高中数学优秀说课稿-等差数列讲课讲稿
《等差数列》第课时说课稿

《等差数列》第课时说课稿《<等差数列>第课时说课稿》尊敬的各位评委、老师:大家好!今天我说课的内容是《等差数列》第课时。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析1、教材的地位和作用“等差数列”是高中数学必修 5 第二章数列中的重要内容。
数列作为一种特殊的函数,是反映自然规律的基本数学模型。
等差数列在日常生活中有着广泛的应用,如银行存款利息的计算、建筑物的楼梯设计等。
同时,等差数列也是后续学习等比数列的基础,对于学生进一步理解数列的概念和性质,掌握数列的研究方法具有重要的意义。
2、教材的内容和结构本节课主要介绍等差数列的定义、通项公式及其推导过程。
通过对一些具体数列的观察、分析,引导学生归纳出等差数列的定义,然后利用不完全归纳法和累加法推导出等差数列的通项公式。
教材在内容安排上注重从特殊到一般、从具体到抽象的思维过程,有助于培养学生的观察、归纳和推理能力。
二、学情分析1、知识基础学生在初中已经学习了数列的初步知识,对数列的概念有了一定的了解。
在高中阶段,通过函数的学习,学生已经具备了一定的函数思想和数学建模能力,为学习等差数列奠定了基础。
2、学习能力高二学生已经具备了较强的抽象思维能力和逻辑推理能力,但对于一些复杂的数学问题,还需要教师的引导和启发。
同时,学生在学习过程中可能会出现对概念理解不深刻、公式运用不熟练等问题。
3、学习态度学生对数学学习有一定的兴趣,但在学习过程中可能会因为遇到困难而产生畏难情绪。
因此,在教学过程中,要注重激发学生的学习兴趣,调动学生的学习积极性。
三、教学目标1、知识与技能目标(1)理解等差数列的定义,掌握等差数列的通项公式。
(2)能够运用等差数列的通项公式解决相关问题。
2、过程与方法目标(1)通过对等差数列定义和通项公式的探究,培养学生观察、分析、归纳和推理的能力。
(2)通过等差数列通项公式的推导,让学生体会从特殊到一般、从具体到抽象的数学思维方法。
高一数学《等差数列》第一课时说课稿优选篇

高一数学《等差数列》第一课时说课稿优选篇高一数学《等差数列》第一课时说课稿 1本节课讲述的是人教版高一数学(上)§3.2等差数列(第一课时)的内容。
一、教材分析1、教材的地位和作用:数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。
同时等差数列也为今后学习等比数列提供了学习对比的依据。
2、教学目标根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。
b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的'求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
3、教学重点和难点根据教学大纲的要求我确定本节课的教学重点为:①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。
同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点,二、学情分析对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。
二、教法分析针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。
《等差数列》说课稿

《等差数列》说课稿《《等差数列》说课稿》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!【教学目标】1.知识与技能(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:(2)账务等差数列的通项公式及其推导过程:(3)会应用等差数列通项公式解决简单问题。
2.过程与方法在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。
3.情感、态度与价值观通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。
在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。
【教学重点】①等差数列的概念;②等差数列的通项公式【教学难点】①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程.【设计思路】1.教法①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.2.学法引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.归纳总结:1.一个定义:等差数列的定义及定义表达式2.一个公式:等差数列的通项公式3.二个应用:定义和通项公式的应用《等差数列》说课稿这篇文章共2106字。
《等差数列》说课稿

