哈里伯顿智能完井技术交流材料

合集下载

哈利伯顿固井工艺及新工具介绍

哈利伯顿固井工艺及新工具介绍

下部井段使用合成基ChannelSeal™
• Use Water-Based ChannelSeal™ as a Lead Slurry Use 使用水基ChannelSeal作为领浆 • Extended Gel-Time Cement Slurry 凝结时间延长的水泥浆
CBL with Synthetic Based ChannelSealTM 合成基ChannelSeal CBL测井结果
• Placed In Well Prior To Running Casing • Casing Installed and Cemented • Easily Displaced But Will Set If By-passed • Performance Range
• 55°F (10°C) to 300°F (175°C) • BHP of 12,500 psi (highest tested)
Mud Conditioning 泥浆处理
LOW MOBILITY MUD MOBILE MUD
FILTRATE
FILTRATE
CEMENT
FILTER CAKE CASING
FORMATION
Comparison of Annular Clearance to Primary Cementing Success 环空间隙对固井质量的影响
• 下套管前注入 • 下套管和固井 • 容易顶替,即便窜槽 也能封固 • 性能
– 55°F (10°C) to 300°F (175°C) – BHP of 12,500 psi (highest tested)
• No Spacer Is Needed For Separating the ChannelSeal™ Fluid From the Cement Slurry Or Improving Mud Displacement

智能完井综述

智能完井综述

智能完井综述摘要:智能完井作为一种年轻的完井技术,是技术上的一种创新,同时也是对过去宝贵的完井理论和经验的荟萃和继承。

本文从智能完井理念入手,调研总结了国内外的智能完井技术。

通过对比分析,提出了智能完井系统的技术难点和发展趋势。

特别地,为我国的智能完井技术发展指明了方向。

引言:智能完井最重要的作用就是改善油藏管理。

在避免由不同地层压力导致窜流这一情况下,智能完井能够在一个井眼内独立控制多个储层的开采量,使一口井同时独立开采多个油层成为可能。

智能完井另一个重要的作用在于节省物理修井时间。

在多油层、多分支井的开采后期,由于某个油层(井眼)的含水率升高而导致整个井的产量下降。

而智能完井则是通过远程控制关闭或节流含水率较高的油层(井眼),更加方便快捷地重新分配各油层(井眼)的产量,避免了针对该水层的修井作业。

尤其是在滩海和深海平台上,由于作业时间限制和修井费用昂贵,更能体现出智能完井系统的优越性。

1 智能完井系统的概念智能完井技术其实质是油藏监测和控制技术,主要是为了控制气、水和油窜。

随着技术的不断提高,智能完井技术已经能够提供连续监测井下动态。

适用于海底油井智能完井技术,高度非均质油藏井、深水井、多分支井、多储混合井的横向延伸井下油水分离及处理,它集井下监测,层段流体控制和智能化的油藏管理技术为一体。

2 智能完井技术的发展历史20世纪80年代末,智能完井技术通常只限于对采油树和油嘴附近的地面传感器进行远程监控、对地下安全阀进行远程液压控制、对采油树阀门进行液压或电动液压控制。

最初利用计算机辅助生产主要两个方面:一是对采油树附近的油嘴进行远程控制,实现气举井生产优化;二是抽油机井进行监控。

随着该技术的发展和智能控制系统的成功运用以及各种永久性置入传感器可靠性的提高,经营者开始考虑对井筒流体进行直接控制,以便获得更大的商业利润,这就要求设计出一种能提供检测和控制功能的高水平智能系统。

在初期阶段,智能完井井下液流控制装置是基于常规的电缆起下滑套阀的工作机理而设计的。

MRILD哈里伯顿核磁测井仪器操作手册-34页word资料

MRILD哈里伯顿核磁测井仪器操作手册-34页word资料

现场操作手册FOM1.1 MRIL 安全MRIL是一种粗糙不平的仪器,这已经在全世界的现场被证实。

应当遵循可靠的预防措施来延长仪器的工作寿命,并且更重要的是确保所有的涉及它的操作人员的安全。

正如以前规定,放射性辐射源与该仪器没有关联,因此不论在车间还是井场这对于个人安全表现出实质性的提高。

1.2 标准操作步骤1.2.1 化学安全硫酸铜,用于刻度目的溶解到水,有毒绝对不应摄食。

操作处理固态或者溶液形式的硫酸铜应戴橡胶手套。

化学药品的排废需要小心并且依照当地环境法规。

详情咨询你所在地区的HSQE(健康安全质量环境)官员。

咨询材料安全数据表(MSDS)以进一步小心操作和处理。

1.2.2 电气安全总要检查测井电缆的绝缘和连通特性。

在仪器串物理拆离前总要放出储存在电容储能部分的高电压。

该高压电平能在MRIL测井控制窗口中监视到。

绝对不可在套管中给发射器供电。

绝对不可在电子线路部分没有连接井场校验器或者天线探头推靠部分给发射器供电。

如果没有置入法拉第筒绝对不可以在地面对全部仪器串供电。

总要仔细注意供电和断电步骤特别是仪器组合了其它的服务项目。

1.2.3 机械安全仪器极其重。

强烈建议使用小型移动式吊车来搬上或者搬下仪器到任何平板式运输工具。

当使用任何类型的吊车提升仪器时仅仅使用认证过的吊带。

你的装备包裹里提供的精灵吊,当按照每一部使用说明时在车间环境里使用会极好帮助提升和移动仪器。

MRIL天线推靠探头部分应该特别仔细处理。

避免任何撞击当:——装入或者卸载仪器;——井口装卸仪器;——运输仪器;——清洗仪器。

1.2.4 强力永久磁场天线推靠探头部分(永磁铁)在周围环境布满大量铁磁性材料处如钻井平台和/或施工步道会难于放置到位。

手指、手掌、臂和腿会夹住到仪器和比方说一柱钻杆之间。

针对危险要培训操作手。

带心房脉冲产生器者不应靠近仪器。

天线推靠探头部分发射出的磁场强度足以导致使用铁磁性植入物的人不适。

天线推靠探头部分有关的永磁铁场强足以消除基于磁性编码的象磁带、磁盘和信用卡。

哈里伯顿测井新技术

哈里伯顿测井新技术

Wireline Sensor Toolbox 2008 - Open Hole 裸眼井仪器系列 -2008
高温小井眼仪器 核磁共振 取心器 地层测试器 电阻率成像 超声成像
Heat Suite Logging
MRIL-Prime™,MRILab,MRIL-XL
SWC,RSCT,HRSCT RDT, SFTT, HSFT XRMI/OMRI CAST-F WSTT, BCAS SDLT DSNT
其它仪器/服务
卡点指示/倒扣服务 化学切割服务 径向火炬切割器
Applied
RCT
SONDEX 仪器全兼容
记忆式生产测井系列 Ultra-Link 系列
Enhanced Connectivity 增强了连通性
Houston Hub
Insite Data Base
市场
作业基地 储层解释 Ethernet telemetry IP IP IP IP IP
Maximum Compatibility 最大的兼容能力
• LOGIQ system fully accommodates previousgeneration tools • LOGIQ全兼容老一代仪器系列 • Is compatible with all Halliburton open hole logging tools • 横向兼容哈里伯顿所有裸眼井测井 仪器和套管井测井仪 • Allows tools to be used in any combination and order on toolstring • 仪器串可以任何顺序任意组合。
生产测井仪
磁定位仪 全井眼测量计 钻石轴承连续流量计 连续流量计 电容式持水计 伞式集流式流量计 压差式流量计 压差式流量计(重力法) 流体密度仪(放射性) 持气率计 缆头张力计 串接式转子流量计 XY 井径仪 自然伽马 井径 快速响应温度计 石英晶体压力计 温度-慢速响应 张力-压缩力-节箍定位组合仪 电容阵列持水率仪 互相关流量计

