B .(-∞,0)∪(3,+∞)C .(-∞,0)∪(0,+∞)D .(3,+∞)解析:设g (x )=e x f (x )-e x (x ∈R ),则g ′(x )=e x f (x )+e x f ′(x )-e x =e x [f (x )+f ′(x )-1],因为f (x )+f ′(x )>1,所以f (x )+f ′(x )-1>0,所以g ′(x )>0,所以g (x )=e x f (x )-e x 在定义域上单调递增,因为e x f (x )>e x +3,所以g (x )>3.又因为g (0)=e 0f (0)-e 0=4-1=3,所以g (x )>g (0),所以x >0.4.(2019·福建六校模拟)已知函数f (x )=(x -a )3-3x +a (a >0)在[-1,b ]上的值域为[-2-2a,0],则b 的取值范围是( A )A .[0,3]B .[0,2]C .[2,3]D .(-1,3]解析:由f (x )=(x -a )3-3x +a ,得f ′(x )=3(x -a )2-3,令f ′(x )=0,得x 1=a -1,x 2=a +1.当x ∈(-∞,a -1)∪(a +1,+∞)时,f ′(x )>0,当x ∈(a -1,a +1)时,f ′(x )<0,则f (x )在(-∞,a -1),(a +1,+∞)上为增函数,在(a -1,a +1)上为减函数.又f (a +1)=-2-2a ,∴要使f (x )=(x -a )3-3x +a (a >0)在[-1,b ]上的值域为[-2-2a,0],则f (-1+a )=2-2a ≤0,若2-2a =0,即a =1,此时f (-1)=-4,f (0)=0,-2-2a =-4,f (3)=0,f (2)=-4.∴b ∈[0,3];若2-2a <0,即a >1,此时f (-1)=(-1-a )3+3+a =-a 3-3a 2-2a +2,而f (-1)-(-2a -2)=-a 3-3a 2-2a +2+2a +2=-a 3-3a 2+4=(1-a )·(a +2)2<0,∴不合题意,∴b 的取值范围是[0,3].故选A .5.(2019·广东韶关六校联考)对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g (x )=2x 3-3x 2+12,则g ⎝ ⎛⎭⎪⎫1100+g ⎝ ⎛⎭⎪⎫2100+…+g ⎝ ⎛⎭⎪⎫99100=( D ) A .100B .50C .992D .0解析:∵g (x )=2x 3-3x 2+12, ∴g ′(x )=6x 2-6x ,g ″(x )=12x -6,由g ″(x )=0,得x =12,又g ⎝ ⎛⎭⎪⎫12=2×⎝ ⎛⎭⎪⎫123-3×⎝ ⎛⎭⎪⎫122+12=0, ∴函数g (x )的图象关于点⎝ ⎛⎭⎪⎫12,0对称, ∴g (x )+g (1-x )=0,∴g ⎝ ⎛⎭⎪⎫1100+g ⎝ ⎛⎭⎪⎫2100+…+g ⎝ ⎛⎭⎪⎫99100=49×0+g ⎝ ⎛⎭⎪⎫50100=g ⎝ ⎛⎭⎪⎫12=0,故选D .6.从边长为10 cm ×16 cm 的矩形纸板的四角截去四个相同的小正方形,做成一个无盖的盒子,则盒子容积的最大值为144__cm 3.解析:设盒子容积为y cm 3,盒子的高为x cm ,x ∈(0,5).则y =(10-2x )(16-2x )x =4x 3-52x 2+160x ,∴y ′=12x 2-104x +160.令y ′=0,得x =2或x =203(舍去),∴y max =6×12×2=144(cm 3).7.直线x =t 分别与函数f (x )=e x +1的图象及g (x )=2x -1的图象相交于点A 和点B ,则|AB |的最小值为4-2ln2__.解析:由题意得,|AB |=|e t +1-(2t -1)|=|e t -2t +2|,令h (t )=e t -2t +2,则h ′(t )=e t -2,所以h (t )在(-∞,ln2)上单调递减,在(ln2,+∞)上单调递增,所以h (t )min =h (ln2)=4-2ln2>0,即|AB |的最小值是4-2ln2.8.(2019·佛山质检)定义在R 上的奇函数y =f (x )满足f (3)=0,且不等式f (x )>-xf ′(x )在(0,+∞)上恒成立,则函数g (x )=xf (x )+lg|x +1|的零点个数为3__.解析:定义在R 上的奇函数f (x )满足:f (0)=0=f (3)=f (-3),f (-x )=-f (x ),当x >0时,f (x )>-xf ′(x ),即f (x )+xf ′(x )>0,∴[xf (x )]′>0,即h (x )=xf (x )在x >0时是增函数,又h (-x )=-xf (-x )=xf (x ),∴h (x )=xf (x )是偶函数,∴当x <0时,h (x )是减函数,结合函数的定义域为R ,且f (0)=f (3)=f (-3)=0,可得函数y 1=xf (x )与y 2=-lg|x +1|的大致图象如图.由图象可知,函数g(x)=xf(x)+lg|x+1|的零点的个数为3.9.(2019·惠州调研)已知函数f(x)=2e x-(x-a)2+3,a∈R.(1)若函数f(x)的图象在x=0处的切线与x轴平行,求a的值;(2)若x≥0,f(x)≥0恒成立,求a的取值范围.解:(1)f′(x)=2(e x-x+a),∵函数f(x)的图象在x=0处的切线与x轴平行,即在x=0处的切线的斜率为0,∴f′(0)=2(a+1)=0,∴a=-1.(2)由(1)知f′(x)=2(e x-x+a),令h(x)=2(e x-x+a)(x≥0),则h′(x)=2(e x-1)≥0,∴h(x)在[0,+∞)上单调递增,且h(0)=2(a+1).①当a≥-1时,f′(x)≥0在[0,+∞)上恒成立,即函数f(x)在[0,+∞)上单调递增,∴f(x)min=f(0)=5-a2≥0,解得-5≤a≤5,又a≥-1,∴-1≤a≤ 5.②当a<-1时,则存在x0>0,使h(x0)=0且当x∈[0,x0)时,h(x)<0,即f′(x)<0,则f(x)单调递减,当x∈(x0,+∞)时,h(x)>0,则f′(x)>0,即f(x)单调递增,∴f(x)min=f(x0)=2e x0-(x0-a)2+3≥0,又h(x0)=2(e x0-x0+a)=0,∴2e x0-(e x0)2+3≥0,解得0<x0≤ln3.由e x 0=x 0-a ⇒a =x 0-e x 0,令M (x )=x -e x,0<x ≤ln3,则M ′(x )=1-e x <0,∴M (x )在(0,ln3]上单调递减,则M (x )≥M (ln3)=ln3-3,M (x )<M (0)=-1,∴ln3-3≤a <-1.综上,ln3-3≤a ≤ 5.故a 的取值范围是[ln3-3,5].10.(2019·山西康杰中学等四校联考)已知函数f (x )=x -ln x .(1)求f (x )的单调区间和极值;(2)证明:当x ≥1时,(x e x +1)f (x )e +1≥e x -1; (3)若f (x )≥(1-m )x +m 对任意x ∈(0,+∞)恒成立,求实数m 的值.解:(1)f (x )=x -ln x ,f ′(x )=1-1x ,x ∈(0,+∞),f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,有极小值f (1)=1,无极大值.