A356铝合金显微组织及断口分析
A356铝合金显微组织与断口分析报告
![A356铝合金显微组织与断口分析报告](https://img.taocdn.com/s3/m/e36e4735783e0912a2162a9c.png)
目录1 绪论 (1)1.1断口分析的意义 (1)1.2 对显微组织及断口缺陷的理论分析 (1)1.3研究方法和实验设计 (3)1.4预期结果和意义 (3)2 实验过程 (4)2.1 生产工艺 (4)2.1.1 加料 (4)2.1.2 精炼 (4)2.1.3 保温、扒渣和放料 (5)2.1. 4 单线除气和单线过滤 (5)2.1. 5连铸 (6)2.2 实验过程 (6)2.2. 1 试样的选取 (6)2.2.2 金相试样的制取 (8)2.2.3 用显微镜观察 (9)2.3 观察方法 (10)2.3.1显微组织的观察 (10)2.3.2 对断口形貌的观察 (11)3 实验结果及分析 (11)3.1对所取K模试样的观察 (11)3.2 金相试样的观察及分析 (12)3.2.1 对显微组织的观察 (12)3.2.2 断口缺陷 (16)结论 (24)致 (25)参考文献 (26)附录 (28)1 绪论1.1断口分析的意义随着现代科技的发展以及现代工业的需求,作为21世纪三大支柱产业的材料科学正朝着高比强度,高强高韧等综合性能等方向发展。
长久以来,铸造铝合金以其价廉、质轻、性能可靠等因素在工业应用中获得了较大的发展。
尤其随着近年来对轨道交通材料轻量化的要求日益迫切[1],作为铸造铝合金中应用最广的A356铝合金具有铸造流动性好、气密性好、收缩率小和热裂倾向小,经过变质和热处理后,具有良好的力学性能、物理性能、耐腐蚀性能和较好的机械加工性能[2-3],与钢轮毂相比,铝合金轮毂具有质量轻、安全、舒适、节能等,在汽车和航空工业上得到了日益广泛的应用[4]。
然而,由于其凝固收缩,同时在熔融状态下很容易溶入氢,因此铸造铝合金不可避免地包含一定数量的缺陷,比如空隙、氧化物、孔洞和非金属夹杂物等[5-7]。
这些缺陷对构件的力学性能影响较大,如含1%体积分数的空隙将导致其疲劳50%,疲劳极限降20%[8-9]。
所以研究构件中缺陷的性质、数量、尺寸和分布位置对力学性能的影响具有重要意义[10]。
《2024年低压铸造A356合金轮毂的组织与性能研究》范文
![《2024年低压铸造A356合金轮毂的组织与性能研究》范文](https://img.taocdn.com/s3/m/2be4894d6d175f0e7cd184254b35eefdc8d31594.png)
《低压铸造A356合金轮毂的组织与性能研究》篇一一、引言随着汽车工业的快速发展,轮毂作为汽车的重要组成部分,其性能与质量直接关系到整车的行驶安全与舒适性。
低压铸造是一种常用的轮毂制造工艺,其通过精确控制铸造过程中的压力、温度和时间等参数,能够有效地提高铸件的致密度和机械性能。
A356合金因其良好的流动性、可铸性和力学性能,在轮毂制造中得到了广泛应用。
本文旨在研究低压铸造A356合金轮毂的组织与性能,为轮毂的优化设计和制造提供理论依据。
二、材料与方法1. 材料选择选用A356合金作为轮毂的铸造材料。
A356合金是一种铝合金,具有良好的铸造性能和机械性能,适合用于轮毂等承受载荷的零部件。
2. 低压铸造工艺采用低压铸造工艺进行轮毂的制造。
该工艺通过控制铸造过程中的压力、温度和时间等参数,实现精确控制铸件的凝固过程,从而提高铸件的致密度和机械性能。
3. 组织与性能分析方法对铸造后的轮毂进行组织观察和性能测试。
组织观察主要采用金相显微镜和扫描电子显微镜等方法,观察铸件的组织形态、晶粒大小和分布等情况。
性能测试主要包括硬度测试、拉伸试验和疲劳试验等,评估铸件的机械性能。
三、结果与分析1. 组织观察结果通过金相显微镜和扫描电子显微镜观察发现,低压铸造A356合金轮毂的组织致密,晶粒大小均匀,没有明显的气孔、夹渣等缺陷。
组织中存在一定数量的第二相颗粒,这些颗粒对提高合金的机械性能具有重要作用。
2. 机械性能测试结果硬度测试表明,低压铸造A356合金轮毂的硬度较高,具有较好的耐磨性能。
拉伸试验结果显示,铸件具有较高的抗拉强度和屈服强度,表明其具有较好的抗变形能力。
疲劳试验结果表明,铸件具有良好的疲劳性能,能够承受长时间的交变载荷。
3. 组织与性能关系分析组织观察和机械性能测试结果表明,低压铸造A356合金轮毂的组织与性能之间存在密切关系。
致密的组织和均匀的晶粒分布是保证铸件具有较高机械性能的基础。
第二相颗粒的存在能够进一步提高合金的硬度、抗拉强度和屈服强度等性能。
铸造A356铝合金的拉伸性能及其断口分析
![铸造A356铝合金的拉伸性能及其断口分析](https://img.taocdn.com/s3/m/d08b93d6b14e852458fb575e.png)
铸造A356铝合金的拉伸性能及其断口分析冉广,周敬恩,王永芳(西安交通大学金属材料强度国家重点实验室,陕西西安710049)摘要:研究了铸造A356-T6铝合金板不同位置处的拉伸性能。
采用扫描电子显微镜和光学显微镜对拉伸断口及断口纵剖面的组织形貌进行了观察分析。
试验结果表明,铸造A356一T6铝合金的拉伸屈服强度随离浇道口平面距离的增加而减小,断裂强度则是先减小然后再增大,而延伸率随高度变化不明显。
铸造A356-T6铝合金的平均屈服强度、断裂强度、延伸率和断面收缩率分别为2l6.64 MPa,224 MPa,1.086%和0.194%。
断口分析表明拉伸断口的表面分布着杂质、孔洞、铸造缩孔和氧化膜等缺陷,断口表面也存在开裂的由碳、氧、铁、镁、铝和硅元素形成的复合粒子。
铸造A356-T6铝合金在拉伸过程中,裂纹萌生于共晶硅粒子与基体结合处,并沿枝晶胞之间的共晶区域进行扩展,当前进的裂纹遇到取向不一致的共晶硅粒子时,裂纹将截断共晶硅粒子。
铸造A356-T6铝合金拉伸断裂方式为沿胞(即穿晶)断裂的准解理断。
关键词:铸造A356铝合金:A1-7%Si-0.4Mg;拉伸性能;断裂机制:断口形貌中图法分类号:TG 146.2 l 文献标识码:A文章编号:1002一l85X(2006)10一l620—05Abstract:The cast A356 aluminum alloy plate produced by precision sand(chemical bonded)process was heat treated by T6 technology. Tensile properties in diferent locations of cast A356-T6 aluminum alloy plate were studied.The fractography and its longitudinal surface were examined and analyzed by optical microscope(OM),scanning electric microscope(SEM)and energy spectrum analysis(ESA).The results show that the yield strength of cast A356-T6 aluminum alloy decreases with increasing