《等差数列》说课稿《等差数列》说课稿11篇作为一位不辞辛劳的人民教师,通常需要用到说课稿来辅助教学,认真拟定说课稿,那么应当如何写说课稿呢?以下是店铺为大家收集的《等差数列》说课稿,欢迎大家分享。
《等差数列》说课稿1第一方面:教材分析本节知识的学习既能加深对数列概念的理解,又为后面学习数列有关知识提供研究的方法,具有承上启下的重要作用。
而且等差数列求和在现实中有着广泛的应用,同时本节课的学习还蕴涵着倒序相加、数形结合、方程思想等深刻的数学思想方法。
第二方面:学情分析知识基础:学生已掌握了函数、数列等有关基础知识,并且在小学和初中已了解特殊的数列求和。
能力基础:高二学生已初步具备逻辑思维能力,能在教师的引导下解决问题,但处理抽象问题的能力还有待进一步提高。
第三方面:学习目标依据课标,以及学生现有知识和本节教学内容,制定教学目标如下:1.教学目标:(1)知识与技能目标:(ⅰ)初步掌握等差数列的前项和公式及推导方法;(ⅱ)当以下5个量(a1,d,n,an,Sn)中已知三个量时,能熟练运用通项公式、前n项和公式求其余两个量。
(2)过程与方法目标:通过公式的推导和公式的应用,使学生体会数形结合的思想方法,体验从特殊到一般,再从一般到特殊的思维规律。
(3)情感态度与价值观:通过经历等差数列的前项和公式的探究活动,培养学生探索精神和创新意识,提高学生解决实际问题的观念,激发学生的学习热情。
2.教学重、难点等差数列前项和公式的推导有助于培养学生的发散思维,而且在应用公式的过程中体现了方程(组)思想,所以等差数列前项和公式的推导和简单应用是本节课的重点。
但由于高二学生推理能力有待提高,所以难点在于一般等差数列前项和公式的推导方法上。
第四方面:教法学法毕达哥拉斯说过:“在数学的天地里,重要的不是我们知道什幺,而是我们怎幺知道什幺。
”针对本节课的特点,教师采用问题探究式教学法,学生的学法以发现式学习法为主。
教学手段上通过多媒体辅助教学,可以帮助学生直观理解,提高课堂效率。
高一数学:等差数列说课稿

高一数学:等差数列说课稿高一数学:等差数列说课稿在教学工作者开展教学活动前,常常要写一份优秀的说课稿,说课稿有助于提高教师理论素养和驾驭教材的能力。
那么大家知道正规的说课稿是怎么写的吗?下面是小编精心整理的高一数学:等差数列说课稿,欢迎阅读,希望大家能够喜欢。
高一数学:等差数列说课稿1一、教材分析1、教材的地位和作用:数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。
同时等差数列也为今后学习等比数列提供了学习对比的依据。
2、教学目标根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。
b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
3、教学重点和难点根据教学大纲的要求我确定本节课的教学重点为:①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。
同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。
二、学情教法分析:对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。
高中数学等差数列说课稿

高中数学等差数列说课稿高中数学等差数列说课稿1尊敬的各位考官:大家好,我是某某号考生,今天我说课的题目是《等差数列的前n项和》。
新课标指出:高中教育属于基础教育,具有基础性,且具有多样性与选择性,使不同的学生在数学上得到不同的发展。
今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材本节课选自人教A版高中数学必修5第二章。
本节课是等差数列概念和特点等知识的延续和深化,也是后面学习等比数列及其前n项和的基础。
本节课既加深了对数列相关概念的'理解,又蕴含了倒序相加法、特殊到一般的数学思想方法。
在整个高中教学中起到承上启下的重要作用。
二、说学情接下来谈谈学生的实际情况。
本阶段的学生已经具备了一定的抽象逻辑思维能力,能在教师的引导下独立地解决问题。
因此在教学过程中要给学生留置充分的思考时间和空间。
此外要注重在学生的已有认知基础上建构知识。
三、说教学目标根据以上分析,我制定了如下教学目标:(一)知识与技能掌握等差数列前n项和公式,理解其推导方法,能用公式解决简单问题。
(二)过程与方法经历观察、思考、计算等探究过程,渗透从特殊到一般的数学思想方法。
(三)情感、态度与价值观在学习活动中获得积极的、成功的情感体验,激发学习兴趣。
四、说教学重难点在教学目标的实现过程中,教学重点是等差数列前n项和公式,教学难点是公式的推导过程。
五、说教法和学法现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。
根据这一教学理念,结合本节课的内容特点和学生的年龄特征,我将采用讲授法、练习法、自主探究、小组讨论等教学方法。
六、说教学过程下面重点谈谈我对教学过程的设计。
(一)导入新课导入环节我会设置情境。
200多年前,高斯的算术老师提出了下面的问题:1+2+3+…+100=?据说,当时其他同学忙于把100个数逐项相加时,10岁的高斯却用非常巧妙的方法迅速得出了答案。
《等差数列》说课稿

