500W正弦波逆变器制作过程(多图)

合集下载

500W修正方波逆变器制作过程

500W修正方波逆变器制作过程

500W修正方波逆变器制作过程修正方波逆变器的做法有很多,但各有各的特定。

针对我这款逆变器我主要想和大家分享两点,这也是逆变器制作过程中最重要的两点。

一、稳压看过大多数设计是采用反馈有效值稳压,这种稳压方式缺点是相应性不是太好,针对这种情况我设计一种线性比例稳压方式,整个电源就像一个线性电源,响应性很好。

基本原理如下:理论依据:为了输出稳定电压必须使调整占空比k=220/峰值电压(C列),图1为占空和峰值电压的曲线,反比例曲线(蓝色线),由于占空比变化很小,有效值电压就变化很大,可以近似看做一条直线,图1 AB绿色直线,有AB两点做直线方程得出峰值电压——占空比的线性方程:y(峰值电压)=-381.8x(占空比)+584.5计算出占空比(O列)从0.65到0.9的所有输出峰值电压值(P列),如图2Q列为 O列与P列的乘积即输出的有效值电压,N列为P列/变比(12)得到的蓄电池输入电压,R列为输出电压的变化范围【=abs(220-Q列)*100/220】,有R列可以看出,将反比例关系的曲线近似成线性后得到的输出有效值电压变化范围最大为1.6799%<5%,完全能够满足工程需求。

图3 为占空比输出有效值电压曲线。

如果用图一中红色直线做线性方程得出的数据效果会更好。

这里就不在赘述那。

至此用线性的方法进行稳压理论上已经通过,这样就可以用变压的采样线圈整理得到一个峰值反馈电压,在用这个峰值反馈电压通过反比例线性放大器得出一个占空比调制电压,生成对应线性的占空比,从而实现稳压,这里线性反相比例放大器的增益不能太大,具体调试的时候最好用可调电阻调试。

图4是工作电路,(Protel暂时不能用先将就一下那,后面在补上)图中C1和R3一定不能少,否则当电路功率输出加大时尖峰电压的影响,稳压就不准哦,还有R1的阻值不能太小否则就得不到平缓的峰值电压。

以上整个电路我是用3525里的运放实现的,实验板电路如下图。

从原理图到实物,手把手教你制作一个逆变器

从原理图到实物,手把手教你制作一个逆变器

从原理图到实物,手把手教你制作一个逆变器这次我们采用了功率较大的三极管2N3055,而电阻只用了两个,且最好电阻的功率选大一点,这样电路的输出功率也会相应地增加……在之前我们发布过一些关于逆变器的文章都只是理论讲解很少去实践,其中一个很重要的原因就是没有材料,但也很想为大家去检测一下电路的可行性,自己动手制作成功的那个心情是买多少成品都无法比拟的,我们这次制作的主题仍然是怎么简单怎么来,这个电路经过改善已经测试成功,文章也会把测试结果分享给大家。

逆变器原理图上图是我们的逆变器原理图,这次我们采用了功率较大的三极管2N3055,而电阻只用了两个,且最好电阻的功率选大一点,这样电路的输出功率也会相应地增加,上图中用的是1W的400欧姆电阻,如果没有1W的也没关系,现在用到的最多的是1/4W的电阻,只要选择四个电阻并联大约是400Ω就可以了。

上图是不太容易见到的两个元件,第一张图片是带轴头的变压器,这里使用的变压器功率是10W,功率较小几乎驱动不了什么负载,大家做出来之后可以用LED灯去测试。

很多朋友想知道工作原理,这其实就是一个震荡电路,就是把直流电变成交流电,然后通过变压器升压变成220V,然后在输出端接上用电器即可,不过就这几个元件做出来的逆变器,输出波形肯定没有电网标准,但驱动电灯泡是足够的。

这是款12V的电源,输出功率可以达到65W,如果大家家里有更大功率的太阳能板或电源的话,可以直接使用,不过要注意电压需是12V,找到这些元件之后就可以连接电路了。

逆变器实际连接上图是实际连接电路图,大家可以看到电阻是用四个1/4W的电阻并联组成的,但是由于这款变压器的功率较低,这四个元件并联也属于大材小用,照着原理图把元件进行电气连接,最后检查无误后即可通电,但一定要注意,输出端电压已经超过人的安全电压,操作时要做好安全措施。

测试电路可行性在这里小编用万用表演示测试,是由于没有合适的用电器,且变压器的功率较低驱动不了大功率电器,所以用万用表代替用电器,测试输出电压。

500W太阳能光伏并网逆变器电路设计图

500W太阳能光伏并网逆变器电路设计图

500W太阳能光伏并网逆变器电路设计图500W太阳能光伏并网逆变器电路设计图光伏并网发电系统是光伏系统发展的趋势。

根据光伏并网发电系统的特点,设计了一套额定功率为500W的光伏并网逆变器,该并网逆变器能实现最大功率跟踪和反孤岛效应控制功能,控制部分采用基于TMS320F240型DSP的电流跟踪控制策略,实现了与网压同步的正弦电流输出。

关键词:太阳能;光伏系统;最大功率点跟踪;孤岛效应;并网逆变器1 引言太阳能的大规模应用将是21世纪人类社会进步的重要标志,而光伏并网发电系统是光伏系统的发展趋势。

