《概率与统计》典型题(十二)docx
统计与概率经典例题(含答案和解析).docx
统计与概率经典例题(含答案及解析)1.(本题8 分)为了解学区九年级学生对数学知识的掌握情况,在一次数学检测中,从学区2000 名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:⑴表中 a 和 b 所表示的数分别为:a= .,b=.;⑵请在图中补全频数分布直方图;2000 名九年级考生数学⑶如果把成绩在70 分以上(含70 分)定为合格,那么该学区成绩为合格的学生约有多少名?2.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统计了该镇 1﹣ 5 月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:( 1)某镇今年1﹣5 月新注册小型企业一共有家.请将折线统计图补充完整;( 2)该镇今年 3 月新注册的小型企业中,只有 2 家是餐饮企业,现从 3 月新注册的小型企业中随机抽取 2 家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.3.( 12 分)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有 10 个红球,请你根据实验结果估计口袋中绿球的数量.4.(本题 10 分)某校为了解2014 年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这40 名学生借阅总册数的40%.类别科普类教辅类文艺类其他册数(本)12880m48( 1)求表格中字母m的值及扇形统计图中“教辅类”所对应的圆心角 a 的度数;(2)该校 2014 年八年级有 500 名学生,请你估计该年级学生共借阅教辅类书籍约多少本?5.( 10 分)将如图所示的版面数字分别是1, 2,3, 4 的四张扑克牌背面朝上,洗匀后放在桌面上(“ A”看做是“ 1”)。
12第一部分 板块二 专题四 概率与统计 第1讲 概率与统计(小题)
第1讲概率与统计(小题)热点一随机抽样1.随机抽样的各种方法中,每个个体被抽到的概率都是相等的.2.系统抽样又称“等距”抽样,被抽到的各个号码间隔相同.3.分层抽样满足:各层抽取的比例都等于样本容量在总体容量中的比例.例1(1)(2019·汉中联考)某机构对青年观众是否喜欢跨年晚会进行了调查,人数如下表所示:不喜欢喜欢男性青年观众3010女性青年观众3050现要在所有参与调查的人中用分层抽样的方法抽取n人做进一步的调研,若在“不喜欢的男性青年观众”的人中抽取了6人,则n等于()A.12 B.16 C.20 D.24(2)(2019·上饶联考)某校高三科创班共48人,班主任为了解学生高考前的心理状况,将学生按1至48的学号用系统抽样方法抽取8人进行调查,若抽到的最大学号为48,则抽到的最小学号为________.跟踪演练1(1)(2019·漳州质检)某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,…,599,600从中抽取60个样本,如下提供随机数表的第4行到第6行:32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 4284 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 0432 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45若从表中第6行第6列开始向右依次读取3个数据,则得到的第6个样本编号为()A .522B .324C .535D .578(2)(2019·合肥质检)某工厂生产的A ,B ,C 三种不同型号的产品数量之比为2∶3∶5,为研究这三种产品的质量,现用分层抽样的方法从该工厂生产的A ,B ,C 三种产品中抽出样本容量为n 的样本,若样本中A 型产品有10件,则n 的值为( ) A .15 B .25 C .50 D .60 热点二 用样本估计总体1.频率分布直方图中横坐标表示组距,纵坐标表示频率组距,频率=组距×频率组距.2.频率分布直方图中各小长方形的面积之和为1. 3.利用频率分布直方图求众数、中位数与平均数 频率分布直方图中:(1)最高的小长方形底边中点的横坐标即众数. (2)中位数左边和右边的小长方形的面积和相等.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.4.对于其他的统计图表,要注意结合问题背景分析其所表达的意思,进而解决所给问题. 例2 (1)(2019·厦门质检)下图是某公司2018年1月至12月空调销售任务及完成情况的气泡图,气泡的大小表示完成率的高低,如10月份销售任务是400台,完成率为90%,则下列叙述不正确的是( )A .2018年3月的销售任务是400台B .2018年月销售任务的平均值不超过600台C .2018年第一季度总销售量为830台D .2018年月销售量最大的是6月份(2)(2019·临沂质检)已知8位学生的某次数学测试成绩的茎叶图如图,则下列说法正确的是( )A .众数为7B .极差为19C.中位数为64.5 D.平均数为64跟踪演练2(1)已知某高中的一次测验中,甲、乙两个班级的九科平均分的雷达图如图所示,下列判断错误的是()A.乙班的理科综合成绩强于甲班B.甲班的文科综合成绩强于乙班C.两班的英语平均分分差最大D.两班的语文平均分分差最小(2)(2019·黄冈模拟)学校为了了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的学生称为“阅读霸”,则下列命题正确的是()A.抽样表明,该校约有一半学生为阅读霸B.该校只有50名学生不喜欢阅读C.该校只有50名学生喜欢阅读D.抽样表明,该校有50名学生为阅读霸热点三变量间的相关关系、统计案例高考中解决变量间的相关关系问题时需注意:(1)回归直线一定过样本点的中心(x,y).(2)随机变量K2的观测值k越大,说明“两个变量有关系”的可能性越大.例3(1)(2019·皖江联考)某单位为了了解用电量y(度)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:气温x (℃) 18 13 10 -1 用电量y (度)24343864由表中数据得线性回归方程y ^=b ^x +a ^中b ^=-2,预测当温度为-5 ℃时,用电量的度数约为( )A .64B .66C .68D .70(2)某研究型学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如下表:使用智能手机不使用智能手机总计 学习成绩优秀 4 8 12 学习成绩不优秀16 2 18 总计201030附表:P (K 2≥k 0)0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 02.0722.7063.8415.0246.6357.87910.828经计算K 2的观测值k =10,则下列选项正确的是( ) A .有99.5%的把握认为使用智能手机对学习有影响 B .有99.5%的把握认为使用智能手机对学习无影响 C .有99.9%的把握认为使用智能手机对学习有影响 D .有99.9%的把握认为使用智能手机对学习无影响跟踪演练3 (1)(2019·长春质检)某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),上图为选取的15名志愿者身高与臂展的折线图,下图为身高与臂展所对应的散点图,并求得其回归方程为y ^=1.16x -30.75,以下结论中不正确的为( )A .15名志愿者身高的极差小于臂展的极差B .15名志愿者身高和臂展成正相关关系C .可估计身高为190厘米的人臂展大约为189.65厘米D .身高相差10厘米的两人臂展都相差11.6厘米(2)(2019·泸州模拟)随着国家二胎政策的全面放开,为了调查一线城市和非一线城市的二胎生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.非一线城市一线城市 总计 愿生 45 20 65 不愿生 13 22 35 总计5842100附表:P (K 2≥k 0)0.100 0.050 0.010 0.001 k 02.7063.8416.63510.828由K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )计算得,K 2的观测值k =100×(45×22-20×13)258×42×35×65≈9.616,参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”B .在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”C .有99%以上的把握认为“生育意愿与城市级别有关”D .有99%以上的把握认为“生育意愿与城市级别无关”真题体验1.(2019·全国Ⅰ,文,6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生2.(2018·全国Ⅰ,文,3)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半3.(2018·全国Ⅲ,文,14)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.押题预测1.某市气象部门根据2018年各月的每天最高气温平均值与最低气温平均值(单位:℃)数据,绘制如下折线图:那么,下列叙述错误的是( )A .各月最高气温平均值与最低气温平均值总体呈正相关B .全年中,2月份的最高气温平均值与最低气温平均值的差值最大C .全年中各月最低气温平均值不高于10 ℃的月份有5个D .从2018年7月至12月该市每天最高气温平均值与最低气温平均值都呈下降趋势 2.给出如下列联表患心脏病 患其他病 总 计 高血压 20 10 30 非高血压 30 50 80 总 计5060110P (K 2≥10.828)≈0.001,P (K 2≥6.635)≈0.010,参照公式k =n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),得到的正确结论是( )A .有99%以上的把握认为“高血压与患心脏病无关”B .有99%以上的把握认为“高血压与患心脏病有关”C .在犯错误的概率不超过0.1%的前提下,认为“高血压与患心脏病无关”D .在犯错误的概率不超过0.1%的前提下,认为“高血压与患心脏病有关” 3.某设备的使用年数x 与所支出的维修总费用y 的统计数据如下表:使用年数x (单位:年) 2 3 4 5 6 维修总费用y (单位:万元)1.54.55.56.57.5根据上表可得线性回归方程为y ^=1.4x +a ^.若该设备维修总费用超过12万元就报废,据此模型预测该设备最多可使用________年.A 组 专题通关1.(2019·河北省五个一名校联盟联考)经调查,某市骑行共享单车的老年人、中年人、青年人的比例为1∶3∶6,用分层抽样的方法抽取了一个容量为n 的样本进行调查,其中中年人数为12人,则n 等于( ) A .30 B .40 C .60D .802.某校李老师本学期负责高一甲、乙两个班的数学课,两个班都是50个学生,如图反映的是两个班的本学期5次数学测试中的班级平均分对比情况,根据图中信息,下列结论不正确的是( )A .甲班的数学平均成绩高于乙班B .乙班的数学成绩没有甲班稳定C .下次测试乙班的数学平均分高于甲班D .在第1次测试中,甲、乙两个班总平均分为783.(2019·全国Ⅲ)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A .0.5 B .0.6 C .0.7 D .0.84.某学校为落实学生掌握社会主义核心价值观的情况,用系统抽样的方法从全校2 400名学生中抽取30人进行调查.现将2 400名学生随机地从1~2 400编号,按编号顺序平均分成30组(1~80号,81~160号,…,2 321~2 400号),若第3组与第4组抽出的号码之和为432,则第6组抽到的号码是( ) A .416 B .432 C .448 D .4645.(2019·郑州质检)若1,2,3,4,m (m ∈R )这五个数的平均数等于其中位数,则m 等于( ) A .0或5 B .0或52 C .5或52 D .0或5或526.(2019·长春质检)下列命题:①在线性回归模型中,相关指数R 2表示解释变量x 对于预报变量y 的贡献率,R 2越接近于1,表示回归效果越好;②两个变量相关性越强,则相关系数的绝对值就越接近于1;③在线性回归方程y ^=-0.5x +2中,当解释变量x 每增加一个单位时,预报变量y ^平均减少0.5个单位;④对分类变量X 与Y ,它们的随机变量K 2的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越大.其中正确命题的个数是( ) A .1 B .2 C .3 D .47.(2019·衡水质检)某校进行了一次创新作文大赛,共有100名同学参赛,经过评判,这100名参赛者的得分都在[40,90]之间,其得分的频率分布直方图如图所示,则下列结论错误的是( )A .得分在[40,60)之间的共有40人B .从这100名参赛者中随机选取1人,其得分在[60,80)的概率为0.5C .估计得分的众数为55D .这100名参赛者得分的中位数为658.(2019·济宁模拟)如图为某市国庆节7天假期的楼房认购量与成交量的折线图,小明同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断:①日成交量的中位数是16;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月7日认购量的增幅大于10月7日成交量的增幅.则上述判断正确的个数为( )A .0B .1C .2D .39.(2019·广东天河区普通高中测试)为保证树苗的质量,林业管理部门在每年3月12日植树节前都对树苗进行检测,现从甲、乙两种树苗中各抽测了10株树苗的高度(单位:cm),其茎叶图如图所示,则下列描述正确的是( )A .甲种树苗的平均高度大于乙种树苗的平均高度,甲种树苗比乙种树苗长得整齐B .甲种树苗的平均高度大于乙种树苗的平均高度,乙种树苗比甲种树苗长得整齐C .乙种树苗的平均高度大于甲种树苗的平均高度,乙种树苗比甲种树苗长得整齐D .乙种树苗的平均高度大于甲种树苗的平均高度,甲种树苗比乙种树苗长得整齐10.利用独立性检验的方法调查大学生的性别与爱好某项运动是否有关,通过随机询问110名不同的大学生是否爱好该项运动,得出2×2列联表,由计算可得K 2≈8.806.P (K 2≥k 0)0.10 0.05 0.025 0.010 0.005 0.001 k 02.7063.8415.0246.6357.87910.828参照附表,得到的正确结论是( )A .有99.5%以上的把握认为“爱好该项运动与性别无关”B .有99.5%以上的把握认为“爱好该项运动与性别有关”C .在犯错误的概率不超过0.05%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.05%的前提下,认为“爱好该项运动与性别无关”11.已知变量x ,y 之间的线性回归方程为y ^=-0.7x +10.3,且变量x ,y 之间的一组数据如下表所示,则下列说法中错误的是( )x 6 8 10 12 y6m32A.变量x ,y 之间呈现负相关关系 B .可以预测当x =20时,y ^=-3.7 C .m =4D .由表格数据知,该回归直线必过点(9,4)12.(2019·江淮质检)为了了解户籍、性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取了容量为100的调查样本,其中城镇户籍与农村户籍各50人;男性60人,女性40人,绘制不同群体中倾向选择生育二胎与倾向选择不生育二胎的人数比例图(如图所示),其中阴影部分表示倾向选择生育二胎的对应比例,则下列叙述中错误的是( )A .是否倾向选择生育二胎与户籍有关B .是否倾向选择生育二胎与性别有关C .倾向选择生育二胎的人员中,男性人数与女性人数相同D .倾向选择不生育二胎的人员中,农村户籍人数少于城镇户籍人数13.(2019·河南省九师联盟质检)为了了解世界各国的早餐饮食习惯,现从由中国人、美国人、英国人组成的总体中用分层抽样的方法抽取一个容量为m 的样本进行分析.若总体中的中国人有400人、美国人有300人、英国人有300人,且所抽取的样本中,中国人比美国人多10人,则样本容量m =________.14.某班40名学生参加普法知识竞赛,成绩都在区间[40,100]内,其频率分布直方图如图所示,则成绩不低于60分的人数为________.15.(2019·成都模拟)节能降耗是企业的生存之本,树立一种“点点滴滴降成本,分分秒秒增效益”的节能意识,以最好的管理,来实现节能效益的最大化.为此某国企进行节能降耗技术改造,下面是该国企节能降耗技术改造后连续五年的生产利润:年号1 2 3 4 5 年生产利润y (单位:千万元)0.70.811.11.4预测第8年该国企的生产利润约为________千万元.参考公式及数据:b ^=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2=∑i =1nx i y i -n x y∑i =1nx 2i -n x2;a ^=y -b ^x ,∑i =15(x i -x )(y i-y )=1.7, i =15(x i -x )2=10.根据该折线图,下列结论正确的是________(填序号). ①月接待游客量逐月增加;②年接待游客量逐年增加; ③各年的月接待游客量髙峰期大致在7,8月份;④各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳.B 组 能力提高17.(2019·葫芦岛模拟)近日,据媒体报道称,“杂交水稻之父”袁隆平及其团队培育的超级杂交稻品种“湘两优900(超优千号)”再创亩产世界纪录,经第三方专家测产,该品种的水稻在实验田内亩产1 203.36公斤.中国工程院院士袁隆平在1973年率领科研团队开启了杂交水稻王国的大门,在数年的时间内就解决了十多亿人的吃饭问题,有力回答了世界“谁来养活中国”的疑问.2012年,在袁隆平的实验田内种植了A ,B 两个品种的水稻,为了筛选出更优的品种,在A ,B 两个品种的实验田中分别抽取7块实验田,如图所示的茎叶图记录了这14块实验田的亩产量(单位:10 kg),通过茎叶图比较两个品种的平均数及方差,并从中挑选一个品种进行以后的推广,有如下结论:①A 品种水稻的平均产量高于B 品种水稻,推广A 品种水稻;②B 品种水稻的平均产量高于A 品种水稻,推广B 品种水稻;③A 品种水稻的产量比B 品种水稻更稳定,推广A 品种水稻;④B 品种水稻的产量比A 品种水稻更稳定,推广B 品种水稻;其中正确结论的编号为( )A .①②B .①③C .②④D .①④18.(2019·南昌模拟)已知具有线性相关的五个样本点A 1(0,0),A 2(2,2),A 3(3,2),A 4(4,2),A 5(6,4),用最小二乘法得到回归直线l 1:y ^=b ^x +a ^,过点A 1,A 2的直线l 2:y =mx +n ,那么下列说法中,正确的有________.(填序号) ①m >b ^,a ^>n ; ②直线l 1过点A 3;③∑i =15(y i -b ^x i -a ^)2≥∑i =15 (y i -mx i -n )2; ④∑i =15|y i -b ^x i -a ^|≥∑i =15|y i -mx i -n |.⎝ ⎛⎭⎪⎪⎫参考公式:b ^=∑i =1nx i y i-n x y ∑i =1nx 2i-n x 2= ∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2,a ^=y -b ^x。