《等差数列》说课稿一、说教材《等差数列》是高中数学中的重要章节,它位于数列学习的第一阶段,起着承前启后的作用。
在这一节中,学生将首次接触到数列的递推关系,这不仅是后续学习等比数列、数列求和等复杂知识的基础,而且对于培养学生的逻辑推理、抽象思维能力具有重要意义。
(1)作用与地位:等差数列作为基本的数列形式,不仅是数列理论的基础,而且在实际生活中有着广泛的应用。
它可以帮助学生建立数学模型,解决一些线性增长或减少的问题。
在数学学科体系中,等差数列是连接算术与代数、初等数学与高等数学的桥梁。
(2)主要内容:本节课主要围绕等差数列的定义、通项公式、性质以及等差数列的前n项和公式进行展开。
内容包括等差数列的识别、如何从第一项和公差推导出任意项的公式,以及如何运用这些性质解决实际问题。
二、说教学目标学习本课,学生应达到以下教学目标:(1)理解并掌握等差数列的定义,能够识别等差数列。
(2)能够推导出等差数列的通项公式,理解公差在等差数列中的作用。
(3)掌握等差数列的前n项和的公式,并能运用其解决实际问题。
(4)通过等差数列的学习,培养学生的逻辑推理能力,提高数学抽象思维能力。
(5)激发学生学习数学的兴趣,体会数学在实际生活中的应用。
三、说教学重难点(1)重点:等差数列的定义、通项公式以及前n项和公式的理解与运用。
(2)难点:如何从实际问题中抽象出等差数列模型,理解并灵活运用等差数列的通项公式和求和公式解决问题。
在教学过程中,对于重点内容需要反复强调,并通过不同类型的例题进行巩固;对于难点内容,则需通过具体实例分析,逐步引导学生理解,采用直观演示和逐步引导的方法,帮助学生克服难点。
四、说教法在教学《等差数列》这一节时,我计划采用以下几种教学方法,旨在提高学生的学习兴趣,增强理解力和应用能力。
1. 启发法:我将通过提出问题,引导学生思考,激发学生的好奇心和探究欲。
例如,我会提问:“在生活中,你们遇到过按照一定规律递增或递减的数列吗?”通过这个问题的引导,让学生从生活经验中抽象出等差数列的概念。
高一数学《等差数列》说课稿

高一数学《等差数列》说课稿一、教材分析1、教材的地位和作用:数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面, 数列作为一种特别的函数与函数思想密不行分;另一方面,学习数列也为进一步学习数列的极限等内容做好预备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法通项公式和递推公式的根底上,对数列的学问进一步深入和拓广。
同时等差数列也为今后学习等比数列供应了学习比照的依据。
2、教学目标依据教学大纲的要求和学生的实际水平,确定了本次课的教学目标 a在学问上:理解并把握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。
b在力量上:培育学生观看、分析、归纳、推理的力量;在领悟函数与数列关系的前提下,把讨论函数的方法迁移来讨论数列,培育学生的学问、方法迁移力量;通过阶梯性练习,提高学生分析问题和解决问题的力量。
c在情感上:通过对等差数列的讨论,培育学生主动探究、勇于发觉的求知精神;养成细心观看、仔细分析、擅长总结的良好思维习惯。
3、教学重点和难点依据教学大纲的要求我确定本节课的教学重点为:①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
由于学生第一次接触不完全归纳法,对此并不熟识因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。
同时,学生对“数学建模”的思想方法较为生疏,因此用数学思想解决实际问题是本节课的另一个难点。
二、学情分析对于三中的高一学生,学问阅历已较为丰富,他们的智力进展已到了形式运演阶段,具备了教强的抽象思维力量和演绎推理力量,所以我在授课时注意引导、启发、讨论和探讨以符合这类学生的心理进展特点,从而促进思维力量的进一步进展。
二、教法分析针对高中生这一思维特点和心理特征,本节课我采纳启发式、争论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参加数学实践活动,以独立思索和相互沟通的形式,在教师的指导下发觉、分析和解决问题。
等差数列的说课稿