of the distance from the inner gate plane, but the tensile strength firstly decreases and then increases with increasing of the distance.The elongation variation with the distance is not obvious.The average values of yield strength(o-0 2),tensile strength(o-b),elongation( and reduction in area (%)of A356-T6 alloy are 2 1 6.64 M Pa,224 M Pa,1.086% and 0.1 94%,respectively.The inclusions,pores,shrinkage porosities and oxide film were observed in fracture surface.And the fracture particle combined by C,O,Fe,M g,AI and Si elements was also observed in some tensile fracture surface.During the tensile testing,the cracks initiated from the interface between eutectic silicon and aluminum matrix,and propagated along eutectic region around the dendritic cel1.The tensile fracture m echanism of cast A356-T6 aluminum alloy is quasi-cleavage feature of trangranular model(along the cell fracture).Key words:cast A356 aluminum alloy;AI-7%Si-0.4M g;tensile properties;fracture mechanism;fractography1前言铸造铝合金由于具有优异的铸造性能,良好的耐腐蚀性,高的强重比和铸件制造成本低,能够近终成型等特点,在汽车和航空工业上得到了日益广泛的应用[1-4],其中A1.Si7.Mg(A356)铸造铝合金通常用来制备汽车气缸盖及发动机滑块构件[5]。
《2024年低压铸造A356合金轮毂的组织与性能研究》范文
![《2024年低压铸造A356合金轮毂的组织与性能研究》范文](https://img.taocdn.com/s3/m/512c378877eeaeaad1f34693daef5ef7bb0d127c.png)
《低压铸造A356合金轮毂的组织与性能研究》篇一一、引言低压铸造技术,在制造高质量轮毂,如A356合金轮毂中,扮演着至关重要的角色。
本文旨在深入探讨低压铸造A356合金轮毂的组织结构与性能特点,以期为相关制造工艺的优化和产品性能的提升提供理论支持。
二、低压铸造技术概述低压铸造是一种金属铸造技术,其特点是在较低的压力下,使金属液逐渐充满模具,以实现产品的成型。
对于A356合金而言,这种技术有助于优化其显微组织和性能。
三、A356合金介绍A356合金是一种常见的铝硅合金,具有优异的铸造性能、良好的机械性能和抗腐蚀性能。
它被广泛应用于轮毂、发动机零部件等产品的制造中。
四、组织结构研究1. 显微组织观察:通过对低压铸造A356合金轮毂的显微组织进行观察,发现其组织主要由铝基体、硅相和其他杂质相组成。
其中,硅相的形态、大小和分布对合金的性能具有重要影响。
2. 晶粒尺寸:晶粒尺寸是影响材料性能的重要因素。
低压铸造过程中,通过控制冷却速度和温度梯度,可以获得不同晶粒尺寸的A356合金轮毂。
研究表明,较小的晶粒尺寸有助于提高材料的力学性能。
五、性能研究1. 力学性能:低压铸造A356合金轮毂具有较高的抗拉强度、屈服强度和延伸率。
这些性能指标与合金的显微组织、晶粒尺寸、杂质含量等因素密切相关。
2. 耐腐蚀性能:A356合金具有良好的耐腐蚀性能,尤其是在大气、海水等环境中表现出较好的稳定性。
这主要归功于其致密的氧化膜和较低的杂质含量。
六、影响因素及优化措施1. 铸造工艺参数:铸造温度、压力和冷却速度等工艺参数对A356合金轮毂的组织和性能具有重要影响。
通过优化这些参数,可以获得更好的显微组织和性能。
2. 合金成分:合金中的杂质含量、硅含量等也会影响其组织和性能。
因此,在保证性能的前提下,应尽量降低杂质含量,并合理调整硅含量。
3. 后处理工艺:对A356合金轮毂进行适当的后处理,如热处理、表面处理等,可以进一步提高其性能。
A356.2铝合金轮毂拉伸性能及断口分析
![A356.2铝合金轮毂拉伸性能及断口分析](https://img.taocdn.com/s3/m/33279d0076c66137ee0619e6.png)
(上接第41页) 铆钉用量在5 000~8 000颗不等,平均按2元/颗计 算,仅铆钉材料成本一项就1万多元,这也是制约铝 合金客车普及的一个重要因素。
车身蒙皮的连接以粘接为主[4],在需要局部加强 的部位配以自冲铆,即粘接-自冲铆复合工艺[5],既 满足表面要求又保证了连接强度。
5 总结
观结构细化,二次枝晶臂间距较小;后凝固部分随着 保温时间延长,晶粒呈长大趋势,二次枝晶臂间距尺 寸增加。 3.2 拉伸试验
轮毂上、下轮缘在同一圆周方向上各取2个样 品,轮辐6个样品分别取自不同的辐条。相同部位不 同样品的各力学性能参数分别取平均值得出轮毂上不 同取样位置的抗拉强度、屈服强度和伸长率的对比关 系,见图3。
sintered Al-Si-Mg matrix composites[J]. Journal of Materials Engineering and Performance,1997,6(6): 785. [3]Atxaga G, Pelayo A, Iri sar ri A M. Effect of microstructure on fatigue behavior of cast Al7-Si-Mg alloy[J]. Mater Sci Tech ,2001, 17: 446. [4]Groteke D E, Designs Q C, et al. Influence of SNIF treatment on characteristics of aluminum foundry alloys [J]. AFS Transactions,1985, 181: 953- 960. [5]黄良余,张少宗. 铝合金精炼理论要点和工艺原则 [J] . 特种铸造及有色合金,1998,(2): 40- 42. [6]冉 广,周敬恩,王永芳. 铸造A356铝合金的拉伸性 能及其断口分析[J]. 稀有金属材料与工程,2006,35 (10):1620-1624. [7]张新梅,郝丽华,蒋大鸣,庞振民. A1-Mg-Si 合金 拉伸断口研究[J]. 材料工程, 1996, 5: 35-36,15.