概率与统计大题练习(含参考答案)
概率与统计大题练习一、解答题1.为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2017年种植的一批试验紫甘薯在温度升高时6组死亡的株数:经计算:1266i i x x ===∑1,336i i y y ===∑, 1()()557i i i x x y y =--=∑, 21()84i i x x =-=∑ ,621()3930ii yy =-=∑,621()23.6ˆ64i i y y=-=∑ ,8.0605e 3167≈其中,i i x y 分别为试验数据中的温度和死亡株数, 1,2,3,4,5,6i =1.若用线性回归模型,求y 关于x 的回归方程ˆˆˆy bx a =+ (结果精确到0.1);2.若用非线性回归模型求得y 关于x 的回归方程为0.23030.06ˆx ye =,且相关指数为20.9522R =. (i)试与1中的回归模型相比,用2R 说明哪种模型的拟合效果更好;(ii)用拟合效果好的模型预测温度为35C ︒时该批紫甘薯死亡株数(结果取整数). 附:对于一组数据1122(,),(,),,(,)n n u v u v u v c,其回归直线ˆˆˆv u αβ=+的斜率和截距的最小二乘估计分别为:121()(),()ˆˆˆnii i nii uu v v av u uu ββ==--==--∑∑;相关指数为: 22121(ˆ()1)niii niii v vR v v ==-=--∑∑2.交通安全法有规定:机动车行经人行横道时,应当减速行驶;遇行人正在通过人行横道,应当停车让行.机动车行经没有交通信号的道路时,遇行人横过马路,应当避让:我们将符合这条规定的称为"礼让斑马线",不符合这条规定的称为"不礼让斑马线".下表是大庆市某十字路口监控设备所抓拍的5个月内驾驶员"不礼让斑马线"行为的统计数据:, (2)求"不礼让斑马线"的驾驶员人数y 关于月份x 之间的线性回归方程(3)若从4,5月份"不礼让斑马线"的驾驶员中分别选取4人和2人,再从所选取的6人中任意抽取2人进行交规调查,求抽取的2人分别来自两个月份的概率;参考公式:线性回归方程:ˆˆˆybx a =+,其中()()()1122211ˆˆˆ,nnii i ii i nni ii i xx y y x ynxy b ay bx x x xnx ====---===---∑∑∑∑, 相关系数()()nii xx y y r --=∑.3.经观测,某昆虫的产卵数y 与温度x 有关,现将收集到的温度i x 和产卵数()1,2,,10i y i =⋯的10表中11ln ,10i i i z y z z ===∑,1.根据散点图判断, y a bx =+,y a =+21c x y c e = 哪一个适宜作为y 与x 之间的回归方程模型?(给出判断即可,不必说明理由) 2.根据1的判断结果及表中数据. ①试求y 关于x 回归方程;②已知用人工培养该昆虫的成本()h x 与温度x 和产卵数y 的关系为 2.4170h x x lny =-+()(),当温度x (x 取整数)为何值时,培养成本的预报值最小?附:对于一组数据()()()1122,,,,,n n u v u v u v ⋯,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为()()()121,nii i nii uu v vv uuuβαβ==--==--∑∑4.某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为3.2.根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;3.若按下面的方法从甲班优秀的学生中抽取一人;把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.参考公式与临界值表:22()n ad bcK-=.5. 2.5PM 是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国 2.5PM 标准采用世卫组织设定的最宽限值,即 2.5PM 日均值在35微克/立方米以下空气质量为一级;在35微克/立方米75~微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标,某试点城市环保局从该市市区2011年全年每天的 2.5PM 监测数据中随机的抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)1.从这15天的2.5PM 日均监测数据中,随机抽出三天,求恰有一天空气质量达到一级的概率; 2.从这15天的数据中任取三天数据,记ξ表示抽到 2.5PM 监测数据超标天数,求ξ的分布列;3.以这15天的 2.5PM 日均值来估计一年的空气质量情况,则一年(按360天计算)中平均有多少天的空气质量达到一级或二级6.某校从高二年级学生中随机抽取60名学生,将其期中考试的政治成绩(均为整数)分成六段:[40,50),[50,60),[60,70),,[90,100]后得到如下频率分布直方图.1.根据频率分布直方图,估计该校高二年级学生期中考试政治成绩的平均分、众数、中位数;(小数点后保留一位有效数字)2.用分层抽样的方法在各分数段的学生中抽取一个容量为20的样本,则[70,80),分数段抽取的人数是多少?7.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位: cm ).根据长期生产经验,可以认为这条生产线状态下生产的零件的尺寸服从正态分布()2,N μσ.(1)假设生产正态正常,记X 表示一天内抽取的16个零件中其尺寸在()3,3μσμσ-+之外的零件数,求()1P X ≥及X 的数学期望.(2)一天内抽检零件中,如果出现了尺寸在()3,3μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. ①试说明上述监控生产过程方法的合理性; ②下面是检验员在一天内抽取的16个零件的尺寸:0.212=,其中i x 为抽取的第i 个零件的尺寸, 1,2,,16i =⋯.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除()3,ˆˆˆ3ˆμσμσ-+之外的数据,用剩下的数据估计μ和σ (精确到0.01). 附:若随机变量Z 服从正态分布()2,N μσ,则()16330.9974,0.99740.09p Z μσμσ-<<+=≈≈8、甲、乙二人用 张扑克牌(分别是红桃 、红桃 、红桃 、方片 )玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.1.设 表示甲、乙抽到的牌的数字组成的数组,写出甲、乙二人抽到的牌的所有情况;2.若甲抽到红桃 ,则乙抽到的牌的数字比 大的概率是多少?3.甲、乙约定:若甲抽到的牌的数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平,说明你的理由.9.在6(13)x -的展开式中,(1)求展开式中各项的二项式系数和;(2)求第4项的二项式系数和第4项的系数.(3)设6234560123456(13)x a a x a x a x a x a x a x -=++++++,求123456a a a a a a +++++的值.10.已知()*22n n N x ⎫∈⎪⎭的展开式中第五项的系数与第三项的系数的比是10:1.(1)求展开式中各项系数的和; (2)求展开式中含32x 的项;(3)求展开式中系数最大的项和二项式系数最大的项.11.有3名男生.4名女生,在下列不同条件下,求不同的排列方法总数. ①选其中5人排成一排;②排成前后两排,前排3人,后排4人; ③全体排成一排,甲不站排头也不站排尾; ④全体排成一排,女生必须站在一起; ⑤全体排成一排,男生互不相邻;⑥全体排成一排,甲.乙两人中间恰好有3人; ⑦全体排成一排,甲必须排在乙前面;⑧全部排成一排,甲不排在左端,乙不排在右端.12.用()*3,N n n n ≥∈种不同的颜色给如图所示的,,,A B C D 四个区域涂色,要求相邻区域不能用同一种颜色.1.当6n =时,图①、图②各有多少种不同的涂色方案?2.若图③有180种不同的涂色方案,求n 的值.参考答案1.答案:1.解:由题意得, ()()()1215576.638ˆ4niii n i i x x yy bx x ==--==≈-∑∑ ∴33 6.63263.ˆ194a=-⨯=- ∴y 关于x 的线性回归方程为: 6.6394ˆ1.yx =- 2.(i)线性回归方程 6.6386ˆ1.yx =-对应的相关系数为: ()()6221621236.641110.06020.93983930ii i iii y y R yy ==-=-=-≈-=-∑∑, 因为0.93980.9522<比线性回归方程 6.6386ˆ1.yx =-拟合效果更好. (ii)由(i)知,当温度35x =︒时, 0.2303358.06050.06e 0.06e 0.0631769ˆ10y ⨯==≈⨯≈,即当温度为35C 时该批紫甘薯死亡株数为1902.答案:(1)依题意513,100,1420i i i x y x y ====∑,()()5521155,80ii i i i x x x y y ===--=-∑∑,()()5522117500i i i i x x y y ==--=∑∑,计算()()0.921nii xx y y r --==≈-∑具有很强的线性相关关系.(2)1221142053100ˆ85559ni ii nii x ynxybxnx ==--⨯⨯===--⨯-∑∑,ˆ100(8)3124a y bx=-=--⨯=, 所以y 关于月份x 之间的线性回归方程为8124y x =-+.(3) 从4月份选取的4人分别记为1234,,,a a a a 从5月份选取的2人分别记为12,B B 从这6人中任意抽取2人进行交规调查包含的基本事件有{}{}{}{}{}{}121314111223,,,,,,,,,,,a a a a a a a B a B a a ,{}{}{}{}{}{}{}{}{}242122343132414212,,,,,,,,,,,,,,,,,a a a B a B a a a B a B a B a B B B共15个, 其中"抽取的2人分别来自两个月份"包含的基本事件为{}{}{}{}{}{}111221223132,,,,,,,,,,,a B a B a B a B a B a B ,{}{}4142,,,a B a B 共8个,设抽取的2人分别来自两个月份为事件A ,则8()15P A =.3.答案:1.根据散点图判断,看出样本点分布在一条指数函数的周围,所以21c xy c e=适宜作为y 与x 之间的回归方程模型2.①令ln z y =,则21ln z c x c =+, ()()()101210213011505iii ii x x zzc x x ==--===-∑∑, 12ln 3.33c z c x =-=-,13.3375z x ∴=-13.335x zy e e-∴==②()()211ln 2.4170 3.33 2.4170 5.7317055h x x y x x x x ⎛⎫=-+=--+=-+⎪⎝⎭5.7314125x ∴=≈⨯时,培养成本的预报值最小2.根据列联表中的数据,得到22110(10302050)7.48710.82860503080K ⨯⨯-⨯=≈<⨯⨯⨯. 因此按99.9%的可靠性要求,不能认为“成绩与班级有关系”.3.设“抽到9或10号”为事件A ,先后两次抛掷一枚均匀的骰子,出现的点数为(),,x y所有的基本事件有()()()():1,1,1,2,1,3,,6,6,⋯共36个.事件A 包含的基本事件有()()()()()()():3,6,4,5,5,4,6,3,5,5,4,6,6,4,共7个.∴7()36P A =,即抽到9号或10号的概率为736. 5.答案:1.记“从15天的 2.5PM 日均监测数据中,随机抽出三天,恰有一天空气质量达到一级”为事件A ,1251031545()91C C P A C ⋅==. 2.依据条件, ξ服从超几何分布:其中15,5,3N M n ===,ξ的可能值为0,1,2,3,其分布列为:()()351030,1,2,3k kC C P k k C ξ-===3. 依题意可知,一年中每天空气质量达到一级或二级的概率为102153P ==, 一年中空气质量达到一级或二级的天数为η,则2(360,)3nB23602403E η∴=⨯=,一年中平均有240天的空气质量达到一级或二级 6.答案:1.由图可知众数为75,当分数70.3x <时对应的频率为0.5,所以中位数为70.3,平均数为450.1550.15650.15750.3850.25950.0571⨯+⨯+⨯+⨯+⨯+⨯=2.67.答案:(1)抽取的一个零件的尺寸在()3,3μσμσ-+之内的概率为0.9974, 从而零件的尺寸在()3,3μσμσ-+之外的概率为0.0026, 故()16,0.0026X B ~,因此()()1611010.99740.0408P X P X ≥=-==-≈,X 的数学期望为160.00260.0416EX =⨯=.(2)①如果生产状态正常,一个零件尺寸在()3,3μσμσ-+之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在()3,3μσμσ-+之外的零件的概韦只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检査,可见上述监控生产过程的方法是合理的.②由9.97,0.212x s =≈,得μ的估计值为ˆ9.97μ=,σ的估计值为0.212σ∧=,由样本数据可以看出有一个零件的尺寸在()3,ˆˆˆ3ˆμσμσ-+之外,因此需对当天的生产过程进行检査. 剔除()3,ˆˆˆ3ˆμσμσ-+之外的数据9.22,剩下数据的平均数为()1169.979.2210.0215⨯-= 因此μ的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑剔除162221160.212169.971591.134ii x==⨯+⨯≈∑之外的数据9.22.剩下数据的样本方差为()221159.1349.221510.020.00815--⨯≈. 因此σ0.09≈. 8. 答案:(1)共12种不同的情况。
概率与统计大题60道(有答案)资料
