双曲线焦点三角形面积公式在高考中的妙用

合集下载

高中数学破题致胜方法双曲线焦点三角形的面积

高中数学破题致胜方法双曲线焦点三角形的面积

今天我们研究双曲线焦点三角形的面积。

12PF F ∆由两焦点和双曲线上一点形成,我们把这种三角形叫焦点三角形. 求焦点三角形的面积时,通常会利用双曲线的定义、正弦定理、余弦定理等,焦点三角形的面积主要有两种求法:1212121211sin =2c |y |22PF F PF F P S r r F PF S =∠和。

例:已知双曲线221916x y -=的左、右焦点分别为12F F 、,若双曲线上一点P 使 1290F PF ∠︒=,则1F PF 的面积是( ) A.12 B.16 C.24 D.32解:根据双曲线的定义有:126PF PF =- 两边平方得:221212236PF PF PF PF +-=由勾股定理有:222121212||10032PF PF F F PF PF ∴+==,=1212S PF PF ∴==16所以本题选B 。

整理: 焦点三角形的面积求法:2211||,||r PF r PF ==,12F PF θ∠=;12121sin 2PF F S r r θ=;121=2||2PF F P S c y ;注意:讨论焦点三角形的相关性质时,要结合双曲线的定义,简化运算。

再看一个例题,加深印象:例:已知12F F ,为双曲线221C x y -=:的左、右焦点,P 点在C 上,1260F PF ∠︒=,则P 到x 轴的距离为( )解:不妨设 设12(,),,,P x y PF m PF n == 由双曲线的定义有:12 2.PF PF mn -=-= 在△21PF F 中,由余弦定理得: 2222(22)-2cos 608(-).4m n mn m n mn mn =+︒=+=从而由三角形面积公式有:11sin 602214222y mn y y ⨯︒⨯⨯∴=,=总结:1.双曲线焦点三角形是一个很重要的三角形,相关的知识有双曲线的定义、余弦定理等.2.掌握双曲线焦点三角形的面积公式,根据已知条件合理选择面积公式计算.练习:1.已知双曲线的焦点在x 轴上,离心率为2,12,F F 为左右焦点, P 是双曲线上一点,且1260,F PF ∠=12PF F S ∆=.2.设P 为双曲线22112y x -= 上的一点,12,F F 是该双曲线的两个焦点.若 12||:||3:2PF PF =,则12PF F 的面积为( )A.B.12C. D.24已知点P 是双曲线22145x y -= 上一点,若PF 1⊥PF 2,则△PF 1F 2的面积为( ) A.54 B.52 C.5 D.10答案:1. 【解析】设双曲线方程为()222210,0x y a b a b -=>>2,2e c a =∴= 所以,2224,16,12a c b ===,双曲线标准方程为221412x y -=.。

高中数学圆锥曲线有好用的公式

高中数学圆锥曲线有好用的公式

高中数学圆锥曲线有什么好用的公式吗那些考试拿高分的,一定是简单的题目做得又快又对,这样他们才有时间去思考难题。

因此,适当地掌握一些教材中没有提到,但是可以加速解题过程的公式和定理,对提高解题速度,尤其是选择和填空题的解题速度极为有效。

下面就来简单总结一下与圆锥曲线有关的好用公式:1.利用椭圆的焦点三角形快速求离心率通过这一简单的结论,我们可以把一些出现在选择和填空题中的求离心率类的题目迅速解决,只需要画出图,找出角度,代入公式,避免了a,b,c换来换去的繁琐运算,为我们后面的大题节约时间。

我们先证明一下这个公式:通过这一简单的结论,我们可以把一些出现在选择和填空题中的求离心率类的题目迅速解决,只需要画出图,找出角度,代入公式,避免了a,b,c换来换去的繁琐运算,为我们后面的大题节约时间。

【我们先不使用这个定理来解决这个问题】:【在知道公式的情况下】翻译的图像和条件不变:那我们比较这两种做法,显然第一种需要用数学三招去思考,去动点脑筋去想,但如果利用好这个公式,我们几乎不需要思考,只需要熟练的计算即可迅速解出答案!2.利用椭圆的切线方程快速解题只需记下这个简单的结论,在圆锥曲线中椭圆这一章中,遇到切线问题就可以思路更清晰,解题更迅速噢。

【直接记住结论解题】再盯住已经转化过的目标,要求上述式子的最小值,联想有关的定理和定义,我们想到了利用函数的性质或者不等式的方法求最值,所以要把x1•x2,y1•y2,x1+x2换成与m有关的代数式。

利用这个定理,有效的缩短了解题时间,让我们对这一类型的题目处理起来更得心应手。

不仅是椭圆,在圆上这个定理也是成立的:大家记住了吗?3.利用双曲线的焦点三角形快速求离心率通过这一简单的结论,我们可以把一些出现在选择和填空题中的求离心率类的题目迅速解决,只需要画出图,找出角度,代入公式,避免了a,b,c换来换去的繁琐运算,为我们后面的大题节约时间。

我们先证明一下这个公式:因为上次椭圆的已经进行简便性验证了,那么同学们多记这4个字——椭加双减,再加上本身这个公式就很好记,结合三角形对比一下,多记4个字又可以解决一类题,投资回报比是很高的!利用本质教育的第一招翻译,翻译出图形:再利用本质教育的第三招盯住目标立马联想我们背过的公式:椭加双减3.二次曲线弦长万能公式(另外一个类似,可以证明)这就是泽宇老师在录播课中提到的“韦达定理模式”,解大题的时候,把以上证明过程写出来即可。

椭圆和双曲线的焦点三角形面积公式——解决客观题的法宝

椭圆和双曲线的焦点三角形面积公式——解决客观题的法宝

椭圆和双曲线的焦点三角形面积公式——解决客观题的法宝董晖
【摘要】利用椭圆和双曲线焦点三角形面积公式可以大大简化解决圆锥曲线相关问题的步骤,节省时间,是解决此类客观题的法宝公式.
【期刊名称】《数学教学通讯:中教版》
【年(卷),期】2018(000)006
【总页数】2页(P79-80)
【关键词】椭圆;双曲线;焦点三角形面积公式;客观题
【作者】董晖
【作者单位】甘肃省武威第六中学 733000
【正文语种】中文
全国卷高考数学的客观题有16道,共90分,占总分的60箛.小题小解,解决客观题能否快而准,是考试成败的关键,其中椭圆和双曲线焦点三角形面积公式可以大大简化解决圆锥曲线相关试题的步骤,节省时间,是解决小题的法宝公式.
定理:已知椭圆方程为b>0),它的两焦点分别为F1,F2,设在焦点三角形
PF1F2中,∠F1PF2=θ,则S△F1PF2=
图1
由椭圆的第一定义得s+t=2a,所以(s+t)2=4a2.
在△F1PF2中,由余弦定理得:s2+t2-2stcosθ=(2c)2.。

椭圆、双曲线焦点三角形面积公式及其应用

椭圆、双曲线焦点三角形面积公式及其应用

椭圆、双曲线焦点三角形面积公式及其应用
刘志勇; 方志平
【期刊名称】《《中学数学研究》》
【年(卷),期】2009(000)011
【摘要】在高考中涉及到椭圆、双曲线的焦点三角形问题很多,在这些问题中有一类与面积有关,如果我们能合理而又灵活地运用椭圆、双曲线的焦点三角形的面积公式,在解决一类有关问题时,可避免冗长的推理和运算,大大降低难度,使解题过程简捷而明了.
【总页数】3页(P32-34)
【作者】刘志勇; 方志平
【作者单位】广东省惠州市第一中学 516007
【正文语种】中文
【中图分类】O1
【相关文献】
1.椭圆和双曲线的焦点三角形的面积公式及应用 [J], 张扩社
2.椭圆和双曲线的焦点三角形面积公式——解决客观题的法宝 [J], 董晖
3.椭圆和双曲线的焦点三角形面积公式--解决客观题的法宝 [J], 董晖;
4.椭圆、双曲线过焦点的弦长公式及其应用 [J], 方志平
5.椭圆或双曲线中焦点三角形的一个性质及应用 [J], 吴爱龙;黄园军;徐招平
因版权原因,仅展示原文概要,查看原文内容请购买。