A356铝合金的组织与性能研究
![A356铝合金的组织与性能研究](https://img.taocdn.com/s3/m/35528a7511661ed9ad51f01dc281e53a580251ee.png)
A356铝合金的组织与性能研究A356铝合金的组织主要由α-Al固溶体、硅和镁等相组成。
固溶体的成分和分布对合金的强度和硬度有重要影响。
硅相主要是硅颗粒,可以细化合金的晶粒和增加强度。
镁相主要是镁铸型合金中的二次相,可以增加合金的强度和塑性。
为了研究A356铝合金的组织特点,我们使用了金相显微镜进行观察和分析。
观察结果显示,A356铝合金的晶粒呈均匀细小的结构,晶粒大小约为20-50μm。
在晶界处能够观察到硅颗粒,其尺寸约为5-10μm。
此外,在镁铸型合金中还能够发现一些间隙相,尺寸较小,主要分布在晶界附近。
进一步地,我们对A356铝合金的力学性能进行了测试。
拉伸试验的结果显示,A356铝合金的屈服强度约为170MPa,抗拉强度约为300MPa,延伸率约为7%。
这些结果表明,A356铝合金具有较高的强度和一定的塑性,具备良好的可加工性。
此外,我们还对A356铝合金进行了硬度测试。
硬度测试结果显示,A356铝合金的硬度(HB)约为80。
这进一步证明了A356铝合金的较高强度和硬度特点。
A356铝合金的研究也涉及到其热处理工艺的优化。
通过合适的热处理工艺,可以进一步调控合金的组织和性能。
例如,固溶处理可以有效分散和溶解硅相,从而细化晶粒,并提高合金的韧性。
时效处理可以进一步沉淀和弥散硬质相,增强合金的强度和硬度。
总结起来,A356铝合金具有均匀细小的晶粒结构,硬度适中,抗拉强度和塑性较高。
在热处理工艺方面,固溶处理和时效处理可以进一步改善合金的性能。
对A356铝合金的组织和性能的深入研究,有助于提高其应用的效果和质量,为相关工业领域的发展提供技术支持。
A356铝合金显微组织及断口分析
![A356铝合金显微组织及断口分析](https://img.taocdn.com/s3/m/5395eedff78a6529657d5347.png)
目录1 绪论11.1断口分析的意义11.2 对显微组织及断口缺陷的理论分析11.3研究方法和实验设计31.4预期结果和意义32 实验过程42.1 生产工艺42.1.1 加料42.1.2 精炼42.1.3 保温、扒渣和放料52.1. 4 单线除气和单线过滤52.1. 5连铸62.2 实验过程62.2. 1 试样的选取62.2.2 金相试样的制取82.2.3 用显微镜观察92.3 观察方法102.3.1显微组织的观察102.3.2 对断口形貌的观察113 实验结果及分析123.1对所取K模试样的观察123.2 金相试样的观察及分析133.2.1 对显微组织的观察133.2.2 断口缺陷16结论24致谢25参考文献26 附录281 绪论1.1断口分析的意义随着现代科技的发展以及现代工业的需求,作为21世纪三大支柱产业的材料科学正朝着高比强度,高强高韧等综合性能等方向发展。
长久以来,铸造铝合金以其价廉、质轻、性能可靠等因素在工业应用中获得了较大的发展。
尤其随着近年来对轨道交通材料轻量化的要求日益迫切[1],作为铸造铝合金中应用最广的A356铝合金具有铸造流动性好、气密性好、收缩率小和热裂倾向小,经过变质和热处理后,具有良好的力学性能、物理性能、耐腐蚀性能和较好的机械加工性能[2-3],与钢轮毂相比,铝合金轮毂具有质量轻、安全、舒适、节能等,在汽车和航空工业上得到了日益广泛的应用[4]。
然而,由于其凝固收缩,同时在熔融状态下很容易溶入氢,因此铸造铝合金不可避免地包含一定数量的缺陷,比如空隙、氧化物、孔洞和非金属夹杂物等[5-7]。
这些缺陷对构件的力学性能影响较大,如含1%体积分数的空隙将导致其疲劳50%,疲劳极限降20%[8-9]。
所以研究构件中缺陷的性质、数量、尺寸和分布位置对力学性能的影响具有重要意义[10]。
而这些缺陷往往是通过显微组织和断口分析来研究的。
另外,通过显微组织和断口分析所得到的结果可以分析这些缺陷产生的原因,研究断裂机理,比结合工艺过程分析缺陷产生的原因,从而对改进工艺提出一定的有效措施,确定较好的生产工艺,以提高铝合金铸锭的性能。
铸造A356铝合金的拉伸性能及其断口分析
![铸造A356铝合金的拉伸性能及其断口分析](https://img.taocdn.com/s3/m/869d2b2fccbff121dd368342.png)
摘要:研究了铸造A356-T6铝合金板不同位置处的拉伸性能。
采用扫描电子显微镜和光学显微镜对拉伸断口及断口纵剖面的组织形貌进行了观察分析。
试验结果表明,铸造A356一T6铝合金的拉伸屈服强度随离浇道口平面距离的增加而减小,断裂强度则是先减小然后再增大,而延伸率随高度变化不明显。
铸造A356-T6铝合金的平均屈服强度、断裂强度、延伸率和断面收缩率分别为2l6.64 MPa,224 MPa,1.086%和0.194%。
断口分析表明拉伸断口的表面分布着杂质、孔洞、铸造缩孔和氧化膜等缺陷,断口表面也存在开裂的由碳、氧、铁、镁、铝和硅元素形成的复合粒子。
铸造A356-T6铝合金在拉伸过程中,裂纹萌生于共晶硅粒子与基体结合处,并沿枝晶胞之间的共晶区域进行扩展,当前进的裂纹遇到取向不一致的共晶硅粒子时,裂纹将截断共晶硅粒子。
铸造A356-T6铝合金拉伸断裂方式为沿胞(即穿晶)断裂的准解理断。
关键词:铸造A356铝合金:A1-7%Si-0.4Mg;拉伸性能;断裂机制:断口形貌1 前言铸造铝合金由于具有优异的铸造性能,良好的耐腐蚀性,高的强重比和铸件制造成本低,能够近终成型等特点,在汽车和航空工业上得到了日益广泛的应用[1-4],其中A1.Si7.Mg(A356)铸造铝合金通常用来制备汽车气缸盖及发动机滑块构件[5]。
铸造铝合金构件的主要问题是存在孔隙、氧化物和非金属夹杂物等缺陷[4],这些缺陷强烈影响构件的服役性能。
铸造A356铝合金的力学性能取决于构件中相的特性及其分布,缺陷的性质、数量和尺寸。
尽管铸造A356铝合金的力学性能及其疲劳性能得到了广泛的研究[4-9],但仍然有一些问题有待于进一步研究予以澄清,比如,铸造铝合金在拉伸过程中裂纹的萌生及其扩展的定量分析有待进一步的建立。
在疲劳载荷加载中,短裂纹扩展行为取决于应力状态和组织结构特征,比如,硅粒子和α-Al形态、分布及其大小,缺陷的性质、分布、数量及其大小。
铸造A356铝合金的微观组织及其拉伸性能研究
![铸造A356铝合金的微观组织及其拉伸性能研究](https://img.taocdn.com/s3/m/74508d0103d8ce2f006623d8.png)
A3562T6 alum inum alloy, respectively. The tensile fracture mechanism of cast A3562T6 alum inum alloy revealed a tran2 granular model ( along the cell fracture) w ith quasi2cleavage feature. The yield strength (σ012 ) , ultimate tensile strength (σb ) and elongation (δ) of A3562T6 alloy were 240 M Pa, 25418 M Pa and 1116% , respectively.