光伏并网发电系统的最大优点是不用蓄电池储能,因而节省了投资,系统简化且易于维护。

这类光伏并网发电系统主要用于调峰光伏电站和屋顶光伏系统。

目前,美、日、欧盟等发达国家都推出了相应的屋顶光伏计划,日本提出到2010年要累计安装总容量达50 000MW的家用光伏发电站。

作为屋顶光伏系统的核心,并网逆变器的开发越来越受到产业界的关注[1]。

2 光伏并网系统设计2.1 系统结构光伏并网逆变器的结构如图1所示。

光伏并网逆变器主要由二部分组成:前级DC-DC变换器和后级DC-AC逆变器。

这2部分通过DClink相连接,DClink的电压为400V。

在本系统中,太阳能电池板输出的额定直流电压为100V~170V。

DC—DC变换器采用boost结构,DC—AC部分采用全桥逆变器,控制电路的核心是TMS320F240型DSP。

其中DC-DC变换器完成最大功率跟踪控制(MPPT)功能,DC-AC 逆变器维持DClink中间电压稳定并将电能转换成220V/50Hz的正弦交流电。

系统保证并网逆变器输出的正弦电流与电网的相电压同频和同相。

2.2 控制电路设计2.2.1 TMS320F240控制板TMS320F240控制板如图2所示,以TI公司的TMS320F240型DSP为核心,外围辅以模拟信号调理电路、CPLD、数码管及DA显示、通信及串行E2PROM,完成电压和电流信号的采样、PWM脉冲的产生、与上位机的通信和故障保护等功能。

逆变器电路diy(图文详解)

逆变器电路diy(图文详解)

逆变器电路DIY(图文详解)电子发烧友网:本文的主要介绍了逆变器电路DIY制作过程,并介绍了逆变器工作原理、逆变器电路图及逆变器的性能测试。

本文制作的的逆变器(见图1)主要由MOS 场效应管,普通电源变压器构成。

其输出功率取决于MOS 场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。

下面介绍该逆变器的工作原理及制作过程。

1.逆变器电路图2.逆变器工作原理这里我们将详细介绍这个逆变器的工作原理。

2.1.方波信号发生器(见图2)图2 方波信号发生器这里采用六反相器CD4069构成方波信号发生器。

电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。

电路的振荡是通过电容C1充放电完成的。

其振荡频率为f=1/2.2RC.图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz.由于元件的误差,实际值会略有差异。

其它多余的反相器,输入端接地避免影响其它电路。

#p#场效应管驱动电路#e#2.2场效应管驱动电路图3 场效应管驱动电路由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V.如图3所示。

4. 逆变器的性能测试测试电路见图4.这里测试用的输入电源采用内阻低、放电电流大(一般大于100A)的12V汽车电瓶,可为电路提供充足的输入功率。

测试用负载为普通的电灯泡。

测试的方法是通过改变负载大小,并测量此时的输入电流、电压以及输出电压。

输出电压随负荷的增大而下降,灯泡的消耗功率随电压变化而改变。

我们也可以通过计算找出输出电压和功率的关系。

但实际上由于电灯泡的电阻会随受加在两端电压变化而改变,并且输出电压、电流也不是正弦波,所以这种的计算只能看作是估算。

500W逆变器

500W逆变器

500W逆变器
此电路的特点是体积小,效率高,在额定功率范围内温升很小,最大输出功率500W,若要增加功率只要增加并联功率场效应管,可以通过外接电位器进行脉宽调制。

元件选择:驱动电路是专用的脉宽调制震荡SG3524,因其外围元件少,制作简单,所有元件可以用最紧凑的搭焊方法焊在外围,这样可以缩小体积,本电路是否成功的关键是功率场效应管的选择,它的参数最好是50V 50A以上,可选用的是IRF1010,50V 75A的,7、8脚的电阻和电容决定了震荡频率。

本电路的频率是250HZ,比工频50HZ高出五倍,所以输出变压器的尺寸和绕制圈数就可以相应减少。

如果要工作在50HZ的工频可以适当增大C R的值,这样就可以配接标准的工频控制变压器,这样充电更简单,由于功率管的内部有阻伲二极管,所以只要K断开,直接在输出端输入220V的市电就可以了,整个电路可以用AB胶粘在50X60X1的铝板上。

本模块可以扩展成UPS不间断电源,在二脚外接电压比较电路,还可以稳压输出。

正弦波逆变器电路图及制作过程

正弦波逆变器电路图及制作过程

1000W正弦波逆变器制作过程详解作者:老寿电路图献上!!这个机器,输入电压是直流是12V,也可以是24V,12V时我的目标是800W,力争1000W,整体结构是学习了钟工的3000W机器.具体电路图请参考:1000W正弦波逆变器(直流12V转交流220V)电路图也是下面一个大散热板,上面是一块和散热板一样大小的功率主板,长228MM,宽140MM。