有关圆锥曲线的焦点三角形面积公式的证明及其应用

有关圆锥曲线的焦点三角形面积公式的证明及其应用

圆锥曲线的焦点三角形面积问题比较常见,这类题目常以选择题、填空题、解答题的形式出现.圆锥曲线主要包括抛物线、椭圆、双曲线,每一种曲线的焦点三角形面积公式也有所不同,其适用情形和应用方法均不相同.在本文中,笔者对圆锥曲线的焦点三角形面积公式及其应用技巧进行了归纳总结,希望对读者有所帮助.1.椭圆的焦点三角形面积公式:S ΔPF 1F 2=b 2tan θ2若椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),∠F 1PF 2=θ,则三角形ΔF 1PF 2的面积为:S ΔPF 1F 2=b 2tan θ2.对该公式进行证明的过程如下:如图1,由椭圆的定义知||F 1F 2=2c ,||PF 1+||PF 2=2a ,图1可得||PF 12+2||PF 1||PF 2+||PF 22=4a 2,①由余弦定理可得||PF 12+||PF 22-2||PF 1||PF 2cos θ=4c 2,②①-②可得:2||PF 1||PF 2(1+cos θ)=4b 2,所以||PF 1||PF 2=2b 21+cos θ,则S ΔPF 1F2=12|PF 1||PF 2|sin θ=12×2b 21+cos θsin θ,=b 22sin θ2cos 2θ22cos 2θ2=b 2tan θ2.若已知椭圆的标准方程、短轴长、两焦点弦的夹角,则可运用椭圆的焦点三角形面积公式S ΔPF 1F 2=b 2tan θ2来求椭圆的焦点三角形面积.例1.(2021年数学高考全国甲卷理科)已知F 1,F 2是椭圆C :x 216+y 24=1的两个焦点,P ,Q 为椭圆C 上关于坐标原点对称的两点,且||PQ =||F 1F 2,则四边形PF 1QF 2的面积为________.解析:若采用常规方法解答本题,需根据椭圆的对称性、定义以及矩形的性质来建立关于||PF 1、||PF 2的方程,通过解方程求得四边形PF 1QF 2的面积.而仔细分析题意可发现四边形PF 1QF 2是一个矩形,且该矩形由两个焦点三角形构成,可利用椭圆的焦点三角形面积公式求解.解:S 四边形PF 1QF 2=2S ΔPF 1F 2=b 2tan θ2=2×4×tan π2=8.利用椭圆的焦点三角形面积公式,能有效地简化解题的过程,有助于我们快速求得问题的答案.例2.已知F 1,F 2是椭圆C:x 2a 2+y 2b2=1()a >b >0的两个焦点,P 为曲线C 上一点,O 为平面直角坐标系的原点.若PF 1⊥PF 2,且ΔF 1PF 2的面积等于16,求b的值.解:由PF 1⊥PF 2可得∠F 1PF 2=π2,因为ΔF 1PF 2的面积等于16,所以S ΔPF 1F 2=b 2tan θ2=b 2tan π2=16,解得b =4.有关圆锥曲线的焦点三角形面积公式的思路探寻48的面积,2.则ΔF 1PF 如|||PF 1-|得:|||PF 2cos θ即|由②所以则S Δ夹角、例3.双曲线C 是().A.72且)设双曲F 1,F 2,离△PF 1F 2=1.本题.运用该=p 22sin θ,且与抛S ΔAOB =图3下转76页)思路探寻49考点剖析abroad.解析:本句用了“S+Vt+动名词”结构,能用于此结构的及物动词或词组有mind ,enjoy ,finish ,advise ,consider ,practice ,admit ,imagine ,permit ,insist on ,get down to ,look forward to ,put off ,give up 等。

高考数学中,有心二次曲线的焦点三角形面积公式怎么用?

高考数学中,有心二次曲线的焦点三角形面积公式怎么用?

高考数学中,有心二次曲线的焦点三角形面积公式怎么用?
答:
有心二次曲线的焦点三角形是高考的常考内容之一,它综合了圆锥曲线的定义、余弦定理、三角形的面积公式等知识点,往往计算量相对较大。

但是,如果能应用焦点三角形的面积公式,那么许多题都可以大大减少运算量,同时提升正确率。

一·椭圆的焦点三角形
二·双曲线的焦点三角形
焦点三角形问题实际上是有心二次曲线定义的应用,通过上述两道高考真题不难发现,掌握焦点三角形面积公式的正确打开方式,某些题堪称秒杀。

另外,有些题目看似与焦点三角形没有关系,实际上经过转化便可使用,因此,注意体会。

以上。

高考总复习二轮理科数学精品课件 专题5 解析几何 培优拓展9 圆锥曲线的常用二级结论及其应用

高考总复习二轮理科数学精品课件 专题5 解析几何 培优拓展9 圆锥曲线的常用二级结论及其应用
2
证明:如下图,设A(x1,y1),B(x2,y2),线段AB的中点为M(x0,y0).
由点 A,B 在椭圆上,得
1 -2 2
= 1 - 2 2
12
2
22
2
12
+ 2

22
+ 2
= 1,
2 0 ( 1 - 2 )
20 (1 -2 )
两式相减得 2
b
=c
-a
=4,又
tan45°

= 5,则 c2=5a2,所以 a2=1,即
(2)已知椭圆
2
C: 2

+
2
=1(a>b>0)的左焦点是点
2

π
F,过原点倾斜角为 的直线
3
3 2- 10

与椭圆 C 相交于 M,N 两点,若∠MFN= ,则椭圆 C 的离心率是
2
3
l
.
解析 设右焦点为 F',由题意可得直线 l 的方程为 y= 3x,设 M(x0,y0)在第一象
3
点 P 在 C 上且|OP|=2,则△PF1F2 的面积为( B )
7
A.2
5
C.2
B.3
解析 (方法一)由题意知a=1,b=
D.2
3 ,c=2.不妨设F1,F2分别为双曲线C的左、
右焦点,则F1(-2,0),F2(2,0).因为|OP|=2,所以点P在以O为圆心,F1F2为直径的
圆上,故PF1⊥PF2,则|PF1|2+|PF2|2=(2c)2=16.由双曲线的定义可知||PF1||PF2||=2a=2,所以|PF1|2+|PF2|2-2|PF1|·

高中数学论文双曲线焦点三角形面积公式在高考中的妙用

高中数学论文双曲线焦点三角形面积公式在高考中的妙用

双曲线焦点三角形面积公式的应用定理 在双曲线12222=-by a x (a >0,b >0)中,焦点分别为1F 、2F ,点P 是双曲线上任意一点,θ=∠21PF F ,则2cot 221θ⋅=∆b S PF F . 证明:记2211||,||r PF r PF ==,由双曲线的第一定义得.4)(,2||222121a r r a r r =-∴=-在△21PF F 中,由余弦定理得:.)2(cos 22212221c r r r r =-+θ配方得:.4cos 22)(22121221c r r r r r r =-+-θ即.4)cos 1(242212c r r a =-+θ .cos 12cos 1)(222221θθ-=--=∴b a c r r 由任意三角形的面积公式得:2cot 2sin 22cos 2sin 2cos 1sin sin 2122222121θθθθθθθ⋅=⋅=-⋅==∆b b b r r S PF F . .2cot 221θ⋅=∴∆b S PF F 同理可证,在双曲线12222=-bx a y (a >0,b >0)中,公式仍然成立. 典题妙解例1 设1F 和2F 为双曲线1422=-y x 的两个焦点,P 在双曲线上,且满足︒=∠9021PF F ,则△21PF F 的面积是( )A. 1B.25 C. 2 D. 5 解:,145cot 2cot 221=︒=⋅=∆θb S PF F ∴选A.例2 (03天津)已知1F 、2F 为双曲线1422=-y x 的两个焦点,P 在双曲线上,若△21PF F 的面积是1,则21PF PF ⋅的值是___________.解: ,12cot 2cot 221==⋅=∆θθb S PF F ︒=∴452θ,即.90︒=θ ∴21PF PF ⊥,从而.021=⋅PF例3 已知1F 、2F 为双曲线的两个焦点,点P 在双曲线上,且︒=∠6021PF F ,△21PF F 的面积是312,离心率为2,求双曲线的标准方程. 解:由31230cot 2cot 2221=︒=⋅=∆b b S PF F θ得:.122=b 又,2122=+=ab e .41212=+∴a从而.42=a ∴所求的双曲线的标准方程为112422=-y x ,或112422=-x y . 金指点睛1. 已知双曲线1422=-y x 的两个焦点为1F 、2F ,点P 在双曲线上,且△21PF F 的面积为3,则 21PF PF ∙的值为( )A. 2B. 3C. 2-D. 3-2.(05北京6)已知双曲线的两个焦点为)0,5(),0,5(21F F -,P 是此双曲线上的一点,且2||||,2121=⋅⊥PF PF PF PF ,则该双曲线的方程是( ) A. 13222=-y x B. 12322=-y x C. 1422=-y x D. 1422=-y x 3.(05全国Ⅲ)已知双曲线1222=-y x 的焦点为1F 、2F ,点M 在双曲线上,且021=⋅MF ,则点M 到x 轴的距离为( ) A.34 B. 35 C. 332 D. 34. 双曲线116922=-y x 两焦点为F 1,F 2,点P 在双曲线上,直线PF 1,PF 2倾斜角之差为,3π则 △F 1PF 2面积为( )A .163B .323C .32D .42 5. 双曲线14491622=-y x ,1F 、2F 为双曲线的左、右焦点,点P 在双曲线上,且32||||21=⋅PF PF ,求21PF F ∠的大小.6. 已知双曲线12222=-by a x (a >0,b >0)的焦点为1F 、2F ,P 为双曲线上一点,且021=⋅PF PF ,ab PF PF 4||||21=⋅,求双曲线的离心率.参考答案1. 解:32cot 2cot 221===∆θθb S PF F ,∴︒=︒=60,302θθ. 又3sin ||||212121=⋅⋅=∆θPF PF S PF F ,∴4||||21=⋅PF PF . ∴21PF PF ∙=2214cos ||||21=⨯=⋅⋅θPF PF . 故答案选A. 2. 解: ,21PF PF ⊥∴1221||||212121=⨯=⋅=∆PF PF S PF F . 又145cot 2cot22221==︒==∆b b b S PF F θ,∴1=b ,而5=c ,∴2=a .故答案选C. 3. 解: 021=⋅MF ,∴21MF MF ⊥. ∴245cot 22cot 221=︒==∆θb S MF F .点M 到x 轴的距离为h ,则23||212121===⋅⋅=∆h ch h F F S MF F ,∴332=h . 故答案选C.4. 解:设θ=∠21PF F ,则3πθ=. ∴3166cot 162cot 221===∆πθb S PF F .故答案选A. 5. 解:由14491622=-y x 得116922=-y x . 设θ=∠21PF F (︒≤︒1800 θ). ∴2cot 162cot221θθ==∆b S PF F . 又θθsin 16sin ||||212121=⋅⋅=∆PF PF S PF F .∴2cot sin θθ=,即2sin 2cos 2cos 2sin 2θθθθ=. 整理得:212sin 2=θ,∴222sin =θ,︒=452θ,︒=90θ. 故21PF F ∠的大小为︒90.6. 解:设θ=∠21PF F , 021=⋅PF PF ∴︒=90θ. ∴22245cot 2cot21b b b S PF F =︒==∆θ. 又 ab ab PF PF S PF F 2421||||212121=⨯=⋅=∆, ∴ab b 22=. 得2=ab . ∴离心率5)(12=+=ab e .。