等差数列的说课稿一、说教材本文“等差数列”在数学教育中具有重要的作用和地位。
它不仅是高中数学中的重要内容,也是学生接触数学序列概念的第一个重要序列类型。
等差数列作为数列学习的基础,为后续学习等比数列、数列的极限等更复杂的数学概念打下基础。
主要内容方面,等差数列涉及定义、通项公式、前n项和公式以及其性质。
本文通过实例引入等差数列的概念,接着展开对等差数列的性质进行数学论证,最后引入等差数列的应用问题。
(1)作用与地位等差数列在数学课程中占据着承前启后的作用。
它承继了学生对数的基本认知,同时为后续学习高级数学序列提供模型和方法。
在生活实际中,等差数列的概念广泛应用于金融、科学计数等领域,具有很高的实用价值。
(2)主要内容概述本文主要包含以下部分:- 等差数列的定义:介绍了等差数列的基本构成,即每一项与前一项的差是常数。
- 等差数列的通项公式:推导出第n项的表达式,即 \(a_n = a_1 + (n-1)d\)。
- 等差数列的前n项和公式:给出求和公式,即 \(S_n = \frac{n}{2} (a_1 + a_n)\) 或 \(S_n = \frac{n}{2} [2a_1 + (n-1)d]\)。
- 等差数列的性质:包括对称性、周期性等性质,并探讨它们在解题中的应用。
二、说教学目标学习本课,学生应达到以下教学目标:(1)知识与技能- 理解并掌握等差数列的定义、通项公式及前n项和公式。
- 能够运用等差数列的性质解决实际问题。
(2)过程与方法- 通过观察、归纳和论证,培养学生的逻辑思维能力。
- 通过数学问题的解决,提高学生运用数学知识解决实际问题的能力。
(3)情感态度与价值观- 培养学生对数学序列的兴趣,激发他们探索数学规律的欲望。
- 强调数学在生活中的应用,提高学生对数学价值的认识。
三、说教学重难点(1)教学重点- 等差数列的定义、通项公式与前n项和公式的理解和应用。
- 等差数列性质的逻辑推导和运用。
高中数学等差数列说课稿(通用8篇)

高中数学等差数列说课稿〔通用8篇〕高中数学等差数列说课稿〔通用8篇〕高中数学等差数列说课稿篇1一、教材分析^p1、教材的地位和作用:《等差数列》是人教版新课标教材《数学》必修5第二章第二节的内容。
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的根底上,对数列的知识进一步深化和拓广。
同时等差数列也为今后学习等比数列提供了学习比照的根据。
2、教学目的根据教学大纲的要求和学生的实际程度,确定了本次课的教学目的a知识与技能:理解并掌握等差数列的概念;理解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。
培养学生观察、分析^p 、归纳、推理的才能;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移才能;通过阶梯性练习,进步学生分析^p 问题和解决问题的才能。
b.过程与方法:在教学过程中我采用讨论式、启发式的方法使学生深化的理解不完全归纳法。
c.情感态度与价值观:通过对等差数列的研究,培养学生主动探究、勇于发现的求知精神;养成细心观察、认真分析^p 、擅长总结的良好思维习惯。
3、教学重点和难点重点:①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
难点:①等差数列的通项公式的推导②用数学思想解决实际问题二、学情教法分析^p :对于高一学生,知识经历已较为丰富,具备了一定的抽象思维才能和演绎推理才能,所以我本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学理论活动,以独立考虑和互相交流的形式,在教师的指导下发现、分析^p 和解决问题。
学生在初中时只是简单的接触过等差数列,详细的公式还不会用,因些在公式应用上加强学生的理解三、学法分析^p :在引导分析^p 时,留出学生的考虑空间,让学生去联想、探究,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
《等差数列求和》说课稿

