数列极限的定义ppt课件
合集下载
《高数》数列极限课件PPT
定义与其他概念的关系
极限与连续性的关系
函数的连续性是指在某一点处的极限 值等于该点的函数值,因此,函数的 连续性可以看作是极限的一种特殊情 况。
极限与可导性的关系
极限与积分的关系
积分是研究面积和体积的重要工具, 而积分的计算需要用到极限的概念。
可导性是指函数在某一点处的切线斜 率存在,而这个切线斜率可以通过函 数在该点的极限值来定义。
数列极限与其他数学概念的关系
数列极限与函数极限的关 系
函数极限是数列极限的一个特例,即当自变 量n趋于无穷大时,函数值趋于一个常数, 这个常数就是函数的极限值。函数极限和数 列极限有许多共同的性质和定理,如单侧极 限、连续性等。
数列极限与微积分学
微积分学中的许多概念都与数列极限有关, 如导数、定积分等。通过数列极限,我们可 以更好地理解这些概念的本质和性质。同时 ,微积分学中的许多问题也需要借助数列极
04
数列极限的应用
在数学分析中的应用
极限是数学分析的基本概念之一,数列极限在数学分析中有 着广泛的应用。通过研究数列极限,可以更好地理解函数的 变化趋势、导数和积分的定义和性质等。
数列极限在证明一些数学定理和推导数学公式中也有着重要 的作用。例如,利用数列极限可以证明实数的完备性定理、 级数收敛的判别法等。
数列极限的几何解释
数列极限的几何解释是通过图形直观 地理解数列收敛和发散的概念。在平 面坐标系中,我们可以绘制数列的图 像,通过观察图像的变化趋势来理解 数列的收敛性和发散性。
收敛数列的图像会趋近于一个固定的 点,而发散数列的图像则会远离这个 点。通过比较不同数列的图像,我们 可以更好地理解数列极限的性质和特 点。
闭区间套定理
总结词
闭区间套定理是数列极限存在的一个充分条件,它表明如果一个数列的项构成一个闭区 间套,则该数列收敛。
《数列极限》课件
数列极限的求法和定理
夹逼定理
当数列中的部分项趋近于某值 时,可以用夹逼定理计算数列 极限。
单调有界性原理
针对单调有界数列极限计算, 有效避免无关项的干扰。
等比数列求和公式
等比数列常用求和公式是根据 数列的公比、项数和首项等参 数来计算其总和。
数Байду номын сангаас极限的应用
1
概率论
数列极限可以用于计算连续抛硬币等随机事件的概率。
2
微积分
通过数列极限的积分运算,在空间形体的计算上取得模型化精确结果。
3
金融学
通过数列极限的公式及定理,对于计息的时间长度和贷款利率有精确的计算方法。
数列极限和函数极限的关系
概念解释
数列极限和函数极限都是极 限概念,数列极限为数列中 每一项趋向于某个常数值, 函数极限为自变量无限接近 某一值时因变量所趋向的极 限值。
《数列极限》PPT课件
欢迎大家来学习本课程,我们将深入了解数列极限的概念及应用,同时带您 领略数学的神奇之处。
数列极限概述
1 数列
数列就是按照一定次序排 列的一列数。
2 收敛与发散
数列收敛是指数列的值无 限地靠近某个数,发散表 示数列的值趋于正无穷或 负无穷。
3 应用
数列极限有诸如杨辉三角、 黄金分割数等数学问题的 解决方法。
针对实际问题,通过数列极限相 应的公式和求值技巧得出定量结 果。
数列的定义及分类
等差数列
其数列中每一项与前一项之差相 等。
等比数列
其数列中每一项与前一项之比相 等。
斐波那契数列
其数列中每一项都等于前两项之 和。
数列极限的定义和性质
1 数列极限的定义
数列极限是 指随着数列项数的增加,数列中 的每一项趋近于某个确定的常数。
《数列极限》课件
性。
适用于任何收敛数列的证明 。
需要选择合适的正数 $varepsilon$,以确保证明
的有效性。
夹逼定理证明法
01 总结词
通过夹逼定理来证明数列的收 敛性。
02 详细描述
03 适用范围
适用于某些收敛数列的证明。
夹逼定理指出,如果存在两个 常数$a$和$b$,使得$a leq a_n leq b$且$lim_{n to infty} a = lim_{n to infty} b = L$, 则数列${a_n}$也收敛于$L$。 通过证明存在这样的常数$a$和 $b$,可以证明数列的收敛性。
利用数列极限探究数学规律或现象,如 探究数学猜想、探究函数的周期性等。
利用数列极限求解复杂数学问题,如求 解高阶导数、求解微分方程等。
详细描述 利用数列极限证明函数的性质或定理。