双曲线焦点三角形面积公式在高考中的妙用,DOC

双曲线焦点三角形面积公式在高考中的妙用,DOC

双曲线焦点三角形面积公式的应用广西南宁外国语学校隆光诚(邮政编码530007)定理在双曲线12222=-by a x (a >0,b >0)中,焦点分别为1F 、2F ,点P 是双曲线上任意一点,∠F 在△1F 即42a +21=∆S PF F 例︒,则△解:,145cot 2cot 221=︒=⋅=∆θb S PF F ∴选A.例2(03天津)已知1F 、2F 为双曲线1422=-y x 的两个焦点,P 在双曲线上,若△21PF F 的面积是1,则21PF PF ⋅的值是___________.解:,12cot 2cot 221==⋅=∆θθb S PF F ︒=∴452θ,即.90︒=θ∴21PF PF ⊥,从而.021=⋅PF例3已知1F 、2F 为双曲线的两个焦点,点P 在双曲线上,且︒=∠6021PF F ,△21PF F 的面积是312,离心率为2,求双曲线的标准方程. 解:由31230cot 2cot 2221=︒=⋅=∆b b S PF F θ得:.122=b 又,2122=+=ab e∴,则 0,则A.34B.35C.332 D.3 4.双曲线116922=-y x 两焦点为F 1,F 2,点P 在双曲线上,直线PF 1,PF 2倾斜角之差为,3π则 △F 1PF 2面积为()A .163B .323C .32D .425.双曲线14491622=-y x ,1F 、2F 为双曲线的左、右焦点,点P 在双曲线上,且32||||21=⋅PF PF ,求21PF F ∠的大小.6.已知双曲线12222=-b y a x (a >0,b >0)的焦点为1F 、2F ,P 为双曲线上一点,且021=⋅PF PF ,ab PF PF 4||||21=⋅,求双曲线的离心率. 参考答案1.解:32cot 2cot 221===∆θθb S PF F ,∴︒=︒=60,302θθ. 又3sin ||||212121=⋅⋅=∆θPF PF S PF F ,∴4||||21=⋅PF . ∴2.3.4.5.∴又∴2cot sin θθ=,即2sin 2cos 2cos 2sin 2θθθθ=. 整理得:212sin 2=θ,∴222sin =θ,︒=452θ,︒=90θ. 故21PF F ∠的大小为︒90.6.解:设θ=∠21PF F , 021=⋅PF ∴︒=90θ.∴22245cot 2cot 21b b b S PF F =︒==∆θ. 又 ab ab PF PF S PF F 2421||||212121=⨯=⋅=∆, ∴ab b 22=.得2=ab . ∴离心率5)(12=+=ab e .。

秒杀题型 焦点三角形(椭圆与双曲线)

秒杀题型 焦点三角形(椭圆与双曲线)

2020年高考数学试题调研之秒杀圆锥曲线压轴题之秒杀题型三:椭圆、双曲线焦点三角形椭圆的焦点三角形:椭圆上任意一点P 与两焦点1F 、2F 构成的三角形:12PF F ∆。

秒杀题型一:性质:1.周长为定值:2()a c +。

2.12,F PF θ∠=当点P 靠近短轴端点时θ增大,当点P 靠近长轴端点时θ减小;与短轴端点重合时θ最大。

类比:(注:椭圆中端点三角形(长轴两端点与椭圆上一点构成)当P 在短轴端点时顶角最大。

)。

1.(2017年新课标全国卷I 文12)设A 、B 是椭圆C 1323=+m y x 长轴的两个端点,若C 上存在点M 满足︒=∠120AMB ,则m 的取值范围是()A.(][)+∞,91,0 B.(][)+∞,93,0 C.(][)+∞,41,0 D.(][)+∞,43,0【解析】:当03m <<时,椭圆的焦点在x 轴上,要使C 上存在点M 满足120AMB ∠=,则tan 60ab≥= ,即≥.得01m <≤;当3m >时,椭圆的焦点在y 轴上,要使C 上存在点M 满足120AMB ∠= ,则tan 60ab ≥= ,≥,得9m ≥,故m 的取值范围为(][)+∞,91,0 ,选A.秒杀题型二:3.三角形面积:212tan 22S c y c y b θ=⨯⨯=⨯=,max ,S bc =即P 与短轴端点重合时面积最大。

1.(高考题)已知1F ,2F 是椭圆1:2222=+by a x C )0(>>b a 的两个焦点,P 为椭圆C 上一点,21PF PF ⊥.若21F PF ∆的面积为9,则b =.【解析】:由椭圆焦点三角形面积公式得:94tanb 22==b π,3=∴b 。

〖母题1〗已知12,F F 是椭圆22195x y +=的焦点,点P 在椭圆上且123F PF π∠=,求12F PF ∆的面积.【解析】:由椭圆定义及余弦定理得:533。