《等差数列求和》说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《等差数列求和》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“等差数列求和”是高中数学数列这一章节的重要内容。
它不仅是对等差数列概念和性质的深化与应用,也为后续学习等比数列的求和以及数列的综合应用奠定了基础。
在教材中,通过对等差数列前 n 项和公式的推导,培养了学生的逻辑推理能力和数学运算能力。
同时,公式的应用也有助于提高学生解决实际问题的能力,让学生体会到数学与生活的紧密联系。
二、学情分析学生在之前已经学习了等差数列的定义、通项公式以及性质,具备了一定的知识储备和思维能力。
但对于等差数列求和公式的推导,可能会存在一定的困难,需要教师引导学生进行思考和探索。
此外,学生在数学运算和逻辑推理方面还需要进一步的训练和提高,以更好地掌握和应用等差数列求和公式。
三、教学目标1、知识与技能目标学生能够理解等差数列前 n 项和公式的推导过程,掌握等差数列前n 项和公式,并能熟练运用公式解决相关问题。
2、过程与方法目标通过公式的推导,培养学生的观察、分析、归纳和推理能力;通过公式的应用,提高学生的数学运算能力和解决实际问题的能力。
3、情感态度与价值观目标让学生在探索和解决问题的过程中,体会数学的严谨性和趣味性,激发学生学习数学的兴趣和积极性。
四、教学重难点1、教学重点等差数列前 n 项和公式的推导和应用。
2、教学难点等差数列前 n 项和公式的推导过程中数学思想方法的渗透。
五、教法与学法1、教法为了实现教学目标,突破教学重难点,我将采用讲授法、启发式教学法和小组合作探究法相结合的教学方法。
讲授法可以让学生在短时间内获取系统的知识;启发式教学法能够引导学生积极思考,培养学生的创新思维能力;小组合作探究法可以激发学生的学习积极性,培养学生的团队合作精神和交流能力。
2、学法在教学过程中,我将引导学生采用自主学习、合作学习和探究学习相结合的学习方法。
等差数列(第1课时)说课稿

说课稿等差数列(第1课时)一、教材分析:等差数列是本章的重要组成部分,在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。
同时等差数列也为今后学习等比数列提供了学习对比的依据。
二、教学目标:根据上面对教材的分析,结合学生的认知水平和思维特点,确定本节课的教学目标。
1、知识目标理解并掌握等差数列的概念和等差数列的通项公式。
2、能力目标培养学生观察、分析、归纳、推理的能力。
3、情感目标通过对等差数列的研究,培养学生主动探索,便于发现的求知精神。
三、教学重点、难点:1、教学重点是:等差数列的概念和通项公式的推导及应用。
2、教学难点是:等差数列“等差”特点的理解和应用。
四、教法:针对高中生的思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法。
通过问题激发学生求知欲,在教师的指导下发现和解决问题。
五、学法:在引导分析时,留出学生的思考空间,让学生去联想、探索。
同时鼓励学生大胆质疑,围绕中心各抒已见,进而把要解决的问题弄清。
六、教学过程: (一)复习提问 1、数列的意义是什么? 2、数列与函数的关系如何?通过两个问题复习上节内容目的是为本节课的学习做好知识准备 (二)讲授新课1、通过投影让学生观察以下几个数列,看其有何共同特点? ①全国统一鞋号中成年女鞋的各种尺码(表示鞋底长、单位是cm )分别是:21, 2121, 22, 2221, 23, 2321, 24, 2421,25②某剧场前10排的座位数分别是: 38,40,42,44,46,48,50,52,54,56③某长跑运动员7天里每天的训练量(单位:m )是: 7500,8000,8500,9000,9500,10000,105002、形成概念(1)启发学生进行观察和讨论以上三个数列的共同特点,得出等差数列的概念。
一般地,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列叫等差数列,这个常数叫做等差数列的公差,通常用字母d 来表示。
等差数列说课稿