哈里伯顿测井新技术

哈里伯顿测井新技术
• Vastly expanded telemetry bandwidth
• 极大地扩大了遥传的带宽
• Accommodates multiple high-rate sensors in a single logging pass
• 一次下井中能接多个高速传感器
• Poised for future sensor development
– 350ºF (175ºC) – 20,000 psi
• Forward-looking Surface System and Downhole Sensor Suite Technology
• 具有前瞻性的地面系统和井 下传感器技术
探头亮点
基本 LOGIQ 平台
面对的问题及解决方案
• 问题: • Open Hole
– Advanced Formation Characterization 先进的地层特性描述
• Cased Hole
– Optimized Production Management 优化生产管理
• 方案: • LOGIQ™ Logging Platform
• Half the length • 长度较前减半 • Two-thirds the weight • 重量较前减1/3 • Safer to handle • 操作更安全 • Faster rig up and down • 组装拆卸更快 • Eliminates ‘rat hole’ drilling • 减少鼠洞(口袋)的长度 • Downhole Tools Incorporate the
– Fully Integrated Logging Platform LOGIQ综合测井平台
The Logic of LOGIQ

哈里伯顿垂直钻井系统

哈里伯顿垂直钻井系统

节约水资源
垂直钻井系统采用高效的水循环 利用技术,能够减少对地下水的
开采和利用,节约水资源。
促进可持续发展
垂直钻井系统符合可持续发展的 理念,有利于保护环境和生态平 衡,推动经济社会的可持续发展。
对社会经济的推动作用
1 2
创造就业机会
垂直钻井系统的建设和运营过程中,需要大量的 人力资源和技术支持,为社会创造了就业机会。
随着技术的不断进步和应用需求的增加,哈里伯顿垂直钻井 系统将进一步发展智能化、自动化技术,提高钻井精度和安 全性,为矿产资源开发提供更高效、安全、环保的解决方案 。
05
哈里伯顿垂直钻井系统的价值与影响
对石油工业的价值与贡献
提高钻井效率
垂直钻井系统采用先进的钻井技术和设备,能够显著提高钻井效 率和成功率,缩短钻井周期,降低生产成本。
03
哈里伯顿垂直钻井系统的市场分析
市场需求分析
石油和天然气开采
随着全球能源需求的增长,石油和天然气开采行业对钻井技术的需求持续增加, 哈里伯顿垂直钻井系统在开采深层油气资源方面具有显著优势,因此市场需求较 大。
基础设施建设项目
垂直钻井系统在基础设施建设项目中也有广泛应用,如桥梁桩基、高层建筑桩基 等,这些项目的不断增加对垂直钻井系统的需求也相应增长。
竞争格局分析
市场竞争激烈
垂直钻井系统市场上存在众多竞争对手,包括技术实力雄厚 的国际企业和专业化的国内企业,市场竞争十分激烈。
差异化竞争
哈里伯顿垂直钻井系统凭借其技术优势和品牌影响力,在市 场上占据一定份额,但其他企业也在不断进行技术研发和创 新,形成差异化竞争的格局。
市场趋势与前景预测
技术创新推动市场发展
哈里伯顿垂直钻井系统

智能完井

智能完井

CHINA UNIVERSITY OF PETROLEUM
最小化的综合成本和作业成本
Auto-GasLift
自动-气举
Controlled Water Dumpflood
可控制(水)的自流注水
井筒复杂流动与完井实验室
Wellbore Complex Flow and Completion Lab
CHINA UNIVERSITY OF PETROLEUM

井筒复杂流动与完井实验室
Wellbore Complex Flow and Completion Lab
四、智能井的应用
CHINA UNIVERSITY OF PETROLEUM
1. 控制流入,包括不希望的(地层)流出液流、控水 2. 分布式注入 3. 有控制的分采-合采 4. 自动气举 5. 自流注水 6. 组分(成份)组合(掺和,混合) 7. 井眼稳定 8. 复杂结构井科学生产管理 9. 避免井间干扰 10.陆地井、海上平台井、海底井口井都能有控地优化 管理、自动注水自动气举
2006
2012
2013
未来
改型 MRC 分支井段中 ICV 液流控制进程 无线式ICV 无限个ICD(形 状记忆多聚物) (过油管)
MRC ICD和膨胀封隔器 主眼中ICV
自适应ICD和可回收 的膨胀拍克
2003
2005
2011
2012
2013
未来
井筒复杂流动与完井实验室
Wellbore Complex Flow and Completion Lab
Wellbore Complex Flow and Completion Lab
三、智能完井的特点
CHINA UNIVERSITY OF PETROLEUM

智能完井技术简介

智能完井技术简介

智能完井技术简介(胜利石油工程有限公司钻井工程技术公司山东东营257000 )摘要:智能完井技术是一种新型的完井技术,是目前最有发展潜力的技术。

文章通过对智能完井技术进行简介,以及它的优势,和在胜利油田的应用展望进行阐述。

关键词:石油,智能完井,胜利油田智能完井是一项新型的完井技术,越来越被石油行业关注。

国内外专家认为,石油行业有希望在几年后普及智能技术,来对管理以及维护油井,甚至在十几年之后可以达到人在室内就能够对整个油田就行管理。

智能完井就是这种技术,它可以对井下进行永久性的监测以及实时控制,可以多油层同时进行开采,也可以只开采其中某一个油层,可以极大的提高生产率。

1.智能完井技术简介智能完井技术不同于以往的完井技术,它是一种系统的完井方法,操作者可以远程控制这种技术进行监测井底情况,控制井底压力以及控制原油的生产,这种技术不需要把油管起出,只需要一台PC机以及一个地面调解器就足够了,可以随时对井身结构进行配置以达到最优化效果,此外能够24 小时实时的对油层进行管理以及获取井下温度和压力等资料。

智能完井通常由三大部分组成:(1)在井下安装的永久传感器组,这些传感器组在井筒中合理进行分配,可以监测井下的压力、温度等参数。

(2)可以在地面对井下的状态进行控制的装置。

像可以进行遥控的井下分割器、封隔器,可以对油层之间进行控制的阀门,控制井下安装的节流器的开关等。

(3)井下数据实时采集和控制系统,这个系统可以对井下的信息实时的收集反馈到地面并根据信息进行一系列的操作。

2.智能完井优点智能完井是一种新型的完井技术,与常规的完井技术对比,优势明显,由以下几个方面可以看出。

(1)智能完井可以在地面进行遥控,管理非常方便,特别适合在一些偏远地方使用,比如沙漠,山区或者海上的油田。

因为使用智能完井技术在地面上就可以对控制阀流入的位置进行识别,而且还可以不进行关井,只需要在地面上进行操作控制,就能够完成选择性的打开或者关闭所需要的油层,从而对井身结构进行重新配制。