高中数学论文椭圆焦点三角形面积公式在高考中的妙用

高中数学论文椭圆焦点三角形面积公式在高考中的妙用

椭圆焦点三角形面积公式的应用定理 在椭圆12222=+by a x (a >b >0)中,焦点分别为1F 、2F ,点P 是椭圆上任意一点,θ=∠21PF F ,则2tan221θb S PF F =∆.证明:记2211||,||r PF r PF ==,由椭圆的第一定义得.4)(,2222121a r r a r r =+∴=+在△21PF F 中,由余弦定理得:.)2(cos 22212221c r r r r =-+θ配方得:.4cos 22)(22121221c r r r r r r =--+θ 即.4)cos 1(242212c r r a =+-θ.cos 12cos 1)(222221θθ+=+-=∴b c a r r由任意三角形的面积公式得:2tan 2cos 22cos2sin2cos 1sin sin 2122222121θθθθθθθ⋅=⋅=+⋅==∆b b b r r S PF F ..2tan 221θb S PF F =∴∆同理可证,在椭圆12222=+bx a y (a >b >0)中,公式仍然成立.典题妙解例1 若P 是椭圆16410022=+y x 上的一点,1F 、2F 是其焦点,且︒=∠6021PF F ,求 △21PF F 的面积.解法一:在椭圆16410022=+y x 中,,6,8,10===c b a 而.60︒=θ记.||,||2211r PF r PF == 点P 在椭圆上,∴由椭圆的第一定义得:.20221==+a r r在△21PF F 中,由余弦定理得:.)2(cos 22212221c r r r r =-+θ配方,得:.1443)(21221=-+r r r r.144340021=-∴r r 从而.325621=r r .336423325621sin 212121=⨯⨯==∆θr r S PF F 解法二:在椭圆16410022=+y x 中,642=b ,而.60︒=θ .336430tan 642tan221=︒==∴∆θb S PF F 解法一复杂繁冗,运算量大,解法二简捷明了,两个解法的优劣立现!例 2 已知P 是椭圆192522=+y x 上的点,1F 、2F 分别是椭圆的左、右焦点,若212121=,则△21PF F 的面积为( ) A. 33 B. 32 C.3 D.33 解:设θ=∠21PF F ,则21||||cos 2121=⋅=PF PF θ,.60︒=∴θ .3330tan 92tan221=︒==∴∆θb S PF F故选答案A.例3(04湖北)已知椭圆191622=+y x 的左、右焦点分别是1F 、2F ,点P 在椭圆上. 若P 、1F 、2F 是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A.59 B. 779 C. 49 D. 49或779解:若1F 或2F 是直角顶点,则点P 到x 轴的距离为半通径的长492=a b ;若P 是直角顶点,设点P 到x 轴的距离为h ,则945tan 92tan221=︒==∆θb S PF F ,又,7)2(2121h h c S PF F =⋅⋅=∆ 97=∴h ,.779=h 故答案选D.金指点睛1. 椭圆1244922=+x y 上一点P 与椭圆两个焦点1F 、2F 的连线互相垂直,则△21PF F 的面积为( ) A. 20 B. 22 C. 28 D. 242. 椭圆1422=+y x 的左右焦点为1F 、2F , P 是椭圆上一点,当△21PF F 的面积为1时,21PF PF ⋅的值为( )A. 0B. 1C. 3D. 63. 椭圆1422=+y x 的左右焦点为1F 、2F , P 是椭圆上一点,当△21PF F 的面积最大时,21PF PF ⋅的值为( )A. 0B. 2C. 4D. 2-4.已知椭圆1222=+y ax (a >1)的两个焦点为1F 、2F ,P 为椭圆上一点,且︒=∠6021PF F ,则||||21PF PF ⋅的值为( ) A .1B .31 C .34 D .32 5. 已知椭圆的中心在原点,对称轴为坐标轴,1F 、2F 为焦点,点P 在椭圆上,直线1PF 与2PF 倾斜角的差为︒90,△21PF F 的面积是20,离心率为35,求椭圆的标准方程. 6.已知椭圆的中心在原点,1F 、2F 为左右焦点,P 为椭圆上一点,21||||2121-=⋅PF PF ,△21PF F 的面积是3,准线方程为334±=x ,求椭圆的标准方程.参考答案1. 解:24,90221=︒==∠b PF F θ,∴2445tan 242tan221=︒==∆θb S PF F .故答案选D.2. 解:设θ=∠21PF F , 12tan2tan221===∆θθb S PF F ,∴︒=︒=90,452θθ,021=⋅PF PF .故答案选A. 3. 解:3,1,2===c b a ,设θ=∠21PF F , 2tan2tan221θθ==∆b S PF F ,∴当△21PF F 的面积最大时,θ为最大,这时点P 为椭圆短轴的端点,︒=120θ,∴2120cos cos ||||22121-=︒=⋅=⋅a PF PF PF θ.故答案选D.4. 解:︒==∠6021θPF F ,1=b ,3330tan 2tan221=︒==∆θb S PF F , 又 ||||43sin ||||21212121PF PF PF PF S PF F ⋅=⋅=∆θ, ∴33||||4321=⋅PF PF ,从而34||||21=⋅PF PF . 故答案选C.5. 解:设θ=∠21PF F ,则︒=90θ. 2045tan 2tan22221==︒==∆b b b S PF F θ,又 3522=-==a b a ac e , ∴95122=-a b ,即952012=-a.解得:452=a .∴所求椭圆的标准方程为1204522=+y x 或1204522=+x y . 6.解:设θ=∠21PF F ,∴︒=-==120,21cos 2121θθ.3360tan 2tan22221==︒==∆b b b S PF F θ,∴1=b .又 3342=c a ,即33333411222+==+=+=+c c c c c b c . ∴3=c 或33=c . 当3=c 时,222=+=c b a ,这时椭圆的标准方程为1422=+y x ;当33=c 时,33222=+=c b a ,这时椭圆的标准方程为13422=+y x ;但是,此时点P 为椭圆短轴的端点时,θ为最大,︒=60θ,不合题意.故所求的椭圆的标准方程为1422=+y x .。

高三数学锥曲线中焦三角面积公式的应用

高三数学锥曲线中焦三角面积公式的应用

圆锥曲线中焦三角面积公式的应用在圆锥曲线中的椭圆和双曲线里,以曲线上的一点及两个焦点作为顶点的三角形我们称之为焦三角。

焦三角的面积只与b 和曲线上的这点与两个焦点的视角有关。

假设这个视角为θ,F 1、F 2分别是曲线的两个焦点,在椭圆中焦三角的面积S=b 2tan 2θ,在双曲线里焦三角的面积S=b 2cot 2θ。

下面我们给出证明:若P 是椭圆22221x y a b+=(a>b>0)上一点,F 1、F 2是两个焦点,设|PF 1|=r 1,|PF 2|=r 2,三角形PF 1F 2的面积为S ,则S=121sin 2r r θ……(1) 在三角形PF 1F 2中,由余弦定理(2c )2=222121212122cos ()2cos r r rr r r rr θθ+-=+-, (2)又r 1+r 2=2a ,……(3)代入(2)得:4c 2=4a 2-θcos 221r r ∴r 1r 2=θcos 22b 代入(1)中可得S=b 2tan2θ,同理可得双曲线中焦三角的面积S= b 2cot 2θ。

在解决圆锥曲线问题中,适当使用焦三角面积公式使解题变得很简便,运算量少且准确,下面举例予以说明。

例1(2004年高考福州)已知P 是椭圆2214x y +=的一点,F 1、F 2是椭圆的两个焦点,且∠F 1PF 2=600,则△PF 1F 2的面积是___________。

由椭圆的焦三角面积公式,这里θ=600,2θ=300得△PF 1F 2 例2.双曲线221916x y -=的两个焦点分别是F 1、F 2,点P 在双曲线上,且直线PF 1、PF 2倾斜角之差为3π,则△PF 1F 2的面积为( )A. C. 32 D. 42 解:由三角形外角性质可得∠F 1PF 2=3π,即θ=3π,再由双曲线的焦三角面积公式,S=b 2cot2θ=16cot 6π故选A 。