气 30 m in。铸造 A356铝合金的化学成分如表 1所示 。 对铸造后的 A356铝合金进行 T6热处理 ( 538 ℃固溶 处理 5 h, 70 ℃热水淬火 +自然时效 1 h + 160 ℃人工 时效 4 h) 。
《金属热处理 》2007年第 32卷第 3期
13
表 1 铸造 A356铝合金的化学成分 (质量分数 , %)
Key words: cast A356 alum inum alloy; quantitative m etallographic exam ination; tensile p roperties; m icrostructure
铸造铝合金由于具有优异的铸造性能 ,良好的耐 处理 后 的 铸 造 A356 合 金 的 力 学 性 能 已 有 相 关 报
L 为穿过二次枝晶臂任意截线总长 , n 为截线所截二
次枝晶臂的总间隔数或二次枝晶臂个数 。其它特征参
数值由图像分析系统自动测得 。
A356铝合金及性能研究
![A356铝合金及性能研究](https://img.taocdn.com/s3/m/0cd96146482fb4daa58d4bec.png)
A356铝合金的组织及性能研究目录摘要错误!未指定书签。
错误!未指定书签。
1 绪论错误!未指定书签。
1.1 引言错误!未指定书签。
1.2 铝及其合金概述错误!未指定书签。
1.3 热处理工艺错误!未指定书签。
1.4 A356铝合金研究现状错误!未指定书签。
1.5 主要内容错误!未指定书签。
2 实验方法及过程错误!未指定书签。
2.1 合金成分错误!未指定书签。
2.2 试样制备和热处理方法错误!未指定书签。
2.2.1 试样切割.......................... 错误!未指定书签。
2.2.2 热处理............................ 错误!未指定书签。
2.3 金相观察错误!未指定书签。
2.3.1 金相试样的制备错误!未指定书签。
2.3.2 金相观察错误!未指定书签。
2.4 力学性能的测试错误!未指定书签。
2.4.1 硬度测试错误!未指定书签。
2.4.2 拉伸性能测试错误!未指定书签。
3 实验结果及分析错误!未指定书签。
3.1 金相组织观察结果错误!未指定书签。
3.1.1 热处理前的微观组织错误!未指定书签。
3.1.2 热处理后的微观组织错误!未指定书签。
3.2 力学性能分析错误!未指定书签。
3.2.1 表面硬度错误!未指定书签。
3.2.2 拉伸性能错误!未指定书签。
4 结论错误!未指定书签。
致谢错误!未指定书签。
参考文献错误!未指定书签。
百色学院本科毕业论文(设计)诚信保证书错误!未指定书签。
错误!未定义书签。
摘要:对A356铝合金分别进行金相观察和力学试验,研究其微观组织及性能,同时探讨热处理方式对A356铝合金组织及性能的影响,结果发现枝状晶比较粗大,分布松散,表面硬度、抗拉强度和屈服强度都较低,塑性较好。
经一定热处理后,粗大共晶硅熔断形成分布均匀、趋于球化的细小颗粒,除了塑性有所降低外,其他力学性能都有了显著提高。
最佳热处理工艺为(560℃+6h)固溶+(180℃+4h)人工时效。
A356铝合金显微结构及拉伸断口分析_范宋杰
![A356铝合金显微结构及拉伸断口分析_范宋杰](https://img.taocdn.com/s3/m/18e33960b84ae45c3a358c01.png)
图 2 场扫描电镜照片 Fig. 2 The photographs of FE2SEM
3. 2 拉伸断口分析 图 3 是本试样的扫描电镜拉伸断口照片 。从拉
伸断口的扫描电镜照片来看 ,断口表面形貌为脆性 断裂和塑性断裂的混合断口 。图 3 (a ,c) 中可以发 现 ,断口表面具有一定的韧窝 ,但是韧窝比较浅和 小 ,铝基体是面心立方结构 ,因此基本上不存在解离 断裂 ,时效铝合金的拉伸断裂形式一般分为三种 ,即 滑移带开裂 、沿晶开裂和韧窝型开裂[6] ,在本试样中 发现其断口表面有很多较为平坦的为准解离面 ,这
1 引 言
A356 系列铝合金是美国于 70 年代研制的一种 铝合金 ,该合金是常用的铸造铝2硅2镁系合金 ,此合 金具有铸造流动性好 、气密性好 、收缩率小和热裂倾 向小 ,经过变质和热处理后 ,具有良好的力学性能 、 物理性能 、耐腐蚀性能和较好的机械加工性能[1 ,2] , 是铸造铝合金中用途最广的合金之一 。共晶硅颗粒 在基体中的分布及形状影响了铸造 A356 铝合金的 机械性能 ,细小球状 、均匀分布的硅颗粒可以提高该
ABSTRACT : The eutectic silico n p hase 、Fe2rich particles and shrinkage defect dist ributed in t he p rimaryα2Al p hase were o bserved by test met hods such as t he optical metallograp hic micro scope and F E2SEM. The characteristic of mi2 cro st ruct ure has been analysed. The tensile f ract ure surface was also observed by SEM. The f ract ure surface shows t he mixed2rupt ure characteristics of quasi2cleavage and dimple. The f ract ure p rocess and mechanism was investiga2 ted. KEY WORDS : A356 alloy ; micro st ruct ure ; tensile f ract ure surface
A356铝合金的组织与性能研究
![A356铝合金的组织与性能研究](https://img.taocdn.com/s3/m/ba7bf898e45c3b3567ec8be3.png)
A356铝合金的组织与性能研究目录摘要 (2)Abstract (3)1 绪论 (1)1.1 引言 (1)1.2 铝及其合金概述 (2)1.3 热处理工艺 (3)1.4 A356铝合金研究现状 (4)1.5 主要容 (5)2 实验方法及过程 (5)2.1 合金成分 (5)2.2 试样制备和热处理方法 (6)2.2.1 试样切割 (6)2.2.2 热处理 (6)2.3 金相观察 (7)2.3.1 金相试样的制备 (7)2.3.2 金相观察 (9)2.4 力学性能的测试 (9)2.4.1 硬度测试 (9)2.4.2 拉伸性能测试 (9)3 实验结果及分析 (10)3.1 金相组织观察结果 (10)3.1.1 热处理前的微观组织 (10)3.1.2 热处理后的微观组织 (12)3.2 力学性能分析 (14)3.2.1 表面硬度 (14)3.2.2 拉伸性能 (17)4 结论 (17)致 (19)参考文献 (20)学院本科毕业论文(设计)诚信保证书 (22)摘要:对A356铝合金分别进行金相观察和力学试验,研究其微观组织及性能,同时探讨热处理方式对A356铝合金组织与性能的影响,结果发现枝状晶比较粗大,分布松散,表面硬度、抗拉强度和屈服强度都较低,塑性较好。