升压部分的4个功率管,H桥的4个功率管及4个TO220封装的快速二极管直接拧在散热板;DC-DC升压电路的驱动板和SPWM的驱动板直插在功率主板上。

:因为电流较大,所以用了三对6平方的软线直接焊在功率板上如上图:在板子上预留了一个储能电感的位置,一般情况用准开环,不装储能电感,就直接搭通,如果要用闭环稳压,就可以在这个位置装一个EC35的电感上图红色的东西,是一个0.6W的取样变压器,如果用差分取样,这个位置可以装二个200K 的降压电阻,取样变压器的左边,一个小变压器样子的是预留的电流互感器的位置,这次因为不用电流反馈,所以没有装互感器,PCB下面直接搭通。

上面是SPWM驱动板的接口,4个圆孔下面是装H桥的4个大功率管,那个白色的东西是0.1R电流取样电阻。

二个直径40的铁硅铝磁绕的滤波电感,是用1.18的线每个绕90圈,电感量约1MH,磁环初始导磁率为90。

上图是DC-DC升压电路的驱动板,用的是KA3525。

这次共装了二板这样的板,一块频率是27K,用于普通变压器驱动,还有一块是16K,想试试非晶磁环做变压器效果。

H桥部分的大功率管,我有二种选择,一种是常用的IRFP460,还有一种是IGBT管40N60,显然这二种管子不是同一个档次的,40N60要贵得多,但我的感觉,40N60的确要可靠得多,贵是有贵的道理,但压降可能要稍大一点。

这是TO220封装的快恢复二极管,15A 1200V,也是张工提供的,价格不贵。

我觉得它安装在散热板上,散热效果肯定比普通塑封管要强。

自制简易逆变器电路图

自制简易逆变器电路图

自制简易逆变器电路图家用逆变电路,电路简洁、成本低、易维护、效率高,稍有动手能力的人都能制作。

它虽然不具备市售优质家用逆变器高档复杂的开关电源集成线路,场效应功率放大,但功效并不逊色。

此机为准正弦波输出,空载电流小于450mA,负载能力300W以上,效率达85%以上。

笔者使用一年多,没见出现过任何问题,电路如附图所示。

工作原理:接通12V电源后,由V1,V2、R1-R4、C1、C2构成的多谐振荡器得电起振,V1、V2的集电极轮流输出接近50Hz的正极性方波.经过C3和R5、C4和R6组成的积分电路积分整形为准正弦波,再经V3、V4倒相放大后分别激励V5、V6,使末级功率管V7、V8轮流导通和截止,它们的集电极电流流经变压器初级绕组L1、L2在变压器的高压侧感应出约50Hz的准正弦波高压输出。

1、元件选择:本机的大多数元件都能从废旧电路板中拆下来。

V5、V6用D880或C2073。

V7、V8分别用三只3DD207并联而成,其参数为200V/5A/50W,也可用3DDl5D替代。

可调电阻RP可从旧彩电尾板上拆用。

其余电阻电容无特殊要求。

线圈Ll、L2为中1.62mm的漆包线,各绕50匝。

L3、L4、L5都用Φ0.53mm的漆包线,匝数分别为12、12,945。

功率管配上尽可能大的散热片就行了,本机配的是宽150cm的散热片。

变压器铁芯选用有效横截面积20cm2以上的,可以用足够大的废旧电瓶充电器的铁芯或功放机上的环形电源变压器铁芯,笔者选用的是环形变压器铁芯。

2、作与调试:将功率管全部装上散热片后,将其余元件全部用搭棚焊的方法焊接在功率管上,无需制作电路板。

由于V1,V2及组成振荡电路的元件会因特性差异而造成V1、V2集电极输出的振荡信号幅值不一致,造成空耗过大,所以用可调电阻RP来调振荡电路的平衡。

由VD、R7组成的稳压电路是保证振荡电路稳定工作的必备件,可解决由于电瓶电压下降而引起振荡电路失衡问题。

500W正弦波逆变器制作过程

500W正弦波逆变器制作过程

500W正弦波逆变器制作过程(多图)2011年04月15日 11:02 电源网作者:秩名用户评论(10)关键字:正弦波逆变器(7)500W(2)下面是整个机器的照片,为了能够简单省事,我采用了主板和控制板分开的办法来做,这样的好处就是所有的控制功能集中在小板子上处理,大板子负载功率变换和传输,大大降低干扰的发生,提高稳定性。

高清多图H桥MOSFET局部。

AC滤波电感局部高压整流二极管侧面侧面这款控制板如下图所示,板上的元件非常多,所以用了双面PCB来做。

前级升压也包含在这个板上,采用的是TL494加图腾柱升压;后级SPWM芯片还是采用TDS2285芯片,附带CD4069+CD4081输出给TLP250光耦,驱动H桥。

供电采用自举供电驱动。

整个板上只要提供+12V电源即可完成所有功能。

为了提高稳定性和可靠性,加入了各种保护功能:过压保护、欠压保护、过热保护、短路保护、过流保护等。

该机器的PCB文件及SCH电路文件如下:下面对机器上关键的元器件的说明:1变压器:众所周知,变压器是一切开关电源里最复杂的东西,我到目前为止,对磁性元件的理解还是半桶水,不过没有关系,这次采用的变压器并不复杂,用的是经典的推挽电路,我用的是EE4220变压器,用的铜带绕的,初级是2+2T,次级是64T,分了3次绕。