例3.在椭圆2214520x y +=上求一点P ,使它与两焦点F 1、F 2的连线互相垂直。

高考数学二轮复习考点知识与题型专题讲解51---椭圆、双曲线的二级结论的应用

高考数学二轮复习考点知识与题型专题讲解51---椭圆、双曲线的二级结论的应用

高考数学二轮复习考点知识与题型专题讲解 第51讲 椭圆、双曲线的二级结论的应用椭圆、双曲线是高中数学的重要内容之一,知识的综合性较强,因而解题时需要运用多种基础知识,采用多种数学手段,熟记各种定义、基本公式.法则固然很重要,但要做到迅速、准确地解题,还要掌握一些常用结论,正确灵活地运用这些结论,一些复杂的问题便能迎刃而解.考点一 焦点三角形核心提炼焦点三角形的面积公式:P 为椭圆(或双曲线)上异于长轴端点的一点,F 1,F 2且∠F 1PF 2=θ, 则椭圆中12PF F S △=b 2·tan θ2,双曲线中12PF F S △=b 2tanθ2. 例1(2022·临川模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),其左、右焦点分别为F 1,F 2,其离心率为e =12,点P 为该椭圆上一点,且满足∠F 1PF 2=π3,已知△F 1PF 2的内切圆的面积为3π,则该椭圆的长轴长为( )A .2B .4C .6D .12 答案 D解析 由e =12,得c a =12,即a =2c .①设△F 1PF 2的内切圆的半径为r , 因为△F 1PF 2的内切圆的面积为3π, 所以πr 2=3π,解得r =3(舍负),在△F 1PF 2中,根据椭圆的定义及焦点三角形的面积公式,知12F PF S △=b 2tan ∠F 1PF 22=12r (2a +2c ),即33b 2=3(a +c ),② 又a 2=b 2+c 2,③联立①②③得c =3,a =6,b =33, 所以该椭圆的长轴长为2a =2×6=12. 易错提醒 (1)要注意公式中θ的含义. (2)椭圆、双曲线的面积公式不一样,易混淆.跟踪演练1 如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A.2B. 3C.32D.62 答案 D解析 设双曲线C 2的方程为x 2a 22-y 2b 22=1,则有a 22+b 22=c 22=c 21=4-1=3.又四边形AF 1BF 2为矩形, 所以△AF 1F 2的面积为b 21tan 45°=b 22tan 45°, 即b 22=b 21=1.所以a 22=c 22-b 22=3-1=2.故双曲线的离心率e =c 2a 2=32=62.考点二 焦半径的数量关系核心提炼焦半径的数量关系式:直线l 过焦点F 与椭圆相交于A ,B 两点,则1|AF |+1|BF |=2ab 2,同理,双曲线中,1|AF |+1|BF |=2a b 2.例2 已知双曲线C 的左、右焦点分别为F 1(-7,0),F 2(7,0),过F 2的直线与C 的右支交于A ,B 两点.若AF 2--→=2F 2B --→,|AB |=|F 1B |,则双曲线C 的方程为________. 答案x 23-y 24=1解析 如图,令|F 2B |=t ,则|AF 2|=2t ,∴|AB |=3t ,|F 1B |=3t , 又1|AF 2|+1|BF 2|=2a b2, ∴12t +1t =2a b 2, 即32t =2a b2, 又|F 1B |-|F 2B |=2a ,∴3t -t =2a ,∴2t =2a ,∴t =a , ∴32a =2ab 2,即3b 2=4a 2, 又c =7,∴a 2+b 2=7, 解得b 2=4,a 2=3,故双曲线C 的方程为x 23-y 24=1.易错提醒 公式的前提是直线AB 过焦点F ,焦点F 不在直线AB 上时,公式不成立.跟踪演练2 已知椭圆C :x 216+y 24=1,过右焦点F 2的直线交椭圆于A ,B 两点,且|AF 2|=2,则|AB |=______,cos ∠F 1AB =________. 答案83 -13解析 由椭圆方程知a =4,b =2,|AF 2|=2,又1|AF 2|+1|BF 2|=2a b2, 即12+1|BF 2|=84, 解得|BF 2|=23,∴|AB |=|AF 2|+|BF 2|=83,由椭圆定义知|AF 1|=8-2=6, |BF 1|=8-23=223,在△AF 1B 中,由余弦定理,得 cos ∠F 1AB =62+⎝⎛⎭⎫832-⎝⎛⎭⎫22322×6×83=-13.考点三 周角定理核心提炼周角定理:已知点P 为椭圆(或双曲线)上异于顶点的任一点,A ,B 为长轴(或实轴)端点,则椭圆中k P A ·k PB =-b 2a 2,双曲线中k P A ·k PB =b 2a2.例3 已知椭圆C :x 22+y 2=1的左、右两个顶点为A ,B ,点M 1,M 2,…,M 5是AB 的六等分点,分别过这五点作斜率为k (k ≠0)的一组平行线,交椭圆C 于P 1,P 2,…,P 10,则直线AP 1,AP 2,…,AP 10,这10条直线的斜率乘积为( ) A .-116B .-132C.164D.11 024 答案 B解析 由椭圆的性质可得11·AP BP k k=22·AP BP k k =-b 2a2=-12.由椭圆的对称性可得11010111012·.BP AP BP AP AP AP k k k k k k =-=,=,同理可得293847561····=.2AP AP AP AP AP AP AP AP k k k k k k k k -===∴直线AP 1,AP 2,…,AP 10这10条直线的斜率乘积为⎝⎛⎭⎫-125=-132. 规律方法 周角定理的推广:A ,B 两点为椭圆(双曲线)上关于原点对称的两点,P 为椭圆(双曲线)上异于A ,B 的任一点,则椭圆中k P A ·k PB =-b 2a 2,双曲线中k P A ·k PB =b 2a2.跟踪演练3 设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,上、下顶点分别为A ,B ,直线AF 2与该椭圆交于A ,M 两点,若∠F 1AF 2=90°,则直线BM 的斜率为( ) A.13 B.12 C .-1 D .-12 答案 B解析 ∵∠F 1AF 2=90°,∴△F 1AF 2为等腰直角三角形,∴b =c , ∴a 2=2b 2=2c 2, ∴b 2a 2=12, 且∠AF 2O =45°,∴k MA =-1, 又k MA ·k MB =-b 2a 2=-12,∴k MB =12.考点四 过圆锥曲线上点的切线方程核心提炼已知点P (x 0,y 0)为椭圆(或双曲线)上任一点,则过点P 与圆锥曲线相切的切线方程为椭圆中x 0x a 2+y 0yb 2=1,双曲线中x 0x a 2-y 0yb 2=1.例4 已知椭圆C :x 24+y 2=1.如图,设直线l 与圆O :x 2+y 2=R 2(1<R <2)相切于点A ,与椭圆C 相切于点B ,则|AB |的最大值为________.答案 1解析 连接OA ,OB ,如图所示.设B (x 0,y 0),所以过点B 与椭圆相切的直线方程为x 0x4+y 0y =1,即x 0x +4y 0y -4=0, 又R 2=|OA |2=16x 20+16y 20, R 为圆半径,R ∈(1,2),|AB |2=|OB |2-R 2=x 20+y 20-16x 20+16y 20, 又x 24+y 20=1, 所以x 20=4-4y 20,所以|AB |2=4-3y 20-43y 20+1=5-(3y 20+1)-43y 20+1≤5-24=1,当且仅当3y 20+1=43y 20+1,即y 20=13,x 20=83时,等号成立, 所以|AB |max =1, 此时R 2=16x 20+16y 20=2,即R =2∈(1,2), 故当R =2时,|AB |max =1.规律方法 (1)该切线方程的前提是点P 在圆锥曲线上.(2)类比可得过圆(x -a )2+(y -b )2上一点P (x 0,y 0)的切线方程为(x 0-a )(x -a )+(y 0-b )·(y -b )=1. 跟踪演练4 已知F 为椭圆C :x 23+y 22=1的右焦点,点A 是直线x =3上的动点,过点A 作椭圆C的切线AM ,AN ,切点分别为M ,N ,则|MF |+|NF |-|MN |的值为( ) A .3 B .2 C .1 D .0 答案 D解析 由已知可得F (1,0), 设M (x 1,y 1),N (x 2,y 2),A (3,t )则切线AM ,AN 的方程分别为x 1x 3+y 1y2=1,x 2x 3+y 2y2=1, 因为切线AM ,AN 过点A (3,t ), 所以x 1+ty 12=1,x 2+ty 22=1,所以直线MN 的方程为x +ty2=1,因为F (1,0), 所以1+t ×02=1,所以点F (1,0)在直线MN 上, 所以M ,N ,F 三点共线, 所以|MF |+|NF |-|MN |=0.专题强化练1.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上一点P 作双曲线C 的切线l ,若直线OP 与直线l 的斜率均存在,且斜率之积为25,则双曲线C 的离心率为( )A.295 B.303 C.355 D.305答案 C解析 设P (x 0,y 0),由于双曲线C 在点P (x 0,y 0)处的切线方程为xx 0a 2-yy 0b 2=1,故切线l 的斜率k =b 2x 0a 2y 0,因为k ·k OP =25,则b 2x 0a 2y 0·y 0x 0=25,则b 2a 2=25, 即双曲线C 的离心率e =1+25=355.2.(2022·保定模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,直线l :y =kx (k ≠0)与C 交于M ,N 两点,且四边形MF 1NF 2的面积为8a 2.若点M 关于点F 2的对称点为M ′,且|M ′N |=|MN |,则C 的离心率是( ) A. 3 B. 5 C .3 D .5 答案 B解析 如图,由对称性知MN 与F 1F 2互相平分,∴四边形MF 2NF 1为平行四边形, ∵F 2为MM ′的中点,且|MN |=|M ′N |, ∴NF 2⊥MF 2,∴四边形MF 2NF 1为矩形,∴1224NF F S a △=,又12NF F S △=b 2tanπ4=4a 2,即b 2=4a 2,∴c 2-a 2=4a 2,即c 2=5a 2,即e =ca= 5.3.椭圆C :x 29+y 24=1的左、右焦点分别为F 1,F 2,过F 2作直线交椭圆于A ,B 两点,且AF 2--→=2F 2B --→,则△AF 1B 的外接圆面积为( ) A.5π2B .4π C .9π D.25π4答案 D解析 如图,a =3,b =2,c =5,令|F 2B |=t ,则|AF 2|=2t , ∵1|AF 2|+1|BF 2|=2a b2, ∴1t +12t =32⇒t =1, ∴|BF 2|=1,|AF 2|=2,由椭圆定义知|BF 1|=5,|AF 1|=4,∴△ABF 1中,|AB |=3,|AF 1|=4,|BF 1|=5, ∴AF 1⊥AB ,∴△ABF 1外接圆半径R =|BF 1|2=52,其面积为25π4.4.(2022·石家庄模拟)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),过原点O 的直线交C 于A ,B 两点(点B在右支上),双曲线右支上一点P (异于点B )满足BA →·BP →=0,直线P A 交x 轴于点D ,若∠ADO =∠AOD ,则双曲线C 的离心率为( ) A. 2 B .2 C. 3 D .3答案 A解析 如图,∵BA →·BP →=0,∴BA ⊥BP ,令k AB =k ,∵∠ADO =∠AOD ,∴k AP =-k AB =-k ,又BA ⊥BP ,∴k PB =-1k, 依题意知k PB ·k P A =b 2a 2, ∴-1k ·(-k )=b 2a 2, ∴b 2a 2=1,即e = 2. 5.(多选)(2022·济宁模拟)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,左、右顶点分别为A 1,A 2,点P 是C 上异于A 1,A 2的一点,则下列结论正确的是( )A .若C 的离心率为12,则直线P A 1与P A 2的斜率之积为-43B .若PF 1⊥PF 2,则△PF 1F 2的面积为b 2C .若C 上存在四个点P 使得PF 1⊥PF 2,则C 的离心率的取值范围是⎝⎛⎭⎫0,22 D .若|PF 1|≤2b 恒成立,则C 的离心率的取值范围是⎝⎛⎦⎤0,35答案 BD解析 设P (x 0,y 0),所以x 20a 2+y 20b 2=1, ∵e =c a =12,∴a =2c ,∴a 2=43b 2, ∴12·PA PA k k =-b 2a 2=-34,∴选项A 错误;若PF 1⊥PF 2,△PF 1F 2的面积为b 2tan π4=b 2, ∴选项B 正确;若C 上存在四个点P 使得PF 1⊥PF 2,即C 上存在四个点P 使得△PF 1F 2的面积为b 2,∴12·2c ·b >b 2,∴c >b ,∴c 2>a 2-c 2, ∴e ∈⎝⎛⎭⎫22,1,∴选项C 错误; 若|PF 1|≤2b 恒成立,∴a +c ≤2b ,∴a 2+c 2+2ac ≤4b 2=4(a 2-c 2),∴5e 2+2e -3≤0,∴0<e ≤35,∴选项D 正确. 6.(多选)(2022·广州模拟)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,左、右顶点分别为A 1,A 2,P 为双曲线的左支上一点,且直线P A 1与P A 2的斜率之积等于3,则下列说法正确的是( )A .双曲线C 的离心率为2B .若PF 1⊥PF 2,且12PF F S △=3,则a =2C .以线段PF 1,A 1A 2为直径的两个圆外切D .若点P 在第二象限,则∠PF 1A 2=2∠P A 2F 1答案 ACD解析 对于A ,设P (x ,y ),则y 2=b 2⎝⎛⎭⎫x 2a 2-1, 因为A 1(-a ,0),A 2(a ,0),所以12·PA PA k k =b 2a 2=3, 得e =1+b 2a2=2,故A 正确; 对于B ,因为c a=2, 所以c =2a ,根据双曲线的定义可得|PF 2|-|PF 1|=2a ,又因为PF 1⊥PF 2,所以△PF 1F 2的面积为b 2tan π4=b 2=3, 又b 2a2=3,所以a =1,故B 错误; 对于C ,设PF 1的中点为O 1,O 为原点.因为OO 1为△PF 1F 2的中位线,所以|OO 1|=12|PF 2|=12(|PF 1|+2a )=12|PF 1|+a , 则可知以线段PF 1,A 1A 2为直径的两个圆外切,故C 正确;对于D ,设P (x 0,y 0),则x 0<-a ,y 0>0.因为e =2,所以c =2a ,b =3a ,则渐近线方程为y =±3x ,所以∠P A 2F 1∈⎝⎛⎭⎫0,π3, ∠PF 1A 2∈⎝⎛⎭⎫0,2π3. 又tan ∠PF 1A 2=y 0x 0+c =y 0x 0+2a ,tan ∠P A 2F 1=-y 0x 0-a, 所以tan 2∠P A 2F 1=-2y 0x 0-a 1-⎝⎛⎭⎫y 0x 0-a 2 =-2y 0(x 0-a )(x 0-a )2-y 20=-2y 0(x 0-a )(x 0-a )2-b 2⎝⎛⎭⎫x 20a 2-1 =-2y 0(x 0-a )(x 0-a )2-3a 2⎝⎛⎭⎫x 20a 2-1 =-2y 0(x 0-a )(x 0-a )2-3(x 20-a 2) =y 0x 0+2a=tan ∠PF 1A 2, 因为2∠P A 2F 1∈⎝⎛⎭⎫0,2π3, 所以∠PF 1A 2=2∠P A 2F 1,故D 正确.7.椭圆C :x 2a 2+y 2b 2=1(a >b >0)上存在两点M ,N 关于直线l :x -y +1=0对称,且线段MN 中点的纵坐标为-13,则椭圆的离心率e =________. 答案32解析 如图,设MN 的中点为Q ,∴y Q =-13, ∴x Q =y Q -1=-43,∴Q ⎝⎛⎭⎫-43,-13,∴k OQ =14, M ,N 关于直线l 对称,∴MN ⊥l ,∴k MN =-1,由点差法可得k MN =-b 2a 2·x Q y Q, 又k OQ =y Q x Q, ∴k OQ ·k MN =-b 2a 2, ∴14×(-1)=-b 2a 2,∴b 2a 2=14, 即a 2=4b 2=4(a 2-c 2),即3a 2=4c 2,∴e =32. 8.(2022·成都模拟)经过椭圆x 22+y 2=1中心的直线与椭圆相交于M ,N 两点(点M 在第一象限),过点M 作x 轴的垂线,垂足为点E ,设直线NE 与椭圆的另一个交点为P ,则cos ∠NMP 的值是________.答案 0解析 设M (x 1,y 1)(x 1>0,y 1>0),P (x 0,y 0),则N (-x 1,-y 1),E (x 1,0),所以k MN =y 1x 1,k PN =k EN =y 1+y 0x 1+x 0=y 12x 1, k PM =y 1-y 0x 1-x 0,k PN ×k PM =y 1-y 0x 1-x 0·y 1+y 0x 1+x 0=y 21-y 20x 21-x 20=-12,所以k PN =-12k PM =y12x 1, 所以k PM =-x1y 1.所以k MN ×k PM =y1x 1×⎝⎛⎭⎫-x 1y 1=-1, 所以MN ⊥MP ,所以cos ∠NMP =cos π2=0.。