THANKS
感谢观看
微积分基本定理的推导
01
微积分基本定理的 内容
微积分基本定理是微积分学中的 重要定理,它建立了定积分与不 定积分之间的关系。
02
微积分基本定理的 推导过程
通过极限理论、实数完备性等数 学工具,可以推导出微积分基本 定理。
03
微积分基本定理的 应用
微积分基本定理是计算定积分的 基石,可以用于解决面积、体积 、长度等几何和物理问题。
需要选择合适的正数,以确 保证明的有效性。
柯西收敛准则证明法
总结词
详细描述
适用范围
注意事项
通过柯西收敛准则来证明数 列的收敛性。
柯西收敛准则指出,如果对于任 意正数$varepsilon$,存在正整 数$N$,使得当$n, m > N$时, 有$|a_n - a_m| < varepsilon$ ,则数列收敛。通过证明存在这 样的$N$,可以证明数列的收敛
适用于任何收敛数列的证明 。
需要选择合适的正数 $varepsilon$,以确保证明
的有效性。
夹逼定理证明法
01 总结词
通过夹逼定理来证明数列的收 敛性。
02 详细描述
03 适用范围
适用于某些收敛数列的证明。
夹逼定理指出,如果存在两个 常数$a$和$b$,使得$a leq a_n leq b$且$lim_{n to infty} a = lim_{n to infty} b = L$, 则数列${a_n}$也收敛于$L$。 通过证明存在这样的常数$a$和 $b$,可以证明数列的收敛性。
利用数列极限探究数学规律或现象,如 探究数学猜想、探究函数的周期性等。
利用数列极限求解复杂数学问题,如求 解高阶导数、求解微分方程等。
详细描述 利用数列极限证明函数的性质或定理。
THANKS
感谢观看
微积分基本定理的推导
01
微积分基本定理的 内容
微积分基本定理是微积分学中的 重要定理,它建立了定积分与不 定积分之间的关系。
02
微积分基本定理的 推导过程
通过极限理论、实数完备性等数 学工具,可以推导出微积分基本 定理。
03
微积分基本定理的 应用
微积分基本定理是计算定积分的 基石,可以用于解决面积、体积 、长度等几何和物理问题。
需要选择合适的正数,以确 保证明的有效性。
柯西收敛准则证明法
总结词
详细描述
适用范围
注意事项
通过柯西收敛准则来证明数 列的收敛性。
柯西收敛准则指出,如果对于任 意正数$varepsilon$,存在正整 数$N$,使得当$n, m > N$时, 有$|a_n - a_m| < varepsilon$ ,则数列收敛。通过证明存在这 样的$N$,可以证明数列的收敛
《数列的极限》课件
单调有界定理
总结词
如果一个数列单调增加或单调减少,且存在上界或下界,则该数列存在极限。
详细描述
单调有界定理是数列极限存在性定理中的一个重要推论,它表明如果一个数列单调增加或单调减少,并且存在上 界或下界,那么这个数列存在极限。这是因为单调性保证了数列不会无限增大或减小,而有界性则保证了数列不 会趋于无穷大或无穷小。
数列的极限
目录
CONTENTS
• 数列极限的定义 • 数列极限的性质 • 数列极限的存在性定理 • 数列极限的应用 • 数列极限的证明方法
01 数列极限的定义
CHAPTER
定义及性质
定义
对于数列${ a_{n}}$,如果当$n$趋于无穷大时,$a_{n}$趋于某个常数$a$,则称数列${ a_{n}}$收敛 于$a$。
05 数列极限的证明方法
CHAPTER
定义法
总结词
通过直接使用数列极限的定义来证明数列的极限。
详细描述
定义法是最基本的证明数列极限的方法,它基于数列 极限的定义,通过直接计算数列的项与极限值之间的 差的绝对值,并证明这个差可以任意小,从而证明数 列的极限。
柯西收敛准则证明法
总结词
利用柯西收敛准则来证明数列的极限。
性质
极限的唯一性、四则运算法则、夹逼准则等。
收敛与发散
收敛
当数列的项逐渐接近一个常数时,该 数列称为收敛的。
发散
如果数列的项没有收敛到任何值,则 该数列称为发散的。
收敛的几何意义
几何解释
在数轴上,如果一个数列的项逐渐接 近一个点,那么这个数列就是收敛的 ,而这个点就是它的极限。
举例
考虑数列${ 1, -1, 1, -1, ldots }$,该 数列在$x=0$处收敛,因为当$n$趋 于无穷大时,该数列的项逐渐接近0 。
《高数》数列极限》课件
详细描述