第一次:用一根0.75的线绕上32T,均匀的分布在骨架里。

第二次:我用2条0.3*25mm的紫铜带2条叠加绕了2+2。

第三次:就是将初级剩下的32T绕完。

1,变压器只要绕紧了,初级对称了,不会有什么问题的,因为在这里,我们用的基本上是在开环工作下,所以问题并不大。

可惜绕变压器的时候没有拍照片。

2,高压整流二极管:这个机器设计是在最高500W范围内工作,功率并不大,所以用了HER508来做,实际发现,全功率运行下,二极管还是有点热的,不过通过连续几个小时工作,风扇开启的情况下,工况并不是很差的。

所以用上去没有问题。

500W正弦波逆变器制作过程

500W正弦波逆变器制作过程

500W正弦波逆变器制作过程正弦波逆变器将直流电能转换为交流电能,适用于一些需要交流电能供应的场合,比如太阳能发电系统、风能发电系统等。

下面是一个制作500W正弦波逆变器的过程。

1.设计逆变器电路:首先,需要设计逆变器的电路图。

500W正弦波逆变器通常由多级逆变电路组成,其中每个级别包含一个开关和一个滤波电路。

可以选择采用全桥逆变电路,它是最为常见的一种逆变器电路。

2.准备器件和材料:根据设计的电路图,准备逆变器所需的各种器件和材料。

典型的逆变器器件包括开关管、滤波电容、滤波电感、电阻、电感等。

此外,还需要一块适当的电路板作为逆变器的基板。

3.制作逆变器电路板:根据逆变器的电路图将所有元器件逐一焊接到电路板上。

注意保持良好的焊接质量,避免电路短路或焊点松脱等问题。

同时,还需要在电路板上进行必要的布线工作,确保信号和功率传输的良好连接。

4.安装和连接逆变器元件:将电路板安装到逆变器的外壳内,并连接各个元件。

确保所有元件连接正确,且牢固可靠。

定位开关、指示灯等功能件的位置并固定。

5.连接直流电源:将待逆变的直流电源连接到逆变器的输入端。

通常需要使用适当的直流保险丝来保护逆变器免受电源电压过高或电流过大的损害。

6.输出端接负载:将逆变器的输出端连接到需要供电的负载上。

确保逆变器的输出线路与负载之间无短路或接触不良。

7.进行调试和测试:将逆变器通电,进行初步的调试和测试。

通过调整控制参数和观察波形,判断逆变器的工作状态是否正常。

8.优化和改进:根据测试结果,对逆变器进行进一步的优化和改进,以获得更好的性能和可靠性。

例如,可以调整滤波电路的参数,改进波形质量。

9.完善逆变器功能:根据实际需求,可以添加额外的功能和控制电路。

例如,可以加入过载保护、温度保护、过压保护等功能电路,提高逆变器的可靠性和安全性。

10.进行批量生产:在验证逆变器的可靠性和性能后,可以进行批量生产,以满足市场的需求。

以上就是制作500W正弦波逆变器的大致过程,当然,具体的实施过程中还需要根据实际情况进行调整和改进。

自制家用简易逆变器电路图

自制家用简易逆变器电路图

自制家用简易逆变器电路图市售的逆变电源大多采用UPS、UPK等逆变模块,输入直流电源多为12V,整体价格比较高,而且输出波形均为方波。本文介绍的逆变电源输入电源为6V,采用易购的时基电路NE555作为振荡源,输出波形是近似的正弦波,可满足电视机或白炽灯或电风扇等电器在停电时继续工作的需要自制家用简易逆变器电路图市售的逆变电源大多采用UPS UPK等逆变模块,输入直流电源多为12V,整体价格比较高,而且输出波形均为方波本文介绍的逆变电源输入电源为6V,采用易购的时基电路NE555作为振荡源,输出波形是近似的正弦波,可满足电视机或白炽灯或电风扇等电器在停电时继续工作的需要工作原理电路见图1 当把开关K1打向“逆变”位置时,BG1导通,由时基电路NE555及外围元件组成的无稳态多谐振荡器开始振荡,其充放电时间常数可调节如果选择R1=R2,则输出脉冲的占空比为50%,该多谐振荡器的振荡频率f=1.443/(R1+R2+2W)C2,图中的元件数值可使振荡频率调在50Hz,振荡脉冲由役脚输出,波形为方波,该方波经C4耦合,R3 C5积分变为三角波,这个三角波又经R4 C6,第二次积分和R5 C7第三次积分,变为近似的正弦波,通过C8耦合到BG2,由BG2放大后在B1的L2线圈上输出当L2上端电压为正时,D4截止,D3导通,使BG4 BG6截止,BG3 BG5导通,电流由电瓶正极→B2的L1→BG5→电瓶负极;当L2上端电压为负时,D3截止,D4导通,使BG3 BG5截止,BG4 BG6导通,电流由电瓶正极→B2的L2→BG6→电瓶负极BG5 BG6交替导通截止,经变压器B2合成正负对称的正弦波,并由L3升压送至逆变输出插座CZ1 CZ2,供用电器使用,同时LED1(红色)亮,指示逆变状态当开关打向“充电”位置时,市电经变压器B2降压D5 D6全波整流 R11限流后对电瓶充电,同时LED2(绿色)亮,指示充电状态元件选择和制作本电路中元器件均为易购的常用元器件,按图中所示数值选用即可B1用收音机输出变压器,应选用铁心大,线径粗的那一类,把原来接喇叭的这一组线圈接在L2位置,BG3 BG4分别用两只9013和9012并联组成,如图2和图3所示BG5 BG6均由四只3DD15并联组成,如图4所示BG5 BG6的散热器面积不应小于600cm2,B2逆变变压器可选用成品整机用印刷线路板可自行设计制作电瓶选用容量大于150Ah的电瓶本逆变器的调试只需调W,使逆变电压频率为50Hz即可。