双曲线焦点三角形面积公式在高考中的妙用

双曲线焦点三角形面积公式在高考中的妙用

2双曲线焦点三角形面积公式的应用广西南宁外国语学校 隆光诚(邮政编码530007)定理 在双曲线12222=-by a x (a >0,b >0)中,焦点分别为1F 、2F ,点P 是双曲线上任意一点,θ=∠21PF F ,则221⋅=∆b S PF F 证明:记2211||,||r PF r PF ==在△21PF F 中,由余弦定理得:cos 2212221r r r r -+θ配方得:.4cos 22)(22121221c r r r r r r =-+-θ 即.4)cos 1(242212c r r a =-+θ 由任意三角形的面积公式得:2cot 2sin 22cos2sin2cos 1sin sin 2122222121θθθθθθθ⋅=⋅=-⋅==∆b b b r r S PF F .同理可证,在双曲线12222=-bx a y (a >0,b >0)中,公式仍然成立.典题妙解例 1 设1F 和2F 为双曲线1422=-y x 的两个焦点,P 在双曲线上,且满足︒=∠9021PF F ,则△21PF F 的面积是( )A. 1B.25C. 2D. 5解:,145cot 2cot 221=︒=⋅=∆θb S PF F ∴选A.例2 (03天津)已知1F 、2F 为双曲线1422=-y x 的两个焦点,P 在双曲线上,若△21PF F 的面积是1,则21PF PF ⋅的值是___________.解: ,12cot 2cot 221==⋅=∆θθb S PF F ︒=∴452θ,即.90︒=θ∴21PF PF ⊥,从而.021=⋅PF PF例3 已知1F 、2F 为双曲线的两个焦点,点P 在双曲线上,且︒=∠6021PF F ,△21PF F 的面积是312,离心率为2,求双曲线的标准方程.解:由31230cot 2cot 2221=︒=⋅=∆b b S PF F θ得:.122=b又,2122=+=ab e.41212=+∴a从而.42=a ∴所求的双曲线的标准方程为112422=-y x ,或112422=-x y . 金指点睛1. 已知双曲线1422=-y x 的两个焦点为1F 、2F ,点P 在双曲线上,且△21PF F 的面积为3,则21PF PF ∙的值为( )A. 2B.3 C. 2- D.3-2.(05北京6)已知双曲线的两个焦点为)0,5(),0,5(21F F -,P 是此双曲线上的一点,且2||||,2121=⋅⊥PF PF PF PF ,则该双曲线的方程是( )A. 13222=-y xB. 12322=-y xC. 1422=-y xD. 1422=-y x 3.(05全国Ⅲ)已知双曲线1222=-y x 的焦点为1F 、2F ,点M 在双曲线上,且021=⋅MF ,则点M 到x 轴的距离为( )A.34 B. 35C. 332D.34. 双曲线116922=-y x 两焦点为F 1,F 2,点P 在双曲线上,直线PF 1,PF 2倾斜角之差为,3π则△F 1PF 2面积为( )A .163B .323C .32D .42 5. 双曲线14491622=-y x ,1F 、2F 为双曲线的左、右焦点,点P 在双曲线上,且32||||21=⋅PF PF ,求21PF F ∠的大小.6. 已知双曲线12222=-by a x (a >0,b >0)的焦点为1F 、2F ,P 为双曲线上一点,且021=⋅PF PF ,ab PF PF 4||||21=⋅,求双曲线的离心率.参考答案1. 解:32cot 2cot 221===∆θθb S PF F ,∴︒=︒=60,302θθ.又3sin ||||212121=⋅⋅=∆θPF PF S PF F ,∴4||||21=⋅PF PF .∴21PF PF ∙=2214cos ||||21=⨯=⋅⋅θPF PF .故答案选A.2. 解: ,21PF PF ⊥∴1221||||212121=⨯=⋅=∆PF PF S PF F . 又145cot 2cot 22221==︒==∆b b b S PF F θ,∴1=b ,而5=c ,∴2=a .故答案选C.3. 解: 021=⋅MF MF ,∴21MF MF ⊥. ∴245cot 22cot 221=︒==∆θb S MF F .点M 到x 轴的距离为h ,则23||212121===⋅⋅=∆h ch h F F S MF F ,∴332=h . 故答案选C.4. 解:设θ=∠21PF F ,则3πθ=. ∴3166cot 162cot 221===∆πθb S PF F .故答案选A.5. 解:由14491622=-y x 得116922=-y x . 设θ=∠21PF F (︒≤︒1800 θ). ∴2cot 162cot221θθ==∆b S PF F . 又θθsin 16sin ||||212121=⋅⋅=∆PF PF S PF F . ∴2cot sin θθ=,即2sin2cos 2cos 2sin 2θθθθ=.整理得:212sin 2=θ,∴222sin =θ,︒=452θ,︒=90θ.故21PF F ∠的大小为︒90.6. 解:设θ=∠21PF F , 021=⋅PF PF ∴︒=90θ.∴22245cot 2cot 21b b b S PF F =︒==∆θ.又 ab ab PF PF S PF F 2421||||212121=⨯=⋅=∆, ∴ab b 22=. 得2=ab.∴离心率5)(12=+=ab e .。