佳音教育高考专题概率与统计大题60练[ gary专用gary2013-4-5题型一 直方图1.在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如右表:(I )在答题卡上完成频率分布表,并在给定的坐标系中画出频率分布直方图;(II )估计纤度落在[1.381.50),中的概率及纤度小于1.40的概率是多少?(III )统计方法中,同一组数据常用该组区间的中点值(例如区间[1.301.34),的中点值是1.32)作为代表.据此,估计纤度的期望.解:(Ⅰ)(Ⅱ)纤度落在[)1.381.50,中的概率约为0.300.290.100.69++=,纤度小于1.40的概率样本数据约为10.040.250.300.442++⨯=.(Ⅲ)总体数据的期望约为1.320.04 1.360.25 1.400.30 1.440.29 1.480.10 1.520.02 1.4088⨯+⨯+⨯+⨯+⨯+⨯=.2.根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间,,,,,进行分组,得到频率分布直方图如图5.(1)求直方图中的值;(2)计算一年中空气质量分别为良和轻微污染的天数;(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率.(结果用分数表示.已知,,,)解:(1)由图可知,解得;(2);]50,0[ ]100,50(]150,100(]200,150(]250,200(]300,250(x7812557=12827=++36521825318257 91251239125818253=++573365⨯=-=150x++365218253(18257509125123150)9125818253⨯-=⨯++18250119=x219)5036525018250119(365=⨯+⨯⨯(3)该城市一年中每天空气质量为良或轻微污染的概率为,则空气质量不为良且不为轻微污染的概率为,一周至少有两天空气质量为良或轻微污染的概率为. 3.(2009浙江卷理)(本题满分14分)在这个自然数中,任取个数.(I )求这个数中恰有个是偶数的概率;(II )设为这个数中两数相邻的组数(例如:若取出的数为,则有两组相邻的数和,此时的值是).求随机变量的分布列及其数学期望.解析:(I )记“这3个数恰有一个是偶数”为事件A ,则; (II )随机变量的取值为的分布列为所以的数学期望为题型二 抽样问题4. 一汽车厂生产A,B,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):轿车A 轿车B 轿车C 舒适型 100 150 z 标准型300450600按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A 类轿车10辆. (1) 求z 的值.(2) 用分层抽样的方法在C 类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3) 用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4, 8.6,533652195036525018250119==⨯+⨯52531=-7812576653)53()52()53()52(116670777=--C C 1,2,3,,99331ξ31,2,31,22,3ξ2ξE ξ12453910()21C C P A C ==ξ0,1,2,ξξ012122123E ξ=⨯+⨯+⨯=9.2, 9.6, 8.7, 9.3, 9.0, 8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.解: (1).设该厂本月生产轿车为n 辆,由题意得,,所以n=2000. z=2000-100-300-150-450-600=400(2) 设所抽样本中有m 辆舒适型轿车,因为用分层抽样的方法在C 类轿车中抽取一个容量为5的样本,所以,解得m=2也就是抽取了2辆舒适型轿车,3辆标准型轿车,分别记作S 1,S 2;B 1,B 2,B 3,则从中任取2辆的所有基本事件为(S 1, B 1), (S 1, B 2) , (S 1, B 3) (S 2 ,B 1), (S 2 ,B 2), (S 2 ,B 3),( (S 1, S 2),(B 1 ,B 2), (B 2 ,B 3) ,(B 1 ,B 3)共10个,其中至少有1辆舒适型轿车的基本事件有7个基本事件: (S 1, B 1), (S 1, B 2) , (S 1, B 3) (S 2 ,B 1), (S 2 ,B 2), (S 2 ,B 3),( (S 1, S 2),所以从中任取2辆,至少有1辆舒适型轿车的概率为. (3)样本的平均数为, 那么与样本平均数之差的绝对值不超过0.5的数为9.4, 8.6, 9.2, 8.7, 9.3, 9.0这6个数,总的个数为8,所以该数与样本平均数之差的绝对值不超过0.5的概率为. 【命题立意】:本题为概率与统计的知识内容,涉及到分层抽样以及古典概型求事件的概率问题.要读懂题意,分清类型,列出基本事件,查清个数.,利用公式解答.5 .为了了解某工厂开展群众体育活动的情况,拟采用分层抽样的方法从A ,B,C 三个区中抽取7个工厂进行调查,已知A,B ,C 区中分别有18,27,18个工厂(Ⅰ)求从A,B,C 区中分别抽取的工厂个数;(Ⅱ)若从抽取的7个工厂中随机抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A 区的概率。
《概率与统计》习题答案(复旦大学)
P{X=k}= , 其中k=0,1,2,…,λ>0为常数,试确定常数a. (2) 设随机变量X的分布律为 P{X=k}=a/N, k=1,2,…,N, 试确定常数a. 【解】(1) 由分布律的性质知 故 (2) 由分布律的性质知 即 . 5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率; (2) 甲比乙投中次数多的概率. 【解】分别令X、Y表示甲、乙投中次数,则X~b(3,0.6),Y~b(3,0.7) (1) +
【解】设在每次试验中成功的概率为p,则 故 所以 . 9.设事件A在每一次试验中发生的概率为0.3,当A发生不少于3次时,指 示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率; (2) 进行了7次独立试验,试求指示灯发出信号的概率. 【解】(1) 设X表示5次独立试验中A发生的次数,则X~6(5,0.3) (2) 令Y表示7次独立试验中A发生的次数,则Y~b(7,0.3) 10.某公安局在长度为t的时间间隔内收到的紧急呼救的次数X服从参数为 (1/2)t的泊松分布,而与时间间隔起点无关(时间以小时计). (1) 求某一天中午12时至下午3时没收到呼救的概率; (2) 求某一天中午12时至下午5时至少收到1次呼救的概率. 【解】(1) (2) 11.设P{X=k}= , k=0,1,2 P{Y=m}= , m=0,1,2,3,4 分别为随机变量X,Y的概率分布,如果已知P{X≥1}= ,试求P{Y≥1}. 【解】因为 ,故 . 而 故得 即 从而 12.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试 求在这2000册书中恰有5册错误的概率. 【解】令X为2000册书中错误的册数,则X~b(2000,0.001).利用泊松近似 计算, 得 13.进行某种试验,成功的概率为 ,失败的概率为 .以X表示试验首次成 功所需试验的次数,试写出X的分布律,并计算X取偶数的概率. 【解】 14.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在 一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12 元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1) 保险公司亏本的概率; (2) 保险公司获利分别不少于10000元、20000元的概率. 【解】以“年”为单位来考虑.
概率和统计考试题库答案
概率和统计考试题库答案一、单项选择题1. 随机变量X服从二项分布B(3, 0.5),则P(X=1)的值为()。
A. 0.375B. 0.5C. 0.25D. 0.75答案:A2. 已知随机变量X服从正态分布N(0, 1),则P(-1<X<2)的值为()。
A. 0.6826B. 0.8413C. 0.9544D. 0.9772答案:C3. 一组数据的平均数为10,方差为4,则该组数据的众数可能为()。
A. 8B. 10C. 12D. 14答案:B4. 已知随机变量X服从泊松分布,其期望为2,则P(X=0)的值为()。
A. 0.1353B. 0.2588C. 0.0183D. 0.0549答案:C5. 一组数据的中位数为15,众数为20,则该组数据的平均数可能为()。
A. 10B. 15C. 20D. 25答案:C二、多项选择题6. 以下哪些事件是不可能事件()。
A. 抛一枚硬币,正面朝上B. 抛一枚硬币,反面朝上C. 抛一枚硬币,正面和反面同时朝上D. 抛一枚硬币,正面和反面都不朝上答案:CD7. 以下哪些分布是离散型随机变量的分布()。
A. 正态分布B. 二项分布C. 泊松分布D. 均匀分布答案:BC8. 以下哪些统计量可以用来衡量数据的离散程度()。
A. 平均数B. 方差C. 标准差D. 众数答案:BC9. 以下哪些统计方法可以用来估计总体参数()。
A. 点估计B. 区间估计C. 假设检验D. 回归分析答案:AB10. 以下哪些是随机变量X和Y的协方差的性质()。
A. 协方差总是非负的B. 协方差总是非正的C. 协方差可以是正的、负的或零D. 协方差总是零答案:C三、判断题11. 随机变量X和Y的协方差为零,说明X和Y是独立的。
()答案:错误12. 一组数据的方差越大,说明这组数据越稳定。
()答案:错误13. 正态分布是连续型随机变量的分布。
()答案:正确14. 随机变量X服从二项分布B(n, p),其期望E(X)=np。
高中数学概率与统计练习题及参考答案2023
高中数学概率与统计练习题及参考答案2023以下是根据题目要求写出的高中数学概率与统计练习题及参考答案。
一、单项选择题1、设A、B为两事件,且P(A)=0.4,P(B)=0.6,则P(AB)的取值范围是A、[0.2,0.6]B、[0.24,0.6]C、[0.0,0.4]D、[0.16,0.6]答案:B2、已知事件A发生的概率为0.6,事件B发生的概率为0.5,事件A和事件B至少有一个发生的概率为:A、0.6B、0.5C、0.9D、0.1答案:C3、小明乘坐公交车去上学,如果按时到达的概率为0.8,那么他迟到的概率为:A、0.8B、0.2C、0.6D、0.4答案:B二、填空题1、一套大小为1、2、3的衣服,从中随意取出一件的概率为_______。
答案:1/62、在1~50中随机取出一个整数,使其能被6整除的概率是_______。
答案:1/63、事件A和事件B相互独立,且P(A)=0.4,P(B)=0.3,则P(AB)的取值为_______。
答案:0.12三、解答题1、某小区内有200户人家,其中有120户家庭有私家车,60户家庭有小轿车,70户家庭既有私家车又有小轿车。
试求出这些家庭中有汽车的概率是多少?解:设事件A为家庭有私家车,B为家庭有小轿车,P(A)=120/200=0.6,P(B)=60/200=0.3,P(AB)=70/200=0.35,所以这些家庭中有汽车的概率是P(A∪B)=P(A)+P(B)-P(AB)=0.6+0.3-0.35=0.55。
2、某饮料公司一次生产200瓶矿泉水饮料,其中有5瓶不合格品,现从这200瓶中任意抽取20瓶,问抽取的20瓶中恰好有3瓶不合格品的概率是多少?解:设事件A为抽出20瓶中恰好有3瓶不合格品,根据二项分布公式P(A)=C(5,3)*C(195,17)/C(200,20)=56*17409840/6564120420=0.0148(保留四位小数)。
四、计算题1、某班级20名学生参加一次数学考试,已知这次考试的平均成绩是85分,标准差为7分,求这次考试成绩高于90分的学生人数的理论值和实际值。
概率与统计(40题)-2023年中考数学真题分项汇编(全国通用)(解析版)全文
概率与统计(40题)一、单选题1.(2023·上海·统考中考真题)如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,下图是各时间段的小车与公车的车流量,则下列说法正确的是()A.小车的车流量与公车的车流量稳定;B.小车的车流量的平均数较大;C.小车与公车车流量在同一时间段达到最小值;D.小车与公车车流量的变化趋势相同.【答案】B【分析】根据折线统计图逐项判断即可得.【详解】解:A、小车的车流量不稳定,公车的车流量较为稳定,则此项错误,不符合题意;B、小车的车流量的平均数较大,则此项正确,符合题意;C、小车车流量达到最小值的时间段早于公车车流量,则此项错误,不符合题意;D、小车车流量的变化趋势是先增加、再减小、又增加;大车车流量的变化趋势是先增加、再减小,则此项错误,不符合题意;故选:B.【点睛】本题考查了折线统计图,读懂折线统计图是解题关键.2.(2023·四川遂宁·统考中考真题)为增强班级凝聚力,吴老师组织开展了一次主题班会.班会上,他设计了一个如图的飞镖靶盘,靶盘由两个同心圆构成,小圆半径为10cm,大圆半径为20cm,每个扇形的圆心角为60度.如果用飞镖击中靶盘每一处是等可能的,那么小全同学任意投掷飞镖1次(击中边界或没有击中靶盘,则重投1次),投中“免一次作业”的概率是()【答案】B【分析】根据扇形面积公式求出免一次作业对应区域的面积,再根据投中“免一次作业”的概率=免一次作业对应区域的面积÷大圆面积进行求解即可【详解】解:由题意得,大圆面积为2220400cm ππ⨯=,免一次作业对应区域的面积为2226020601050cm 360360πππ⨯⨯⨯⨯−=,∴投中“免一次作业”的概率是5014008ππ=,故选:B .【点睛】本题主要考查了几何概率,扇形面积,正确求出大圆面积和免一次作业对应区域的面积是解题的关键.A .58B 【答案】B【分析】设小正方形的边长为1,则大正方形的边长为32,根据题意,分别求得阴影部分面积和总面积,根据概率公式即可求解.【详解】解:设小正方形的边长为1,则大正方形的边长为32,∴总面积为2231614169252⎛⎫⨯+⨯=+= ⎪⎝⎭,阴影部分的面积为2239132122222⎛⎫⨯+⨯=+=⎪⎝⎭,∴点P 落在阴影部分的概率为131322550=, 故选:B .【点睛】本题考查了几何概率,分别求得阴影部分的面积是解题的关键.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( ) A .甲 B .乙 C .丙 D .丁【答案】D【分析】根据10次射击成绩的平均数x 可知淘汰乙;再由10次射击成绩的方差2S 可知1.8 1.20.4>>,也就是丁的射击成绩比较稳定,从而得到答案. 【详解】解:98>,∴由四人的10次射击成绩的平均数x 可知淘汰乙;1.8 1.20.4>>,∴由四人的10次射击成绩的方差2S 可知丁的射击成绩比较稳定;故选:D .【点睛】本题考查通过统计数据做决策,熟记平均数与方差的定义与作用是解决问题的关键.5.(2023·湖南怀化·统考中考真题)某县“三独”比赛独唱项目中,5名同学的得分分别是:9.6,9.2,9.6,9.7,9.4.关于这组数据,下列说法正确的是( )A .众数是9.6B .中位数是9.5C .平均数是9.4D .方差是0.3【答案】A【分析】先把5个数据按从小到大的顺序排列,而后用中位数,众数,平均数和方差的定义及计算方法逐一判断.【详解】解:5个数按从小到大的顺序排列9.2,9.4,9.6,9.6,9.7,A、9.6出现次数最多,众数是9.6,故正确,符合题意;B、中位数是9.6,故不正确,不符合题意;C、平均数是()19.2+9.4+9.62+9.7=9.55⨯,故不正确,不符合题意;D、方差是()()()()222219.29.5+9.49.5+29.69.5+9.79.5=0.0325⎡⎤⨯−−−−⎣⎦,故不正确,不符合题意.故选:A.【点睛】本题考查了中位数,众数,平均数和方差,熟练掌握这些定义及计算方法是解决此类问题的关键.A.该小组共统计了100名数学家的年龄B.统计表中m的值为5C.长寿数学家年龄在9293−岁的人数最多D.《数学家传略辞典》中收录的数学家年龄在9697−岁的人数估计有110人【答案】D【分析】利用年龄范围为9899−的人数为10人,对应的百分比为10%,即可判断A 选项;由A 选项可知该小组共统计了100名数学家的年龄,根据1005%5m =⨯=即可判断B 选项;由扇形统计图可知,长寿数学家年龄在9293−岁的占的百分比最大,即可判断C 选项;用2200乘以小组共统计了100名数学家的年龄中在9697−岁的百分比,即可判断D 选项.【详解】解:A .年龄范围为9899−的人数为10人,对应的百分比为10%,则可得1010%100÷=(人),即该小组共统计了100名数学家的年龄,故选项正确,不符合题意;B .由A 选项可知该小组共统计了100名数学家的年龄,则1005%5m =⨯=,故选项正确,不符合题意;C .由扇形统计图可知,长寿数学家年龄在9293−岁的占的百分比最大,即长寿数学家年龄在9293−岁的人数最多,故选项正确,不符合题意;D .《数学家传略辞典》中收录的数学家年龄在9697−岁的人数估计有112200242100⨯=人,故选项错误,符合题意. 故选:D .【点睛】此题考查了扇形统计图和统计表,从扇形统计图和统计表中获取正确信息,进行正确计算是解题的关键.二、填空题这种绿豆发芽的概率的估计值为________(精确到0.01). 【答案】0.93【分析】根据题意,用频率估计概率即可.【详解】解:由图表可知,绿豆发芽的概率的估计值0.93, 故答案为:0.93.【点睛】本题考查了利用频率估计概率.解题的关键在于明确:大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【答案】10【分析】根据概率公式计算即可得出结果. 【详解】解:该生体重“标准”的概率是350750010=, 故答案为:710.【点睛】本题考查了概率公式,熟练掌握概率=所求情况数与总情况数之比是本题的关键.【答案】1500吨【分析】由题意易得试点区域的垃圾收集总量为300吨,然后问题可求解. 