几何级数是每一项都等于前一项乘以一个固 定比例的数列。数列极限的概念用于计算几 何级数的和,帮助我们了解这种数列的增长
趋势和规律。
05
数列极限的扩展知识
无穷级数的概念
要点一
无穷级数定义
无穷级数是无穷多个数按照一定顺序排列的数列,可以表 示为$sum_{n=0}^{infty} a_n$,其中$a_n$是级数的项。
《高数》数列极限》ppt课件
• 数列极限的定义 • 数列极限的性质与定理 • 数列极限的运算 • 数列极限的应用 • 数列极限的扩展知识
01
数列极限的定义
定义及性质
定义
数列的极限是指当项数n无限增大时 ,数列的项无限趋近的数值。
性质
极限具有唯一性、有界性、局部保序 性等性质。
收敛与发散
收敛
如果数列的极限存在,则称该数列收敛。
单调有界定理
如果数列单调递增且有上界或单调递减且有下界,则 该数列收敛。
反例
举出一些不满足单调有界定理的数列,如无界且无周 期的数列等。
应用
单调有界定理在证明某些数学问题时具有重要应用, 如求函数的极值点等。
柯西收敛准则
柯西收敛准则
数列收敛的充要条件是对于任意 给定的正数$varepsilon$,存在 正整数$N$,使得当$n,m>N$时 ,有$|a_n - a_m|<varepsilon$ 。
幂级数求极限
幂级数求极限的方法
介绍如何利用幂级数的方法求极限,包 括将函数展开为幂级数,并利用幂级数 的性质求极限。
VS
举例说明
通过具体例子演示如何运用幂级数求极限 ,如求lim(x->0) (1+x)^1/x的极限值。
高等数学放明亮版课件1.2-数列的极限ppt.ppt
2024/9/27
17
目录
上页
下页
返回
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
xn
1
(1)n n
无限接近于常数1 .
怎样用精确的数学语言来阐述“当 n 趋于无穷大时,
数列 xn 无限接近一个确定的常数 a ”这一变化趋势? 我们知道,两个数 a 与 b 之间的接近程度可以用这两个
数之差的绝对值| b a | 来度量( | b a | 的几何意义表示点 a
与点 b 之间的距离),| b a | 越小,a 与 b 就越接近.为此,“数
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
2. 收敛数列一定有界.
(Roundedness)
证: 设nl imxn a, 取 1, 则 N , 当 nN 时, 有 xn a 1,从而有
去求最小的 N.
2024/9/27
9
目录
上页
下页
返回
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
例2 证明
lim
n
(1)n (n 8)3
0
证:
xn0
( 1) n (n 8)3
极限是唯一的.
2024/9/27
12
目录
上页
下页
高等数学《数列的极限》课件
则有唯一极限 a 存在 .
取
则存在 N ,
但因
交替取值 1 与-1 ,
内,
而此二数不可能同时落在
长度为 1 的开区间
使当 n > N 时, 有
因此该数列发散 .
2. 收敛数列一定有界.
证: 设
取
则
当
时,
从而有
取
则有
由此证明收敛数列必有界.
说明: 此性质反过来不一定成立.
例如,
虽有界但不收敛 .
欲使
即
只要
因此 , 取
则当
时, 就有
故
例2. 已知
证明
证:
欲使
只要
即
取
则当
时, 就有
故
故也可取
也可由
N 与 有关, 但不唯一.
不一定取最小的 N .
说明:
取
例3. 设
证明等比数列
证:
欲使
只要
即
亦即
因此 , 取
, 则当 n > N 时,
就有
故
的极限为0 .
二、收敛数列的性质
证: 用反证法.
第一章
二 、收敛数列的性质
三 、极限存在准则
一、数列极限的定义
第二节
数列的极限
数学语言描述:
一 、数列极限的定义
引例.
设有半径为 r 的圆,
逼近圆面积 S .
如图所示 , 可知
当 n 无限增大时,
无限逼近 S .
当 n > N 时,
用其内接正 n 边形的面积
总有
(刘徽割圆术)
他对数学的贡献主要集中
在微积分学,
取
则存在 N ,
但因
交替取值 1 与-1 ,
内,
而此二数不可能同时落在
长度为 1 的开区间
使当 n > N 时, 有
因此该数列发散 .