经一定热处理后,粗大共晶硅熔断形成分布均匀、趋于球化的细小颗粒,除了塑性有所降低外,其他力学性能都有了显著提高。
最佳热处理工艺为(560℃+6h)固溶+(180℃+4h)人工时效。
关键词:A356铝合金;固溶处理;时效处理;力学性能;微观组织Research on Microstructure and Properties of A356Aluminum AlloyAbstract:The microstructures and properties of A356 aluminum alloy were investigated by means of optical metallography and tensile test. Meanwhile, the effects of heat treatment on microstructure were analyzed. The results show that the more coarse dendrites are evenly distributed, the lower hardness, tensile strength, yield strength and the greater plastic are obtained. The coarse dendrites are broken off, uniform distribution and granular after heat treatment. The mechanical properties have significantly improved except for ductility. The optimized solution treatment for 6 hours at 560℃ and aging treatment for 4 hours at 180℃ are recommended.Key words:A356 aluminum alloy; Solid solution treatment; Aging treatment; Mechanical properties; microstructure1 绪论1.1 引言材料是国民经济和社会发展的重要物质基础,是现代技术的三大支柱之一,其中,铸造铝合金在工程材料领域中又占有非常重要的地位。
《2024年低压铸造A356合金轮毂的组织与性能研究》范文
![《2024年低压铸造A356合金轮毂的组织与性能研究》范文](https://img.taocdn.com/s3/m/8915b9221611cc7931b765ce050876323112740f.png)
《低压铸造A356合金轮毂的组织与性能研究》篇一一、引言随着汽车工业的快速发展,轮毂作为汽车的重要组成部分,其材料的选择与制造工艺的优化显得尤为重要。
低压铸造技术以其独特的优势在轮毂制造领域得到广泛应用。
A356合金作为一种常用的铝合金材料,因其良好的铸造性能和机械性能被广泛用于轮毂制造。
本文将深入探讨低压铸造A356合金轮毂的组织与性能,以期为轮毂的优化设计与制造提供理论支持。
二、材料与方法1. 材料选择A356合金作为一种典型的铝合金,具有较好的流动性、耐腐蚀性和机械性能,是低压铸造轮毂的理想选择。
2. 铸造工艺低压铸造技术利用较低的压力将熔融的金属液注入模具中,通过精确控制压力和温度,实现轮毂的精确铸造。
3. 实验方法(1)组织观察:采用金相显微镜和扫描电子显微镜观察轮毂的微观组织结构。
(2)性能测试:进行硬度测试、拉伸试验和耐腐蚀性测试等。
(3)数据分析:对实验数据进行统计和分析,探究组织与性能之间的关系。
三、结果与讨论1. 组织结构分析通过金相显微镜和扫描电子显微镜观察发现,A356合金轮毂的微观组织主要由树枝晶组成,晶粒分布均匀,晶界清晰可见。
在铸造过程中,熔融金属液在模具中逐渐凝固,形成具有特定形态的晶粒结构。
此外,在晶粒间还观察到少量的夹杂物和气孔,这些因素对轮毂的性能具有一定影响。
2. 性能分析(1)硬度:A356合金轮毂具有较高的硬度,说明其具有良好的抗磨损和抗变形能力。
(2)拉伸试验:轮毂的拉伸强度和延伸率均符合相关标准要求,表明其具有较好的抗拉强度和韧性。
(3)耐腐蚀性:A356合金具有良好的耐腐蚀性,能够有效抵抗化学物质的侵蚀和大气腐蚀。
通过对组织与性能之间的关系进行分析发现,微观组织的晶粒大小、晶界清晰度和夹杂物含量等因素对轮毂的性能具有重要影响。
合理的组织结构能够提高轮毂的硬度和耐腐蚀性等性能。
因此,在铸造过程中应控制好熔融金属液的浇注温度、压力和模具温度等参数,以获得理想的组织结构。
《低压铸造A356合金轮毂的组织与性能研究》范文
![《低压铸造A356合金轮毂的组织与性能研究》范文](https://img.taocdn.com/s3/m/2e2c5e5dbfd5b9f3f90f76c66137ee06eff94ec2.png)
《低压铸造A356合金轮毂的组织与性能研究》篇一一、引言随着汽车工业的快速发展,轮毂作为汽车的重要组成部分,其材料的选择与制造工艺的优化对提升汽车性能和安全性具有重要意义。
低压铸造是一种常用的金属铸造工艺,以其成本低、操作简便、成品率高等优点广泛应用于轮毂等零部件的制造。
A356合金作为一种常用的铝合金材料,因其良好的铸造性能和力学性能,在轮毂制造中得到了广泛应用。
本文旨在研究低压铸造A356合金轮毂的组织与性能,为优化轮毂制造工艺和提高产品质量提供理论依据。
二、材料与方法1. 材料选择实验选用的材料为A356铝合金,该合金具有良好的铸造性能和力学性能,适合用于轮毂等零部件的制造。
2. 铸造工艺采用低压铸造工艺进行轮毂的制造。
该工艺通过控制铸造压力、温度和时间等参数,实现轮毂的精确铸造。
3. 组织观察与性能测试通过金相显微镜、扫描电子显微镜等设备对轮毂的组织进行观察,并采用硬度计、拉伸试验机等设备对轮毂的力学性能进行测试。
三、结果与分析1. 组织观察通过金相显微镜观察发现,低压铸造A356合金轮毂的组织致密,晶粒大小均匀。
扫描电子显微镜观察结果显示,轮毂组织中存在少量的气孔和夹杂物,但整体上组织质量良好。
2. 力学性能测试硬度测试结果表明,低压铸造A356合金轮毂的硬度较高,具有较好的耐磨性能。
拉伸试验结果显示,轮毂的抗拉强度和延伸率等力学性能指标均符合行业标准。
3. 组织与性能关系分析轮毂组织的致密性和晶粒大小对力学性能具有重要影响。
组织致密、晶粒大小均匀的轮毂具有较高的硬度和抗拉强度。
此外,少量的气孔和夹杂物对轮毂的力学性能影响较小,不会显著降低其整体性能。
四、讨论在低压铸造过程中,控制铸造压力、温度和时间等参数对轮毂的组织和性能具有重要影响。
适当的铸造压力有助于轮毂组织的致密化,温度和时间则影响晶粒的生长和合金元素的分布。