智能完井技术的应用探讨

智能完井技术的应用探讨

智能完井技术的应用探讨摘要:智能完井技术是一种通过实时监测井下信息,经分析决策并遥控油气井最优化生产,实现提高采收率的完井技术。

本文主要介绍了智能完井技术的概况,分析其优越性,对其在大庆油田的应用进行探讨,最后对该技术存在的问题进行分析。

关键词:智能完井监控问题随着科技的发展,现代完井技术从科学化完井的成熟阶段迈向自动化完井阶段,智能完井将完井技术推到了一个新阶段。

自该技术诞生以来,迅速向油藏管理创新和优化系统方向发展。

本文主要对智能完井技术进行介绍,探讨其优势和应用。

一、智能完井技术简介智能完井实际上是一种多功能的系统完井方式,它允许操作者通过远程操作的完井系统来监测、控制和生产原油,这种操作系统在不起出油管的情况下,仅需一台地面调制解调器和一台个人专用计算机就能随时重新配置井身结构,它还可以进行连续、实时的油层管理,采集实时的井下压力和温度等参数。

智能完井一般包括以下几部分:井下信息收集传感系统;井下生产控制系统;井下数据传输系统;地面数据收集、分析和反馈控制系统。

井下信息收集传感系统主要由多种传感器构成,其中多相流流量测量采用普通传感器;井下温度和压力的测量采用光纤传感器;井筒和油藏中流体的粘度、组分、相对密度的评估采用微电子传感器。

井下生产控制系统主要由电缆操作和水力操作两种。

其中最简单的是井下节流阀,它可以在油藏中调整各层段之间的产量,是最直接控制井下流量的工具。

智能井的节流器可以遥控操作,比原有完井方法有了很大提高。

过去由于工具的耐用性和高压等因素限制,使得液压控制占据了主导地位,目前斯伦贝谢公司已开发研制出全电子控制井下操作系统。

井下数据传输系统是连接井下工具与地面计算机的纽带,这种传输系统能将井下数据和控制信号,通过永久安装的井下电缆中专用的双铰线,在井下与地面间进行数据传输,传输的数据即使在有井下电潜泵存在的情况下,信号也不会受影响。

地面数据收集、分析和反馈系统包括一台计算机和分析数据用的软件包。

哈里伯顿技术报告1-LOGIQ

哈里伯顿技术报告1-LOGIQ

实时储层解决方案
• • • • • •
基于网络 的数据传输系统,可以远程实时查看/记录现场采集的数据。 客户或最终用户可以利用任何计算机通过互联网查看数据。 数据可以通过卫星或普通电话线进行传输。 测井曲线可以通过预置的绘图控制文件进行显示。 客户可以通过互联网网站直接下载重要的数据。 对测井资料的查看采取了保密控制措施,输入密码才能进入。
LOGIQ地面系统及 IQ 四组合下井仪器
新一代测井平台
March 12, 2003
LOGIQ
特点
更加紧凑 模块式设计 增强可靠性 提高效率 提高服务质量
Powered by INSITE
LOGIQ 系统
全功能 LOGIQ系统
•具备远程连网能力 •支持 IQ 四组合测井仪 •支持 DITS 系列仪器 • 具备MRIL&RDT测井的地面硬件升 级能力 • 支持套管井测井服务 RMT, CBL, 生产测井, 射孔 & 工程作业服务
套管井LOGIQ测井系统 (单芯电缆)
• 支持单芯电缆套管井服务 RMT,CBL, 生产测井, 射孔 & 工程作业服务
单系统配置
可选配平面显示器
单系统配置
选配MRIL面板
双系统配置
新一代四组合井下仪器串
---IQ系列测井仪
IQ 仪器的构成
• • • • • 遥测短节/自然伽马 密度 中子 声波 高分辨率阵列感应
IQ 仪器特点
• 增强仪器的可靠性
采用Gibraltar高可靠系列仪器的设计制造技术指标。
350F(175C)度耐温 标准的 20,000 psi 耐压, 可升级到25,000psi • 提高服务质量
提供反映井下仪器操作状态是否正常的动态指示. 采用最新的电子技术,从而改善了探头的测量结果. 声波测井采用实时相关处理技术改善时差测量结果