等差数列说课稿一、教学目标1、知识与技能目标理解等差数列的概念,掌握等差数列的通项公式。
能够运用等差数列的通项公式解决相关问题。
2、过程与方法目标通过对等差数列实例的分析,培养学生观察、分析、归纳和推理的能力。
引导学生经历等差数列通项公式的推导过程,体会从特殊到一般的数学思维方法。
3、情感态度与价值观目标让学生感受数学与生活的紧密联系,激发学生学习数学的兴趣。
通过合作探究,培养学生的团队合作精神和创新意识。
二、教学重难点1、教学重点等差数列的概念及通项公式。
通项公式的推导及应用。
2、教学难点对等差数列概念的理解。
通项公式的灵活运用。
三、教学方法讲授法、讨论法、探究法相结合。
四、教学过程1、导入新课通过列举生活中常见的等差数列实例,如银行存款利息计算、楼梯台阶高度等,引出等差数列的概念。
2、新课讲授给出等差数列的定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母 d 表示。
引导学生观察等差数列的特点,通过实例分析,让学生理解等差数列的定义。
推导等差数列的通项公式:设等差数列{a<sub>n</sub>}的首项为 a<sub>1</sub>,公差为 d,则 a<sub>n</sub> = a<sub>1</sub> +(n 1)d 。
对通项公式进行分析,让学生理解公式中各字母的含义及公式的用途。
3、例题讲解通过典型例题,让学生掌握等差数列通项公式的应用,如求等差数列的某一项、求公差、判断一个数列是否为等差数列等。
4、课堂练习安排适量的课堂练习,让学生巩固所学知识,教师巡视并进行个别指导。
5、课堂小结回顾等差数列的概念和通项公式。
总结本节课的重点和难点。
6、布置作业布置适量的课后作业,包括书面作业和拓展性作业,以加深学生对知识的理解和应用。
《等差数列》说课稿

《等差数列》说课稿引言概述:等差数列是数学中常见且重要的概念,它在我们的日常生活中也有着广泛的应用。
本文将从定义、性质、求和公式、应用以及拓展等五个方面详细介绍等差数列的相关知识。
一、定义:1.1 等差数列的概念:等差数列是指一个数列中的任意两个相邻的数之差都相等的数列。
1.2 等差数列的通项公式:设等差数列的首项为a₁,公差为d,第n项为aₙ,则通项公式为aₙ = a₁ + (n-1)d。
1.3 等差数列的递推公式:设等差数列的首项为a₁,公差为d,第n项为aₙ,则递推公式为aₙ = aₙ₋₁ + d。
二、性质:2.1 等差数列的性质一:等差数列的任意三项可以构成一个等差数列。
2.2 等差数列的性质二:等差数列的前n项和可以通过求和公式来计算。
2.3 等差数列的性质三:等差数列的前n项和与项数n成正比。
三、求和公式:3.1 等差数列前n项和的求和公式:设等差数列的首项为a₁,公差为d,前n项和为Sₙ,则求和公式为Sₙ = n/2 * (2a₁ + (n-1)d)。
3.2 等差数列的特殊求和公式一:等差数列的前n项和与项数n成正比,即Sₙ= n * a₁。
3.3 等差数列的特殊求和公式二:等差数列的前n项和与项数n的平方成正比,即Sₙ = n² * a₁。
四、应用:4.1 等差数列在数学中的应用:等差数列在数学中广泛应用于代数、数论、几何等各个领域,例如数列求和、证明等。
4.2 等差数列在物理中的应用:等差数列在物理中常用于描述匀速直线运动的位移、速度等。
4.3 等差数列在经济学中的应用:等差数列在经济学中常用于描述经济增长、人口增长等的规律。
五、拓展:5.1 等差数列的拓展一:等差数列的概念可以推广到等差数列的和为负数或小数的情况。
5.2 等差数列的拓展二:等差数列的概念可以推广到等差数列的公差为负数或小数的情况。
5.3 等差数列的拓展三:等差数列的概念可以推广到等差数列的首项为负数或小数的情况。
高中高二等差数列说课精选文稿