迪龙 500W48V纯正弦波逆变器使用说明书

迪龙 500W48V纯正弦波逆变器使用说明书

500W48V纯正弦波逆变器使用说明书一,前言:本逆变器使用本公司智能IC控制,其线路已申请专利,具有非常完善的保护功能(包括过载保护,过流保护,高温保护,短路保护,反接保护,电池高.低压保护,设有内置式保险丝等等),指示功能。

采用优质的双面线路板及零器件,保证产品高质量,高性能。

本机的输出波形为纯正弦波,可以适用于任何负载,过载保护,过流保护,短路保护,保护后自动延时10秒启动。

本机的体积非常小巧,便于携带。

二:使用方法将足够功率的输入电源接上逆变器,注意电源电压要在规定范围内,连接的电源线要有足够的承载电流能力,并且尽量短,打开逆变器的电源开关,输出负载在开机前或开机后接入均可(我公司产品配有符合标准的电源线)。

三,输入电源要求:z输入电源电压必须在逆变器规定的电压范围内。

z输入电源必须能够提供足够的电流,其具体算法约为输出功率/输入电压/0.8=输出电流,例如:带一个500W的负载,输入48V,则输入电流=500/48/0.8=13(A)。

z输入电源线必须要与逆变器连接牢固,并且要有足够的承载能力。

如果电流为13A,电源线的截面面积应尽量大于6.5平方毫米。

四,技术参数:型号PNI-S50048A5额定功率500W峰值功率 1000W输入电压40VDC-61VDC输出电压220VAC±5%输出频率50Hz输出波形纯正弦波工作效率>84%五,保护:输入反接保护 自动恢复输入保险丝 20A输入电压保护<40V 和 >62V低输入电压报警44V±1V输出过载且<700W保护时间30秒输出短路保护时间2~3秒温度保护 >70℃六,状态指示:正常输出 两个绿灯亮电池低压报警 输入绿灯闪电池低压关机输入红灯亮输出过载 输出绿灯闪,30秒后,关机。

重载保护 输出红灯亮,2~3秒后,关机,10秒钟后重启温度保护 输入黄灯亮七,工作环境:温度 -20~40摄氏度八,物理特征:尺寸 240 x 166 x 62mm重量 2kg九,注意事项:z本逆变器只能接小于其所规定最大功率的负载。

600W纯正弦波逆变器制作详情(图解)

600W纯正弦波逆变器制作详情(图解)

600W纯正弦波逆变器制作详情(图解)此板有一部分是老寿师傅的版本,还有一部分是我自己画的做了改动。

电路板尺寸:223x159(mm)此板具有过载保护、短路保护、欠压提醒、过温保护(75度)、温控风扇(45度)等功能。

今天去做板了,4片100元。

这个是SPWM驱动板PCB图SPWM驱动板以下是配件:这个是主变,EE55-21的磁芯。

刚绕好的电感,磁环型号:A60399 采用直径40的铁硅铝磁环,用1.24的线绕制。

电感量0.8mH。

#p#散热风扇#e#这个是散热风扇,尺寸:60X60X10(mm)这个是散热器,规格:高62mm、宽100mm、厚18mm,还有一种规格是:高62mm、宽150mm、厚18mm这个是温控开关,型号:JUC-31F 45度常开和75度常闭这个是装在散热器上的快速整流二极管,二极管型号:RHRP1560由于最近比较忙,总是停一会做一会,所以进度落下了。

以下是做好的电路板。

这个是刚装好元器件的一块板,由于上次钟工送管那段时间比较忙很少到电源网来,所以错过了。

前级用的功率管是IRFP2907Z两个,后级用的是IRFP460总共6个。

主变我绕了两个,一个是EE55的,还有一个是EE42。

准备两个都试一下,看看EE42能不能输出600W。

#p#前级加电调试#e#今天对前级加电调试,调试比较顺利。

直流母线电压374V,输入电压12.3V,空载电流190mA。

以下是测试图片。

在测试过程中想用示波器看看直流母线对地是否有杂波,不小心示波器表笔和地短路了,啪的一声下了我一跳,赶紧断电检查前级MOSFET管,竟然还是好的。

后来检查发现直流母线有一段覆铜皮给烧断了,真厉害。

呵呵。

直流母线输出电压374V,输入电压12.3V时,空载电流190mA。

这是占空比调到最小时空载情况下前级M0SFET管G极的驱动波形。

(此时占空比0.34%)我还是很满意的。

今天我对前级进行了加载试验,将母线电压修正为357V,由于没有12V电池,所以找了一个12V、5A的开关电源试了一下,带的负载是一个20W的灯泡。

DIY:自制600W的正弦波逆变器全过程(附完整PCB资料)