Tarim --Halliburton 固井技术交流资料

Tarim --Halliburton 固井技术交流资料

Cementing Discussion Topic•Channel Seal•Drill Ahead Process•HPHT Salt Slurry•Spacer and Flush System•Casing Attachment•Versaflex(expandable Liner Hanger)•Job simulation•Slim Hole Cementing (UBA?)ReturnTo Get An Effective Cement Job•Pipe Movement•Pipe Centralization•Mud Conditioning•Rheologically Designed Spacers •High Annular VelocityWHAT IF I CANNOT EMPLOY THESE??Mud CementChannelSeal™CementWhich in Your Well?ChannelSeal™Fluids•Placed In Well Prior To Running Casing •Casing Installed and Cemented•Easily Displaced But Will Set If By-passed •Performance Range•55°F (10°C) to 300°F (175°C)•BHP of 12,500 psi(highest tested)•No Spacer Is Needed For Separating the ChannelSeal™Fluid From the Cement Slurry Or Improving Mud DisplacementChannelSeal Vs. Conventional Means •ChannelSeal Placed During Drilling Process with Drill String In Hole ––Higher Annular Velocities Around BHA–Lower Gel Strength of Mud–Mud Easier To Mobilize and Displacement•Conventional Cement Job / Casing in Hole–Progressive Gel Strength of Mud–Lower Annular Velocities Or Loss CirculationChannelSeal™Fluids•Yield Point Lower Than 20•Gel-strength Development of Less Than 25 lb/100 ft2(122 kg/m) Over Three Days •Fluid Loss Not Exceeding 10 cc On API Low-pressure TestWater-based ChannelSeal™FluidsConsists of:•FDP-C606-00•System Activator•Fluid-loss Control Additive•Gel-strength Modifier•Set ModifierSynthetic Oil-based ChannelSeal™•Typically Includes FDP-C606-00 and System Activator Mixed Into an Emulsion of 70% Synthetic Oil and 30% Water.•Based Oils –I/O Synthetic Or Diesel•Cannot Use Ester Base Oils•If Ester Mud in Well–ChannelSeal™Constructed with I/O base oil–Spacer Employed During ChannelSeal™Placement inWellCase Histories –Expandable Casing•To Date (1/2003) With ChannelSeal™–41 ChannelSeal Jobs on Expandables–Synthetic Oil and Oil-Based–Water-Based Systems–Shoe Integrity -100% Successful Tests •Without ChannelSeal™–60% of Shoe Require At Least OneSqueezeCase History: Nigeria (SPE 77751)Well Parameters•TD—11,233 ft at 90°Deviation•Previous Casing—7 In. Set at 9,814 ft and19.5°Deviation•Hole Size—7 in. Drilled with a 6-in.×7-in. Bi-Center Bit•BHST—187°F•Mud—Synthetic-Based, 11.35 lb/galCriteria For Successful Zonal Isolation •Provide isolation at the 5 ½-in.expandable shoe.•Isolation required across the entirehole section.Nigerian Job Design•Use Synthetic-Based ChannelSeal™Over the Lower Interval•Use Water-Based ChannelSeal™as a Lead Slurry Use•Extended Gel-Time Cement SlurryCBL with Synthetic Based ChannelSeal TMDeviation = 61°Deviation = 81°System Details•What Will ChannelSeal TM Do For My Customer?–Eliminate Channels•At the Shoe•In Highly Deviated Well Bores–Eliminate Cross Flow–Improve Shoe Integrity–Mitigate Production Zone Squeeze Requirements•What Won’t ChannelSeal TM Do For My Customer?–It Won’t Cure Lost Circulation–It Won’t Strengthen Weak Formations–It Won’t Provide Stand Alone Zonal IsolationSystem Details•When Do I Recommend the ChannelSeal TM Process?–When Displacement Rates Are Low Due To Tight ECD's–When Zonal Isolation Is Critical–When the Shoe Test Is Critical–In Highly Deviated Wellbores When Low Side Channeling Is A Concern–When Casing Is Poorly Centralized–When It Is Difficult To Reciprocate or Rotate the Casing String During DisplacementSystem Details•Water Based ChannelSeal TM Slurry–Slurry Weights From 13.5 ppg To 17 ppg are Available–Slurry Is Mixed Like Cement–Designed To Remain Liquid For 1-7 Days–Gel Strength ~25 lbm/100ft2–Yield Point ~ 20 lbm/100ft2–Base Recipe:•FDP-C606-00 High Grade Type F Flyash•HL Breaker Concentrations Of 5% -20%•Halad 344 Concentrations Of 0.5% -1%•Halad 413 Concentrations Of 0.75% –1%•Add Bentonite, Barite, High-Dense #4, and HR-5 AsNeededSystem Details•Synthetic Based ChannelSeal TM Slurry–Slurry Weights From 11.6 ppg To 15.5 ppg are Available–Slurry Is An Oil-water Emulsion and Requires a Three Part Mixing Process with High Shear Rates –HL Breaker Mixed In Water Then Sheared Into Base Oil–FDP-C606-00 Sheared Into Emulsion.–Designed To Remain Liquid For 1-7 Days–Base Recipe:•FDP-C606-00 High Grade Type F Flyash•HL Breaker Concentrations Of 80 –120 lbm/bbl•Customer Base Oil and Halliburton Emulsifier•AT-50 Chemical Breaker•Add Barite, High-Dense #4 and WG-17 As NeededSystem Details•Systems Set with Time and Temperature OR•Water Based Slurry:–The System Is Activated By the Cement•Heat Of Hydration Combined with Free Lime From the Cement Will Set the Slurry–Intermixed Compressive Strength –70 To 1500 psi •Synthetic Based Slurry–The System Will Set with Time When the Emulsion Fully Breaks–The System Is Activated By the Cement•Heat Of Hydration and the pH From the Hydration Process Will Break the Emulsion and the System Will Set –Intermixed Compressive Strength –250 psi To 2500 psi •Non-intermixed Systems–Compressive Strength of 50 –100 psi–Need Only 15 psi for Casing SupportSystem Details•What Are the Design Criteria?–Mud Type and Weight–Temperature Profiling with Wellcat–Simulation with Opticem–Pressure Profiles Vs ECD's•Pore Pressure•Frac Gradient•Hole Collapse–Total Depth–Directional Survey Information–Accurate Caliper Information–Gas Flow Potential–Match Lab Testing To Simulation and Temperature ProfilingReturnChannelSealTM ProcessIssues•Rig Time Needed For Remedial Cementing •Zonal Isolation•Adequate Shoe Integrity•Association with Slag Based Settable SpotProofs•Successful CBL On Nigerian Well Across Highly Deviated Hole Section From 60o To 90o Hole Angle •Expandable Casing –41 Strings–40% Adequate Shoe without ChannelSeal –100% Shoe Integrity with ChannelSeal•$35mm/Yr Spent On Unsuccessful Cement Jobs (GoM –DW and Shelf)•Estimated Global Market Of $220MM/YrBenefits•Helps Eliminate Non-productive Time •Saves Rig Time Required To Squeeze Casing Shoes•Improve Shoe Integrity•Improved Displacement Efficiencies •Eliminates Low Side Channeling In Highly Deviated WellboresFeatures•Compatible with Mud and Cement Systems •Low Yield Point and Low Gel Strength Development•Chemistry Based On Drilling Mud SystemCementing Discussion Topic•Channel Seal•Drill Ahead Process•HPHT Salt Slurry•Spacer and Flush System•Casing Attachment•Versaflex(expandable Liner Hanger)•Job simulation•Slim Hole Cementing (UBA?)ReturnModified LOTCement Sheath Repair Strengthen Rock Remedial Cement Drill Ahead TreatmentRetest Shoe Deliver SolutionConventional DeliveryFDP-C607-00: Drill Ahead ProcessFDP-C607-00 : Drill Ahead Process•Drill-Ahead Project Strengthening Rock •Provide Reaction at Bit•Acts Like Flex-Plug•Will Harden to Some Competent Mass •Whole Reacted Fluid Plates-out on Formation Face•Filtrate Enters Perm and Stabilizes Formation•Penetration of Resin Filtrate ~ 1 to 2”FDP-C607-00 : Drill Ahead Process•Treated Gravel, Pea Gravel, and Sand Packs •Cored Set Material•Measured Tri-axial Load on SamplesFDP-C607-00 : Drill Ahead ProcessS tra ta L o c k In te g rity In c re a s e v s W e ll D e p th1.001.201.401.601.802.002.202.40200040006000800010000120001400016000F o rm a tio n D e p thI n c r e a s e F a c t o r - D e s i r e d F r a c G r a d i e n t t o U n t r e a t e d F r a cG r a d i e n t (U n i t l e s s )3/8-Inc h P enetration3/4-Inc h P enetration1 1/2-Inc h P enetrationCementing Discussion Topic•Channel Seal•Drill Ahead Process•HPHT Salt Slurry•Spacer and Flush System•Casing Attachment•Versaflex(expandable Liner Hanger)•Job simulation•Slim Hole Cementing (UBA?)ReturnSubsalt Well Cementing SolutionsSubsalt WellCementing SolutionsHigh-Value Features •Global Subsalt Experience •Cementing Technology•Flexible Job/Slurry Design •Reduced Remedial Cementing •Advanced Equipment•World-Class PersonnelGlobal Subsalt LocationsGlobal Subsalt LocationsSalt-tongue canopyDetached salt tongueReactivated salt tongueSalt-stock canopyDetached salt stockExtrusive salt stackSalt glacierOn surfaceSalt pillowSalt-wall canopy(a)(b)Salt tongueSalt tongueBulb StemS al t w a l l Salt roller Thin saltS al t c l i n e I n cr e a s i n g ma t u r i t y 030 m i 40k m 0 15 m i 020 k m Subsalt Structures3,75002,0002,2504,0003,0005,0001,0001,5003,000SALT SHEET750Excess Pressure (psi)D e p t h (m )Overpressure Profile% S u c c e s s10075502500.51.52.02.53.01.0Annular Clearance (in.)Comparison of Annular Clearance toPrimary Cementing Success500450Depth (1,000’s of ft)M u d W e i g h t (P P G )81012141618203028262422201816141210Temperature (o F)100150200250300350400(From Leyendecker & Murray,Mud Weights For Salt Creep Control At0.1% Closure Per HourSituation Causing Point LoadingArrows Indicate Salt MovementABSalt FlowA: Time = tB: Time = t + tCurvature Forces Due to Salt FlowOver Burden Cap Rock Shear Zone3.0 in./yr Creep Rate3.0 in./yr Creep RateSalt SectionSalt FlowS h e a r Z o n eP r o d uct i o n Z o n e GOM Salt Creep•KCl vs NaCl in CementKClNaClFormation Protection2 -5%10 -20%Cation Hydration Number 1 -4 5 -11Accelerator 2 -5% 2 -10%Retarderna18 -37%•KCl vs NaCl in Cement KCl NaCl Formation Protection 2 -5%10 -20%Cation Hydration Number 1 -4 5 -11Accelerator 2 -5% 2 -10%Retarder na 18 -37%Subsalt Well Effects on Cementing•KCl vs NaCl in CementKClNaCl Non-Salt Zone & Connate H 2OStrength Loss na 10 -37%Permeability Increase na 10 -37%Bond Lossna10 -37%Good Set Times at TOC 2 -5% 2 -10%Prevent Salt Point Loading2 -5%2 -8%•KCl vs NaCl in Cement KCl NaCl Non-Salt Zone & Connate H 2O Strength Loss na 10 -37%Permeability Increase na 10 -37%Bond Loss na 10 -37%Good Set Times at TOC 2 -5% 2 -10%Prevent Salt Point Loading 2 -5% 2 -8%Subsalt Well Effects on Cementing•Lafarge G Cement + 18% salt +40% SSA-2 + 50% Hidense #3 + 50% Micromax+0.5% SA 541 + 0.8% GasStop HT + 1.2% Halad ®-413 +0.5% Halad ®-344 + 0.46 gal/sk SCR-500L +0.01 gal/sk D-Air 3000L•Slurry Weight: 20.0 ppg (2.4 SG)•Slurry Volume: 2.28 ft 3/sk (64.57 L/sk)•Water Ratio: 6.95 gal/sk fresh (26.34 L/sk)•Pumping Time @70bc: 6:19 at 120°C BHCT •Fluid Loss: 24 ml at 120°C BHCT •Free Water: 0% at 45°•Lafarge G Cement + 18% salt + 40% SSA-2 + 50% Hidense #3 + 50% Micromax+0.5% SA 541 + 0.8% GasStop HT + 1.2% Halad ®-413 +0.5% Halad ®-344 + 0.46 gal/sk SCR-500L +0.01 gal/sk D-Air 3000L •Slurry Weight: 20.0 ppg (2.4 SG)•Slurry Volume: 2.28 ft 3/sk (64.57 L/sk)•Water Ratio: 6.95 gal/sk fresh (26.34 L/sk)•Pumping Time @70bc: 6:19 at 120°C BHCT •Fluid Loss: 24 ml at 120°C BHCT •Free Water: 0% at 45°Slurry Design I (Salt Saturated)•Compressive Strength–24 hr: 970 psi at 150°C BHST*Circulated on schedule for 1-1/2 hours•Rheologies600 300 200 10090°C300+ 235 160 85•Compressive Strength –24 hr: 970 psi at 150°C BHST *Circulated on schedule for 1-1/2 hours •Rheologies 600 300 200 10090°C 300+ 235 160 85Slurry Design I (Salt Saturated)•Lafarge G Cement + 7% KCl + 1.2% Halad ®-413 +40% SSA-2 + 50% Hidense #3 + 50% Micromax+0.5% SA 541 + 0.8% GasStop HT + 0.5% Halad ®-344 + 0.6 gal/sk SCR-500L +0.01 gal/sk D-Air 3000L•Slurry Weight: 20.0 ppg (2.4 SG)•Lafarge G Cement + 7% KCl + 1.2% Halad ®-413 + 40% SSA-2 + 50% Hidense #3 + 50% Micromax+0.5% SA 541 + 0.8% GasStop HT + 0.5% Halad ®-344 + 0.6 gal/sk SCR-500L +0.01 gal/sk D-Air 3000L •Slurry Weight: 20.0 ppg (2.4 SG)Slurry Design II (KCl)Cementing Discussion Topic•Channel Seal•Drill Ahead Process•HPHT Salt Slurry•Spacer and Flush System•Casing Attachment•Versaflex(expandable Liner Hanger)•Job simulation•Slim Hole Cementing (UBA?)Return•Mud Conditioning •Mechanical Aids–Pipe Movement–High Port Up-Jet Float Shoe•Centralization •Fluid Velocity •Spacers & Flushes•Mud Conditioning •Mechanical Aids –Pipe Movement –High Port Up-Jet Float Shoe •Centralization •Fluid Velocity •Spacers & Flushes Displacement FactorsMud ConditioningFILTRATEFILTRATECEMENTCASINGLOW MOBILITY MUDFILTER CAKEMOBILE MUDFORMATIONProperty Yield Point Plastic Viscosity Fluid LossGel Strength (10s/10Min)Value< 10< 20< 15Flat Profile* (*2/3 not 2/10)Mud Properties Vertical WellsStandoff = C / (A-B)DisplacementEfficiency =Cemented AreaAnnular AreaABFormation MudCementCasing CDefinition of Standoff and Displacement Efficiency。