双曲线的焦点三角形的面积的公式

双曲线的焦点三角形的面积的公式

双曲线的焦点三角形的面积的公式在我们学习圆锥曲线的时候,双曲线总是让人又爱又恨。

今天咱们就来好好聊聊双曲线的焦点三角形的面积公式。

先来说说啥是双曲线的焦点三角形。

简单来讲,就是以双曲线的两个焦点和双曲线上任意一点构成的三角形。

这个三角形在解题中可有大用处呢!那它的面积公式到底是啥呢?如果设双曲线的方程为\(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\)(\(a\gt 0\),\(b\gt 0\)),两个焦点分别是\(F_1\),\(F_2\),点\(P\)为双曲线上的一点,\(\angleF_1PF_2 = \theta\),那么焦点三角形\(\triangle F_1PF_2\)的面积就可以用公式\(S_{\triangle F_1PF_2} = b^2 \tan\frac{\theta}{2}\)来计算。

这个公式看起来好像有点复杂,但是用起来可顺手啦!比如说,有一道题给出了双曲线的方程和焦点三角形的一个角度,让我们求面积。

这时候,咱们只要把相关的数据代入这个公式,就能轻松算出答案。

我记得有一次给学生们讲这个知识点的时候,有个学生特别迷糊,怎么都理解不了。

我就给他举了个例子,假设我们在操场上画一个双曲线的形状,然后我和他分别站在两个焦点的位置,再找另一个同学站在双曲线上的一点,形成一个焦点三角形。

然后我们一起测量角度,计算面积。

通过这样直观的方式,他终于恍然大悟,那种成就感可太棒了!在实际解题中,这个公式能帮我们节省不少时间和精力。

比如说,如果已知双曲线的方程和焦点三角形的某个内角,那我们就可以直接套用公式求出面积,不用再去费劲地找边长、求高什么的。

再比如,当我们遇到一些综合性的题目,需要通过焦点三角形的面积来反推其他条件的时候,这个公式也能发挥关键作用。

总之,双曲线的焦点三角形的面积公式虽然只是圆锥曲线众多知识点中的一个,但它的作用可不容小觑。

只要我们掌握好了,就能在解题的时候更加得心应手。

高三数学二轮复习冲刺:双曲线焦点三角形的十大应用

高三数学二轮复习冲刺:双曲线焦点三角形的十大应用

双曲线焦点三角形的十大结论一.基本原理本节中约定已知双曲线方程为12222=-by a x ).0,0(>>b a 如图,顶点),(00y x P 在第一象限,.),(,212112γβαβα=∠>=∠=∠PF F F PF F PF 对于双曲线焦点三角形,有以下结论:1.如图,1F 、2F 是双曲线的焦点,设P 为双曲线上任意一点,记12F PF θ∠=,则12PF F 的面积2tan2b S θ=.证明:由余弦定理可知2221212122cos F F MF MF MF MF θ=+-⋅.由双曲线定义知||21||||2MF MF a -=,可得222122124MF MF MF MF a+-⋅=所以2221424c MF MF a =⋅+-2121222cos 1cos b MF MF MF MF θθ⋅⇒⋅=-则22221222sincos 112sin 22sin cot 221cos 22sin tan 22i MF b b b S MF MF b θθθθθθθθ∆⋅=⋅⋅=⋅===-.2.如图,有γcos 12221-=⋅nPF PF ,cn y p 2cot 2γ=3.离心率βαβαβαγsin sin )sin(sin sin sin 22-+=-===a c a c e .4.若21PF PF λ=,则有222)11(21c m n S PF F --+=∆λλ.5.若λ=OP ,则有2221m n S PF F -=∆λ.6.焦半径公式:如图,对于双曲线,a ex PF a ex PF -=+=0201,,对双曲线,其焦半径的范围为[)+∞-,m c .7.双曲线中,焦点三角形的内心I 的轨迹方程为)0,(≠<<-=y b y b a x .证明:设内切圆与1212,,PF PF F F 的切点分别为,,M N T ,则由切线长定理可得1122,,PM PN F M FT F N F T ===,因为1212122PF PF F M F M F N F T a -=-=-=,12122F F FT F T c =+=,所以2F T c a =-,所以点T 的坐标为(,0)a ,所以点I 的横坐标为定值a .8.如图,直线)0(≠=k kx y 与双曲线)0(1:2222>>=-b a by a x C 交于B A ,两点,C 的左右焦点记为F F ,',则BF AF '为平行四边形.结论9.已知具有公共焦点21,F F 的椭圆与双曲线的离心率分别为P e e ,,21是它们的一个交点,且θ221=∠PF F ,则有1)cos (sin (2221=+e e θθ.证明:依题意,在21PF F ∆中,由余弦定理得θ2cos 2212221221⋅⋅-+=PF PF PF PF F F )sin (cos 222212221θθ-⋅⋅-+=PF PF PF PF ()()22122212cos sin PF PF PF PF -++=θθ,所以1)(cos )(sin 221212221212=-⋅++⋅F F PF PF F F PF PF θθ,即1)cos ()sin (2221=+e e θθ.结论10.如图,过焦点2F 的弦AB 的长为t ,则1ABF ∆的周长为t m 24+.二.典例分析例1.已知12,F F 为双曲线2214x y -=的两个焦点,P 在双曲线上,若12F PF 的面积是1,则12PF PF ⋅的值是__________.解析:由双曲线焦点三角形面积公式得:22,cotcot 122F PF S b θθ∆=⋅==,所以452θ︒=,即90θ︒=.所以12PF PF ⊥ ,从而120PF PF ⋅=.例2.已知12,F F 为双曲线22:1C x y -=的左、右焦点,点P 在C 上,1260F PF ︒∠=,则12PF PF ⋅=()A .2B .4C .6D .8解析:由双曲线焦点三角形面积公式得:222,60cot 1cot 22F PF S b θ︒∆===1212113sin 60222PF PF PF PF ︒⋅=⋅⋅所以124PF PF ⋅=.故选B .例3已知12,F F 为双曲线22:12x C y -=的左、右焦点,点()00,M x y 在C 上,若120MF MF ⋅<,则0y 的取值范围是()A.,33⎛⎫- ⎪ ⎪⎝⎭B.,66⎛⎫- ⎪ ⎪⎝⎭C.,33⎛⎫- ⎪ ⎪⎝⎭D.,33⎛⎫- ⎪ ⎪⎝⎭解析:由题意知12(F F ,且220012x y -=,即22022x y =+,所以())222120000000,,3310MF MF x y x y x y y ⋅=-⋅-=+-=-<,解得033y -<<,故选A .例4.已知双曲线22:13y C x -=的左、右焦点分别为1F 、2F ,点P 在C 上,且1260F PF ∠=︒,则12PF F 的面积为________.解析:由焦点三角形面积公式,1223tan 30tan2PF F b S θ===︒.例5.已知双曲线22:13y C x -=的左、右焦点分别为1F 、2F ,点P 在C 上,且121cos 3F PF ∠=,则12PF F 的面积为________.解析:记12F PF θ∠=,则22212222cos sin 1tan 1222cos cos 3cos sin 1tan 222F PF θθθθθθθ--∠====++,所以21tan 22θ=,由1cos 03θ=>知02πθ<<,所以024θπ<<,从而tan 2θ=,故122tan2PF F b S θ== .例6.已知1F 、2F 是双曲线22:13y C x -=的左、右焦点,P 为双曲线C 右支上的一点,12120F PF ∠=︒,则1PF =________.解析:由焦点三角形面积公式,1223tan 60tan2PF F b S θ===︒,又121212121sin 2PF F S PF PF F PF PF =⋅⋅∠=⋅ 12PF ⋅=故124PF PF ⋅=,由双曲线定义,122PF PF -=,解得:11PF =例7.(1)双曲线()0,012222>>=-b a b y a x ,过焦点1F 的直线与该双曲线的同一支交于A 、B 两点,且m AB =,另一焦点为2F ,则2ABF ∆的周长为()A.a 4 B.m a -4 C.ma 24+ D.ma 24-(2)设1F 与2F 是双曲线1422=-y x 的两个焦点,点P 在双曲线上,且满足︒=∠9021PF F ,则21PF F ∆的面积是()A.1B.25 C.2D.5例8.如图所示,已知双曲线C :()222210,0x y a b a b-=>>的左焦点为F ',右焦点为F ,双曲线C 的右支上一点A ,它关于原点O 的对称点为B ,满足60F AF '∠=︒,且3BF AF =,则双曲线C 的离心率是__________.解析:由条件可得2BF BF AF AF a ''-=-=,3BF AF =,BF AF '=,则=AF a ,3BF a =,3AF a '=,所以在F AF '△中,2222cos FF AF AF AF AF F AF ''''=+-⋅⋅∠,即222214962c a a a =+-⨯,即2247c a =,则c a =,所以双曲线C 的离心率为:c e a ==故答案为:2.例9.如图所示,已知双曲线C :()222210,0x y a b a b-=>>的右焦点为F ,双曲线C 的右支上一点A ,它关于原点O 的对称点为B ,满足120AFB ∠=︒,且3BF AF =,则双曲线C 的离心率是______.解析:设双曲线的左焦点为F ',连接AF ',BF ',根据双曲线的对称性可知,四边形AFBF '为平行四边形,由题意以及双曲线定义,可得32BF AF AF AF AF AF a '-=-=-=,则=AF a ,3BF a =,60F AF '∠=︒,所以2222cos FF AF AF AF AF F AF ''=-⋅∠'⋅'+,即222214962c a a a =+-⨯,即2247c a =,所以双曲线C 的离心率为:c e a ==故答案为:2.例10.如图,A ,B 是双曲线()222210,0x y a b a b-=>>上的两点,F 是双曲线的右焦点.AFB△是以F 为顶点的等腰直角三角形,延长BF 交双曲线于点C .若A ,C 两点关于原点对称,则双曲线的离心率为______.解析:设左焦点为1F ,连接11,CF AF ,依题意:AFB △是以F 为顶点的等腰直角三角形,A ,C 两点关于原点对称,结合双曲线的对称性可知:四边形1AFCF 是矩形,所以12AC F F c ==,设BF m =,则11,2AF CF m AF CF m a ====-,12,2,22AB m BF a m BC m a ==+=-,由2221122211AF AF FF CF BC BF ⎧+=⎪⎨+=⎪⎩,即()()()()22222222222m a m c m m a a m ⎧-+=⎪⎨+-=+⎪⎩,整理得3m a =,22222210109104,,42c c a a a c a a +====.故答案为:102例11.已知有相同焦点1F 、2F 的椭圆和双曲线交于点P ,12||||PO F F =,椭圆和双曲线的离心率分别是1e 、2e ,那么221211e e +=__________(点O 为坐标原点).解析:设椭圆的长半周长为1a ,双曲线的实半轴长为2a ,它们的半焦距都为c ,并设12,PF m PF n ==,根据椭圆的定义和双曲线的定义可得122,2m n a m n a +=-=,在1POF ∆中,由余弦定理得22211112cos PF OF OP OF OP POF =+-∠,即2221422cos m c c c c POF =+-⨯∠在2POF ∆中,由余弦定理得22222222cos PF OF OP OF OP POF =+-∠,即2221422cos n c c c c POF =+-⨯∠又由12POF POF π∠=-∠,两式相加,则22210m n c +=,又由()2222212222m n m n mn a a +=+-=+,所以222222121222105a a c a a c +=⇒+=,所以2212225a a c c +=,即2212115e e +=.例12.双曲线2213y x -=的左、右焦点分别为1F 、2F ,双曲线上的一点P 满足1235PF PF =,则点P 的坐标为_______.解析:由题意,1a =,b =2c =,2e =,由焦半径公式,1021PF x =+,2021PF x =-,因为1235PF PF =,所以00321521x x +=-,解得:02x =或18(舍去)代入双曲线的方程可求得03y =±,所以P 的坐标为()2,3±.例13.已知椭圆22122:1(0)x y C a b a b+=>>,双曲线222222:12x y C b a b -=-,1F ,2F 为2C 的焦点,P 为1C 和2C 的交点,若△12PF F 的内切圆的圆心的横坐标为1,1C 和2C 的离心率之积为83,则实数a 的值为()A.3B.4C.5D.6解析:不妨设点P 在第一象限,设 12PF F 的内切圆的圆心为I ,且与1PF ,2PF ,12F F 的切点为M ,N ,K ,可得||||PM PN =,2211,F K F N MF F K ==,由双曲线的定义可得122PF PF b -=,即有122F K F K b -=,又122F K F K c +=,可得1F K c b =+,可得内切圆的圆心I 的横坐标为1b =,1C 和2C 的离心率之积为83,可得11813a =解得3a =,故选:A .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双曲线焦点三角形面积
公式在高考中的妙用 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT
双曲线焦点三角形面积公式的应用
广西南宁外国语学校 隆光诚(邮政编码530007)
定理 在双曲线122
22=-b
y a x (a >0,b >0)中,焦点分别为1F 、2F ,点P 是双曲
线上任意一点,θ=∠21PF F ,则2
cot 221θ
⋅=∆b S PF F .
证明:记2211||,||r PF r PF ==在△21PF F 中,由余弦定理得:2(cos 2212
22
1r r r r =-+θ配方得:.4cos 22)(22121221c r r r r r r =-+-θ 即.4)cos 1(242212c r r a =-+θ 由任意三角形的面积公式得:
2cot 2
sin 22cos
2
sin
2cos 1sin sin 2122
222121θθθ
θ
θ
θθ⋅=⋅=-⋅==
∆b b b r r S PF F .
同理可证,在双曲线122
22=-b
x a y (a >0,b >0)中,公式仍然成立.
典题妙解
例1 设1F 和2F 为双曲线14
22
=-y x 的两个焦点,P 在双曲线上,且满足︒=∠9021PF F ,则△21PF F 的面积是( ) A. 1 B.
2
5
C. 2
D. 5 解:,145cot 2
cot
221=︒=⋅=∆θ
b S PF F ∴选A.
例2 (03天津)已知1F 、2F 为双曲线14
22
=-y x 的两个焦点,P 在双曲线上,若△21PF F 的面积是1,则21PF ⋅的值是___________.
解: ,12
cot
2
cot
221==⋅=∆θ
θ
b S PF F ︒=∴
452
θ
,即.90︒=θ
∴21PF PF ⊥,从而.021=⋅PF PF
例3 已知1F 、2F 为双曲线的两个焦点,点P 在双曲线上,且︒=∠6021PF F ,△
21PF F 的面积是312,离心率为2,求双曲线的标准方程.
解:由31230cot 2
cot
2221=︒=⋅=∆b b S PF F θ
得:.122=b
又,2122
=+=a
b e
.41212
=+
∴a
从而.42
=a ∴所求的双曲线的标准方程为
112422=-y x ,或112
42
2=-x y . 金指点睛
1. 已知双曲线14
22
=-y x 的两个焦点为1F 、2F ,点P 在双曲线上,且△21PF F 的面积为3,则
21PF PF •的值为( )
A. 2
B. 3
C. 2-
D. 3-
2.(05北京6)已知双曲线的两个焦点为)0,5(),0,5(21F F -,P 是此双曲线上的一点,且2||||,2121=⋅⊥PF PF PF PF ,则该双曲线的方程是( )
A. 13222=-y x
B. 12322=-y x
C. 1422=-y x
D. 1422
=-y x 3.(05全国Ⅲ)已知双曲线12
2
2
=-y x 的焦点为1F 、2F ,点M 在双曲线上,且021=⋅MF ,则点M 到x 轴的距离为( )
A. 34
B. 3
5
C. 332
D. 3
4. 双曲线
116
92
2=-y x 两焦点为F 1,F 2,点P 在双曲线上,直线PF 1,PF 2倾斜角之差为,3
π