(2)证明:原不等式可化为f (x )e +1≥e x -1x e x +1, 记g (x )=e x -1x e x +1, 则g ′(x )=e x -1(1-e x )(x e x +1)2, 当x ≥1时,g ′(x )<0,所以g (x )在[1,+∞)上单调递减,有g (x )≤g (1)=1e +1, 又由(1)知,f (x )e +1≥f (1)e +1=1e +1,得证. (3)f (x )≥(1-m )x +m ,即ln x -m (x -1)≤0,记h (x )=ln x -m (x -1),则h (x )≤0对任意x ∈(0,+∞)恒成立,求导得h ′(x )=1x -m (x >0),若m ≤0,则h ′(x )>0,得h (x )在(0,+∞)上单调递增,又h (1)=0,故当x >1时,h (x )>0,不合题意;若m >0,则易得h (x )在⎝ ⎛⎭⎪⎫0,1m 上单调递增,在⎝ ⎛⎭⎪⎫1m ,+∞上单调递减,则h (x )max =h ⎝ ⎛⎭⎪⎫1m =-ln m -1+m . 依题意有-ln m -1+m ≤0,故f (m )≤1,由(1)知f (m )≥1,则m 只能等于1.11.(2019·厦门调研)已知f (x )=12x 2+b x +c (b ,c 是常数)和g (x )=14x +1x 是定义在M ={x |1≤x ≤4}上的函数,对于任意的x ∈M ,存在x 0∈M 使得f (x )≥f (x 0),g (x )≥g (x 0),且f (x 0)=g (x 0),则f (x )在M 上的最大值为( B )A .72B .5C .6D .8解析:因为当x ∈[1,4]时,g (x )=14x +1x ≥214=1(当且仅当x =2时等号成立),所以f (2)=2+b 2+c =g (2)=1,所以c =-1-b 2,所以f (x )=12x 2+b x -1-b 2,所以f ′(x )=x -b x 2=x 3-b x 2.因为f (x )在x =2处有最小值,且x ∈[1,4],所以f ′(2)=0,即b =8,所以c =-5,经检验,b =8,c =-5符合题意.所以f (x )=12x 2+8x -5,f ′(x )=x 3-8x 2,所以f (x )在[1,2)上单调递减,在(2,4]上单调递增,而f (1)=12+8-5=72,f (4)=8+2-5=5,所以函数f (x )在M 上的最大值为5,故选B .12.已知f (x )=|x |e x (x ∈R ),若关于x 的方程f 2(x )-mf (x )+m -1=0恰好有4个不相等的实数根,则实数m 的取值范围为( C )A .⎝ ⎛⎭⎪⎫1e ,2∪(2,e)B .⎝ ⎛⎭⎪⎫1e ,1 C .⎝ ⎛⎭⎪⎫1,1e +1 D .⎝ ⎛⎭⎪⎫1e ,e 解析:依题意,由f 2(x )-mf (x )+m -1=0,得f (x )=1或f (x )=m -1. 当x <0时,f (x )=-x e -x ,f ′(x )=(x -1)e -x <0,此时f (x )是减函数.当x >0时,f (x )=x e -x ,f ′(x )=-(x -1)e -x ,若0<x <1,则f ′(x )>0,f (x )是增函数;若x >1,则f ′(x )<0,f (x )是减函数.因此,要使关于x 的方程f 2(x )-mf (x )+m -1=0恰好有4个不相等的实数根,只要求直线y =1,直线y =m -1与函数y =f (x )的图象共有四个不同的交点.函数f (x )的图象如图.注意到直线y =1与函数y =f (x )的图象有唯一公共点,因此要求直线y =m -1与函数y =f (x )的图象共有三个不同的交点,结合图象可知,0<m -1<1e ,即1<m <1+1e ,则实数m 的取值范围为⎝ ⎛⎭⎪⎫1,1+1e . 13.(2019·武汉调研)已知函数f (x )=x ln x .(1)若函数g (x )=f (x )+ax 在区间[e 2,+∞)上为增函数,求实数a 的取值范围;(2)若对任意x ∈(0,+∞),f (x )≥-x 2+mx -32恒成立,求实数m 的最大值.解:(1)由题意得g ′(x )=f ′(x )+a =ln x +a +1.∵函数g (x )在区间[e 2,+∞)上为增函数,∴当x ∈[e 2,+∞)时,g ′(x )≥0,即ln x +a +1≥0在[e 2,+∞)上恒成立.∴a ≥-1-ln x .令h (x )=-ln x -1,∴a ≥h (x )max ,当x ∈[e 2,+∞)时,ln x ∈[2,+∞),∴h (x )∈(-∞,-3],∴a ≥-3,即实数a 的取值范围是[-3,+∞).(2)∵2f (x )≥-x 2+mx -3,即mx ≤2x ln x +x 2+3,又x >0,∴m ≤2x ln x +x 2+3x在x ∈(0,+∞)上恒成立. 记t (x )=2x ln x +x 2+3x=2ln x +x +3x . ∴m ≤t (x )min .∵t ′(x )=2x +1-3x 2=x 2+2x -3x 2=(x +3)(x -1)x 2, 令t ′(x )=0,得x =1或x =-3(舍去).当x ∈(0,1)时,t ′(x )<0,函数t (x )在(0,1)上单调递减;当x ∈(1,+∞)时,t ′(x )>0,函数t (x )在(1,+∞)上单调递增. ∴t (x )min =t (1)=4.∴m ≤t (x )min =4,即m 的最大值为4.14.(2019·福建四地六校联考)已知函数f (x )=(x -1)e x-12ax 2. (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求实数a 的取值范围.解:(1)f (x )的定义域为(-∞,+∞),f ′(x )=e x +(x -1)e x -ax =x (e x -a ).(ⅰ)若a ≤0,则当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0,所以f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. (ⅱ)若a >0,由f ′(x )=0得x =0或x =ln A .①若a =1,则f ′(x )=x (e x -1)≥0,所以f (x )在(-∞,+∞)上单调递增.②若0<a <1,则ln a <0,故当x ∈(-∞,ln a )∪(0,+∞)时,f ′(x )>0;当x ∈(ln a,0)时,f ′(x )<0,所以f (x )在(-∞,ln a ),(0,+∞)上单调递增,在(ln a,0)上单调递减.③若a >1,则ln a >0,故当x ∈(-∞,0)∪(ln a ,+∞)时,f ′(x )>0;当x ∈(0,ln a )时,f ′(x )<0,所以f (x )在(-∞,0),(ln a ,+∞)上单调递增,在(0,ln a )上单调递减.综上所述,当a ≤0时,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增;当0<a <1时,f (x )在(-∞,ln a ),(0,+∞)上单调递增,在(ln a,0)上单调递减;当a =1时,f (x )在(-∞,+∞)上单调递增;当a >1时,f (x )在(-∞,0),(ln a ,+∞)上单调递增,在(0,ln a )上单调递减.(2)(ⅰ)若a ≤0,则由(1)知,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.又f (0)=-1,x 趋近负无穷时,f (x )值趋近正无穷.x 趋近正无穷时,f (x )值趋近正无穷.所以f (x )有两个零点.(ⅱ)若a =1,则由(1)知f (x )在(-∞,+∞)上单调递增,所以f (x )至多有一个零点.(ⅲ)若0<a <1,则由(1)知,f (x )在(-∞,ln a ),(0,+∞)上单调递增,在(ln a,0)上单调递减,设b =ln a ,当x =b 时,f (x )有极大值f (b )=a (b -1)-12ab 2=-12a (b2-2b +2)<0,故f (x )不存在两个零点.(ⅳ)若a >1,则由(1)知,f (x )在(-∞,0),(ln a ,+∞)上单调递增,在(0,ln a )上单调递减,当x =0时,f (x )有极大值f (0)=-1<0,故f (x )不存在两个零点.综上,a 的取值范围为a ≤0.。