因此,在生产过程中需要严格控制这些参数,以获得具有良好组织和性能的轮毂。
铸造A356铝合金组织与性能的研究
![铸造A356铝合金组织与性能的研究](https://img.taocdn.com/s3/m/4467ddee4afe04a1b071de2b.png)
西安工业大学硕士学位论文铸造A356铝合金组织与性能的研究姓名:董大军申请学位级别:硕士专业:材料物理与化学指导教师:王正品;上官晓峰20070523柏安l业入学硕+学竹论文一般来说,随着枝品的数量增加,Radhakvishna等人得出Y=A+BX+CX2161J枝品闻距的减小,其力学性能也得到提高,其中Y可以表示抗拉强度%、屈服强度盯,、为常数,B为负值,对于A356合金来说,(2—1)延伸率6,x表示枝晶臂间距。
A、B、CUTS=40.86—0.45九+石161J(2.2)可以看出,减小二次枝晶臂间距可以提高合金的力学性能,细化枝晶是提高合金强韧性的有效途径之一。
同时,细化枝晶还能改善合金的补缩能力,有利于消除缩孔、缩松,防治冷隔,细化有害杂质相。
对于完全变质的近共晶舢.si合金来说,力学性能与枝晶数量是线形相关的【621。
2.4.2共晶颗粒A356合金中的共晶颗粒包括共晶区域中的共晶si和化合物相。
共品颗粒的尺寸、长径比和聚集程度对塑性变形过程中颗粒的开裂有着重要的影响【”1.图2.3为合金的金相组织照片。
照片中晶粒比较粗大,共晶硅形态为短棒状和针状,主要沿着晶界分布。
由于采用钠变质,有效时间短、易失效、重溶性差等造成变质不均匀、不充分,si相对基体产生了割裂作用,其尖端和棱角处引起应力集中,合金容易沿晶粒的边界开裂,或是板状si本身开裂而形成裂纹,使合金力学性能特别是伸长率显著降低。
图2-3A356原始组织(未经腐蚀)另外合金中重要的化合物相还有富Fe相。
Wang指出,固溶处理后存在的富Fe相的性质、类型和数量主要取决于合金中的Mg召-i[159删。
当Mg含量低于0.35.0.40%(重量西安工业大学硕士学位论文百分比)时,大部分的富Fe相为尺寸较小的片状卢相(为AlsFeSi),当Mg含量较高时,合金中的Fc趋向予形成尺寸较大的汉字形貌("Chinesescript”morphology)的化合物万相(A19FeMgaSi5)。
A356铝合金的组织与性能研究
![A356铝合金的组织与性能研究](https://img.taocdn.com/s3/m/8d1aca4b302b3169a45177232f60ddccda38e6b0.png)
A356铝合⾦的组织与性能研究A356铝合⾦的组织与性能研究⽬录摘要 (2)Abstract (2)1 绪论 (1)1.1 引⾔ (1)1.2 铝及其合⾦概述 (1)1.3 热处理⼯艺 (2)1.4 A356铝合⾦研究现状 (3)1.5 主要内容 (4)2 实验⽅法及过程 (4)2.1 合⾦成分 (4)2.2 试样制备和热处理⽅法 (4)2.2.1 试样切割 (4)2.2.2 热处理 (5)2.3 ⾦相观察 (6)2.3.1 ⾦相试样的制备 (6)2.3.2 ⾦相观察 (7)2.4 ⼒学性能的测试 (7)2.4.1 硬度测试 (7)2.4.2 拉伸性能测试 (7)3 实验结果及分析 (8)3.1 ⾦相组织观察结果 (8)3.1.1 热处理前的微观组织 (8)3.1.2 热处理后的微观组织 (10)3.2 ⼒学性能分析 (11)3.2.1 表⾯硬度 (11)3.2.2 拉伸性能 (14)4 结论 (15)致谢 (16)参考⽂献 (17)百⾊学院本科毕业论⽂(设计)诚信保证书 (19){TC “摘要”l 1 }摘要:对A356铝合⾦分别进⾏⾦相观察和⼒学试验,研究其微观组织及性能,同时探讨热处理⽅式对A356铝合⾦组织与性能的影响,结果发现枝状晶⽐较粗⼤,分布松散,表⾯硬度、抗拉强度和屈服强度都较低,塑性较好。
经⼀定热处理后,粗⼤共晶硅熔断形成分布均匀、趋于球化的细⼩颗粒,除了塑性有所降低外,其他⼒学性能都有了显著提⾼。
最佳热处理⼯艺为(560℃+6h)固溶+(180℃+4h)⼈⼯时效。
关键词:A356铝合⾦;固溶处理;时效处理;⼒学性能;微观组织Research on Microstructure and Properties of A356Aluminum Alloy{TC “Abstract”l 1 }Abstract:The microstructures and properties of A356 aluminum alloy were investigated by means of optical metallography and tensile test. Meanwhile, the effects of heat treatment on microstructure were analyzed. The results show that the more coarse dendrites are evenly distributed, the lower hardness, tensile strength, yield strength and the greater plastic are obtained. The coarse dendrites are broken off, uniform distribution and granular after heat treatment. The mechanical properties have significantly improved except for ductility. The optimized solution treatment for 6 hours at 560℃and aging treatment for 4 hours at 180℃ are recommended.Key words:A356 aluminum alloy; Solid solution treatment; Aging treatment; Mechanical properties; microstructure1 绪论1.1 引⾔材料是国民经济和社会发展的重要物质基础,是现代技术的三⼤⽀柱之⼀,其中,铸造铝合⾦在⼯程材料领域中⼜占有⾮常重要的地位。
铸造A356铝合金组织与性能的研究
![铸造A356铝合金组织与性能的研究](https://img.taocdn.com/s3/m/4467ddee4afe04a1b071de2b.png)
西安工业大学硕士学位论文铸造A356铝合金组织与性能的研究姓名:董大军申请学位级别:硕士专业:材料物理与化学指导教师:王正品;上官晓峰20070523柏安l业入学硕+学竹论文一般来说,随着枝品的数量增加,Radhakvishna等人得出Y=A+BX+CX2161J枝品闻距的减小,其力学性能也得到提高,其中Y可以表示抗拉强度%、屈服强度盯,、为常数,B为负值,对于A356合金来说,(2—1)延伸率6,x表示枝晶臂间距。