△F 1PF 2面积为( ) A .163
B .323
C .32
D .42
5. 双曲线14491622=-y x ,1F 、2F 为双曲线的左、右焦点,点P 在双曲线上,且
32||||21=⋅PF PF ,求21PF F ∠的大小.
6. 已知双曲线122
22=-b
y a x (a >0,b >0)的焦点为1F 、2F ,P 为双曲线上一点,且
021=⋅PF PF ,ab PF PF 4||||21=⋅,求双曲线的离心率.
参考答案
1. 解:32cot 2cot 221===∆θθb S PF F ,∴︒=︒=60,302
θθ
.
又3sin ||||2
1
2121=⋅⋅=∆θPF PF S PF F ,∴4||||21=⋅PF PF .
∴21PF PF •=22
1
4cos ||||21=⨯=⋅⋅θPF PF .
故答案选A.
2. 解: ,21PF PF ⊥∴122
1
||||212121=⨯=⋅=
∆PF PF S PF F . 又145cot 2
cot 22221==︒==∆b b b S PF F θ
,∴1=b ,而5=c ,∴2=a .
故答案选C.
3. 解: 021=⋅MF ,∴21MF MF ⊥. ∴245cot 22
cot
2
21=︒==∆θ
b S MF F .
点M 到x 轴的距离为h ,则23||2
1
2121===⋅⋅=∆h ch h F F S MF F ,∴332=h .
故答案选C.
4. 解:设θ=∠21PF F ,则3
π
θ=
. ∴3166
cot
162
cot
221===∆π
θ
b S PF F .
故答案选A.
5. 解:由1449162
2
=-y x 得
116
92
2=-y x . 设θ=∠21PF F (︒≤︒1800 θ). ∴2
cot 162cot
221θ
θ
==∆b S PF F . 又θθsin 16sin ||||2
1
2121=⋅⋅=
∆PF PF S PF F . ∴2cot sin θθ=,即2
sin
2cos 2
cos 2sin 2θ
θ
θ
θ=
.
整理得:212
sin 2
=
θ
,∴222sin =θ,︒=452
θ
,︒=90θ.
故21PF F ∠的大小为︒90.
6. 解:设θ=∠21PF F , 021=⋅PF PF ∴︒=90θ.
∴22245cot 2cot 21b b b S PF F =︒==∆θ
.
又 ab ab PF PF S PF F 2421
||||212121=⨯=⋅=∆,
∴ab b 22=. 得2=a
b
.
∴离心率5)(12=+=a
b e .。

相关文档
最新文档