DIY:自制600W的正弦波逆变器全过程(附完整PCB资料)

DIY:自制600W的正弦波逆变器全过程(附完整PCB资料)4.整机调试:为了安全起见,一般是前后级分开来调试,等把前后级都调好了,再联起来调试,就方便了。

A)前级的调试:先在电瓶的引线上接一个15A的保险丝,功率主板上的高压保险丝不要装,这样,前后级就分开了。

插上前级DC-DC驱动板,把万用表直流电压700V档接在高压电解二端,开机(按一下DC-DC驱动板上的ON启动开关),前级就启动了,功率主板上的高压指示LED就亮了,这时,看直流高压为几V.调试DC-DC驱动板上的R12多圈电位器,使高压输出在370-380V之间。

此时,12V的电流应该在200MA之内,说明前级正常。

这里如果看D极波形,应该是杂乱的波形,因为是空载限压的状态下,这样的波形是对的。

这里,可以稍稍为前级加点负载,可以用二个100W220V的灯泡串联起来,接到高压解的二端,这时电瓶电流可达到12A左右,让它工作一段时间,看看前级功率管有没有温升,如果温升不明显,可以把电瓶保险丝换大点,继续加大负载,一般在功率管散热正常的情况下,前级可以加到600W左右。

在加载的情况下,再看D极波形,应该是正常的方波,稍有点尖峰是没有关系的,如果尖峰过大,说明变压器制作不过关,要重新绕制。

B)后级调试:调好前级后,再把前级的DC-DC驱动板拔下,在功率主板的高压保险丝座上,装上一个1A左右的保险丝,在高压电解二端接上一个60V左右的电压,作为母线电压,我是用一台双组的30V电源串起来当成60V用。

插上SPWM驱动板,如果电路没有问题,这时,在AC 输出端就可以测到正弦波了,电压大约在40V左右,可以接一个36V60W的灯泡做负载。

C)联机在前后级都正常的情况下,可以把前后级联起来,完成整机调试。

把前级的DC-DC驱动板重新插上,后级AC输出端的负载去掉,接上示波器(示波器最好用1:100的高压探头)和万用表(AC700V 档),把高压保险丝换成一个0.5A的。