哈里伯顿页岩气水力压裂技术-滑套完井

哈里伯顿页岩气水力压裂技术-滑套完井
该技术可根据油气藏情况制定完井方案 根据油气藏情况,可以采用Swellpacker®封隔系统或 Wizard® III 封隔器对裸眼实现封隔。
Delta Stim 增产滑套可通过投球或连续油管/普通油管 下入机械/液压开关工具进行开关。
投球操作程序:通过投入一系列尺寸球实现无干扰完井 措施。对于 4-1/2 英寸的套管或 5-1/2 英寸的套管, 可以一次性安装多达10个增产滑套。
Delta Stim®完井技术服务
用于水平井完井的新选择,实现最小化或无干扰的精确定位压裂
服务工具
HAL21998
® ® Delta Stim 完井技术采用Delta Stim增产滑套和Swellpacker 封隔系统。完井设定为投球打开方式。
Delta Stim® 完井技术为操作人员提供一个多层水平井 完井的新选择,可以达到最小化或无干扰的精确定位压 裂。该服务集合两大可靠工具于一身,即Delta Stim® 增产滑套和Swellpacker®封隔系统,使得操作人员可在 单井眼多产层选择性地开采,并可在日后封隔一个或多 个产层。Delta Stim完井装置可随VersaFlex®尾管悬挂器 系统一起下入,安装简单可靠。
3. 随着工作管柱下入到位,需要在膨胀式封隔器 (Swellpacker)系统周围的环空中加入液烃(如柴 油),从而引起膨胀。
4. 用带有坐落头的泡沫塞顶替液态碳氢化合 物。当泡沫塞到达并密封浮箍时, 完井管串中即形成压力密封。
5. 试压完井管串或尾管及浮箍
6. 此时,如果要下入尾管,则尾管悬挂器必 须座封。
2. 下入管串及工具到位,使滑套位于措施层
3. 工具下到位后,将液态碳氢化合物
(如柴油)替入环空,使膨胀式封隔器浸在其 中,促使胶筒膨胀。

哈里伯顿Sperry定向钻井介绍专题培训课件

哈里伯顿Sperry定向钻井介绍专题培训课件

5
定向井及随钻测量解决方案
面对极端环境,依靠精确的井眼轨迹控制,准确的地层评价,为客户实 时提供最优化的钻井服务
定向钻井
地层评价
地质导向
© 2013 HALLIBURTON. ALL RIGHTS RESERVED.
6
高温/高压
定向钻井解决方案
面对极端情况,灵活的工具配置,最优化的钻 井设计,精确的井眼轨迹控制
Anchorage
Calgary, Canada
Bakersfield Pemex, Mexico
Chevron, Houston Lafayette, Louisiana
Houston, Texas Shell, New Orleans
Shell, Woodcreek, Houston
Bergen, Norway Stavanger, Norway
23
地质导向
目标: 及时达到产层 最大化产层发掘产量最大化 优化井身布置
方案实现: 构建邻井信息综合3D模型 提前预报地质临界点 利用随钻实时测量信息修正地 质模型,及时调整钻井轨迹 实测数据被用来指导未来钻井 控制
© 2013 HALLIBURTON. ALL RIGHTS RESERVED.
© 2013 HALLIBURTON. ALL RIGHTS RESERVED.
完井
完井 及 生产
Boots & Coots
井控
Artificial Lift
Production Enhancement
Cementing
2
固井
增产
人工举升
哈里伯顿中国基地
© 2013 HALLIBURTON. ALL RIGHTS RESERVED.