【详解】解:由扇形统计图可得试点区域的垃圾收集总量为()60150129300÷−−−=%%%(吨),∴全市可收集的干垃圾总量为30050101500⨯⨯=%(吨); 故答案为1500吨.【点睛】本题主要考查扇形统计图,熟练掌握扇形统计图是解题的关键.10.(2023·浙江宁波·统考中考真题)一个不透明的袋子里装有3个绿球、3个黑球和6个红球,它们除颜色外其余相同.从袋中任意摸出一个球为绿球的概率为_____________.【答案】1 4【分析】从袋子里任意摸一个球有12种等可能的结果,其中是绿球的有3种,根据简单概率公式代值求解即可得到答案.【详解】解:由题意可知,从袋子里任意摸一个球有12种等可能的结果,其中是绿球的有3种,P∴(任意摸出一个球为绿球)31 124==,故答案为:1 4.【点睛】本题考查概率问题,弄清总的结果数及符合要求的结果数,熟记简单概率公式求解是解决问题的关键.三、解答题(1)阳阳已经对B,C型号汽车数据统计如表,请继续求出A型号汽车的平均里程、中位数和众数.(2)为了尽可能避免行程中充电耽误时间,又能经济实惠地用车,请你从相关统计量和符合行程要求的百分比等进行分析,给出合理的用车型号建议.【答案】(1)平均里程:200km ;中位数:200km ,众数:205km ;(2)见解析 【分析】(1)观察统计图,根据平均数、中位数和众数的计算方法求解即可; (2)根据各型号汽车的平均里程、中位数、众数和租金方面进行分析. 【详解】(1)解:由统计图可知: A 型号汽车的平均里程:31904195520062052210200(km)34562A x ⨯+⨯+⨯+⨯+⨯==++++,A 型号汽车的里程由小到大排序:最中间的两个数(第10、11个数据)是200、200,故中位数200200200(km)2+==,出现充满电后的里程最多的是205公里,共六次,故众数为205km .(2)选择B 型号汽车.理由:A 型号汽车的平均里程、中位数、众数均低于210km ,且只有10%的车辆能达到行程要求,故不建议选择;B ,C 型号汽车的平均里程、中位数、众数都超过210km ,其中B 型号汽车有90%符合行程要求,很大程度上可以避免行程中充电耽误时间,且B 型号汽车比C 型号汽车更经济实惠,故建议选择B 型号汽车.【点睛】本题考查了统计量的选择,平均数、中位数和众数,熟练掌握平均数、方差、中位数的定义和意义是解题的关键.根据以上信息,解答下列问题:(1)补全频数分布直方图;(2)抽取的40名学生成绩的中位数是___________;(3)如果测试成绩达到80分及以上为优秀,试估计该校800名学生中对安全知识掌握程度为优秀的学生约有多少人?【答案】(1)见解析;(2)82;(3)估计该校800名学生中对安全知识掌握程度为优秀的学生约有440人 【分析】(1)根据总人数减去其他组的人数求得7080x ≤<的人数,即可补全直方图; (2)根据中位数为第20、21个数据的平均数,结合直方图或分布表可得; (3)用样本估计总体即可得.【详解】(1)解:404612108−−−−=(人), 补全的频数分布直方图如下图所示,;(2)解:∵46818++=, ∴第20、21个数为81、83;∴抽取的40名学生成绩的中位数是()18183822+=;故答案为:82; (3)解:由题意可得:121080044040+⨯=(人),答:估计该校800名学生中对安全知识掌握程度为优秀的学生约有440人.【点睛】本题考查频数分布直方图、中位数,用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.13.(2023·浙江·统考中考真题)为全面提升中小学生体质健康水平,我市开展了儿童青少年“正脊行动”.人民医院专家组随机抽取某校各年级部分学生进行了脊柱健康状况筛查.根据筛查情况,李老师绘制了两幅不完整的统计图表,请根据图表信息解答下列问题: 抽取的学生脊柱健康情况统计表(1)求所抽取的学生总人数;(2)该校共有学生1600人,请估算脊柱侧弯程度为中度和重度的总人数;(3)为保护学生脊柱健康,请结合上述统计数据,提出一条合理的建议.【答案】(1)200人;(2)80人;(3)【分析】(1)利用抽取的学生中正常的人数除以对应的百分比即可得到所抽取的学生总人数;(2)用该校学生总数乘以抽取学生中脊柱侧弯程度为中度和重度的百分比即可得到答案;(3)利用图表中的数据提出合理建议即可.【详解】(1)解:17085%200÷=(人).∴所抽取的学生总人数为200人.(2)() 1600185%10%80⨯−−=(人).∴估算该校学生中脊柱侧弯程度为中度和重度的总人数有80人.(3)该校学生脊柱侧弯人数占比为15%,说明该校学生脊柱侧弯情况较为严重,建议学校要每天组织学生做护脊操等.【点睛】此题考查了统计表和扇形统计图,熟练掌握用部分除以对应的百分比求总数、用样本估计总体是解题的关键.【答案】(1)1,8;(2)23,;(3)优秀率高的年级不是平均成绩也高,理由见解析【分析】(1)根据扇形统计图得出七年级活动成绩为7分的学生数的占比为10%,即可得出七年级活动成绩为7分的学生数,根据扇形统计图结合众数的定义,即可求解;(2)根据中位数的定义,得出第5名学生为8分,第6名学生为9分,进而求得a,b的值,即可求解;(3)分别求得七年级与八年级的优秀率与平均成绩,即可求解.−−−【详解】(1)解:根据扇形统计图,七年级活动成绩为7分的学生数的占比为150%20%20%=10%´,∴样本中,七年级活动成绩为7分的学生数是1010%=1根据扇形统计图,七年级活动成绩的众数为8分, 故答案为:1,8.(2)∵八年级10名学生活动成绩的中位数为8.5分,∴第5名学生为8分,第6名学生为9分,∴5122a =−−=, 1012223b =−−−−=,故答案为:23,. (3)优秀率高的年级不是平均成绩也高,理由如下,七年级优秀率为20%20%=40%+,平均成绩为:710%850%920%1020%=8.5⨯+⨯+⨯+⨯,八年级优秀率为32100%50%10+⨯=40%>,平均成绩为:()167228392108.310⨯+⨯+⨯+⨯+⨯=8.5<, ∴优秀率高的年级为八年级,但平均成绩七年级更高, ∴优秀率高的年级不是平均成绩也高【点睛】本题考查了扇形统计图,统计表,中位数,众数,求一组数据的平均数,从统计图表获取信息是解题的关键.②若将车辆的外观造型,舒适程度、操控性能,售后服务等四项评分数据按2:3:3:2的比例统计,求A 款新能原汽车四项评分数据的平均数. (2)合理建议:请按你认为的各项“重要程度”设计四项评分数据的比例,并结合销售量,以此为依据建议小明的爸爸购买哪款汽车?说说你的理由.【答案】(1)①3015辆,②68.3分;(2)选B 款,理由见解析 【分析】(1)①根据中位数的概念求解即可; ②根据加权平均数的计算方法求解即可; (2)根据加权平均数的意义求解即可. 【详解】(1)①由中位数的概念可得,B 款新能源汽车在2022年9月至2023年3月期间月销售量的中位数为3015辆; ②172270367364268.32332x ⨯+⨯+⨯+⨯==+++分.∴A 款新能原汽车四项评分数据的平均数为68.3分; (2)给出1:2:1:2的权重时, 72170267164267.81212A x ⨯+⨯+⨯+⨯=≈+++(分),70171270168269.71212B x ⨯+⨯+⨯+⨯=≈+++(分),75165267161265.71212C x ⨯+⨯+⨯+⨯=≈+++(分),结合2023年3月的销售量, ∴可以选B 款.【点睛】此题考查了中位数和加权平均数,以及利用加权平均数做决策,解题的关键是熟练掌握以上知识点.16.(2023·江苏连云港·统考中考真题)如图,有4张分别印有Q 版西游图案的卡片:A 唐僧、B 孙悟空、C 猪八戒、D 沙悟净.现将这4张卡片(卡片的形状、大小、质地都相同)放在不透明的盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片求下列事件发生的概率: (1)第一次取出的卡片图案为“B 孙悟空”的概率为__________;(2)用画树状图或列表的方法,求两次取出的2张卡片中至少有1张图案为“A 唐僧”的概率.【答案】(1)14;(2)716【分析】(1)根据概率公式即可求解;(2)根据题意,画出树状图, 进而根据概率公式即可求解. 【详解】(1)解:共有4张卡片,第一次取出的卡片图案为“B 孙悟空”的概率为14 故答案为:14.(2)树状图如图所示:由图可以看出一共有16种等可能结果,其中至少一张卡片图案为“A 唐僧”的结果有7种. ∴P (至少一张卡片图案为“A 唐僧”)716=.答:两次取出的2张卡片中至少有一张图案为“A 唐僧”的概率为716.【点睛】本题考查了概率公式求概率,画树状图法求概率,熟练掌握求概率的方法是解题的关键.【答案】(1)100人;(2)270人【分析】(1)根据保山市腾冲市的员工人数除以所占百分比即可求出本次被抽样调查的员工人数;(2)用该公司总的员工数乘以样本中保山市腾冲市的员工人数除以所占百分比即可估计出该公司意向前往保山市腾冲市的员工人数.÷(人),【详解】(1)本次被抽样调查的员工人数为:3030.00%=100所以,本次被抽样调查的员工人数为100人;⨯(人),(2)90030.00%=270答:估计该公司意向前往保山市腾冲市的员工人数为270人.【点睛】本题考查扇形统计图及相关计算.熟练掌握用样本估计总体是解答本题的关键.18.(2023·新疆·统考中考真题)跳绳是某校体育活动的特色项目.体育组为了了解七年级学生1分钟跳绳次数情况,随机抽取20名七年级学生进行1分钟跳绳测试(单位:次),数据如下:请根据以上信息解答下列问题: (1)填空:=a ______,b =______;(2)学校规定1分钟跳绳165次及以上为优秀,请你估计七年级240名学生中,约有多少名学生能达到优秀? (3)某同学1分钟跳绳152次,请推测该同学的1分钟跳绳次数是否超过年级一半的学生?说明理由. 【答案】(1)165,150;(2)84;(3)见解析【分析】(1)根据众数与中位数的定义进行计算即可求解;(2)根据样本估计总体,用跳绳165次及以上人数的占比乘以总人数,即可求解; (3)根据中位数的定义即可求解;【详解】(1)解:这组数据中,165出现了4次,出现次数最多 ∴165a =,这组数据从小到大排列,第1011个数据分别为148,152, ∴1481521502b +==,故答案为:165,150.(2)解:∵跳绳165次及以上人数有7个, ∴估计七年级240名学生中,有72408420⨯=个优秀,(3)解:∵中位数为150,∴某同学1分钟跳绳152次,可推测该同学的1分钟跳绳次数超过年级一半的学生.【点睛】本题考查了求中位数,众数,样本估计总体,熟练掌握中位数、众数的定义是解题的关键. 19.(2023·甘肃武威·统考中考真题)某校八年级共有200名学生,为了解八年级学生地理学科的学习情况,从中随机抽取40名学生的八年级上、下两个学期期末地理成绩进行整理和分析(两次测试试卷满分均为35分,难度系数相同;成绩用x 表示,分成6个等级:A .10x <;B .10 1.5x ≤<;C .1520x ≤<;D .2025x ≤<;E .2530x ≤<;F .3035x ≤≤).下面给出了部分信息:b .八年级学生上学期期末地理成绩在C .1520x ≤<这一组的成绩是: 15,15,15,15,15,16,16,16,18,18c .八年级学生上、下两个学期期末地理成绩的平均数、众数、中位数如下:学期 平均数 众数 中位数八年级上学期 17.715 m【答案】(1)16;(2)35;(3)八年级,理由见解析【分析】(1)由中位数的概念,可知40人成绩的中位数是第20、21位的成绩; (2)根据样本估计总体即可求解; (3)根据平均成绩或中位数即可判断.【详解】(1)解:由中位数的概念,可知40人成绩的中位数是第20、21位的成绩,由统计图知A 组4人,B 组10人,C 组10人,则中位数在C 组,第20、21位的成绩分别是16,16, 则中位数是1616162+=;故答案为:16; (2)解:612003540+⨯=(人),这200名学生八年级下学期期末地理成绩达到优秀的约有35人,故答案为:35;(3)解:因为抽取的八年级学生的期末地理成绩的平均分(或中位数)下学期的比上学期的高,所以八年级学生下学期期末地理成绩更好.【点睛】本题考查了条形统计图,中位数,众数等知识,熟练掌握知识点并灵活运用是解题的关键. 平均数 众数 中位数七年级参赛学生成绩 85.5 m 87 八年级参赛学生成绩 85.5 85n根据以上信息,回答下列问题:(1)填空:m =________,n =________;(2)七、八年级参赛学生成绩的方差分别记为21S 、22S ,请判断21S ___________22S (填“>”“<”或“=”);(3)从平均数和中位数的角度分析哪个年级参赛学生的成绩较好. 【答案】(1)80,86;(2)>;(3)见解析【分析】(1)找到七年级学生的10个数据中出现次数最多的即为m 的值,将八年级的10个数据进行排序,第5和第6个数据的平均数即为n 的值;(2)根据折线统计图得到七年级的数据波动较大,根据方差的意义,进行判断即可; (3)利用平均数和中位数作决策即可.【详解】(1)解:七年级的10个数据中,出现次数最多的是:80,∴80m=;将八年级的10个数据进行排序:76,77,85,85,85,87,87,88,88,97;∴()18587862n=+=;故答案为:80,86;(2)由折线统计图可知:七年级的成绩波动程度较大,∵方差越小,数据越稳定,∴2212S S>;故答案为:>.(3)七年级和八年级的平均成绩相同,但是七年级的中位数比八年级的大,所以七年级参赛学生的成绩较好.【点睛】本题考查数据的分析.熟练掌握众数,中位数的确定方法,利用中位数作决策,是解题的关键.(1)A,B两班的学生人数分别是多少?(2)请选择一种适当的统计量,分析比较A,B两班的后测数据.(3)通过分析前测、后测数据,请对张老师的教学实验效果进行评价.【答案】(1)A ,B 两班的学生人数分别是50人,46人;(2)见解析;(3)见解析 【分析】(1)由统计表中的数据个数之和可得两个班的总人数;(2)先求解两个班成绩的平均数,再判断中位数落在哪个范围,以及15分以上的百分率,再比较即可; (3)先求解前测数据的平均数,判断前测数据两个班的中位数落在哪个组,计算15人数的增长百分率,再从这三个分面比较即可.【详解】(1)解: A 班的人数:28993150++++=(人) B 班的人数:251082146++++=(人) 答:A ,B 两班的学生人数分别是50人,46人. (2)14 2.5167.51212.5617.5222.59.150A x ⨯+⨯+⨯+⨯+⨯==,6 2.587.51112.51817.5322.512.946B x ⨯+⨯+⨯+⨯+⨯=≈, 从平均数看,B 班成绩好于A 班成绩.从中位数看,A 班中位数在510x <≤这一范围,B 班中位数在1015x <≤这一范围,B 班成绩好于A 班成绩. 从百分率看,A 班15分以上的人数占16%,B 班15分以上的人数约占46%,B 班成绩好于A 班成绩. (3)前测结果中: A 28 2.597.5912.5317.5122.56.550x ⨯+⨯+⨯+⨯+⨯'==B6.4x '=≈从平均数看,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好. 从中位数看,两班前测中位数均在05x <≤这一范围,后测A 班中位数在510x <≤这一范围,B 班中位数在1015x <≤这一范围,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.从百分率看,A 班15分以上的人数增加了100%,B 班15分以上的人数增加了600%,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.【点睛】本题考查的是从统计表中获取信息,平均数,中位数的含义,增长率的含义,选择合适的统计量作分析,熟练掌握基础的统计知识是解本题的关键.……结合调查信息,回答下列问题:本次调查共抽查了多少名学生?900名初中生中最喜爱篮球项目的人数.假如你是小组成员,请你向该校提一条合理建议.【答案】(1)100;(2)360;(3)见解析【分析】(1)根据乒乓球人数和所占比例,求出抽查的学生数;(2)先求出喜爱篮球学生比例,再乘以总数即可;(3)从图中观察或计算得出,合理即可.÷=,【详解】(1)被抽查学生数:3030%100答:本次调查共抽查了100名学生.⨯=,(2)被抽查的100人中最喜爱羽毛球的人数为:1005%5−−−−=,∴被抽查的100人中最喜爱篮球的人数为:100301015540∴40900360100⨯=(人).答:估计该校900名初中生中最喜爱篮球项目的人数为360.(3)答案不唯一,如:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等.【点睛】本题考查从条形统计图和扇形统计图获取信息的能力,并用所获取的信息反映实际问题.【答案】(1)8;(2)108︒;(3)5 6【分析】(1)用做饭的人数除以做饭点的百分比25%,得抽取的总人数,再减去“洗衣”、“拖地”、“刷碗”的人数即可求得到m值;(2)用360︒乘以“拖地”人数所占的百分比,即可求解;(3)画树状图或列表分析出所有可能的结果数和有男生的结果数,再用概率公式计算即可.【详解】(1)解:1025%1012108m=÷−−−=,故荅案为:8;(2)解:() 360121025%108︒⨯÷÷=︒,故荅案为:108°;(3)解:方法一:画树状图如下:由图可知所有可能的结果共的12种,有男生的结果有10种,所以所选同学中有男生的概率为105 126=.方法二:列表如下:由表可知所有可能的结果共的12种,有男生的结果有10种,所以所选同学中有男生的概率为105 126=.