500W逆变器变压器绕制过程变压器

500W逆变器变压器绕制过程变压器

500W逆变器变压器绕制过程变压器500W逆变器变压器绕制过程500W逆变器变压器绕制过程选合理的绕法是成功的关键, 下图看是比较复杂(我只简单画了初级的绕法示意图),但实际上最容易绕制了.(下面绕线时所有线都朝同个方向绕)绕法如下:一:选两股0.72的漆包线一头固定在6脚(高压绕组的头),绕两层35T,另一头不要剪断,包好绝缘层后开始绕初级.二:选6股0.72的线排整齐胶带包好卡在骨架的1,2脚之间,同样选6股0.72的线排整齐胶带包好卡在骨架的3,4脚之间.这样12股线就整齐的排成一层绕上3T.1,2脚的那股线在9,10脚之间引出留合适的长度剪断.同样3,4脚的那股在12,13脚之间引出留合适的长度剪断.按上面的方法用相同的方法饶好(2,3)-(11,12),(4,5-13,14).三:包好绝缘后接高压绕组继续绕两层35T高压绕组.线尾还是不要剪断留用.四:包好绝缘后完全按第二步重复绕一边,线头线尾也在相同的位置出线.五:包好绝缘后接高压绕组继续绕两层35T高压绕组完工接7脚.这样变压器就绕好了,看图仔细分析下.1,2,3脚之间的所有线并请来是一组3T的头,12,13,14脚之间的所有线并请来是另一组3T的尾.3,4,5之间的线和10,11,12之间的线连起来是两个3T的中心抽头.绕完所有绕组整个线包厚度只有10层0.72的的厚度略大于7.2MM,EE55的磁芯骨架一般有9MM左右完全绕的下这点线.最后就是所有的线头整理上锡了,考虑3,4,5之间的线和10,11,12之间的线在两端出线不方便连接,那就引出线留长点通过画PCB板时合理布线就可以方便的处理了. 实际使用时 3,4,5之间的线和10,11,12之间的线,留足够长度套上套管后直接引出接入电源正极.补充一点:实际选线径的时候,可以按自己现有的漆包线选择.但尽量先计算一遍用多少股并联,使每一层都从骨架一边到另一边正好排满,细心认真完全利用好窗口的话还真能做到800W的功率.问:这个参数绕制的EE55不止500W吧?还有一点:目前市场上EE55的骨架很少能容下你给的参数,答:其实这个就是市场上最普通的EE55磁芯,你按我的方法绕的话肯定全部绕的下.这个参数是按最低要求绕制出来的,还是勉强能达到500W的功率.就是说能短时间连续输出500W,长时间的话不敢保证.但业余条件下可以放心使用了,用这种方式绕的话放心绕好了,绕完这点线骨架还非常非常宽裕.对于到底能输出多少功率,就象N年前国产的几喇叭收录机一样动不动就标上几百上千W的功率(峰值加虚标),其实真真正的功率就是几瓦或十几瓦.我的初衷也是让菜鸟能一次就绕好一个实实在在的变压器,尽量利用好手头磁芯的功率.以后功率做大做下就不用反复绕变压器了.“0.72线是0.4平方,0.4X24=9.6平方.9.6X5A=48X12X2=1150W.0.72按5A载流量来算有2AX2=4A!90%效率来讲实际你的参数也有1000W!”这个我可能标法上有误,我标的0.72的漆包线净铜线直径应该是0.67(正规书写应该写0.67才对,出于实际排线所占的骨架宽度的方便计算写成了0.72).开关电源手册一时找不到了,载流量到底是几A每平方毫米一下确定不了.但0.67的导线单股正常能用过0.9A左右这个还是保险的(记得设计手册上标注的0.67直径的漆包线是0.8几A).这样最终功率还是:24股X0.9AX12VX2=518.4W 能不能达到豆芽菜师兄算出的1000W自己不敢相信,真能达到的话,呵呵!算错了也是不错的意外横财.问:老兄你的变压器完全按1000W设计的,这个参数正常工作条件下还不会热呢!再说EE55容下1000W没有问题,真做500W有点大才小用了,还有0.4平方只像工频变压器一样只过0.9A的话那高频磁芯的优势全无了,很欣赏你绕的变压器能容下这个参数!真的!精神可加啊,我常按7A来算也只能容下这个功率,还有,我不是在与你争对与错噢请不要见怪!新年快乐…答:有找了些资料:对于漆包线载流量的计算或许有些参考.我设计时考虑过要在自然散热,和连续可靠的的环境下正常工作.整个计算都在以前仔细核算过.虽然这次没这么认真过计算过,但最终还是应该可靠的.呵呵,其他的话我也不多说了,用了一下午刚好绕了个EE55的变压器,本来想设计成600W的.业余条件下太困难了还是按500W的要求好绕多了.接下去最头疼的是漆包线去漆上锡.接下来先简单算下电流和线径的关系:1,自然散热的话线径一般取5A每平方毫米(豆芽菜师兄提醒:这个载流量计算可能有误(5A每平方毫米载流量应该取2.5-3A每平方毫米才正确,我是按0.72流0.9A计算的,应用这个变压器还是保险的),利用手头现成的漆包线选了外径0.72的线(因为工作在高频状态选漆包线线径一般不要超过0.8MM的直径).0.72的漆包线单根可以通过0.9A的电流.500W/12V=42A,这样的话初级约需要48股0.72的漆包线.逆变器上常用的是推挽形式,那两组线圈就只要24股+24股就可以了.2,次级同样按电压和电流选好合适的漆包线.3,我绕的EE55变压器是初级12V输入500V输出功率定在500W.就选初级3T+3T,次级110T.4,绕推挽变压器时几个问题要注意下,一是两组初级要尽量物理尺寸相同(保证相同的圈数和相同的电感量),二是采用三明治方式绕,三是尽量整齐排列不要在线包内有接头每层都完全利用起来不留空隙.注意这三点就肯定能成功了.。

500W纯正弦波逆变器原理图

500W纯正弦波逆变器原理图
104
PWM2
R18
4.7
103
M4 60N75
6
7
EI30 1:35
C30
C31Biblioteka 1UF1UFACOUT2 1 输出是要 接NTC的,在板子上 有接口 2
ACOUT
U1C 8
13 SD
4
VS2
R23 10K
T3
10
R32
9
14 LIN VCC 3
+12V
D12 US1M/R1SJ
F1
473
C20 4081
10 -
LM339
2 C13
104
R81
D16
473
IN4148
R72
102
D15
IN4148
D14
13
9
+
14
1N4148
8
- IC6D
R65 103
D6
LM339
R54
222
1N4148
R83 102
R58 C49 223 104
R84 C33 402
104
LED2 LED
D17 4148 IC9
9
2
D7 D8
2
8
BRIDGE-1BRIDGE-2
7
C27
ELECTRO1
3
3
HV
HO1 R46 103
M5 MOSFET N
M7 MOSFET N
HO2
R49
R26 R27 101 101
1
14
174
PIC16F73
101
电池过欠 压保护
D9 4148

逆变器自己制作过程大全

逆变器自己制作过程大全

通用纯正弦波逆变器制作概述本逆变器的PCB设计成12V、24V、36V、48V这几种输入电压通用。

制作样机是12V输入,输出功率达到1000W功率时,可以连续长时间工作。

该逆变器可应用于光伏等新能源,也可应用于车载供电,作为野外应急电源,还可以作为家用,即停电时使用蓄电池给家用电器供电。

使用方便,并且本逆变器空载小,效率高,节能环保。

设计目标1、PCB板对12V、24V、36V、48V低压直流输入通用;2、制作样机在12V输入时可长时间带载1000W;3、12V输入时最高效率大于90%;4、短路保护灵敏,可长时间短路输出而不损坏机器。