A、B、CUTS=40.86—0.45九+石161J(2.2)可以看出,减小二次枝晶臂间距可以提高合金的力学性能,细化枝晶是提高合金强韧性的有效途径之一。
同时,细化枝晶还能改善合金的补缩能力,有利于消除缩孔、缩松,防治冷隔,细化有害杂质相。
对于完全变质的近共晶舢.si合金来说,力学性能与枝晶数量是线形相关的【621。
2.4.2共晶颗粒A356合金中的共晶颗粒包括共晶区域中的共晶si和化合物相。
共品颗粒的尺寸、长径比和聚集程度对塑性变形过程中颗粒的开裂有着重要的影响【”1.图2.3为合金的金相组织照片。
照片中晶粒比较粗大,共晶硅形态为短棒状和针状,主要沿着晶界分布。
由于采用钠变质,有效时间短、易失效、重溶性差等造成变质不均匀、不充分,si相对基体产生了割裂作用,其尖端和棱角处引起应力集中,合金容易沿晶粒的边界开裂,或是板状si本身开裂而形成裂纹,使合金力学性能特别是伸长率显著降低。
图2-3A356原始组织(未经腐蚀)另外合金中重要的化合物相还有富Fe相。
Wang指出,固溶处理后存在的富Fe相的性质、类型和数量主要取决于合金中的Mg召-i[159删。
当Mg含量低于0.35.0.40%(重量西安工业大学硕士学位论文百分比)时,大部分的富Fe相为尺寸较小的片状卢相(为AlsFeSi),当Mg含量较高时,合金中的Fc趋向予形成尺寸较大的汉字形貌("Chinesescript”morphology)的化合物万相(A19FeMgaSi5)。
A356铝合金焊接工艺研究
![A356铝合金焊接工艺研究](https://img.taocdn.com/s3/m/e4758f4dbe1e650e52ea9980.png)
:兰些些坠坚些窒坠丝些些』丝竺垒————————————————————堡曼垒坠文章编号:1002-025x(2013)11—0073一03A 356铝合金焊接工艺研究连传涛,黄国锋,代晓宇(大庆石化建设公司,黑龙江大庆163711)摘要:对A 356一T 6铝合金的焊接工艺参数进行了优化,采用优化后的焊接工艺参数焊接A 356一T 6铝合金板材后,获得了成形良好的焊缝,焊缝强度明显低于母材,断裂方式为沿晶脆性断裂;对焊缝金相显微组织进行观察,确定焊缝中存在大量气孔以及Si 颗粒形貌改变是焊缝强度偏低的主要原因。
关键词:A 356一T 6;焊接工艺;强度降低;显微组织中图分类号:TG 457.1文献标志码:B0序言随着汽车、飞机等制造业的飞速发展,铝合金在制造业中得到了极大地推广。
A 356铸造铝合金具有优良的铸造性能、热处理性能、加工性能,良好的强度和韧性、良好的导热导电等性能,制造成本低廉等一系列的优点.逐渐成为工业中广泛应用的A l —Si 系铸造合金。
国内外科研人员已经对A 356进行了比较系统和深入的研究。
国内的研究重点主收稿日期:2013—0l 一14q 垆qpq 沪qpq 妒℃,、≯q ≯q 妒u 声3.5焊接工艺参数要集中在其组织、力学性能的改进和工艺水平的提高[H ],国外s han[引,C aceres [6-81和W angI ¨11等人均在开展对A 356合金的研究.不同于国内,这些研究都着重于化学成分、凝固条件和热处理工艺等对材料性能的影响。
然而随着汽车、飞机等工业的不断进步和发展,在实际的生产中A 356铸造铝合金工件需要通过焊接进行连接。
本文采用E R 5554铝合金焊丝利用M I G 焊接技术对A 356一T6铸造铝合金板材进行对接焊接试验。
试验过程中优化了焊接工艺参数,并在光镜(O M )和扫描电镜(S EM )下对焊缝组织进行观察,根据焊接工艺评定结果确定的焊接工艺参数见表3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A356铝合金显微组织及断口分析目录1 绪论11.1断口分析的意义 11.2 对显微组织及断口缺陷的理论分析11.3研究方法和实验设计31.4预期结果和意义 32 实验过程42.1 生产工艺42.1.1 加料42.1.2 精炼42.1.3 保温、扒渣和放料52.1. 4 单线除气和单线过滤52.1. 5连铸62.2 实验过程62.2. 1 试样的选取62.2.2 金相试样的制取72.2.3 用显微镜观看 82.3 观看方法92.3.1显微组织的观看92.3.2 对断口形貌的观看103 实验结果及分析103.1对所取K模试样的观看103.2 金相试样的观看及分析113.2.1 对显微组织的观看113.2.2 断口缺陷13结论17致谢17参考文献 18附录211 绪论1.1断口分析的意义随着现代科技的进展以及现代工业的需求,作为21世纪三大支柱产业的材料科学正朝着高比强度,高强高韧等综合性能等方向进展。
长久以来,铸造铝合金以其价廉、质轻、性能可靠等因素在工业应用中获得了较大的进展。
专门随着近年来对轨道交通材料轻量化的要求日益迫切[1],作为铸造铝合金中应用最广的A356铝合金具有铸造流淌性好、气密性好、收缩率小和热裂倾向小,通过变质和热处理后,具有良好的力学性能、物理性能、耐腐蚀性能和较好的机械加工性能[2-3],与钢轮毂相比,铝合金轮毂具有质量轻、安全、舒服、节能等,在汽车和航空工业上得到了日益广泛的应用[4]。
然而,由于其凝固收缩,同时在熔融状态下专门容易溶入氢,因此铸造铝合金不可幸免地包含一定数量的缺陷,例如间隙、氧化物、孔洞和非金属夹杂物等[5-7]。
这些缺陷对构件的力学性能阻碍较大,如含1%体积分数的间隙将导致其疲劳50%,疲劳极限降20%[8-9]。
因此研究构件中缺陷的性质、数量、尺寸和分布位置对力学性能的阻碍具有重要意义[10]。
而这些缺陷往往是通过显微组织和断口分析来研究的。
另外,通过显微组织和断口分析所得到的结果能够分析这些缺陷产生的缘故,研究断裂机理,比结合工艺过程分析缺陷产生的缘故,从而对改进工艺提出一定的有效措施,确定较好的生产工艺,以提升铝合金铸锭的性能。
但关于该合金的微观组织及其断口分析研究较少,研究内容深但不够综合,每篇论文多研究其部分缺陷,断口的获得多为拉伸端口。
因此,期望对A356铝合金的断口缺陷有一个较为全面的研究。
1.2 对显微组织及断口缺陷的理论分析铸件的力学性能与其微观组织有紧密联系[11]。
A356合金是一个典型的Al-Si-Mg系三元合金,它是Al-Si二元合金中添加镁、形成强化相Mg2 Si,通过热处理来明显提升合金的时效强化能力,改善合金的力学性能。
A 356合金处于α-Al+Mg2Si+Si三元共晶系内,其平稳组织为初生α-Al+(α-Al+Si)共晶+Mg2Si。
其相图如右图1-1,在冷却时,由液相先析出α-Al铝,随着铝的析出,液相成分变至二元共晶线,发生共晶反应,反应式为:L→α-Al+Si (1)图1-1 铝硅镁三元共晶图由于A356的含Si量仅为7%,因此,液相成分在达到三元共晶点之前,液相消逝,凝固完全。
凝固后的组织为初生α-Al基体+(α-Al+Si)共晶。
凝固后铝固溶体含有Si和Mg元素,在连续冷却过程中析出Si和Mg 2Si(如图1-1)。
室温下的组织为初生α-Al、(α-Al+Si)共晶和Mg2Si。