2019-2020年高考数学二轮复习练酷专题课时跟踪检测六导数的简单应用理

2019-2020年高考数学二轮复习练酷专题课时跟踪检测六导数的简单应用理

-2,∴ a≥- 2. 9. (xx 届高三·重庆调研 ) 若函数 f ( x) =( x+ a)e x 在(0 ,+∞ ) 上不单调,则实数 a 的
取值范围是 (
)
A. ( -∞,- 1)
B . ( -∞, 0)
C. ( -1,0)
D . [ -1,+∞)
x
x
解析:选 A f ′(x) = e ( x+a+ 1) ,由题意,知方程 e ( x+ a+1) = 0 在(0 ,+∞ ) 上至
围为 ( )
a 的取值范
A. [ -1,+∞ )
B . ( -1,+∞)
C. [ -2,+∞ )
D . ( -2,+∞)
解析:选 C ∵ f ( x) 在 (0 ,+∞ ) 上单调递增, 且 f ′(x) = 2e2x+ a,∴f ′(x) = 2e2x+ a≥0
在(0 ,+∞ ) 上恒成立,即 a≥- 2e2x 在(0 ,+∞ ) 上恒成立,又 x∈ (0 ,+∞ ) 时,- 2e2x<
D . (1,2)
解析: 选 C
函数
f ( x) = x2- 5x+2ln
x 的定义域是
2 (0 ,+∞ ) ,令 f ′(x) = 2x-5+ x=
2x2 -5x+ 2 x- 2 2x- 1
1
x

x
> 0,解得 0< x< 2或 x> 2,故函数 f ( x) 的单调递增区间是
1 0, 2 和 (2 ,+∞ ) .
2019-2020 年高考数学二轮复习练酷专题课时跟踪检测六导数的简单应用