2. 收敛数列一定有界.
证: 设
取
则
当
时,
从而有
取
则有
由此证明收敛数列必有界.
说明: 此性质反过来不一定成立.
例如,
虽有界但不收敛 .
欲使
即
只要
因此 , 取
则当
时, 就有
故
例2. 已知
证明
证:
欲使
只要
即
取
则当
时, 就有
故
故也可取
也可由
N 与 有关, 但不唯一.
不一定取最小的 N .
说明:
取
例3. 设
证明等比数列
证:
欲使
只要
即
亦即
因此 , 取
, 则当 n > N 时,
就有
故
的极限为0 .
二、收敛数列的性质
证: 用反证法.
第一章
二 、收敛数列的性质
三 、极限存在准则
一、数列极限的定义
第二节
数列的极限
数学语言描述:
一 、数列极限的定义
引例.
设有半径为 r 的圆,
逼近圆面积 S .
如图所示 , 可知
当 n 无限增大时,
无限逼近 S .
当 n > N 时,
用其内接正 n 边形的面积
总有
(刘徽割圆术)
他对数学的贡献主要集中
在微积分学,
02数列的极限PPT课件
•数列与函数
数列{xn}可以看作自变量为正整数n的函数: xn=f(n), nN .
首页
上页
返回
下页
结束
铃
❖数列极限的通俗定义 当n无限增大时, 如果数列{xn}的一般项xn无限接近
于常数a, 则常数a称为数列{xn}的极限, 或称数列{xn}收 敛a, 记为
例如
首页
上页
返回
下页
结束
铃
当n无限增大时, 如果数列{xn}的一般项xn无限接近 于常数a, 则数列{xn}收敛a.
2. 数列1, -1, 1, -1, , (-1)N1, 的有界性与收敛 如何?
首页
上页
返回
下页
结束
铃Байду номын сангаас
二、收敛数列的性质
❖定理1(极限的唯一性) 如果数列{xn}收敛, 那么它的极限唯一.
❖定理2(收敛数列的有界性)
如果数列{xn}收敛, 那么数列{xn}一定有界. ❖定理3(收敛数列的保号性)
首页
上页
返回
下页
结束
铃
❖数列极限的精确定义
设{xn}为一数列, 如果存在常数a, 对于任意给定的正
数e , 总存在正整数N, 使得当n>N 时, 不等式
|xn-a |<e
都成立, 则称常数a是数列{xn}的极限, 或者称数列{xn}收 敛于a, 记为
如果不存在这样的常数a, 就说数列{xn}没有极限,
•数列的几何意义
数列{xn}可以看作数轴上的一个动点, 它依次取数轴 上的点x1, x2, x3, , xn , .
x1
xn x4 x3 x5 x2
首页
上页
返回
数列{xn}可以看作自变量为正整数n的函数: xn=f(n), nN .
首页
上页
返回
下页
结束
铃
❖数列极限的通俗定义 当n无限增大时, 如果数列{xn}的一般项xn无限接近
于常数a, 则常数a称为数列{xn}的极限, 或称数列{xn}收 敛a, 记为
例如
首页
上页
返回
下页
结束
铃
当n无限增大时, 如果数列{xn}的一般项xn无限接近 于常数a, 则数列{xn}收敛a.
2. 数列1, -1, 1, -1, , (-1)N1, 的有界性与收敛 如何?
首页
上页
返回
下页
结束
铃Байду номын сангаас
二、收敛数列的性质
❖定理1(极限的唯一性) 如果数列{xn}收敛, 那么它的极限唯一.
❖定理2(收敛数列的有界性)
如果数列{xn}收敛, 那么数列{xn}一定有界. ❖定理3(收敛数列的保号性)
首页
上页
返回
下页
结束
铃
❖数列极限的精确定义
设{xn}为一数列, 如果存在常数a, 对于任意给定的正
数e , 总存在正整数N, 使得当n>N 时, 不等式
|xn-a |<e
都成立, 则称常数a是数列{xn}的极限, 或者称数列{xn}收 敛于a, 记为
如果不存在这样的常数a, 就说数列{xn}没有极限,
•数列的几何意义
数列{xn}可以看作数轴上的一个动点, 它依次取数轴 上的点x1, x2, x3, , xn , .