【点睛】本题考查统计表,扇形统计图,用画树状图或列表的方法求概率.熟练掌握从统计图表中获取有用信息和用画树状图或列表的方法求概率是解题的关键.(1)补全学生课外读书数量条形统计图;(2)请直接写出本次所抽取学生课外读书数量的众数、中位数和平均数;(3)该校有600名学生,请根据抽样调查的结果,估计本学期开学以来课外读书数量不少于【答案】(1)补全学生课外读书数量条形统计图见解析;(2)4,72,103;(3)450人【分析】(1)根据已知条件可知,课外读书数量为2本的有2人,4本的有4人,据此可以补全条形统计图;(2)根据众数,中位数和平均数的定义求解即可;(3)用该校学生总数乘以抽样调查的数据中外读书数量不少于3本的学生人数所占的比例即可.【详解】(1)补全学生课外读书数量条形统计图,如图:(2)∵本次所抽取学生课外读书数量的数据中出现次数最多的是4,∴众数是4.将本次所抽取的12名学生课外读书数量的数据,按照从小到大的顺序排列为:1,2,2,3,3,3,4,4,4,4,5,5.∵中间两位数据是3,4,∴中位数是:347 22+=.平均数为:112233445210123x⨯+⨯+⨯+⨯+⨯==.(3)3429 6006004501212++⨯=⨯=,∴该校有600名学生,估计本学期开学以来课外读书数量不少于3本的学生人数为450人.【点睛】本题主要考查了条形统计图,众数,中位数,平均数,以及用样本所占百分比估计总体的数量,熟练掌握众数,中位数,平均数的定义是解题的关键.25.(2023·四川达州·统考中考真题)在深化教育综合改革、提升区域教育整体水平的进程中,某中学以兴趣小组为载体,加强社团建设,艺术活动学生参与面达100%,通过调查统计,八年级二班参加学校社团的情况(每位同学只能参加其中一项):A.剪纸社团,B.泥塑社团,C.陶笛社团,D.书法社团,E.合唱社团,并绘制了如下两幅不完整的统计图.(1)该班共有学生_________人,并把条形统计图补充完整;(2)扇形统计图中,m =___________,n =___________,参加剪纸社团对应的扇形圆心角为_______度;(3)小鹏和小兵参加了书法社团,由于参加书法社团几位同学都非常优秀,老师将从书法社团的学生中选取2人参加学校组织的书法大赛,请用“列表法”或“画树状图法”,求出恰好是小鹏和小兵参加比赛的概率.【答案】(1)见解析;(2)20,10,144;(3)110【分析】(1)利用C 类人数除以所占百分比可得调查的学生人数;用总人数减去其它四项的人数可得到D 的人数,然后补图即可;(2)根据总数与各项人数比值可求出m ,n 的值,A 项目的人数与总人数比值乘360︒即可得出圆心角的度数;(3)画树状图展示所有20求解.【详解】(1)本次调查的学生总数:510%50÷=(人),D 、书法社团的人数为:5020105105−−−−=(人),如图所示故答案为:50;(2)由图知,105020%5010%2050360144÷=÷=÷⨯︒=︒,5,,。
中考数学专题复习《统计与概率》经典例题及测试题(含答案)
中考数学专题复习《统计与概率》经典例题及测试题(含答案)【专题分析】统计与概率在中考中的常考点有数据的收集方法,平均数、众数和中位数的计算与选择,方差和标准差的计算和应用,统计图的应用及信息综合分析;事件的分类,简单事件的概率计算,画树状图或列表求概率,对频率和概率的理解等.统计与概率在中考中一般以客观题的形式进行考查,选择题、填空题较多,同时考查多个考点的综合性题目一般以解答题的形式进行考查;统计与概率在中考中所占的比重约为6%~12%.【解题方法】解决统计与概率问题常用的数学思想是方程思想和分类讨论思想;常用的数学方法有分类讨论法,整体代入法等.【知识结构】【典例精选】为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果.居民(户)132 4月用电量(千瓦时/户)40505560误的是( )A.中位数是55 B.众数是60C.方差是29 D.平均数是54【思路点拨】根据众数、中位数、方差、平均数的定义及计算公式分别进行计算,即可得出答案.答案:C规律方法:解决此类题目的关键是准确掌握各个统计量的概念及计算方法,分别计算直接选择或排除.若一组数据1,2,x,4的众数是1,那么这组数据的方差是32 .【思路点拨】根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.【解析】根据众数的意义得到x=1,这组数据的平均数x=1+2+1+44=2,所以这组数据的方差是S2=14[(1-2)2+(2-2)2+(1-2)2+(4-2)2]=14×6=32.规律方法:为了准确而快速地记忆方差的计算公式,可以用下面12个字来理解性的记忆,即“先平均、再作差、平方后、再平均”,也就是说,先求出一组数据的平均数,再将每一个数据都与平均数作差,然后将这些差进行平方,最后求这些差的平方的平均数,其结果就是这组数据的方差.作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如下:宁波市4月份某一周公共自行车日租车量统计图(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9 600万元,估计2014年共租车3 200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).【思路点拨】(1)根据众数、中位数和平均数的定义即可求出; (2)4月份天数与平均数的积;(3)租车的次数与每次的租车费的积为租车收入,由租车收入与投入的比即可求出百分率.【自主解答】解:(1)8,8,8.5.(2)30×8.5=255(万车次).(3)3 200×0.1÷9 600=1÷30≈3.3%.答:2014年租车费收入占总投入的3.3%.某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级一班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)【思路点拨】(1)由题意得,掷一枚质地均匀的骰子,向上一面的点数的等可能的情况共有6种,其中点数为奇数的情况有3种,所以P=36=12;(2)判断游戏是否公平,利用画树状图或列表法表示出所有等可能的情况,求出两人胜出的概率,若概率相同,则游戏公平,否则游戏不公平.【自主解答】解:(1)所求概率P=36=12.(2)游戏公平.理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果,∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的.规律方法:解决判断游戏是否公平的问题,首先应分别计算出两人获胜的概率,然后比较两个概率的大小,若相同则公平,若不相同则不公平.【能力评估检测】一、选择题1.下列事件是随机事件的是( D )A.明天太阳从东方升起B.任意画一个三角形,其内角和是360°C.通常温度降到0 ℃以下,纯净的水结冰D.射击运动员射击一次,命中靶心2.某校为纪念世界反法西斯战争70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为8.6,9.5,9.7,8.7,9,则这5个数据的中位数和平均分分别是( C )A.9.7,9.1 B.9.5,9.1C.9,9.1 D.8.7,93.甲、乙两名同学某学期的四次数学测试成绩(单位:分)如下表:第一次第二次第三次第四次甲 87 95 85 93乙 80 80 90 90S甲=17,S乙=25,下列说法正确的是( )A .甲同学四次数学测试成绩的平均数是89分B .甲同学四次数学测试成绩的中位数是90分C .乙同学四次数学测试成绩的众数是80分D .乙同学四次数学测试成绩较稳定答案: B4.一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机从这个袋子中摸出一个球,摸到白球的概率是( B ) A. 19 B. 13 C. 12 D. 235.如图,在一长方形内有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是( B )A .落在菱形内B .落在圆内C .落在正六边形内D .一样大6.小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( B )A. 23B. 49C. 12D. 197.为积极响应创建“全国卫生城市”的号召,某校 1 500名学生参加了卫生知识竞赛,成绩记为A ,B ,C ,D 四等.从中随机抽取了部分学生的成绩进行统计,绘制成如下两幅不完整的统计图,根据图中信息,以下说法不正确的是( )A.样本容量是200B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等的有900人答案: B8.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示:候选人甲乙丙丁测试成绩(百分制)面试86929083 笔试90838392别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取( B ) A.甲 B.乙 C.丙 D.丁9.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( B )A.①②③ B.①② C.①③ D.②③10.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数.如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两个数,与7组成“中高数”的概率是( C )A. 12B. 23C. 25D. 35二、填空题11.一组正整数2,3,4,x 从小到大排列,已知这组数据的中位数和平均数相等,那么x 的值是5 .12.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为 P (奇数),指针落在线上时重转,则P (偶数)< P (奇数)(填“>”“<”或“=”).13.“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰是一男一女的概率是 35. 三、解答题14.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲、乙这10次射击成绩的方差S 甲,S 乙 哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选7环参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选9环参赛更合适.解:(1)乙的平均成绩:(8+9+8+8+7+8+9+8+8+7)÷10=8(环).(2)根据图象可知,甲的波动小于乙的波动,则S甲<S乙.(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.15.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.解:(1)根据题意画树状图如下:由树状图可知,选手A一共获得8种可能的结果,这些结果的可能性相等.(2)P(A晋级)=48=12.16.为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组).(1)报名参加课外活动小组的学生共有30人,将条形图补充完整;(2)扇形图中m=25,n=108;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.解:(1)∵由两种统计图可知,报名参加“地方戏曲”小组的有13人,占13%,∴报名参加课外活动小组的学生共有13÷13%=100(人),参加“民族乐器”小组的有100-32-25-13=30(人).(2)∵m%=25100×100%=25%.∴m=25.n=30100×360=108.(3)画树状图如下:∵共有12种等可能的结果,恰好选中甲、乙的有2种,∴P(选中甲、乙)=212=16.。
概率与统计(含答案)
概率与统计1. (本小题满分12分)为了宣传今年10月在某市举行的“第十届中国艺术节”, “十艺节”筹委会举办了“十艺节”知识有奖问答活动,随机对市民15~65岁的人群抽样n 人,回答问题统计结果如下图表所示:(1)分别求出a ,x 的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,“十艺节”筹委会决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.17. 解:(1)由频率表中第1组数据可知,第1组总人数为5100.5=, 再结合频率分布直方图可知1001001.010=⨯=n . …1分∴a =100×0.020×10×0.9=18,……3分 270.91000.0310x ==⨯⨯, ……5分(2)第2,3,4组中回答正确的共有54人.∴利用分层抽样在54人中抽取6人,每组分别抽取的人数为: 第2组:618254⨯=人,第3组:627354⨯=人,第4组:69154⨯=人. ……7分 设第2组的2人为1A 、2A ,第3组的3人为1B 、2B 、B 3,第4组的1人为C ,则从6人中抽2人所有可能的结果有:()12,A A ,()11,A B ,()12,AB ,()13,A B ,()1,AC ,()21,A B ,()22,A B ,()23,A B ,()2,A C ,()12,B B ,()13,B B ,()1,B C ,()23,B B ,()2,B C ,()3,B C ,共15个基本事件, ……………10分其中第2组至少有1人被抽中的有()12,A A ,()11,A B ,()12,AB ,()13,A B ,()1,AC ,()21,A B ,()22,A B ,()23,A B ,()2,A C 这9个基本事件.……11分∴第2组至少有1人获得幸运奖的概率为93155=.…12分2:袋中装着标有数学1,2,3,4,5的小球各2个,从袋中任取3个小球,每个小球被取出的可能性都相等,用ξ表示取出的3个小球上的最大数字,求: (Ⅰ)取出的3个小球上的数字互不相同的概率; (Ⅱ)随机变量ξ的概率分布和数学期望;解(Ⅰ) 一次取出的3个小球上的数字互不相同的事件记为A,一次取出的3个小球上有两个数字相同的事件记为B ,则事件A 和B 是对立事件。
概率与统计测试题及答案
概率、统计、统计案例、算法初步一、选择题(本题共12小题,每小题5分,共60分)1.在如图所示的正方形中随机掷一粒豆子,豆子落在正方形内切圆的上半圆(圆中阴影部分)中的概率是( )A.41 B .81 C.4πD.8π解析:选D 设正方形的边长为2,则豆子落在正方形内切圆的上半圆中的概率为4π×12=8π.2.(2012·中山模拟)为了检查某超市货架上的饮料是否含有塑化剂,要从编号依次为1到50的塑料瓶装饮料中抽取5瓶进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5瓶饮料的编号可能是( )A .5,10,15,20,25B .2,4,8,16,32C .1,2,3,4,5D .7,17,27,37,47解析:选D 利用系统抽样,把编号分为5段,每段10个,每段抽取一个,号码间隔为10.3.一块各面均涂有油漆的正方体被锯成1 000个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个正方体其三面涂有油漆的概率是( )A.121B.101C.253D.1251解析:选D 小正方体三面涂油漆的有8种情况,所求概率为1 0008=1251.4.(文科)在三棱锥的六条棱中任选两条,则这两条棱所在直线为异面直线的概率是( ) A.61 B.51 C.41D.31解析:选B 由已知得基本事件总数为15,其中互为异面直线的对数为3,故所求的概率为P =153=51.5.(2012·山东高考)执行右面的程序框图,如果输入a =4,那么输出的n 的值为( ) A .2 B .3 C .4 D .5解析:选B 逐次计算结果是P =1,Q =3,n =1;P =5,Q =7,n =2;P =21,Q =15,n =3,退出循环,故输出结果是n =3.6.(2012·湖北模拟)一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了8次试验,收集数据如下:设回归方程为^y=bx +a ,则点(a ,b )在直线x +45y -10=0的( ) A .左上方 B .左下方 C .右上方D .右下方解析:选C 依题意得,=81×(10+20+30+40+50+60+70+80)=45,=81×(62+68+75+81+89+95+102+108)=85.则85=45b +a ,a +45b -10=75>0,因此点(a ,b )必位于直线x +45y -10=0的右上方.7.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为x 、y ,则log 2x y =1的概率为( )A.61B.365C.121D.21解析:选C 由log 2x y =1⇒2x =y ,x ∈{1,2,3,4,5,6},y ∈{1,2,3,4,5,6},∴x =1,y =2或x =2,y =4或x =3,y =6,共3种情况,∴P =6×63=121.8.