2
1.(xx 届高三·江西师范大学附中调研 ) 若 ( x- a)d x= cos 2xdx,则 a 的值为 ( ) 1

课时跟踪检测(十六) 导数的应用(二)

课时跟踪检测(十六)    导数的应用(二)

课时跟踪检测(十六)导数的应用(二)一、选择题(共2小题;共10分)1. 在上可导的函数的图象如图所示,则关于的不等式的解集为A. B.C. D.2. 若商品的年利润(万元)与年产量(百万件)的函数关系式,则获得最大利润时的年产量为A. 百万件B. 百万件C. 百万件D. 百万件二、填空题(共2小题;共10分)3. 已知函数是上的偶函数,且在上有,若,那么关于的不等式的解集是______.4. 设是由满足下列条件的函数构成的集合:"①方程有实数根;②函数的导数满足." 给出以下三个函数:①;②;③,.其中是集合中的元素的有______(用序号填空).三、解答题(共5小题;共65分)5. 已知函数.(1)求函数在上的最大值和最小值;(2)求证:当时,函数的图象总在的下方.6. 已知函数,其中为常数.(1)若对任意有成立,求的取值范围;(2)当时,判断在上零点的个数,并说明理由.7. 某种产品每件成本为元,每件售价为元,年销售为万件,若已知与成正比,且售价为元时,年销量为万件.(1)求年销售利润关于售价的函数关系式;(2)求售价为多少时,年利润最大,并求出最大年利润.8. 已知函数,.(1)当时,求函数的单调区间;(2)设,,求证:.9. 已知函数,其中为常数,设为自然对数的底数.(1)当时,求的最大值;(2)若在区间上的最大值为,求的值;(3)当时,试推断方程是否有实数解.答案第一部分1. A2. C第二部分3.4. ①第三部分5. (1)因为,所以.因为时,,所以在上是增函数,所以的最小值是,最大值是.(2)令,则.因为,所以,所以在上是减函数.从而,即.所以当时,函数的图象总在的图象的下方.6. (1)依题意,可知在上连续,且.令,得.当时,,单调递减;当时,,单调递增.所以当时,为极小值,也是最小值.令,得,即对任意,恒成立时,的取值范围是.(2)由(1)知在上至多有两个零点,当时,.又,所以,于是在上有一个零点.又,令,因为当时,,所以在上单调递增.从而,即.所以,于是在上有一个零点.综上,在上有两个零点.7. (1)设,因为售价为元时,年销量为万件,所以,解得.所以.所以.(2).令,得(舍去)或,显然,当时,;当时,.所以函数在上是递增的,在上是递减的.所以当时,取最大值,且,所以售价为元时,年利润最大,最大年利润为万元.8. (1)由已知,得.①当时,,单调递增;②当时,,单调递增;当时,,单调递减.综上,当时,的增区间为;当时,的增区间为,减区间为.(2)依题意,得,.设,,则.,随的变化情况如下表:递增极大值递减极小值递增由上表可知的极小值为,又,故当时,,即,因此,,即.9. (1)当时,,.当时,;当时,.所以在上是增函数,在上是减函数,所以.(2)因为,,①若,则,从而在上是增函数,所以,不符合题意.②若,由,得,即;由,得,即.从而在上是增函数,在上是减函数.所以.由,得,解得,所以为所求.(3)由(1)知,当时,,所以.令,则,令,得.当时,,在上单调递增;当时,,在上单调递减.所以.所以.所以.综上,当时,方程没有实数解.。

高考数学一轮复习 第三章 导数及其应用 课时跟踪检测16 理 新人教A版(2021年最新整理)

高考数学一轮复习 第三章 导数及其应用 课时跟踪检测16 理 新人教A版(2021年最新整理)

2018版高考数学一轮复习第三章导数及其应用课时跟踪检测16 理新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第三章导数及其应用课时跟踪检测16 理新人教A版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第三章导数及其应用课时跟踪检测16 理新人教A版的全部内容。

课时跟踪检测(十六)[高考基础题型得分练]1.[2017·陕西西安调研]定积分错误!(2x+e x)d x的值为( )A.e+2 B.e+1C.e D.e-1答案:C解析:错误!(2x+e x)d x=(x2+e x)错误!错误!=1+e1-1=e。

故选C.2.直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为()A.2错误!B.4错误!C.2 D.4答案:D解析:如图,y=4x与y=x3的交点A(2,8),图中阴影部分即为所求图形面积.S=错误!(4x-x3)d x=错误!错误!错误!=8-错误!×24=4,故选D。

阴3.从空中自由下落的一物体,在第一秒末恰经过电视塔顶,在第二秒末物体落地,已知自由落体的运动速度为v=gt(g为常数),则电视塔高为()A.错误!g B.gC.错误!g D.2g答案:C解析:电视塔高h=错误!gt d t=错误!错误!错误!=错误!g。