x1
xn x4 x3 x5 x2
首页
上页
返回
数学分析课件之第二章数列极限
02
数列极限的运算性质
数列极限的四则运算性质
01
02
03
04
加法性质
若$lim x_n = a$且$lim y_n = b$,则$lim (x_n + y_n) =
a + b$。
减法性质
若$lim x_n = a$且$lim y_n = b$,则$lim (x_n - y_n) =
a - b$。
数列极限的性质
总结词
数列极限具有一些重要的性质,如唯一性、收敛性、保序性等。
详细描述
数列极限具有一些重要的性质。首先,极限具有唯一性,即一个数列只有一个极限值。其次,极限具有收敛性, 即当项数趋于无穷时,数列的项逐渐接近极限值。此外,极限还具有保序性,即如果一个数列的项小于另一个数 列的项,那么它们的极限也满足这个关系。
指数性质
若$lim x_n = a$且$0 < |a| < 1$ ,则$lim a^{x_n} = 1$。
幂运算性质
若$lim x_n = a$,则$lim x_n^k = a^k$(其中$k$为正整数)。
数列极限的运算性质在数学中的应用
解决极限问题
利用数列极限的运算性质,可以 推导和证明一系列数学定理和公 式,如泰勒级数、洛必达法则等
无穷小量是指在某个变化过程中,其 值无限趋近于0的变量。
性质
无穷小量具有可加性、可减性、可乘 性和可除性,但不可约性。
无穷大量的定义与性质
定义
无穷大量是指在某个变化过程中,其值无限增大的变量。
性质
无穷大量具有可加性、可减性、可乘性和可除性,但不可约性。
无穷小量与无穷大量的关系
1 2
无穷量是无穷大量的极限状态
数列极限ppt课件
lim
n
xn
A,
或
xn
A(n ),
此时也称{ xn }的极限存在.
否则称{ xn }的极限不存在,或称{ xn } 发散.
5
定义5 设{ xn }是一个数列, A是一个常数,若对任给的 0, 存在正整数 N,使得当 n N时,都有| xn A | ,则称 A是
数列{ xn }的极限,或称{ xn }收敛于A,记作
特别地,若 xn
0
(或 xn
0
),则lim
n
xn
0
(或 lim
n
xn
0).
9
注:在推论2中即使是xn
yn
,也只能推出lim
n
xn
lim
n
yn .
定理4(夹逼定理)设数列{ xn },{ yn },{zn}满足xn yn zn (当
n
N时),且 lim
n
xn
lim
n
z
a
,则 lim
n
yn
a.
例2
lim
n
yn ,则存在正整数
N,当n
N 时,有xn
yn .
推论1(保号性定理)设 {
xn
}的极限存在,且lim
n
xn
0
(或
lim
n
xn
0),则存在正整数N,当n
N
时,有xn
0(或
xn
0).
推论2 设{ xn },{ yn }的极限存在,若 xn yn (当n N 时),则
lim
n
xn
lim
n
yn .
lim
n
xn
A,
《高数数列极限》PPT课件
如果数列没有极限,就说数列是发散的.
注意:
1. 不等式 xna 刻 画了xn 和a 的“无限接近”,
2. 必须是可以任意小的,不能只是局限于某些个别的;
2. N与 有关, 通常随着 的不同而变化; 3. 但对于固定的, N又是不唯一的!
n 3. nN 刻画了变标 的变n 化程度, 与 N 无关! 10
12
上下
例2.
xn (n(11)n)2 , 证明 n l i m xn0.
证:
xn0
(1)n (n1)2
0
(n
1 1)2
1 n 1
0(设 1),
欲使
xn0,只要
1
n1
,
即
1
n
1.
取 故
Nn l i[ 1m xn1 ],n l 那 当i m 么(n ( 1 n1 ) n )2N 0 时,
就有
上下
➢几何解释:
a 2 a x 2 x1 xN1 a xN2 x 3 x
当 nN 时 ,所 有 x n 都 的 ( 落 a 点 ,a 在 )内 ,
只有 (至 有多 限 N 个 )落 只 个 在 有 . 其外
➢.符号定义: ln i m xn a
0 , N 0 , 当 n N 时 , 有 x n a .
取 N m N 1 ,N a 2 ,及x b2a
则n 当 N时有 b 2axnab 2a
xn
ab 2
b 2axnbb 2a
xn
ab 2
矛盾. 故收敛数列极限唯一.
15
上下
二、收敛数列的性质
2.有界性 【定理2】 收敛的数列必定有界.
只 要 n 1 0 0 0 0 时 ,有xn1100 100;
数列极限PPT课件
定理2(有界性定理)若数列{ xn }收敛,则{ xn } 必是有界数
列.