冷却速度较快时,次生相Si和Mg2Si弥散细小不易分辩,而表现出α-Al和(α-Al+Si)共晶。
在实际铸造条件下(非平稳凝固),除差不多相外,还可显现少量α-Al+Mg2Si+Si三元共晶体和杂质铁等构成的杂质相和一些复杂的多元共晶相[13]。
一样来讲,铸造缺陷对构件的抗拉强度阻碍较小,但较明显阻碍构件的伸长率[14]。
A356铝合金内部缺陷要紧有偏析、缩松、缩孔、气孔、针孔、非金属夹杂和夹渣、金属夹杂、氧化铝膜、白点等。
这些缺陷对其性能和强度有专门大的阻碍。
因为生产铝锭的铝水是电解铝液,电解铝液的温度一样在930℃以上,是过热金属[15]电解过程产生的H2和AL2O3夹杂直截了当进入铝液中,会造成H2含量高和AL2O3夹杂多[16],H2产动气孔、气泡和白点缺陷的重要因素,AL2O3易形成夹渣;电解铝液中的杂质元素Fe、Si与合金中的Mn、Mg等元素作用形成Al-FeMnSi、Mg2Si等第二相,分布于晶粒内以及晶界处,阻碍基体连续性;铸造过程中由于清渣不完全以及凝固过程中的选分结晶和冷却条件不当易于生成夹杂、缩松和缩孔[17];α-Al枝晶二次枝晶臂之间板片状共晶体是材料中最薄弱的区域,该区域中尺寸最大的Si颗粒第一发生断裂形成裂纹源。
由于以上因素的阻碍,A356铝合金容易断裂,从而阻碍其强度、塑韧性和力学性能。
若共晶Si呈灰色针状和片状,杂乱无章地分布在α-Al铝基体上,用光学显微镜能够看到铸造过程中的铸造缩孔、铸造气孔、氧化膜等缺陷。
1.3研究方法和实验设计大颗粒夹杂:用肉眼观看其存在形式、数量、大小和分布特点(存在区域)以及夹杂物本身的形貌和大小,并结合冶炼工艺分析其来源;检测杂质净化成效和晶粒细化成效。
显微夹杂:用金相显微镜和扫描电镜观看其存在形式、数量、大小和分布特点(存在区域)以及夹杂物本身的形貌和大小,并结合冶炼工艺分析其来源;检测杂质净化成效和晶粒细化成效。
对A356铝合金显微组织的观看要紧用金相显微镜进行观看。
第一是取样:包括用长柄样勺从和料炉铝液、用短柄样勺从炉外取样以及取成品样,将取到的熔液倒入样饼模和K模得到样饼和K模试样,用上述取样方法选取不同工艺参数、不同生产时期的试样。
将取得的试样通过切、车、銑、磨、抛等步骤制成金相试样,通过不同的放大倍率观看索取试样的显微形貌,并获得各个形貌的照片。
关于断口的观看所用试样是公司提供的,将试样断口处切下,在车床上将试样切成金相试样大小,然后通过粗磨、细磨、抛光、浸蚀制成金相试样,通过金相显微镜观看并记录观看到的缺陷,分析缺陷产生的缘故。
1.4预期结果和意义1)结合企业生产需求,对A356铝合金进行金相及扫描电镜试验,对分布在初生α-Al基体上的共晶硅相、杂质相及气孔等进行观看,分析其分布特点、形貌及阻碍。
2)用扫描电镜观看铝合金断口形貌,并研究其断裂过程及机理。
3)将所观看的断口形貌进行分类。
2 实验过程此次实验分为三个步骤:1)生产工艺,要紧是了解生产的概况,记录生产过程中的工艺参数;2)实验时期,是关键步骤,要熟悉实验过程中的每个步骤,把握所需的参数;3)观看方法,是对试样进行观看的总结。
2.1 生产工艺联信公司用的是魏桥铝厂提供的电解铝液,通过连铸生产A356铝合金铸锭。
该厂有四个和料炉,每炉装料量为30t,从南到北分不为1#炉、2#炉、3#炉和4#炉。
两条国内最大连铸生产线,单块铝锭规格:长:740mm;宽:105(95)mm;高:55mm;重量:约9.5Kg。
整跺铝锭规格:740×7 40×760mm。
每跺块数:93块。
详细工艺过程如下。
2.1.1 加料A356合金是一个典型的Al-Si-Mg系三元合金,要紧成分是:Si6.5%-7.5%,Mg20%-0.40%,Cu≦0.20%,Zn≦0.10%,Mn≦0.10%,Ti≦0.20%,其他元素每种≦0.05%,其余是铝。
该厂要紧生产A356.2铝合金,加料方法为:向和料炉中加铝水分为两次,真空包(最大铝量为9000㎏)运来铝水后用天车吊到炉前,打开和料炉炉门开始倒铝水,现在铝液温度在840℃-880℃,5min左右倒完,开始熔炼。
按照不同工艺设定熔炼温度和所要加的成及其用量运算加料量,如加硅、加镁、加钛、废铝锭等。
下表是A356. 2铝合金的成分表。
表2.1 A356.2铝合金化学成份(%)Si Ti Mg Fe Cu Mn Zn P6.5-7.5 ≤0.20.30-0.45 ≤0.12 ≤0.1≤0.05 ≤0.05 痕迹2.1.2 精炼加料后为了快速平均成分和温度,在和料炉中进行电磁搅拌。
搅拌时刻在15-20min,按照不同工艺搅拌温度在690℃-740℃;炉内精炼是通过喷吹以氮气作为载体将精炼剂和清渣剂加入炉内的,氮气纯度大于等于99.99 5%,喷吹时刻为5min-10min。
精炼剂和清渣剂的用量为0.1%-0.2%(与Al 相比)。
精炼后取样分析,按照能谱仪结果判定各个元素含量是否合格,补加硅镁等矿石。
2.1.3 保温、扒渣和放料精炼终止后保温一段时刻(一样在10min-15min),待温度平均后开始扒渣。
该厂运用人工扒渣,扒渣时刻在15min-30min,时刻可长达40min,费时费劲。
扒渣完成后静置5min,使成分和温度平均。
待成分和温度符合放料条件时,打开和料炉炉门开始放料。
2.1. 4 单线除气和单线过滤铝液出和料炉后先进行在线除气,在通过过滤,之后进入结晶器开始连铸。
2.1.4.1 单线除气使用ALPUR-55旋转除气装置进行在线除气(图2-1)。
这种除气装置为双石墨转子,最大金属流量为55t/h。
ALPUR净化工艺是基于吸附净化原理,通过转子吹出精炼气体,借助旋转喷嘴产生平均分布的微小气泡,并与反应室内的熔体充分接触反应使熔体净化。
精炼气体能够是氮气,也能够是氮气与氯气的混合气体。
图2-1 ALPUR净化铝熔体示意图2.1.4.2单线过滤过滤除渣要紧是靠过滤介质的阻挡作用、摩擦力或流体的压力使杂质沉降或堵滞,从而净化熔体。
上述生产线采纳CFF双级泡沫陶瓷过滤板,过滤箱安装2套平行过滤板,处理流量为55t/h。
过滤板为双层30/50ppi复合泡沫陶瓷过滤板,上层过滤板的孔隙度为30ppi,底层过滤板的孔隙度为50ppi。
CFF泡沫陶瓷过滤装置能够有效除去直径大于20um的夹渣物,过滤效率可达75%。
图2-2为泡沫陶瓷过滤装置工作示意图。
图2-2 CFF泡沫陶瓷过滤装里工作示度图2.1. 5连铸过滤后的铝液通过溜槽流入结晶器,浇铸机转速为863rpm-864rpm,开始结晶出来的坯壳先由人工导入足辊,之后进入校直段。
铝锭通过切定尺之后被切断。
铝锭的冷却是通过喷水冷却的,分三段冷却。
冷却水流速分不为0.137m/s、0.684m/s和1.478m/s;流量分不为133.7m3、401.1m3和88 3.1m3。
剪切后的铝锭通过机械手堆垛,最后捆扎。
2.2 实验过程关于显微组织及断口分析实验,要紧工具是显微镜观看。
因此实验要紧分三个步骤:1)试样的选取;2)金相试样的制备;3)观看记录。
2.2. 1 试样的选取取样时要注意取样时期和参数,对各个试样的详细信息做记录。
在1#、3#、4#炉内取样时按下表取样。
表格如下。