4.已知f(x)=错误!若错误!f(x)d x=错误!,则k的值为()A.0 B.0或-1C.0或1 D.-1答案:B解析:∵错误!f(x)d x=错误!(1+x2)d x=错误!<错误!,∴当k≥2时,错误!f(x)d x<错误!,∴k<2,∴错误!f(x)d x=错误!(2x+1)d x+错误!(x2+1)d x=错误!,化简得k2+k=0,解得k=0或k=-1.5.若f(x)=错误!f(f(1))=1,则a的值为( )A.1 B.2C.-1 D.-2答案:A解析:因为f(1)=lg 1=0,f(0)=错误!3t2d t=t3错误!错误!=a3,由f(f(1))=1,得a3=1,a=1。

《213导数的应用(ⅱ)》 学案

《213导数的应用(ⅱ)》  学案

学习过程一、课堂导入我们知道,汽油的消耗量w(单位:L)与汽车的速度v(单位:km/h)之间有一定的关系,汽油的消耗量w是汽车速度v的函数.根据你的生活经验,思考下面两个问题:①是不是汽车的速度越快,汽车的消耗量越大?②“汽油的使用率最高”的含义是什么?通过实际问题引发学生思考,进而导入本节课二、复习预习1.函数的单调性与导数的关系2.函数的极值与导数的关系3.函数的最值与导数的关系4.函数的极值和函数的最值的联系和区别三、知识讲解考点1 生活中的优化问题生活中常遇到求利润最大,用料最省、效率最高等一些实际问题,这些问题通常称为优化问题.考点2 利用导数解决生活中的优化问题的一般步骤考点3 求实际问题中的最值问题有关函数最大值、最小值的实际问题,一般指的是单峰函数,也就是说在实际问题中,如果遇到函数在区间内只有一个极值点,那么不与区间端点比较,就可以知道这个极值点就是最大(小)值点.四、例题精析【例题1】【题干】设函数f (x )=ln x -12ax 2-bx .(1)当a =b =12时,求f (x )的最大值;(2)令F (x )=f (x )+12ax 2+bx +a x (0<x ≤3),其图象上任意一点P (x 0,y 0)处切线的斜率k ≤12恒成立,求实数a 的取值范围;(3)当a =0,b =-1时,方程2mf (x )=x 2有唯一实数解,求正数m 的值.【解析】 (1)依题意,知f (x )的定义域为(0,+∞),当a =b =12时,f (x )=ln x -14x 2-12x ,f ′(x )=1x -12x -12=-(x +2)(x -1)2x, 令f ′(x )=0,解得x =1(x =-2舍去).当0<x <1时,f ′(x )>0,此时f (x )单调递增;当x >1时,f ′(x )<0,此时f (x )单调递减.所以f (x )的极大值为f (1)=-34.又因为f ′(x )=0在(0,+∞)上有唯一解,所以f (x )的最大值为-34.(2)由题意得F (x )=ln x +a x ,x ∈(0,3],则k =F ′(x 0)=x 0-a x 20≤12在x 0∈(0,3]上恒成立, 所以a ≥⎝ ⎛⎭⎪⎫-12x 20+x 0max ,x 0∈(0,3]. 当x 0=1时,-12x 20+x 0取得最大值12,所以a ≥12.(3)因为方程2mf (x )=x 2有唯一实数解,所以x 2-2m ln x -2mx =0有唯一实数解.设g (x )=x 2-2m ln x -2mx ,则g ′(x )=2x 2-2mx -2m x. 令g ′(x )=0,即x 2-mx -m =0.因为m >0,x >0,所以x 1=m -m 2+4m 2<0(舍去),x 2=m +m 2+4m 2. 当x ∈(0,x 2)时,g ′(x )<0,g (x )在(0,x 2)上单调递减;当x ∈(x 2,+∞)时,g ′(x )>0,g (x )在(x 2,+∞)上单调递增;当x =x 2时,g ′(x 2)=0,g (x )取最小值g (x 2).因为2mf (x )=x 2有唯一实数解,则⎩⎨⎧ g (x 2)=0,g ′(x 2)=0,即⎩⎨⎧x 22-2m ln x 2-2mx 2=0,x 22-mx 2-m =0,所以2m ln x 2+mx 2-m =0.又因为m >0,所以2ln x 2+x 2-1=0.(*)设函数h (x )=2ln x +x -1,当x >0时,h (x )是增函数,所以h (x )=0至多有一解.因为h (1)=0,所以方程(*)的解为x 2=1,即m +m 2+4m 2=1,解得m =12.【例题2】【题干】已知f (x )=(x 2-a )e x ,a ∈R .(1)若a =3,求f (x )的单调区间和极值;(2)已知x 1,x 2是f (x )的两个不同的极值点,且|x 1+x 2|≥|x 1x 2|,求实数a 的取值集合M ;(3)在(2)的条件下,若不等式3f (a )<a 3+32a 2-3a +b 对于a ∈M 都成立,求实数b 的取值范围.【解析】(1)∵a=3,∴f(x)=(x2-3)e x.令f′(x)=(x2+2x-3)e x=0⇒x=-3或x=1.当x∈(-∞,-3)∪(1,+∞)时,f′(x)>0;x∈(-3,1)时,f′(x)<0,∴f(x)的单调递增区间为(-∞,-3),(1,+∞);单调递减区间为(-3,1).∴f(x)的极大值为f(-3)=6e-3;极小值为f(1)=-2e.(2)令f′(x)=(x2+2x-a)e x=0,即x2+2x-a=0,由题意其两根为x1,x2,∴x1+x2=-2,x1x2=-a,故-2≤a≤2.又Δ=4+4a>0,∴-1<a≤2.∴M={a|-1<a≤2}.(3)原不等式等价于b>3f(a)-a3-32a2+3a对a∈M都成立,记g(a)=3f(a)-a3-32a2+3a(-1<a≤2),则g′(a)=3(a2+a-1)(e a-1),令g′(a)=0,则a=5-12或a=0⎝⎛⎭⎪⎫a=-1-52舍去.