逆变器主要分为设计、制作、调试、总结四部分。

下面一部分一部分的展现。

第一部分设计1.1 前级DC-DC驱动原理图DC-DC驱动芯片使用SG3525,关于该芯片的具体情况就不多介绍了。

其外围电路按照pdf里面的典型应用搭起来就OK。

震荡元件Rt=15k,Ct=222时,震荡频率在21.5KHz左右。

用20KHz左右的频率较好,开关损耗小,整流管的压力也小些,有利于效率的提高。

不过频率低,不利于器件的小型化,高压直流纹波稍大些。

电池欠压保护,过压保护以及过流保护在DC-DC驱动上实现。

用比较器搭成自锁电路,比较器输出作用于SG3525的shut_down引脚即可。

保护电路均是比较器搭建的常规电路。

DC-DC驱动部分使用了准闭环,轻载时,准闭环将高压直流限制在380V左右,一旦负载加重前级立即进入开环模式,以最高效率运行。

并且使用了光耦隔离,前级输入和输出在电气上是隔离开的,这样设计也是为了安全。

如图1.1所示,是DC-DC驱动电路原理图。

图1.1 DC-DC驱动电路原理图1.2 前级DC-DC功率主板原理图DC-DC功率主板采用的是常规推挽电路,8只功率开关管,每只管子有单独的栅极驱动电阻,分别用图腾驱动这8只功率管。

变压器次级高压绕组经整流滤波后得到直流高压。

辅助绕组经整流滤波稳压之后给后级SPWM驱动板以及反馈用的光耦提供电压供电。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

500W正弦波逆变器制作过程(多图)
下面是整个机器的照片,为了能够简单省事,我采用了主板和控制板分开的办法来做,这样的好处就是所有的控制功能集中在小板子上处理,大板子负载功率变换和传输,大大降低干扰的发生,提高稳定性。

高清多图
H桥MOSFET局部。

AC滤波电感局部
#p#前级升压MOSFET#e#前级升压MOSFET
高压整流二极管侧面
侧面
这款控制板如下图所示,板上的元件非常多,所以用了双面PCB来做。

前级升压也包含在这个板上,采用的是TL494加图腾柱升压;后级SPWM芯片还是采用TDS2285芯片,附带CD4069+CD4081输出给TLP250光耦,驱动H桥。

供电采用自举供电驱动。

整个板上只要提供+12V电源即可完成所有功能。

为了提高稳定性和可靠性,加入了各种保护功能:过压保护、欠压保护、过热保护、短路保护、过流保护等。

该机器的PCB文件及SCH电路文件如下:
#p#关键的元器件的说明#e#下面对机器上关键的元器件的说明:
1变压器:众所周知,变压器是一切开关电源里最复杂的东西,我到目前为止,对磁性元件的理解还是半桶水,不过没有关系,这次采用的变压器并不复杂,用的是经典的推挽电路,我用的是EE4220变压器,用的铜带绕的,初级是2+2T,次级是64T,分了3次绕。

第一次:用一根0.75的线绕上32T,均匀的分布在骨架里。

第二次:我用2条0.3*25mm的紫铜带2条叠加绕了2+2。

第三次:就是将初级剩下的32T绕完。

1,变压器只要绕紧了,初级对称了,不会有什么问题的,因为在这里,我们用的基本上是在开环工作下,所以问题并不大。

可惜绕变压器的时候没有拍照片。

2,高压整流二极管:这个机器设计是在最高500W范围内工作,功率并不大,所以用了HER508来做,实际发现,全功率运行下,二极管还是有点热的,不过通过连续几个小时工作,风扇开启的情况下,工况并不是很差的。

所以用上去没有问题。

3,前级升压MOSFET,这里我是采用的80V/110A的MOSFET,是无锡NCE公司的NCE80H11,本来是准备用锐俊半导体的RU6099,RU6099之前我也测试过,性能非常好,但是我手头没有这个MOS的物料了,所以就用了NCE80H11.
4,H桥MOSFET,我用的是IRFB11N50APBF,这个MOS性能非常好,在经常短路的情况下,寿命大大超过了同类的IRFP460,电流也比IRFP460小,可是用在500W上刚好合适。

#p#AC滤波电感#e#5,AC滤波电感,我用了比较小的磁环,外径为27.5mm,高度为14mm的铁硅铝环,磁导率为125u。

我在上面用2根0.55的线绕了大概70圈,电感量大约为0.75MH。

由于采用了2个这样的电感,所以电感量不需要非常大,并且能获得非常好的滤波效果。

绕后后的样子:
装配说明:
1首先要将主板上的跳线逐一焊好,注意变压器下方靠近C2电容位置有2条槽,这个是用来焊接跳线的,我用了一小段铜带焊上去了,也可以用几根跳线焊接起来。

跳线大部分都在散热器下面,因为板上并没有标出跳线标号,所以需要仔细找到并且焊接好,不然等散热器装好后,发现跳线少装就麻烦了。

焊接铜带的位置:
部分焊接跳线:
2,将所有元件都安装下去之后,接着就可以安装散热器了。

安装散热器不能将跳线短路,可以在下面垫一点东西,我是在底下垫了绝缘垫的。

3,最后安装控制板,控制板上有一条给H桥驱动供电的电源脚,由于在主板上没有提供这个接口,所以预先要在控制板背面将这个脚和+12V连接起来。

这些工作都完成之后,只要没有弄错元件,位置没有焊接错误,开机就能正常工作了。

相关文档
最新文档