若{
xn
}是无界数列,则
{
xn
}发散,即lim
n
xn
不存在.
定理3(保序性定理)设{ xn},{
yn}的极限存在,且 lim
n
xn
lim
n
yn , 则存在正整数
N,当n
N 时,有xn
yn .
推论1(保号性定理)设
{
xn
}的极限存在,且lim
4.数列极限的几何意义.
xn A(n )就是对以 A为中心,以任意小的正数 为半径的邻域U ( A, ),总能找到一个N,从第N 1 项开 始,以后的各项(无限多项)都落在邻域 U ( A, ) 内,而在 U ( A, )外,至多有N项(有限项).
三、数列极限的性质及收敛准则
定理1(唯一性定理)若数列{ xn }收敛,则其极限值必唯一.
n
xn
0
(或
lim
n
xn
0),则存在正整数N,当n
N
时,有xn
0(或
xn
0).
推论2 设{ xn },{ yn}的极限存在,若 xn yn (当n N 时),则
lim
n
xn
lim
n
yn .
特别地,若 xn
0
(或 xn
0
),则lim
n
xn
0
(或 lim
n
xn
0).
注:在推论2中即使是xn
yn
,也只能推出lim
定义2 若数列{ xn}满足 x1 x2 x3 xn ,
则称{ xn}是单调递增数列.如果 x1 x2 x3 xn ,
高等数学第二章课件.ppt
x x0
x x0
左极限和右极限统称为单侧极限.
lim f (x) A 成 立 的 充 分 必 要 条 件 是
x x0
lim f (x) lim f (x) A
x x0
x x0
2)自变量趋于无穷大时函数的极限
设函数 f (x) 当 x 大于某一正数时有定义,如
果在 x 的过程中,对应的函数值 f (x) 无限接
也趋于零,即 lim y x0
lim [
x0
f
(x0
x)
f
(x0 )]
0 ,那么
称函数 f (x) 在点 x0 处连续, x0 叫做函数 f (x) 的连
续点.
函数在点 x0 连续必须满足下面三个条件: (1)在点 x0 的某个邻域内有定义; (2)极限 lim f (x) 存在;
x x0
(3)极限
xx0 (x)
穷小,特别地,当 k 1 时,称 (x) 与(x) 等价 无穷小,记作 (x) ~ (x), (x x0 ) .
常用的等价无穷小如下:当 x 0 时 ,
sin x ~ x , tan x ~ x ,
1
c os x
~
1 2
x2
, ln(1
x)
~
x
,
ex 1 ~ x ,n 1 x 1~ 1 x. n
几何解释:函数的增量表示当自变量从 x0 变 化到 x0 x 时,曲线上对应点的纵坐标的增量.
2)函数的连续性
设函数 y f (x) 在点 x0 的某个邻域内有定
义,如果当自变量 x 在 x0 处的增量 x 趋于零时,
函数 y f (x) 相应的增量 y f (x0 x) f (x0 )
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当n无限增大时, an无限接近于a . 当n无限增大时, |ana|无限接近于0 . 当n无限增大时, |ana|可以任意小, 要多小就能有多小. 当n增大到一定程度以后, |ana|能小于事先给定的任意 小的正数.
因此, 如果 n 增大到一定程度以后, |ana|能小于事先 给定的任意小的正数, 则当n无限增大时, an无限接近于常 数a.
7 3(3n 1)
7 9n
1 n
对 0,
取
N
1
,
则当n N时,
总有 2n 1 2 1 ,
3n 1 3 n
lim 2n 1 2 . n 3n 1 3 0, 存在N(),使得,当n N时,
an a 成立
11
用定义证明
lim
n
an=
a,就是证明对
>0,N存在.
证明的步骤:
n
nn
随着n的增加,1/n会越来越小.例如
给定 1,
由 1 1, n
只要 n 1时,
有 an 1 1,
给定 1 , 由 1 1 ,
10
n 10
只要 n 10时,
有
1 an 1 10 ,
给定 给定
1, 1010 1000
由 ,
1 1 , n 100 只要 n
只要 n 1000时,
2
数列的极限
例如
111 1
, , , 248
, 2n
,
;
2, 3 , 4 ,L , n 1 ,L ; 23 n
{
1 2n
}
{n 1} n
2, 1 , 4 , , n (1)n1 , ;
23
n
n (1)n1
{
}
n
观察数列 {an } 当 n 时的变化趋势.
3
当n无限增大时, 如果数列{an}的一般项an无限接近 于常数a, 则数列{an}收敛a.