故当a变化时,g′(a),g(a)的变化情况如下表:又∵g(0)=0∴g(a)max=6e2-8,∴b>6e2-8.故实数b的取值范围为(6e2-8,+∞).【例题3】 【题干】某商场预计2013年1月份起前x 个月,顾客对某商品的需求总量p (x )(单位:件)与x 的关系近似地满足p (x )=12x (x +1)(39-2x )(x ∈N *,且x ≤12).该商品第x 月的进货单价q (x )(单位:元)与x 的近似关系是q (x )=⎩⎪⎨⎪⎧150+2x (x ∈N *,且1≤x ≤6),185-160x (x ∈N *,且7≤x ≤12).(1)写出2013年第x 月的需求量f (x )(单位:件)与x 的函数关系式;(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,试问商场2013年第几月销售该商品的月利润最大,最大月利润为多少元?【解析】(1)当x =1时,f (1)=p (1)=37, 当2≤x ≤12,且x ∈N *时,f (x )=p (x )-p (x -1)=12x (x +1)(39-2x )-12(x -1)·x (41-2x )=-3x 2+40x . 经验证x =1符合f (x )=-3x 2+40x (x ∈N *,且1≤x ≤12). (2)该商场预计第x 月销售该商品的月利润为 g (x )=⎩⎪⎨⎪⎧(-3x 2+40x )(35-2x )(x ∈N *,且1≤x ≤6),(-3x 2+40x )·160x (x ∈N *,且7≤x ≤12), 即g (x )=⎩⎨⎧6x 3-185x 2+1 400x (x ∈N *,且1≤x ≤6),-480x +6 400(x ∈N *,且7≤x ≤12),当1≤x ≤6,且x ∈N *时,g ′(x )=18x 2-370x +1 400,令g ′(x )=0,解得x =5,x =1409(舍去). 当1≤x ≤5时,g ′(x )>0,当5<x ≤6时,g ′(x )<0,∴当x =5时,g (x )max =g (5)=3 125(元). ∴当7≤x ≤12,且x ∈N *时,g (x )=-480x +6 400是减函数,当x =7时,g (x )max =g (7)=3 040(元), 综上,商场2013年第5个月的月利润最大,最大利润为3 125元.【例题4】【题干】(2012·山东高考)已知函数f (x )=ln x +ke x (k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值; (2)求f (x )的单调区间;(3)设g (x )=(x 2+x )f ′(x ),其中f ′(x )为f (x )的导函数,证明:对任意x >0,g (x )<1+e -2.【解析】(1)由f (x )=ln x +ke x , 得f ′(x )=1-kx -x ln xx e x,x ∈(0,+∞), 由于曲线y =f (x )在(1,f (1))处的切线与x 轴平行,所以f ′(1)=0,因此k =1. (2)由(1)得f ′(x )=1x e x (1-x -x ln x ),x ∈(0,+∞), 令h (x )=1-x -x ln x ,x ∈(0,+∞),当x ∈(0,1)时,h (x )>0;当x ∈(1,+∞)时,h (x )<0. 又e x >0,所以x ∈(0,1)时,f ′(x )>0; 当x ∈(1,+∞)时,f ′(x )<0.因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). (3)证明:因为g (x )=(x 2+x )f ′(x ),所以g (x )=x +1e x (1-x -x ln x ),x ∈(0,+∞). 因此对任意x >0,g (x )<1+e -2等价于 1-x -x ln x <e xx +1(1+e -2).由(2)h(x)=1-x-x ln x,x∈(0,+∞),所以h′(x)=-ln x-2=-(ln x-ln e-2),x∈(0,+∞),因此当x∈(0,e-2)时,h′(x)>0,h(x)单调递增;当x∈(e-2,+∞)时,h′(x)<0,h(x)单调递减.所以h(x)的最大值为h(e-2)=1+e-2,故1-x-x ln x≤1+e-2.设φ(x)=e x-(x+1).因为φ′(x)=e x-1=e x-e0,所以当x∈(0,+∞)时,φ′(x)>0,φ(x)单调递增,φ(x)>φ(0)=0,故当x∈(0,+∞)时,φ(x)=e x-(x+1)>0,即e xx+1>1.所以1-x-x ln x≤1+e-2<e xx+1(1+e-2).因此对任意x>0,g(x)<1+e-2.五、课堂运用【基础】1.已知f(x)=x3-ax在[1,+∞)上是单调增函数,则a的最大值是() A.0B.1C.2 D.32.若不等式2x ln x≥-x2+ax-3对x∈(0,+∞)恒成立,则实数a的取值范围是() A.(-∞,0) B.(-∞,4]C.(0,+∞) D.[4,+∞)3.已知函数f(x)=x3-3x,若对于区间[-3,2]上任意的x1,x2都有|f(x1)-f(x2)|≤t,则实数t的最小值是() A.0 B.10C.18 D.20【巩固】4.设f(x)=x3+x,x∈R,若当0≤θ≤π2时,f(m sin θ)+f(1-m)>0恒成立,则实数m的取值范围是________.1 3x 3-a2x满足:对于任意的x1,x2∈[0,1]都有|f(x1)-f(x2)|≤1恒成立,则a的取值范围是________.5.若函数f(x)=【拔高】6.设函数f (x )=12x 2+e x -x e x .(1)求f (x )的单调区间;(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.7.