哈里伯顿——SPA-1

哈里伯顿——SPA-1

一、川中地区井基本情况井别/井型:开发井/斜井地层温度:73℃(估计)完井方法:127.0mm套管射孔完成岩性:灰白色细砂岩采气井口:KQ35/65 (1#、4#总闸为KQ70/65)人工井底:2510m 施工层位:须二须二上段:2358.0~2362.0 m2371.0~2379.0 m须二中段:2393.0~2400.0 m2411.8~2414.0 m须二下段:2440.0~2443.0 m2457.4~2464.6 m射厚:上:12m 中:9.2m 下:10.2孔隙度:上:7.9~8.5 % 中:2.5~5% 下:5~8%含水饱和度:40~80%地层压力:28.6MPa2358.0~2362.0m 2371.0 ~ 2379.0m 2393.0 ~ 2400.0m 2411.0 ~ 2414.0m 2443.0 ~ 2440.0m 2457.4 ~ 2464.6m二、哈里伯顿针对性的定点压裂工艺技术RR4 EV底部分隔器BlastJoint 配长短节1.0 to 8.0 mSelective Cup上部密封Ported Sub压裂短节Safety ShearSub安全剪切短节先行射孔,通过连续油管+跨越式封隔CobraFrac.mpg4. 最大排量4方/分钟5. 最高地层温度120ºC6. 最高砂比1920公斤/方(110%)CobraMax.mpg2.6 实例1、CobraMax V 实例Battery packandcircuit boardsectionCoil and magnetsectionSolenoidvalve &mechanicalsectionFlowports3三、哈里伯顿针对性的压裂液体系大幅度提高返排率,降低污染CobraJet Frac.mpg。

致密气藏国外完井技术研究现状

致密气藏国外完井技术研究现状

国外致密气藏完井技术研究现状随着科技的进步,水平井和大斜度井已经广泛的应用于低渗透油气藏开采,对于致密气藏的开发,在完井技术方面,早期的低渗油气藏开发比较强调后期增产改造作用,常采用大型压裂及整体压裂改造增产技术,因此,较多地采用油气层段下套管,固井,然后射孔完井。

但近年来越来越多的井采用射孔完井和裸眼完井,最多的是裸眼完井。

裸眼完井与无伤害钻开油气层的钻井技术共同使用,保证了产层无伤害地,完善地打开,这对低渗透油气藏开发十分有利。

在美国普遍采用这种组合技术,裸眼完井后直接投产。

应用裸眼水平完井技术有三个关键因素:地下储层参数,开发方案,流体接触面和井筒几何尺寸。

对于低渗,特低渗油气层,只靠无伤害裸眼完井不能达到工业产油气标准,必须进行压裂改造。

90年代以来,美国的低渗气藏的开发中成功实施了水平井裸眼分段压裂,主要是运用管外封隔器和裸眼完井来进行分段的氮气泡沫压裂,其目的不是造新缝,而是加大与原有天然气裂缝的沟通程度,其效果很好,值得借鉴。