12
例3 证明 lim qn 0,其中| q | 1. n
证 任给 0, 若q 0, 则lim qn lim 0 0;
n
n
若0 | q | 1,
| an
0 || q |n ,
nln | q | ln ,
n
ln ,
ln | q |
对1 0, 取N ln , 则当n N时,
引例:截丈问题:
“一尺之棰,日截其半,万世不竭”
第一天截下的杖长为a1源自1 2;第二天截下的杖长为a2
1 22
;
第n天截下的杖长为an
1 2n
;
an
1 2n
0
1
2、数列
数列{an }.
注意: 数列对应着数轴上一个点列,可看作一动
点在数轴上依次取 a1,a2 ,L ,an ,L .
a1
an a4 a3 a5 a2
lim 则称数列 an 没有极限,或称数列
an
发散,记作
n
an不
存在.
当 n无限增大时,如果 an 无限增大,则数列没有极限.这时,
习惯上也称数列 a的n极限是无穷大,记作
liman
n
10
例2 证明 lim 2n 1 2 . n 3n 1 3
证
an a
2n 1 2 3n 1 3
4
通过观察:
当
n
无限增大时,
an
1
(1)n1 n
无限接近于
1.
问题: “无限接近”意味着什么?如何用数学语言刻划它.
我们可用两个数之间的‘距离’来刻化两个数
的
接近程度. Q an 1
( 1) n1
1
1
n
(1)n1 1 1 nn
随着n的增加,1/n会越来越小.
5
Q an 1
1 (1)n1 1 (1)n1 1 1
引入符号和N来刻化无限靠近和无限增大.
n
an充分接近1
n N 确保 an 1
( 刻画an与1的接近程度)
给定 0,
只要 n N ( [1])时,有
an 1 成立.
7
定义 1( N 定义) 设 an 是一个数列, a 是一
个确定的数,若对任给的正数 ,相应地存在正整数
N,使得当n N 时,总有 an a ,则称数列 an
收敛于 a,
a
称
为
它
的
极
限
,
记
作
lim
n
an
a
或
an a (n ).
如果数列 an 没有极限,则称它是发散的或发
散数列.
注意: N定义的要点.
0, 存在N(),使得,当n N时,
an a 成立
(
)
a a a
8
N定义 :
0, 存在N(),使得,当n N时, an a 成立
ln | q |
恒有| qn 0 | ,
limqn 0. n
13
证明 lim (1)n 不存在. n
只要n无限增大,an 无法与始终和1无限靠近, 也无法和始终和-1无限靠近。
0 | q | 1
lim
qn
n
1
| q | 1 q1
不存在 q 1
14
几何解释:
a 2 a
a2 a1 aN 1 a aN 2 a3
x
当n N时, 所有的点 an都落在 (a , a ) 内,
只有有限个 (至多只有N个) 落在其外. 9
例1 , 数列 2n 1, (1)n1 都没有极限.
如果当n无限增大时,数列 an 不能接近于一个确定的常数,
100时,
有 an
有 1
an 1 1,
1000
1 100
,
给定 1 , 10000
只要 n 10000时,
有
an
1
1 10000
,
[x]为取整函数
任意给定
0,
只要
n N ( [ 1 ])时,
有
an
1
成立. 6
Q an 1
1 (1)n1 1 n
(1)n1 1 1 nn
只要n无限增大,an 就会与1无限靠近, 即 an 1 可任意小
(1) 对于任意给定的正数 , 令 |ana|< ; (2) 由上式开始分析倒推, 推出 n > () ; (3)取N=[ ()] , 再用 N语言顺述结论.
注意: (1)由于N 不唯一,不要求最小的N,故可把 |ana|适当放大,得到一个新的不等式,再寻找 N.
(2)从 |ana|< 找 N 与解不等式 |ana|< 意义不同.
因此, 如果 n 增大到一定程度以后, |ana|能小于事先 给定的任意小的正数, 则当n无限增大时, an无限接近于常 数a.
7 3(3n 1)
7 9n
1 n
对 0,
取
N
1
,
则当n N时,
总有 2n 1 2 1 ,
3n 1 3 n
lim 2n 1 2 . n 3n 1 3 0, 存在N(),使得,当n N时,
an a 成立
11
用定义证明
lim
n
an=
a,就是证明对
>0,N存在.