设函数f (x )=x -1x -a ln x .(1)若曲线y =f (x )在点(1,f (1))处的切线被圆x 2+y 2=1截得的弦长为2,求a 的值;(2)若函数f (x )在其定义域上为增函数,求实数a 的取值范围;(3)当a ≤2时,设函数g (x )=x -ln x -1e ,若在[1,e]上存在x 1,x 2使f (x 1)≥g (x 2)成立,求实数a 的取值范围.课程小结1. 解决恒成立问题,要充分分析已知与求证的特点,灵活应用分离参数发或构造函数法来解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时跟踪检测(十六) 导数的应用(二)1.(2012·佛山期末)在R 上可导的函数f (x )的图象如图所示,则关于x 的不等式x ·f ′(x )<0的解集为( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-2,-1)∪(1,2)D .(-∞,-2)∪(2,+∞)2.(2012·山西适应性训练)若商品的年利润y (万元)与年产量x (百万件)的函数关系式y =-x 3+27x +123(x >0),则获得最大利润时的年产量为( )A .1百万件B .2百万件C .3百万件D .4百万件3.已知函数f (x )是R 上的偶函数,且在(0,+∞)上有f ′(x )>0,若f (-1)=0,那么关于x 的不等式xf (x )<0的解集是________.4.(2012·粤西北九校联考)设A 是由满足下列条件的函数f (x )构成的集合;“①方程f (x )-x =0有实数根;②函数f (x )的导数f ′(x )满足0<f ′(x )<1.”给出以下三个函数:①f (x )=x 2+sin x4,②f (x )=x -cos x ,③f (x )=x 2+x -1,x ∈⎝⎛⎭⎫-14,0.其中是集合A 中的元素的有________(用序号填空).5.已知函数f (x )=x 2+ln x .(1)求函数f (x )在[1,e]上的最大值和最小值;(2)求证:当x ∈(1,+∞)时,函数f (x )的图象在g (x )=23x 3+12x 2的下方.6.(2012·乌鲁木齐诊断性测验)已知函数f (x )=e x -m -x ,其中m 为常数. (1)若对任意x ∈R 有f (x )≥0成立,求m 的取值范围; (2)当m >1时,判断f (x )在[0,2m ]上零点的个数,并说明理由.7.(2013·揭阳模拟)某种产品每件成本为6元,每件售价为x 元(6<x <11),年销售为u 万件,若已知5858-u 与⎝⎛⎭⎫x -2142成正比,且售价为10元时,年销量为28万件. (1)求年销售利润y 关于售价x 的函数关系式;(2)求售价为多少时,年利润最大,并求出最大年利润.1.(2012·潍坊模拟)已知函数f (x )=(x 2-3x +3)e x ,x ∈[-2,t ](t >-2). (1)当t <1时,求函数y =f (x )的单调区间; (2)设f (-2)=m ,f (t )=n ,求证:m <n .2.(2013·珠海模拟)已知函数f (x )=ax +ln x ,其中a 为常数,设e 为自然对数的底数. (1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值; (3)当a =-1时,试推断方程|f (x )|=ln x x +12是否有实数解.答 案 课时跟踪检测(十六)A 级1.选A ①当x <-1或x >1时,f (x )递增,f ′(x )>0. 由x ·f ′(x )<0得x <0,所以x <-1; ②当-1<x <1时,f (x )递减,f ′(x )<0. 由x ·f ′(x )<0,得x >0,所以0<x <1.故x ·f ′(x )<0的解集为(-∞,-1)∪(0,1).2.选C 依题意得,y ′=-3x 2+27=-3(x -3)(x +3),当0<x <3时,y ′>0;当x >3时,y ′<0.因此,当x =3时,该商品的年利润最大.3.解析:在(0,+∞)上有f ′(x )>0,所以f (x )在(0,+∞)单调递增.又函数f (x )是R 上的偶函数,所以f (1)=f (-1)=0.当x >0时,f (x )<0,∴0<x <1;当x <0时,图象关于y 轴对称,f (x )>0,∴x <-1.答案:(-∞,-1)∪(0,1)4.解析:对于①,因为f ′(x )=12+14cos x ,所以f ′(x )∈⎣⎡⎦⎤14,34,满足条件0<f ′(x )<1,又当x =0时,f (0)=0,所以方程f (x )-x =0有实数根0,所以函数f (x )=x 2+sin x 4是集合A中的元素;对于②,因为f ′(x )=1+sin x ,所以f ′(x )∈[0,2],不满足条件0<f ′(x )<1,所以函数f (x )=x -cos x 不是集合A 中的元素;对于③,因为f ′(x )=2x +1,x ∈⎝⎛⎭⎫-14,0,所以f ′(x )∈⎝⎛⎭⎫12,1,满足条件0<f ′(x )<1,方程f (x )-x =0,即x 2-1=0,解得x =1或x =-1,又x ∈⎝⎛⎭⎫-14,0,所以方程f (x )-x =0无解,所以函数f (x )=x 2+x -1,x ∈⎝⎛⎭⎫-14,0不是集合A 中的元素.答案:①5.解:(1)∵f (x )=x 2+ln x , ∴f ′(x )=2x +1x.∵x >1时,f ′(x )>0,故f (x )在[1,e]上是增函数, ∴f (x )的最小值是f (1)=1,最大值是f (e)=1+e 2. (2)证明:令F (x )=f (x )-g (x )=12x 2-23x 3+ln x ,∴F ′(x )=x -2x 2+1x =x 2-2x 3+1x=x 2-x 3-x 3+1x =(1-x )(2x 2+x +1)x .