某工厂对一批产品进行了抽样检测,如图是根据抽样检测后的产品净重(单元:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( )A .90B .75C .60D .45解析:选A 产品净重小于100克的频率为(0.050+0.100)×2=0.300,设样本容量为n ,则n 36=0.300,所以n =120,净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75,所以样本中净重大于或等于98克并且小于104克的产品的个数是120×0.75=90.9.(2012·陕西高考)如图是计算某年级500名学生期末考试(满分为100分)及格率q 的程序框图,则图中空白框内应填入( )A .q =M NB .q =N MC .q =M +N ND .q =M +N M解析:选D 程序执行的过程是如果输入的成绩不小于60分即及格,就把变量M 的值增加1,即变量M 为成绩及格的人数,否则,由变量N 统计不及格的人数,但总人数由变量i 进行统计,不超过500就继续输入成绩,直到输入完500个成绩停止循环,输出变量q ,变量q 代表的含义为及格率,也就是总人数及格人数=M +N M.10. (2012.泉州质检)为了调查某校学生喜欢数学课的人数比例,采用如下调查方法: (1)在该校中随机抽取100名学生,并编号为1,2,3, (100)(2)在箱内放置两个白球和三个红球,让抽取的100名学生分别从箱中随机摸出一球,记住其颜色并放回;(3)请下列两类学生举手:①摸到白球且号数为偶数的学生,②摸到红球且不喜欢数学课的学生.如果总共有26名学生举手,那么用概率与统计的知识估计该校学生中喜欢数学课的人数比例大约是( )A .88%B .90%C .92%D .94%解析:选B 100名学生中大约有40人摸出白球,60人摸出红球;摸出白球且号数为偶数的大约有20人,因此摸到红球且不喜欢数学课的大约有26-20=6(人),摸到红球且喜欢数学课的大约有60-6=54(人),由此估计该校学生中喜欢数学课的大约占6054=90%.11.(2012·湖北模拟)在区间[0,1]上任取三个数a ,b ,c ,若向量m =(a ,b ,c ),则|m |≤1的概率是( )A.24πB.12πC.323πD.6π解析:选D 依题意得,实数a ,b ,c 满足0≤c ≤1,0≤b ≤1,这样的点(a ,b ,c )可视为在空间直角坐标系下的单位正方体区域(其中原点是该正方体的一个顶点)内的点,其中满足|m |≤1,即≤1,a 2+b 2+c 2≤1,这样(a ,b ,c )可视为在空间直角坐标系下的单位正方体区域内且其还在以原点为球心、1为半径的球形区域内的点,该部分的体积恰好等于该球体积的81,因此|m |≤1的概率等于13π×13=6π.12. (2012·临沂模拟)若在区间[-5,5]内任取一个实数a ,则使直线x +y +a =0与圆(x -1)2+(y +2)2=2有公共点的概率为( )A.52B.52C.53D.102解析:选B 若直线与圆有公共点,则圆心到直线的距离d =2|1-2+a|=2|a -1|≤,解得-1≤a ≤3.又a ∈[-5,5],故所求概率为104=52.二、填空题(本题有4小题,每小题5分,共20分)13.某校开展“爱我青岛,爱我家乡”摄影比赛,9位评委为参赛作品A 给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应该是________.解析:当x ≥4时,789+89+92+93+92+91+94=7640≠91,∴x <4,则789+89+92+93+92+91+x +90=91,∴x =1.答案:114. (2012·河南模拟)2012年的NBA 全明星赛于美国当地时间2012年2月26日在佛罗里达州奥兰多市举行.如图是参加此次比赛的甲、乙两名篮球运动员以往几场比赛得分的茎叶图,则甲、乙两人这几场比赛得分的中位数之和是________.解析:依题意得,甲、乙两人这几场比赛得分的中位数分别是28、36,因此甲、乙两人这几场比赛得分的中位数之和是64.答案:6415.(2012·苏州模拟)甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):如果甲、乙两人中只有1人入选,则入选的最佳人选应是________.解析:甲=乙=9,s 甲2=51×[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-9)2]=52, s 乙2=51×[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2]=56>s 甲2,故甲更稳定.答案:甲16. (2012·福州模拟)在圆x 2+y 2=4所围成的区域内随机取一个点P (x ,y ),则|x |+|y |≤2的概率为________.解析:不等式|x |+|y |≤2表示的平面区域如图中的阴影部分所示,则|x |+|y |≤2的概率为P =π×2222=π2.答案:π2三、解答题(本题有6小题,共70分)17.(11分)(2012·东北三校联考)一次数学模拟考试,共12道选择题,每题5分,共计60分,每道题有四个可供选择的答案,仅有一个是正确的.学生小张只能确定其中10道题的正确答案,其余2道题完全靠猜测回答.小张所在班级共有40人,此次考试选择题得分情况统计表:现采用分层抽样的方法从此班抽取20人的试卷进行选择题质量分析. (1)应抽取多少张选择题得60分的试卷?(2)若小张选择题得60分,求他的试卷被抽到的概率.解:(1)得60分的人数40×10%=4.设抽取x 张选择题得60分的试卷,则2040=x 4, 则x =2,故应抽取2张选择题得60分的试卷.(2)设小张的试卷为a 1,另三名得60分的同学的试卷为a 2,a 3,a 4,所有抽取60分试卷的方法为:(a 1,a 2),(a 1,a 3),(a 1,a 4),(a 2,a 3),(a 2,a 4),(a 3,a 4)共6种,其中小张的试卷被抽到的抽法共有3种,故小张的试卷被抽到的概率为P =63=21.18.(11分)某中学生物兴趣小组在学校生物园地种植了一批名贵树苗,为了解树苗的生长情况,在这批树苗中随机测量了其中50棵树苗的高度(单位:厘米),并把所得数据列成了如下表所示的频数分布表:(1)在这批树苗中任取一棵,其高度在85厘米以上的概率大约是多少?(2)这批树苗的平均高度大约是多少?(计算时可以用组中值代替各组数据的平均值) (3)为了进一步获得研究资料,若从[40,50)组中移出1棵树苗,从[90,100]组中移出2棵树苗进行试验研究,则[40,50)组中的树苗A 和[90,100]组中的树苗C 同时被移出的概率是多少?解:(1)因为[80,90)的组中值是85,所以高度在85厘米以上的树苗棵数约为6+4=10. 所以在这批树苗中任取一棵,其高度在85厘米以上的概率大约是5010=51=0.2. (2)树苗的平均高度约为5045×2+55×3+65×14+75×15+85×12+95= 503 690=73.8(厘米).(3)记[40,50)组中的树苗为A ,B ,[90,100)组中的树苗为C ,D ,E ,F ,则事件“从[40,50)组中移出1棵树苗,从[90,100]组中移出2棵树苗”中所包含的基本事件是(A ,C ,D ),(A ,C ,E ),(A ,C ,F ),(A ,D ,E ),(A ,D ,F ),(A ,E ,F ),(B ,C ,D ),(B ,C ,E ),(B ,C ,F ),(B ,D ,E ),(B ,D ,F ),(B ,E ,F ),共12个.其中,满足树苗A ,C 同时被移出的事件为(A ,C ,D ),(A ,C ,E ),(A ,C ,F ),共3个.所以树苗A 和树苗C 同时被移出的概率P =123=0.25.19.(12分)(2012·东北三校联考)汽车行业是碳排放量比较大的行业之一.欧盟规定,从2012年开始,将对CO 2排放量超过130 g/km(视为排放量超标)的MI 型新车进行惩罚.某检测单位从甲、乙两类MI 型品牌车中各抽取5辆进行CO 2排放量检测,记录如下(单位:g/km):经检测发现,乙品牌车CO 2排放量的平均值为乙=120 g/km.(1)从被检测的5辆甲类品牌车中任取2辆,则至少有一辆CO 2排放量超标的概率是多少?(2)若90<x <130,试比较甲、乙两类品牌车CO 2排放量的稳定性.解:(1)从被检测的5辆甲类品牌车中任取2辆,其CO 2排放量共有10种不同的结果:80,110;80,120;80,140;80,150;110,120;110,140;110,150;120,140;120,150;140,150.设“至少有一辆CO 2排放量超标”为事件A ,则事件A 包含以下7种不同的结果:80,140;80,150;110,140;110,150;120,140;120,150;140,150.∴P (A )=107=0.7.(2)由题可知,甲=乙=120,x +y =220.5s 甲2=(80-120)2+(110-120)2+(120-120)2+(140-120)2+(150-120)2=3 000, 5s 乙2=(100-120)2+(120-120)2+(x -120)2+(y -120)2+(160-120)2=2 000+(x -120)2+(y -120)2.∵x +y =220,∴5s 乙2=2 000+(x -120)2+(x -100)2, 令x -120=t ,∵90<x <130,∴-30<t <10, ∴5s 乙2=2 000+t 2+(t +20)2,∴5s 乙2-5s 甲2=2t 2+40t -600=2(t +30)(t -10)<0, ∴s 乙2<s 甲2,∴乙类品牌车CO 2排放量的稳定性好.20.(12分)(2012·福建模拟)某种产品的广告费支出x 与销售额y (单位:万元)之间有如下对应数据:(1)求回归直线方程;(2)试预测广告费支出为10万元时,销售额多大?(3)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.参考数据:x 5i 2=145,y 5i 2=13 500,x 5i y i =1 380解:(1)=52+4+5+6+8=525=5, =530+40+60+50+70=5250=50,又已知x 5i 2=145,x 5i y i =1 380,于是可得:^b =22=145-5×5×51380-5×5×50=6.5,^a =-^b=50-6.5×5=17.5,因此,所求回归直线方程为^y=6.5x +17.5.(2)根据上面求得的回归直线方程,当广告费支出为10万元时,^y=6.5×10+17.5=82.5(万元),即这种产品的销售收入大约为82.5万元. (3)基本事件:(30,40),(30,60),(30,50),(30,70),(40,60),(40,50),(40,70),(60,50),(60,70),(50,70)共10个.两组数据其预测值与实际值之差的绝对值都超过5有(60,50),所以至少有一组数据其预测值与实际值之差的绝对值不超过5的概率为1-101=109. 21.(12分) (2012·深圳调研)通过随机询问某校110名高中学生在购买食物时是否看营养说明,得到如下的列联表:(1)从这50名女生中按是否看营养说明采取分层抽样的方法抽取一个容量为5的样本,则样本中看与不看营养说明的女生各有多少名?(2)从(1)中的5名女生样本中随机选取两名作深度访谈,求选到看与不看营养说明的女生各一名的概率;(3)根据以上列联表,问有多大把握认为“性别与在购买食物时是否看营养说明”有关? 参考公式:K 2=(a +b(c +d(a +c(b +d n(ad -bc2,其中n =a +b +c +d .参考数据:解:(1)根据分层抽样可得:样本中看营养说明的女生有505×30=3名,样本中不看营养说明的女生有505×20=2名.(2)记样本中看营养说明的3名女生为a 1,a 2,a 3,不看营养说明的2名女生为b 1,b 2,从这5名女生中随机选取2名,共有10个等可能的基本事件:a 1,a 2;a 1,a 3;a 1,b 1;a 1,b 2;a 2,a 3;a 2,b 1;a 2,b 2;a 3,b 1;a 3,b 2;b 1,b 2.其中事件A “选到看与不看营养说明的女生各一名”包含了6个基本事件:a 1,b 1;a 1,b 2;a 2,b 1;a 2,b 2;a 3,b 1;a 3,b 2.所以所求的概率为P (A )=106=53. (3)根据题中的列联表得K 2=80×30×60×50110×(50×20-30×102=72539≈7.486. 由P (K 2≥6.635)=0.010,P (K 2≥7.879)=0.005可知,有99%的把握认为“性别与在购买食物时是否看营养说明”有关.22.(12分)(2012·石家庄模拟)某班甲、乙两名同学参加100米达标训练,在相同条件下两人10次训练的成绩(单位:秒)如下:(1)请画出适当的统计图;如果从甲、乙两名同学中选一名参加学校的100米比赛,从成绩的稳定性方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答结论);(2)从甲、乙两人的10次成绩中各随机抽取一次,求抽取的成绩中至少有一个低于12.8秒的概率;(3)经过对甲、乙两位同学的若干次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5]之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8秒的概率.解:(1)甲、乙两人10次训练的成绩的茎叶图:或频率分布直方图如下:从统计图中可以看出,乙的成绩较为集中,差异程度较小,所以选派乙同学代表班级参加比赛更好.(2)设事件A 为:甲的成绩低于12.8秒,事件B 为:乙的成绩低于12.8秒,则甲、乙两人成绩至少有一个低于12.8秒的概率为:1-106×106=2516.(3)设甲同学的成绩为x ,乙同学的成绩为y ,则|x -y |<0.8,得x -0.8<y <0.8+x ,如图,阴影部分面积即为3×3-2.2×2.2=4.16,则P (|x -y |<0.8)=P (x -0.8<y <0.8+x )=3×34.16=225104.选修4-1 几何证明选讲。
专题12 概率与统计 (解析版)
2021年江苏省高考数学三轮冲刺专项突破专题12概率与统计2020年江苏高考核心考点1.江苏高考对随机变量及分布的考查通常比较基础,对随机变量及分布,超几何分布结合考查通常是中档题。
2.江苏高考对离散型随机变量的均值与方差的考查通常比较基础。
专项突破一、解答题:本大题共16小题,共计160分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤.1.(2019—2020学年度苏、锡、常、镇四市高三教学情况调查(一))(1)某人抽奖一次,求其获奖金额X的概率分布和数学期望;(2)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.【解析】由题意知,随机变量X的可能取值为10,20,40且35351(40)6CP XA===,35351(20)6CP XA===,所以2 (10)1(40)(20)3 P X P X P X==-=-==,即随机变量X的概率分布为所以随机变量X 的数学期望21150()1020403663E X =⨯+⨯+⨯=; (2)由题意知,赵四有三次抽奖机会,设恰好获得60元为事件A , 因为60=20×3=40+10+10,所以312312149()()()636216P A C =+⋅=. 2. (江苏省苏北七市2020届高三第二次调研考试)小丽在同一城市开的2家店铺各有2名员工.节假日期间的某一天, 每名员工休假的概率都是12,且是否休假互不影响,若一家店铺的员工全部休假,而另一家无人休假,则调剂1人到该店维持营业,否则该店就停业.(1)求发生调剂现象的概率;(2)设营业店铺数为X ,求X 的分布列和数学期望.【解析】(1)记2家小店分别为A B ,,A 店有i 人休假记为事件()012i A i =,,,B 店有i 人,休假记为事件()012i B i =,,,发生调剂现象的概率为P . 则()()()2000211C 24P A P B ===, ()()()2111211C 22P A P B ===, ()()()2222211C 24P A P B ===. 所以()()02201111144448P P A B P A B =+=⨯+⨯=. (2)依题意,X 的所有可能取值为012,,. 则()()2211104416P X P A B ===⨯=,()()()122111111142244P X P A B P A B ==+=⨯+⨯=()()()11112101116416P X P X P X ==-=-==--=.所以X 的分布表为:所以()111113210164168E X =⨯+⨯+⨯=.3.(江苏省海安中学高三数学模拟考试数学试卷)某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是13,每次测试时间间隔恰当,每次测试通过与否互相独立. (1)求该学生考上大学的概率.(2)如果考上大学或参加完5次测试就结束,记该生参加测试的次数为X ,求X 的概率分布及X 的数学期望.【解析】(1)记“该生考上大学”的事件为事件A ,其对立事件为A ,每次测试通过与否互相独立,则 4515122112()333243P A C ⎛⎫⎛⎫=⨯⨯+= ⎪ ⎪⎝⎭⎝⎭所以112131()1243243P A =-=,所以该学生考上大学的概率为131243. (2)参加测试次数X 的可能取值为2,3,4,5,则211(2)39P X ⎛⎫=== ⎪⎝⎭,121214(3)33327P X C ==⨯⨯⨯=,2131214(4)33327P X C ⎛⎫==⨯⨯⨯= ⎪⎝⎭, 341412216(5)+33327P X C ⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭.所以X 的概率分布为:所以X 的数学期望为1441638()234592727279E X =⨯+⨯+⨯+⨯=. 4.(江苏省淮安市2020届高三数学模拟测试卷) 乒乓球台面被网分成甲、乙两部分,如图,甲上有两个不相交的区域,A B ,乙被划分为两个不相交的区域,C D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其它情况记0分.对落点在A 上的来球,小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在,A B 上各一次,小明的两次回球互不影响.求:(1)小明的两次回球的落点中恰有一次的落点在乙上的概率; (2)两次回球结束后,小明得分之和ξ的分布列与数学期望.【解析】(1)设恰有一次的落点在乙上这一事件为A10354615165)(=⨯+⨯=A P(2)643210,,,,,的可能取值为ξ1015121)6(,301151315321)4(15251615121)3(,515331)2(6153615131)1(,3015161)0(=⨯===⨯+⨯===⨯+⨯===⨯===⨯+⨯===⨯==ξξξξξξP P P P P P的分布列为所以ξ309110163011415235126113010)(=⨯+⨯+⨯+⨯+⨯+⨯=∴ξE 其数学期望为.5.(南通市2020届高三年级第二学期高考模拟试卷)第十二届中国国际航空航天博览会在珠海举行.在航展期间,从珠海市区开车前往航展地有甲、乙两条路线可走,已知每辆车走路线甲堵车的概率为14,走路线乙堵车的概率为p ,若现在有A ,B 两辆汽车走路线甲,有一辆汽车C 走路线乙,且这三辆车是否堵车相互之间没有影响.(1)若这三辆汽车中恰有一辆汽车被堵的概率为716,求p 的值.(2)在(1)的条件下,求这三辆汽车中被堵车辆的辆数X 的分布列和数学期望.【解析】(1)由题意知,C 21×14×34×(1-p )+34×34×p =716, 解得p =13,所以走路线乙堵车的概率p =13;(2)由题意知,随机变量X 的所有可能取值为0,1,2,3; 则P (X =0)=34×34×23=38,P (X =1)=716, P (X =3)=14×14×13=148,所以P (X =2)=1-P (X =0)-P (X =1)-P (X =3)=1-38-716-148=16; 所以随机变量X 的分布列为:数学期望E (X )=0×38+1×716+2×16+3×148=56.6.(南通市通州区2020届高三年级第二学期复学后联考数学试卷)由数字0,1,2,3,4组成一个五位数α.(1)若α的各数位上数字不重复,求α是偶数的概率;(2)若α的各数位上数字可以重复,记随机变量X 表示各数位上数字是0的个数,求X 的分布列及数学期望.【解析】(1)由0,1,2,3,4组成的五位数共有5454A A 96-=(个), 其中是偶数的,第一类,个位是0,有44A 24=(个);第二类,个位是2或4,有113233C C A 36=(个),所以α是偶数的概率为24365.968P +== (2)因为首位一定不为0,第2位至第5位,各数位上数字为0的概率均是15,且相互独立,所以X1~(4,).5B所以4411()C ()(1),0,1,2,3,4,55i ii P X i i -==-=所以X 的概率分布列为所以14()4.55E X =⨯=7.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为.现安排甲组研发新产品,乙组研发新产品.设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品研发成功,预计企业可获利润120万元;若新产品研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.【解析】记E ={甲组研发新产品成功},F ={乙组研发新产品成功}。
概率与统计试题与答案
University of California,Los AngelesDepartment of StatisticsStatistics12Instructor:Nicolas ChristouReviewProblem1A jar contains400green balls and50white balls.You will randomly select10balls without replacement. Answer the following questions:a.Write down the exact probability that among the10balls you willfind8green balls(do not computeit,just write the expression).Answer:P(X=8)= 400850245010b.Approximate the probability of part(a)using the binomial probability distribution.Answer:P(X=8)≈108(400450)8(50450)2=...c.If you select without replacement200balls,would you be able to approximate well the probability ofobserving170green balls using the binomial distribution?Explain.Answer:No!The approximation is good when nN<5%.Problem2Part A:Suppose that P(X=0)=1−P(X=1).If E(X)=3V ar(X),find:a.P(X=0).Hint:The following table can be very helpful:X P(X) 01−p 1pAnswer:From the distribution above:E(X)=p,var(X)=p−p2=p(1−p).Also,E(X)=3V ar(X)⇒p=3p(1−p)⇒1−p=13.Therefore,P(X=0)=13.b.V ar(3X).Answer:V ar(3X)=32V ar(X)=322313=2.Part B:A particular sale involves4items randomly selected from a very large lot that is known to contain10% defectives.Let X denote the number of defectives among the4sold.The purchaser of the items will return the defectives for repair,and the repair cost is given by C=3X+2.Find the expected repair cost.Hint: Very large lot suggests that practically the probability of selecting a defective item is4%for each trial. Answer:E(3X+2)=3E(X)+2=3np+2=3×4×(0.10)+2=3.2.Here,X∼b(4,0.10).A player begins playing a game and his probability of winning a game is30%.Answer the following questions:a.Find the probability that hisfirst win will occur on the5th game.Answer:P(X=5)=0.7040.30.b.Find the probability that hisfirst win will occur after the15th game.Answer:P(X>15)=0.7015.c.Find the probability that hisfirst win will occur on or before the10th trial.Answer:P(X≤10)=1−0.7010.d.Find the probability that his5th win will occur on the13th game.Answer:P(X=13)= 13−15−10.3040.708×0.30=1240.3050.708.e.Find the probability that hisfirst win will occur between the5th and8th game(including5th and8th)given that it will occur after the3rd game.Answer:P(5≤X≤8|X>3)=P(5≤X≤8)P(X>3)=P(X<9)−P(X<5)P(X>3)=...f.If the player plays the game20timesfind the expected number and standard deviation of the numberof wins.Answer:E(X)=np=20×0.30=6,sd(X)=np(1−p)=20(0.30)(1−0.30).Problem4Polygraph tests(lie-detector tests)are often routinely administered to employees or prospective employees in sensitive positions.Let R denote the event that the polygraph reading is positive(it indicates that the subject is lying),let T denote the event that the subject is telling the truth,and let L denote the event that the subject is lying.According to studies of polygraph reliability the probability of positive reading given that the subject is lying is88%,and the probability of negative reading given that the subject is telling the truth is86%.Suppose that polygraphs are routinely administered to screen employees for security reasons and that on a particular question the vast majority of subjects have no reason to lie,so that P(T)=0.99, and P(L)=0.01.a.A subject will take a polygraph test.What is the probability that the reading is positive?Answer:P(R)=P(R∩T)+P(R∩L)=P(R|T)P(T)+P(R|L)P(L)=(0.14)(0.99)+(0.88)(0.01)=0.1474.b.A subject produces a positive reading on the polygraph.What is the probability that the polygraphis incorrect?Answer:P(T|R)=P(R∩T)P(R)=(0.14)(0.99)0.1474=0.9403.The probability of winning a game is30%.a.A player plays this game repeatedly until he gets hisfirst win.Find the probability that thefirst winwill occur on the second trial and show it on thefirst graph on the opposite page.Answer:P(X=2)=0.7(0.30)=0.21.b.What is the probability that thefirst win will occur after the15th trial?Answer:P(X>15)=0.7015.c.What is the probability that thefirst win will occur on or before the15th trial?P(X≤15)=1−P(X>15)=1−0.7015.d.Find P(X≥1).Answer:P(X≥1)=1.e.What is the expected value and variance for the number of trials needed until each one observes hisfirst success.The two players play the game independently?Answer:E(X1+X2)=E(X1)+E(X2)=10.30+10.30.V ar(X1+X2)=V ar(X1)+V ar(X2)=1−0.300.302+1−0.300.302.f.Find the probability that thefirst win occurred after the8th trial GIVEN that it has occurred afterthe2nd trial.Answer:P(X>8|X>2)=P(X>6)=0.706.A coin with probability of heads equals90%is tossed.If heads is shown then a green die is rolled.If tails is shown then a red die is rolled.The probability distribution for each die is shown below:Green dieY P(Y)10.120.130.340.350.160.1Red dieY P(Y)10.320.130.140.150.160.3Answer the following questions:a.Construct the probability distribution of Y.Answer:P(Y=1)=(0.90)(0.10)+(0.10)(0.30)=0.12.P(Y=2)=(0.90)(0.10)+(0.10)(0.10)=0.10.P(Y=3)=(0.90)(0.30)+(0.10)(0.10)=0.28.P(Y=4)=(0.90)(0.30)+(0.10)(0.10)=0.28.P(Y=5)=(0.90)(0.10)+(0.10)(0.10)=0.10.P(Y=6)=(0.90)(0.10)+(0.10)(0.30)=0.12.Y P(Y)10.1220.1030.2840.2850.1060.12b.Graph the distribution of Y.c.Find E(Y),sd(Y).Answer:Use the formulas...If any of the statements below is false provide the correct answer.a.The standard deviation of a binomial random variable is always smaller than its mean.Answer:e >np to find when the statement is not true.b.Suppose X follows the geometric distribution with p =16.Then P (X >10)=(16)10.Answer:False,(56)10.c.Suppose X follows the geometric distribution with p =18.Then P (X ≥10|X >5)=(78)5.Answer:False,(78)4.d.You start playing a particular game that has probability of success 0.25.The probability that the second win will occur on the tenth trial is equal to 1020.2520.758.Answer:False, 91 0.2520.758.e.You and your friend,independently,play a game that has probability of success 25.The expected value of the total number of successes when each of you play the game 5times is 5.Answer:False,2×5×25=4.f.Refer to question (e).The standard deviation of the total number of successes is125.Answer:False, 52535+52535=125.Problem 8There are 3coins in a box.One is a two-headed coin;another is a fair coin;and the third is a biased coin that comes heads 75%of the time.a.A coin is randomly selected and flipped.What is the probability that it shows heads?Answer:P (H )=P (H ∩F )+P (H ∩2H )+P (H ∩B )=P (H |F )P (F )+P (H |2H )P (2H )+P (H |B )P (B )=1213+113+3413=34.b.When one coin is selected at random and flipped,it shows heads.What is the probability that it was the two-headed coin?Answer:P (2H |H )=P (H ∩2H )P (H )=11334=49.c.The same coin (from part (b))is flipped again and it shows heads.What is the probability that it is the fair coin?Hint:It is given that the same coin when flipped showed heads and then again heads.Answer:P (F |HH )=P (F ∩HH )P (HH )=12121312121313343413=429.。