证明的步骤:
n
nn
随着n的增加,1/n会越来越小.例如
给定 1,
由 1 1, n
只要 n 1时,
有 an 1 1,
给定 1 , 由 1 1 ,
10
n 10
只要 n 10时,
有
1 an 1 10 ,
给定 给定
1, 1010 1000
由 ,
1 1 , n 100 只要 n
只要 n 1000时,
2
数列的极限
例如
111 1
, , , 248
, 2n
,
;
2, 3 , 4 ,L , n 1 ,L ; 23 n
{
1 2n
}
{n 1} n
2, 1 , 4 , , n (1)n1 , ;
23
n
n (1)n1
{
}
n
观察数列 {an } 当 n 时的变化趋势.
3
当n无限增大时, 如果数列{an}的一般项an无限接近 于常数a, 则数列{an}收敛a.
12
例3 证明 lim qn 0,其中| q | 1. n
证 任给 0, 若q 0, 则lim qn lim 0 0;
n
n
若0 | q | 1,
| an
0 || q |n ,
nln | q | ln ,
n
ln ,
ln | q |
对1 0, 取N ln , 则当n N时,
引例:截丈问题:
“一尺之棰,日截其半,万世不竭”
第一天截下的杖长为a1源自1 2;第二天截下的杖长为a2
1 22
;
第n天截下的杖长为an
1 2n
;
an
1 2n
0
1
2、数列
数列{an }.
注意: 数列对应着数轴上一个点列,可看作一动
点在数轴上依次取 a1,a2 ,L ,an ,L .
a1
an a4 a3 a5 a2
lim 则称数列 an 没有极限,或称数列
an
发散,记作
n
an不
存在.
当 n无限增大时,如果 an 无限增大,则数列没有极限.这时,
习惯上也称数列 a的n极限是无穷大,记作
liman
n
10
例2 证明 lim 2n 1 2 . n 3n 1 3
证
an a
2n 1 2 3n 1 3
4
通过观察:
当
n
无限增大时,
an
1
(1)n1 n
无限接近于
1.
问题: “无限接近”意味着什么?如何用数学语言刻划它.
我们可用两个数之间的‘距离’来刻化两个数
的
接近程度. Q an 1
( 1) n1
1
1
n
(1)n1 1 1 nn
随着n的增加,1/n会越来越小.
5
Q an 1
1 (1)n1 1 (1)n1 1 1
引入符号和N来刻化无限靠近和无限增大.
n
an充分接近1
n N 确保 an 1
( 刻画an与1的接近程度)
给定 0,
只要 n N ( [1])时,有
an 1 成立.
7
定义 1( N 定义) 设 an 是一个数列, a 是一
个确定的数,若对任给的正数 ,相应地存在正整数
N,使得当n N 时,总有 an a ,则称数列 an
收敛于 a,
a
称
为
它
的
极
限
,
记
作
lim
n
an
a
或
an a (n ).
如果数列 an 没有极限,则称它是发散的或发
散数列.
注意: N定义的要点.
0, 存在N(),使得,当n N时,
an a 成立
(
)
a a a
8
N定义 :
0, 存在N(),使得,当n N时, an a 成立
ln | q |
恒有| qn 0 | ,
limqn 0. n
13
证明 lim (1)n 不存在. n
只要n无限增大,an 无法与始终和1无限靠近, 也无法和始终和-1无限靠近。
0 | q | 1
lim
qn
n
1
| q | 1 q1
不存在 q 1
14
几何解释:
a 2 a
a2 a1 aN 1 a aN 2 a3
x
当n N时, 所有的点 an都落在 (a , a ) 内,
只有有限个 (至多只有N个) 落在其外. 9
例1 , 数列 2n 1, (1)n1 都没有极限.
如果当n无限增大时,数列 an 不能接近于一个确定的常数,
100时,
有 an
有 1
an 1 1,
1000
1 100
,
给定 1 , 10000
只要 n 10000时,
有
an
1
1 10000
,
[x]为取整函数
任意给定
0,
只要
n N ( [ 1 ])时,
有
an
1
成立. 6
Q an 1
1 (1)n1 1 n
(1)n1 1 1 nn
只要n无限增大,an 就会与1无限靠近, 即 an 1 可任意小
(1) 对于任意给定的正数 , 令 |ana|< ; (2) 由上式开始分析倒推, 推出 n > () ; (3)取N=[ ()] , 再用 N语言顺述结论.
注意: (1)由于N 不唯一,不要求最小的N,故可把 |ana|适当放大,得到一个新的不等式,再寻找 N.
(2)从 |ana|< 找 N 与解不等式 |ana|< 意义不同.