∵x >1,∴F ′(x )<0.∴F (x )在(1,+∞)上是减函数. ∴F (x )<F (1)=12-23=-16<0,即f (x )<g (x ).∴当x ∈(1,+∞)时,函数f (x )的图象总在g (x )的图象的下方. 6.解:(1)依题意,可知f (x )在R 上连续,且f ′(x )=e x-m-1,令f ′(x )=0,得x =m .故当x ∈(-∞,m )时,e x -m <1,f ′(x )<0,f (x )单调递减; 当x ∈(m ,+∞)时,e x-m>1,f ′(x )>0,f (x )单调递增;故当x =m 时,f (m )为极小值,也是最小值. 令f (m )=1-m ≥0,得m ≤1,即对任意x ∈R ,f (x )≥0恒成立时,m 的取值范围是(-∞,1]. (2)由(1)知f (x )在[0,2m ]上至多有两个零点,当m >1时,f (m )=1-m <0. ∵f (0)=e -m >0,f (0)·f (m )<0, ∴f (x )在(0,m )上有一个零点. 又f (2m )=e m -2m ,令g (m )=e m -2m , ∵当m >1时,g ′(m )=e m -2>0, ∴g (m )在(1,+∞)上单调递增. ∴g (m )>g (1)=e -2>0,即f (2m )>0.∴f (m )·f (2m )<0,∴f (x )在(m,2m )上有一个零点. 故f (x )在[0,2m ]上有两个零点. 7.解:(1)设5858-u =k ⎝⎛⎭⎫x -2142, ∵售价为10元时,年销量为28万件, ∴5858-28=k ⎝⎛⎭⎫10-2142,解得k =2. ∴u =-2⎝⎛⎭⎫x -2142+5858 =-2x 2+21x +18.∴y =(-2x 2+21x +18)(x -6) =-2x 3+33x 2-108x -108(6<x <11). (2)y ′=-6x 2+66x -108 =-6(x 2-11x +18) =-6(x -2)(x -9).令y ′=0,得x =2(舍去)或x =9, 显然,当x ∈(6,9)时,y ′>0; 当x ∈(9,11)时,y ′<0.∴函数y =-2x 3+33x 2-108x -108在(6,9)上是递增的,在(9,11)上是递减的. ∴当x =9时,y 取最大值,且y max =135,∴售价为9元时,年利润最大,最大年利润为135万元.B 级1.解:(1)f ′(x )=(2x -3)e x +e x (x 2-3x +3)=e x x (x -1), ①当-2<t ≤0,x ∈[-2,t ]时,f ′(x )≥0,f (x )单调递增; ②当0<t <1,x ∈[-2,0)时,f ′(x )>0,f (x )单调递增, 当x ∈(0,t ]时,f ′(x )<0,f (x )单调递减.综上,当-2<t ≤0时,y =f (x )的单调递增区间为[-2,t ];当0<t <1时,y =f (x )的单调递增区间为[-2,0),单调递减区间为(0,t ]. (2)证明:依题意得m =f (-2)=13e -2, n =f (t )=(t 2-3t +3)e t ,设h (t )=n -m =(t 2-3t +3)e t -13e -2, t >-2,h ′(t )=(2t -3)e t +e t (t 2-3t +3)=e t t (t -1)(t >-2). 故h (t ),h ′(t )随t 的变化情况如下表:由上表可知h (t )的极小值为h (1)=e -13e 2=e e 2>0,又h (-2)=0,故当-2<t <0时,h (t )>h (-2)=0,即h (t )>0,因此,n -m >0,即m <n .2.解:(1)∵当a =-1时,f (x )=-x +ln x ,f ′(x )=-1+1x =1-xx .当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0. ∴f (x )在(0,1)上是增函数,在(1,+∞)上是减函数, ∴f (x )max =f (1)=-1.(2)∵f ′(x )=a +1x ,x ∈(0,e],1x∈⎣⎡⎭⎫1e ,+∞. ①若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上是增函数,∴f (x )max =f (e)=a e +1≥0,不符合题意. ②若a <-1e ,则由f ′(x )>0得a +1x >0,即0<x <-1a,由f ′(x )<0得a +1x <0,即-1a<x ≤e.从而f (x )在⎝⎛⎭⎫0,-1a 上是增函数,在⎝⎛⎭⎫-1a ,e 上是减函数. ∴f (x )max =f ⎝⎛⎭⎫-1a =-1+ln ⎝⎛⎭⎫-1a . 令-1+ln ⎝⎛⎭⎫-1a =-3,则ln ⎝⎛⎭⎫-1a =-2, ∴-1a =e -2,即a =-e 2<-1e ,∴a =-e 2为所求.(3)由(1)知,当a =-1时,f (x )max =f (1)=-1, ∴|f (x )|≥1.令g (x )=ln x x +12,则g ′(x )=1-ln x x 2,令g ′(x )=0,得x =e ,当0<x <e 时,g ′(x )>0,g (x )在(0,e)上单调递增; 当x >e 时,g ′(x )<0,g (x )在(e ,+∞)上单调递减. ∴g (x )max =g (e)=1e +12<1.∴g (x )<1.∴|f (x )|>g (x ),即|f (x )|>ln x x +12. ∴当a =-1时,方程|f (x )|=ln x x +12没有实数解.。

相关文档
最新文档