氮气泡沫压裂是美国开发低渗透汽车那个资源的一大贡献,但在用于3000一下的深井时由于用气量过大,经济上存在问题。

另外,美国和前苏联还在广泛采用泡沫酸化,泡沫酸化压裂工艺,处理井深范围可达3400M。

90年代中后期,美国,加拿大出现液态CO2加沙压裂被称为干式压裂,非常适用于水敏性储层,已经进行了几千次的实验,其效果好于水基压裂。

针对完井优化的研究,Brekke(1994)首次提出采用中心油管完井来延缓底水突破,增加无水采油量。

T.Borbas(2003)论述了岩石的强度特征是完井优化的最重要参数之一。

Garrouch(2004)等运用系统论方法,分析了钻,完井水平井及分支井设计过程中油气藏类型筛选和完井影响因素,并分别描述了筛选流程图和整体设计思路。

建立了基于网络互连的模糊专家系统优化水平井和分支井的完井方式。

Morita(1994),Larry (2009)以岩石力学理论方法为基础分析了水平井生产过程中井眼稳定性与地应力状态,岩石强度,有效应力的相关性。

哈里伯顿水平井测井技术

哈里伯顿水平井测井技术
第18页/共118页
水平井测井技术分类
近年来,随着大斜度定向井和水平井数量的 不断增加,国内外各专业测井服务公司已经研制 出了许多用于起下常规电缆测井系统(包括井下 仪器和测井电缆)的辅助工具,这些辅助工具可 大致分为两类:一类是钻杆输送电缆测井工具; 另一类是挠形管(又称蛇形管)输送电缆测井工 具。与此同时,国内外一些钻井服务公司和专业 测井服务公司已经相继研制成功了无电缆随钻测 井仪,并且在大斜度定向井和水平井的钻探过程 中得到了广泛的应用,对水平井市场构成了一定 的冲击。这里结合咱们公司现有水平井测井工具 给大家介绍钻杆输送电缆测井技术。
ቤተ መጻሕፍቲ ባይዱ
第17页/共118页
水平井测井技术的使用条件
为了解决这些难题,国内外各专业测井服务公司 经过不断探索,相继研制出了用于起下常规电缆测井 系统(包括井下仪器和测井电缆)的辅助工具(水平 井工具),这些工具的研制成功为我们进行各种不同 类型的大斜度定向井、水平井、复杂井、疑难井的测 井提供了强有力的保障。 目前,胜利测井公司已经拥有湿接头式、保护套 式两种类型的裸眼井水平井测井工具,能够根据用户 的不同需要,完成大斜度定向井、水平井、复杂井、 疑难井等的测井任务,为顾客提供优质服务。我们也 曾多次到外部市场为客户提供水平井测井服务和进行 技术输出,赢得了用户的一致好评,取得了明显的经 济效益和社会效益。
第13页/共118页
水平井测井技术-发展过程
·信息传递:仍然采用测井电缆给仪器供电并把地层信息 返回到地面系统。 ·仪器居中:钻杆沿下井壁推送仪器,使下井仪在井眼中 不易居中。 ·极板贴井壁问题:钻杆使仪器串不像电缆测井时那样容 易旋转,这将导致极板有时不能紧贴井壁。 ·仪器安全问题:钻杆可轻易地压坏或弄弯下井仪。 ·深度问题:深度如何控制。 ·循环泥浆问题:当仪器和钻具下入井中时,钻机必须能 随时循环泥浆;如果出现紧急情况,如井喷,电缆必须 能够提出来,便于井队处理事故。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SmartWell CompletionsJon RawdingManager, Business Development Asia PacificWhat is SmartWell Technology? 为什么是智能完井技术ÎSmartWell®technology is the leading intelligentcompletion technology: SmartWell®技术引领智能完井技术ÎOne company’s SmartWell®completion isanother’s simple well completion:一家公司的智能完井是另一家公司的简单完井ÎAn intelligent well enables an operator to: 一口智能完井井能完成:•Remotely monitor and control flow downhole,at the reservoir, with no physical intervention远程监控和控制井下流量,油藏中无物理干扰•Optimise well, production and reservoirmanagement processes 优化井,生产,油藏管理流程Cost Implications of “Unexpected”Water Breakthrough ÎOffshore Field海上油田•Unexpected Water Breakthrough无法预测的水突破•Intervention Costs干涉花费−$4,000,000 -$8,000,000•What do I get for an average $6,000,000 per well?平均每口井6百万能做什么?−Position Rig平台定位−Install Riser安装升降器−Slickline Drift Run钢丝漂移操作−Wireline Production Logging电缆生产测井−Wireline Set Water Shut Off Plug电缆坐封堵水丝堵−Prepare to suspend Well准备暂停井−Recover the riser回收升降器−Move Rig迁移平台Cost Implications of “Unexpected”Water BreakthroughHow is the water controlled in a SmartWell Completion?智能完井是如何控水的?ÎLocation 位置•Shaybah reservoir, Shaybah Field, Saudi Arabia ÎGoal 目标•Install maximum reservoir contact (MRC) wells to reduce gas breakthrough and manage water coning 安装最大油藏接触面的井来减少气突破和水锥进ÎChallenge 挑战•Water breakthrough from any one of laterals in maximum reservoir contact (MRC) wells has potential to kill well. 在最大油藏接触面的井中的任一个分支发生水突破都可能使井报废Saudi Aramco –Reduce Gas Breakthrough and manage water coning减少气突破和水锥进ÎSolution 解决•Effectively manage water breakthrough variable choking of each of individual laterals 调节任一分支的油嘴,有效管理水突破–Three zone Direct Hydraulic completion in conjunction with Accu-Pulse 用Accu-Pulse 在三个层直接水动力完井ÎAdditional Installations 附加安装•SmartWell completion in expandable liner 可膨胀管线中的智能完井安装•SmartWell completion in open hole 裸眼段的智能完井安装•Installation of PHDMS for intelligent field ?ÎAdditional Benefits 附加利益•Selective well testing 可选择的井测试Saudi Aramco -Increases Well Productivity, Improves Hydrocarbon Recovery增加井的生产能力,提高采收率SmartWell Completions in Multi-lateral Reservoirs 分支井的智能完井Unrealised Added ValueÎSPE 100880 –Smart Snake Wells in Champion West –Expected and Unexpected Benefits From Smart CompletionsW. Obendrauf, K. Schrader, N. Al-Farsi and A White, SPE, Brunei Shell Petroleum Co.Sdn. Bhd.•CW-20 up to 1 mln bbl were initially not connected to the well, due to problems whenrunning the liner. The SmartWell completion enabled clean-up of the well by allowinga large draw down in the toe section of the well.•CW-22 a cement repair job and/or side track was avoided by adapting the SmartWellCompletion, saving at least 7 days of rig time.•CW-18 the well was accidentally drilled into a water bearing sand in the horizontalsnaking section. A side track could be avoided by adapting the planned completion,saving in the order of $6,000,000.Option 1-Uncontrolled Commingling 选项1-没有控制的合采Option 2 -Drill a well for each zone 选项2-每个层钻一口井Option 3 -Controlled Commingling 选项3-可控制的合采Intelligent well technology enables exploitation ofmarginal reserves and acceleration ofhydrocarbon production through controlledcommingling of reservoirs.Controlled Commingling“…15% of discovered, uneconomic oil reserves in the UK Sector of the North Sea couldbe made economic by commingling.”在北海英国区,15%已发现的、无经济效益的油田储量通过合采产生经济效益Department of Trade and Industry (DTI)PILOT Undeveloped Discoveries WorkgroupCommingled SmartWell Zone 5 Sequential Zone 4 Sequential Zone 3 Sequential Zone 2 Sequential Zone 1 SequentialP r o d u c t i o n R a t e C u m u l a t i v e P r o d u c t i o n Years Zone 5Zone 4Zone 3Zone 2Zone 1Zone 5Zone 4Zone 3Zone 2Zone 1Economic Rate Limit Commingled SmartWell Completion Commingled SmartWell Completion Commingled SmartWell vs. Sequential Development 合采的智能完井vs. 滚动开发SmartWell completion reaches economic limitCompartmentalized Reservoir –SPE 110207ÎAdditional 1.57 million bbls of oil over six years (indicated by initial performance test against base case)Background and Subsurface SettingÎLocation: Brunei Shell Petroleum’s (BSP) Iron Dukefield, a structurally complex offshore field,characterized by multiple fault blocksÎDue to very limited aquifer support, the wells aretypically drilled very close to the oil water contact tomaximize oil production and minimize GORChallengeÎAfter producing approximately 50% of the perforated section reserves, several intervals were producing mainly gasÎThe ultimate oil recovery expected from the solution gas drive was unachievable from the conventional completionCompartmentalized Reservoir –SPE 110207多层油藏Compartmentalized Reservoir –SPE 110207ÎAdditional 1.57 million bbls of oil over six years (indicated by initial performance test against base case)SmartWell SolutionÎSmartWell completion•enabling the control of each zone individually orcommingling to allow a high GOR zone to lift a lowGOR zone (internal gas lift)Î A 5-zone Digital Hydrauliccompletion was proposedÎWell was the first well to have surfacecontrol and monitoring in allfive zonesÎIn 2007 a 6 zone completion was successfully run forthe first time.Here’s an example worth noting…价值计算CapEx required to develop a field with vertical wells 直井开发的油田的基建(资本建设?)费用3 platforms @ US$300 million/platform = US$900 million21 wells @ $US12 million/well = US$252 millionUS$900 million + US$252 million =US$1.51 BILLION!Capital Expenditure to Develop a Field Using Vertical Wells 直井开发的油田的基建(资本建设)费用3 platforms @ US$300 million eachUS$900 million21 wells @ US$12 million eachUS$252 millionUS$900 million + US$252 million = US$1.152 billion!Capital Expenditure to Develop a Field Using Snake Wells来回曲折井开发的油田的基建(资本建设)费用1 platform @ US$300 million eachUS$300 million6 snake wells @ US$30 million eachUS$180 million US$900 million + US$180 million = US$480 million!Comparison of Costs 费用对比ÎWell Engineer Point of View•1 standard well =$12M •1 snake well = $30MSmartWell technology snake wells will save $672M ÎAsset Manager Point of View•3 platforms +21 standard wells = $1.152B•1 x platform +6 snake wells =$480MConclusion: A snake well is$18M more expensive than a standard well ICV PDG LVExamples of Capital Expenditure基建(资本建设)费用的例子Connector Wells多井连接Controlled Dump Flood可控制的回注Controlled Dump Flood –Reduce CAPEX –SPE 112243可控制的回注-减少基建(资本建设)费用ÎLocation 位置•Minagish Field, West KuwaitÎGoal 目标•Control and monitor downhole water dump floodfrom the high pressure Zubair formation to thelower pressured Minagish Oolite formation控制和监控从高压Zubair层到低压Minagish Oolite层的水的回注ÎChallenge 挑战•Control water flow between formations 层间控水•Control sand production from Zubair formation控制Zubair层出沙•Monitor down hole flow rate 监控产量ÎSolution 解决方案•Model reservoir to evaluate parameters required to control water rate from the Zubair to Minagish.