等差数列讲课稿一.教材剖析1.教材的地位与作用本节课《等差数列》是《高中数学第一册》第三章第二节第一课时的内容,是在学生学习了数列的相关看法和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入学习。
数列是高中数学重要内容之一,是前一章《函数》内容的延长,表现教材编排的连续性,它在本质生活中有宽泛的本质应用,起着承上启下的作用,同时官也是培育学生数学能力的优秀题材。
等差数列作为数列部分的主要内容,是学生研究特别数列的开始,对后续内容的学习,不论在知识上,仍是在方法上都拥有踊跃的意义。
2.教课目的确实定及依照( 1 )教课参照书和教课纲领明确指出:本节的要点是等差数列的看法及其通项公式的推导过程和应用。
本节先在详细例子的基础上引出等差数列的看法,接着用不完整归纳法归纳出等差数列的通项公式,最后依据这个公式去进行相关计算。
可见本课内容的安排旨在培育学生的察看剖析、归纳猜想、应用能力。
(2)从学生知识层面看:学生对数列有了初步的接触和认识,对方程、函数、数学公式的运用拥有必定技术,函数、方程思想领会渐渐深刻。
(3)从学生素质层面看:我从高一年重生开始注意培育学生自主合作研究的学习习惯,学生思想活跃中,讲堂参加意识较浓,且高一年学生拥有必定理解、剖析、推理的能力。
基于上述剖析原由,我拟订了本节课的要点、难点和教课目的:要点、难点要点:等差数列的看法及通项公式。
难点:( 1)理解等差数列“等差”的特色及通项公式的含义。
(2)从函数、方程的看法看通项公式教课目的知识目标:理解等差数列的看法,认识等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式,并能用公式解决一些简单本质问题。
能力目标:( 1 )培育学生察看剖析、猜想归纳、应用公式的能力;( 2 )在领悟函数与数列关系的前提下,浸透函数、方程的思想。
感情目标:( 1 )经过平等差数列的研究,领会从特别到一般,又到特别的认识事物规律,培育学生主动研究,勇于发现的求知精神。
《等差数列》 说课稿