(11)概率与统计 Word版含答案
(11)概率与统计1、用随机数表法从100名学生(其中男生40名)中抽取20名参加一项文体活动,某男生被抽到的可能性是( ) A.110B.12 C.15D.252、某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳3、PM2.5是评价空气质量的一个重要指标,我国空气质量的PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均浓度在335μg/m 以下空气质量为一级,在3335μg/m 75μg/m ~之间空气质量为二级,在375μg/m 以上空气质量为超标.如图是某地11月1日到10日日均值(单位:3μg/m )的统计数据,则下列叙述不正确的是( )A.这10天中有4天空气质量为一级B.这10天中PM2.5日均值最高的是11月5日C.从5日到9日,日均值逐渐降低D.这10天的日均值的中位数是454、已知有两组数据12,,,n x x x ⋅⋅⋅与12,,,n y y y ⋅⋅⋅,它们的平均数分别是x 和y ,则新的一组数据1122231,231,,231n n x y x y x y -+-+⋅⋅⋅-+的平均数是( )A.23x y -B.231x y -+C.49x y -D.491x y -+5、已知变量x 与y 正相关,且由观测数据算得样本平均数3, 2.5x y ==,则由该观测数据算得的线性回归方程可能是( ) A.2 2.4ˆyx =- B.0.4.3ˆ2yx =+ C.9ˆ2.5yx =-+ D.0.3 4.4ˆyx =-+ 6、某车间共有6名工人,某天他们加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数,日加工零件个数大于样本均值的工人为优秀工人.从该车间6名工人中任取2人,则至少有1名优秀工人的概率为( )A.815B.49 C.35 D.197、已知a c <,随机变量,ξη的分布列分别如下:则下列结论成立的是( )A .()(),()()E E D D ξηξη>>B .()(),()()E E D D ξηξη>=C .()(),()()E ED D ξηξη<>D .()(),()()E E D D ξηξη<=8、小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A =“4个人去的景点不相同”,事件B =“小赵独自去一个景点”,则()|P A B ==( )A. 29B.13C.49D.599、袋中装有5个大小相同的球,其中有2个白球,2个黑球,1个红球,现从袋中每次取出1球,取出后不放回,直到取到两种不同颜色的球时即终止.用X表示终止取球时所需的取球次数,则随机变量X的数学期望是( )A.115B.125C.135D.14510、某市进行一次高三教学质量抽样检测,考试后统计的所有考生的数学成绩服从正态分布.已知数学成绩平均分为90分,60分以下的人数占10%,则数学成绩在90分至120分之间的考生人数所占百分比约为()A.40%B.30%C.20%D. 10%11、某工厂生产甲、乙、丙三种不同型号的产品,三种产品产量之比为1:3:5,现用分层抽样的方法抽取容量为n的样本进行质量检测,已知抽取乙种型号的产品12件,则n __________.12、一个高中研究性学习小组对本地区2014年至2016年快餐公司发展情况进行了调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销售量的平均数情况条形图(如图),根据图中提供的信息可以得出这三年中该地区每年平均销售盒饭__________万盒.13、如图所示,用三类不同的元件接成系统N,若元件,,A B C正常工作的概率分别为123,,234,那么系统N正常工作的概率为__________.14、某人射击一次击中目标的概率为0.6,经过3次射击,此人恰有2次击中目标的概率为.15、2019年“非洲猪瘟”过后,全国生猪价格逐步上涨,某大型养猪企业,欲将达到养殖周期的生猪全部出售,根据去年的销售记录,得到销售生猪的重量的频率分布直方图(如图所示).(1).根据去年生猪重量的频率分布直方图,估计今年生猪出栏(达到养殖周期)时,生猪重量达不到270斤的概率(以频率代替概率);(2).若假设该企业今年达到养殖周期的生猪出栏量为5000头,生猪市场价格是30元/斤,试估计该企业本养殖周期的销售收入是多少万元;(3).若从本养殖周期的生猪中,任意选两头生猪,其重量达到270斤及以上的生猪数为随机变量Y,试求随机变量Y的分布列及方差.答案以及解析1答案及解析: 答案:C解析:从容量为100的总体中抽取一个容量为20的样本,每个个体被抽到的可能性都是2011005=.2答案及解析:答案:A解析:A 项,由折线图可看出2014年9月接待的游客量小于8月接待的游客量,因此月接待游客量并不是逐月增加的,故A 项结论错误符合题意.B 项,由折线图可看出2014年每个月接待的游客量小于2015年对应月份接待的游客量,2015年每个月接待的游客量小于2016年对应月份接待的游客量,所以年接待游客量逐年增加,故B 项不符合题意.C 项,由折线图可看出每一年的7,8月接待的游客量远高于当年其他月份,因此各年的月接待游客量高峰期大致在7,8月,故C 项不符合题意.D 项,由折线图可看出各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳,故D 项不符合题意. 故本题正确答案为A.3答案及解析: 答案:D解析:由图知空气质量为一级的有11月3,8,9,10日,共4天,所以A 正确;11月5日的PM2.5日均浓度值为82,是10天中最高的,所以B 正确;11月5,6,7,8,9日的PM2.5日均浓度值分别为82,73,58,34,30,逐渐降低,所以C 正确;这10天的PM2.5日均浓度值的中位数为454947,2+=所以D 不正确,故选D.4答案及解析: 答案:B解析:设231(1,2,,)i i i z x y i n =-+=⋅⋅⋅,则121212123111()()()231n n n z z z z x x x y y y x y n n n n++⋅⋅⋅+=++⋅⋅⋅+=++⋅⋅⋅+-++⋅⋅⋅++=-+.5答案及解析: 答案:B解析:依题意知,相应的回归直线的斜率应为正,排除C,D 两项.且直线必过点(3,3,5),代入A,B 两项得B 项正确.6答案及解析: 答案:C解析:依题意,平均数171920212530226x +++++==,故优秀工人有2人,记2名优秀工人分别为,A B ,其他4人分别为,,,a b c d ,从中任取2人共有15种情况,其中至少有1名优秀工人的情况有(,),(,),(,),(,),(,),(,),(,),(,),(,)A B A a A b A c A d B a B b B c B d ,共9种,故至少有1名优秀工人的概率93155P ==,故选C.7答案及解析: 答案:B 解析:8答案及解析: 答案:A解析:小赵独自去一个景点,则有3个景点可选,其余3人只能在小赵剩下的3个景点中选择,可能性为3×3×3=27种所以小赵独自去一个景点的可能性为4×27=108种 因为4 个人去的景点不相同的可能性为4×3×2×1=24种, 所以()2421089|P A B ==. 故选:A.9答案及解析: 答案:A解析:由题知X 的可能取值为2,3,则 21211(3)54545P X ==⨯+⨯=,14(2)1(3)155P X P X ==-==-=,∴4111()23555E X =⨯+⨯=,∴随机变量X 的数学期望是115.故选A10答案及解析:答案:A 解析:11答案及解析: 答案:36解析:该工厂生产的甲、乙、丙三种型号产品的数量之比为1:3:5,用分层抽样的方法抽取一个容量为n 的样本,样本中乙种型号的产品有12件,所以31236135n =÷=++.12答案及解析: 答案:85 解析:2014年: 30 1.030⨯= (万),2015年: 45 2.090⨯= (万),2016年: 90 1.5135⨯= (万),()13090135853x =++= (万).13答案及解析: 答案:1124解析:要使系统N 正常工作,则需A 正常工作, ,B C 至少有一个能正常工作,因此系统N 能正常工作的槪率为11111123424⎛⎫⨯-⨯= ⎪⎝⎭14答案及解析:答案:54125解析:恰有2次击中目标的概率是()223540.610.6125C ⨯⨯-=.15答案及解析:答案:(1).估计生猪重量达不到270斤的概率为 (0.00050.002)400.005300.25+⨯+⨯=.(2).生猪重量的平均数为1800.022200.082600.23000.323400.24⨯+⨯+⨯+⨯+⨯3800.1+⨯+4200.04⨯305.6=(斤).所以估计该企业本养殖周期的销售收入是305.6305000⨯⨯4584=(万元). (3).由(1)可得随机选一头生猪,其重量达到270斤及以上的概率为310.254-=,由题意可得随机变量Y 的所有可能取值为0,1,2,则3~(2,)4Y B ,∴0022311(0)C ()()4416P Y ==⨯⨯=, 1112313(1)C ()()448P Y ==⨯⨯=, 2202319(2)C ()()P Y ==⨯⨯=, ∴随机变量Y 的分布列为∴随机变量Y 的方差313()2448D Y =⨯⨯=. 解析:。
《概率与统计》典型题(十四)docx
《概率与统计》典型题十四线性相关性,回归方程及应用1.【17课标1】为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16,18.439≈,161()(8.5) 2.78iix x i=--=-∑,其中i x为抽取的第i个零件的尺寸,1,2,,16i=⋅⋅⋅.(1)求(,)ix i(1,2,,16)i=⋅⋅⋅的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r<,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,学.科网是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s-+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i ix y(1,2,,)i n=⋅⋅⋅的相关系数()()ni ix x y yr--=∑,0.09≈.2. 【15福建】为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家7.5 根据上表可得回归直线方程 ,其中 ,据此估计,该社区一户收入为15万元家庭年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元 3. (14课标2)某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121niii ni i t t y y b t t ∧==--=-∑∑,ˆˆay bt =-ˆ4.【15新课标1】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费和年销售量(=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中 , =(Ⅰ)根据散点图判断,y=a +bx 与y =c +哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x 、y 的关系为z =0.2y -x.根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费x =49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据,,……,,其回归线的斜率和截距的最小二乘估计分别为:,i x i y i r u r u r 8888i w =w 81ii w=∑11(,)u v 22(,)u v (,)n n u v v u αβ=+µ121()()=()niii nii u u v v u u β==---∑∑µµ=v u αβ-5. 【16课标2】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(I )由折线图看出,可用线性回归模型拟合与的关系,请用相关系数加以说明; (II )建立关于的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注: 参考数据:,,7≈2.646.参考公式:相关系数回归方程 中斜率和截距的最小二乘估计公式分别为: .y t yt 719.32ii y==∑7140.17i i i t y ==∑0.55=()()niit t y y r --=∑$$y a b =+$121()()()nii i nii tt y y btt ==--=-∑∑$,$ay bt =-$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率与统计》典型题十二超几何分布和二项分布1.(17山东)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.
B的频率。
(I)求接受甲种心理暗示的志愿者中包含A1但不包含
1
(II)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.
2.【15湖南】某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.
3. [14·四川] 一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次
击鼓出现音乐的概率为12
,且各次击鼓出现音乐相互独立. (1)设每盘游戏获得的分数为X ,求X 的分布列.
(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?
(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.
4. [14·天津] 某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来
自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).
(1)求选出的3名同学是来自互不相同学院的概率;
(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望.
5.【17北京】为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.
(Ⅰ)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;
(Ⅱ)从图中A,B,C,D四人中随机学科网.选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望E(ξ);
(Ⅲ)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小
6. [14·辽宁] 一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图14所示.
(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;
(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).。