油藏建模评估参数,控制从Zubair 到Minagish 的水量•Install HVC-ICV to allow controlled flow from Zubair to Minagish安装流量控制阀来控制从Zubair 到Minagish 的流量•HCV-ICV designed to close from any position without the requirement to fully open, thus controlling sand productionHCV-ICV 阀可调节开关控制出沙•Installation of Permanent Downhole Monitoring gauges, ported to tubing and annulus for downhole flow rate monitoring 安装永久式井下监控测量仪,监控油管和环空的流量Controlled Dump Flood –Reduce CAPEX –SPE 112243可控制的回注-减少基建(资本建设)费用Auto Gas Lift –Reduce CAPEX自动气举-减少基建(资本建设)费用Waterflood Control in a Multilateral Well – SPE 81493Water cut reduced from 99% to 71% Incremental volume of 96,000+ bbl oil produced Dehydration and water injection costs reducedBackground and Subsurface SettingLocation: Saih Rawl Shuaiba, a low permeability limestone oil reservoir in the Middle East Wells generally require artificial lift to optimize oil recovery (ESP)ChallengeUltimate recoverables were reduced because increased water cuts associated with uncontrolled laterals dominated well production Control early water breakthroughWaterflood Control in a Multilateral Well – SPE 81493Water cut reduced from 99% to 71% Incremental volume of 96,000+ bbl oil produced Dehydration and water injection costs reducedSmartWell SolutionDigital Hydraulics™ • Improved waterflood efficiency and reduced water cut of produced fluids Remotely-operated downhole interval control valves with isolation packers • Isolated water-producing laterals Same technology in water injection wells can further improve water flooding efficiencyCase Study: A Milestone for Smart Fields in Haradh Inc. IIIBackground Haradh III came onstream in February 2006, adding 300 MBPD to Arabian light crude productionResultsHaradh III set milestone for SmartWell technology at an unprecedented scale for both Saudi Aramco and the industry “The SmartWell completions were necessary to ensure production sustainability in the face of premature water encroachment.”-JPT Technology Update November 2006 N.G Saleri, Saudi Aramco Reservoir Management Head; A.O Al-Kaabi, Haradh Reservoir Management Supervisor and General Supervisor and A.S. Muallem, Udhaliyah Reservoir ManagementChallenges Geological complexities, fault/fracture systems, reservoir heterogeneities, associated premature water breakthrough (hence, oil productivity decline) put at risk 300 MBPD Arabian light crude production 30-month time window between spud date of first development well and scheduled start-up Emphasis on long-term productionCase Study: A Milestone for Smart Fields in Haradh Inc. IIIRelative Unit Cost (Dimensionless)1.0 0.70.35VERTICALH ORIZONTALM RC/SM ARTHaradh III: A Milestone for Smart FieldsJPT Technology Update N.G Saleri, Saudi Aramco Reservoir Management Head; A.O Al-Kaabi, Haradh Reservoir Management Supervisor and General Supervisor and A.S. Muallem, Udhaliyah Reservoir Managment“In essence, i-field enables real-time subsurface monitoring in combination with real-time control of ICVs. The resulting synergy is bound to bring long lasting improvements in field performance well beyond gains realized in the start up phase of Haradh III.”“The journey has just begun.”Technology Behind SmartWell CompletionsElements of SmartWell CompletionsPower and Communications Architecture and InfrastructureFlow ControlFlow MonitoringField Solutions Closing the LoopFlow OptimizationData Management Interpretation ValuationSmartWell Completion ComponentsSmartWell® Intelligent CompletionsOptimize well, production and reservoir management processes by enabling the operator to remotely monitor and control well inflow or injection downhole, at the reservoir, with no physical interventionThe Basics of an Intelligent CompletionComponents of a SmartWellDownhole Control and Communications Control SystemsSCRAMS® Digital Hydraulics™ Direct Hydraulics™ Accu-Pulse™Permanent MonitoringDownhole Flow Control Devices Zonal IsolationHF Series Packers MC Series Packers Feed-Thru Seal StackSurface Control and Data Acquistion Manual SystemPermanent Gauges and SensorsROC™ PDGs EZ-Gauge® OptoLog® DTS Symphony® Plus FloStream™Automated SystemAuxiliary ComponentsFlat-pack FMJ Connector Splice Sub Control Line Clamps Hydraulic DisconnectWellhead SensorsInterval Control ValvesIV-ICV/CV-ICV Series HV-ICV Series MC-ICV Series LV-ICV SeriesIntegrated SystemDownhole Flow Control ValvesFunction • Binary (on/off) • Discrete multi-position • High resolution/infinitely variable Actuation • Hydraulic balanced • Electro-hydraulic (SCRAMS) • Mechanical override facility Sizes and Ratings • 5-1/2”, 4-1/2”, 3-1/2”, 2-7/8” • Various static and dynamic pressure rating • Variety of materialsOptions • Shrouding and extension • Position feedback sensor • Integrated pressure/temperature • Multiplex valve control • Custom choke trim designOperation of an Interval Control Valve (ICV)Lubricator Valve (LV-ICV)On/off control of injection or production Features • Full bore ID • Deep set capability • Minimal number of moving parts • High force actuation for both open and close operationsROC™ Permanent Downhole GaugesFeatures • State-of-the-art downhole electronics • Industry-standard quartz resonating sensor • Robust design • Multi-point sensing (on ROC-D and ROC-S) Benefits • Reliable, field-proven system • Multiple gauges on single i-wire cable • Cost-effectiveData Acquisition – Downhole Fiber OpticsRate Temperaturem er oth GeDepthT al e tur ra pe emCombo Electrical/Fiber Optic CableBased on reliable, field-proven components Distributed temperature sensing fiber and electronic gauge conductor in the same package Minimizes incremental cost of DTS over conventional electronic DHPT systems Maximizes the number of connectors, feedthrough slots, penetrators, etc. Allows use of proven, reliable quartz temperature measurement of DHPT as selfcalibrating mechanism for DTS Loose fiber tube design ruggedized for the downhole environment Rated for use up to 20,000 psi at 175°C (347°F)Flat-PackFeatures • Range of configurations available to suit SmartWell applications • Range of materials available to suit the specific downhole environment Benefits • All control lines are tested and certified to include UTS, proof stress, elongation, NDT and hydraulic pressure tests • Encapsulation and bumper lines have been proven to increase loading capability of control lines • Single or multiple configurations available to facilitate completion installation and retrievalFeed-through Isolation Production/Injection PackerFeatures • Control line or tubing pressure set • Bypass for multiple control lines • Hydraulic interlock prevents premature setting • Premium threaded connections throughout Benefits • Control line feed through for SmartWell systems • Qualified for high tensile or compressive loads • Tailpipe can be left in tension or compression • No body movement during settingHF-1 Production PackerFeatures • High load carrying retrievable packer. • Hydraulic set – control line or tubing set options • Hydraulically activated anti-preset mechanism • Multiple control line feed-through (continuous) • Optional release mechanisms • No elastomers between upper / lower annulus (only packing element)。

相关文档
最新文档