《等差数列》说课稿尊敬的各位评委老师:大家好!今天我说课的内容是《等差数列》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析本节课选自人教版必修 5 第二章第二节。
数列是高中数学的重要内容之一,它不仅有着广泛的实际应用,而且是培养学生逻辑思维能力和数学素养的良好素材。
等差数列作为数列的一种特殊形式,是研究数列的基础,也为后续学习等比数列等内容奠定了基础。
通过本节课的学习,学生将掌握等差数列的定义、通项公式以及前n 项和公式,体会从特殊到一般、从具体到抽象的数学思维方法,提高观察、分析和解决问题的能力。
二、学情分析在学习本节课之前,学生已经掌握了数列的基本概念和函数的相关知识,具备了一定的抽象思维能力和逻辑推理能力。
但对于等差数列的概念和性质的理解还需要进一步的引导和深化。
此外,学生在学习过程中可能会遇到以下困难:一是对于等差数列通项公式的推导过程较难理解;二是在运用通项公式和前 n 项和公式解决实际问题时,不能灵活选择合适的公式进行计算。
三、教学目标基于以上对教材和学情的分析,我制定了以下教学目标:1、知识与技能目标(1)理解等差数列的定义,掌握等差数列的通项公式和前 n 项和公式。
(2)能够运用等差数列的通项公式和前 n 项和公式解决简单的实际问题。
2、过程与方法目标(1)通过观察、分析、归纳等数学活动,培养学生的抽象思维能力和逻辑推理能力。
(2)让学生经历等差数列通项公式的推导过程,体会从特殊到一般的数学思维方法。
3、情感态度与价值观目标(1)激发学生学习数学的兴趣,培养学生勇于探索、敢于创新的精神。
(2)通过等差数列在实际生活中的应用,让学生感受数学与生活的密切联系,提高学生的数学应用意识。
四、教学重难点1、教学重点(1)等差数列的定义、通项公式和前 n 项和公式。
(2)等差数列通项公式和前 n 项和公式的应用。
2、教学难点(1)等差数列通项公式的推导过程。
高中等差数列说课稿

高中等差数列说课稿一、说教材本文《等差数列》在高中数学课程中具有重要作用和地位。
它是数列这一章的核心内容,既是重点也是难点。
等差数列作为一种基本的数列形式,不仅在数学理论中具有广泛应用,而且在实际生活中也随处可见。
本节课主要内容包括等差数列的定义、通项公式、前n项和公式及其性质。
通过学习等差数列,可以帮助学生掌握数列的基本概念,培养他们的数学思维能力,为后续学习等比数列、数列的极限等知识打下坚实基础。
(1)作用与地位等差数列是数列单元的基础知识,与其他数学知识有着紧密的联系。
例如,在函数、方程、不等式等方面,等差数列都有所体现。
此外,等差数列在实际问题中的应用也较为广泛,如经济、物理等领域。
因此,掌握等差数列的相关知识对于学生来说具有重要意义。
(2)主要内容本文主要围绕等差数列的定义、通项公式、前n项和公式及其性质展开。
具体包括:1. 等差数列的定义:数列{an}称为等差数列,如果从第二项起,每一项与前一项的差是一个常数,这个常数称为公差,通常用d表示。
2. 等差数列的通项公式:an=a1+(n-1)d,其中a1为首项,d为公差。
3. 等差数列的前n项和公式:Sn=n/2[2a1+(n-1)d]。
4. 等差数列的性质:等差数列具有许多性质,如对称性、单调性、周期性等。
二、说教学目标学习本课,学生需要达到以下教学目标:1. 知识与技能:(1)理解等差数列的定义,掌握等差数列的通项公式和前n项和公式;(2)能够运用等差数列的性质解决相关问题;(3)了解等差数列在实际问题中的应用。
2. 过程与方法:(1)通过观察、分析、归纳等差数列的性质,培养学生的数学思维能力;(2)学会运用等差数列的知识解决实际问题,提高学生的应用能力。
3. 情感态度与价值观:(1)激发学生对数学学习的兴趣,培养他们的探究精神;(2)使学生认识到数学知识在实际生活中的价值,增强他们的学习动力。
三、说教学重难点本节课的教学重点是等差数列的定义、通项公式、前n项和公式及其性质。
《等差数列求和》说课稿

《等差数列求和》说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《等差数列求和》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析“等差数列求和”是高中数学数列这一章节的重要内容。
等差数列在现实生活中有着广泛的应用,求和公式的推导和应用不仅有助于学生深化对等差数列概念的理解,还能培养学生的逻辑推理能力和数学运算能力。
本节课的内容是在学生已经学习了等差数列的定义、通项公式等知识的基础上进行的,为后续学习等比数列的相关内容奠定了基础。
二、学情分析授课对象是高二年级的学生,他们已经具备了一定的逻辑思维能力和抽象概括能力,但对于数学公式的推导和应用还需要进一步的引导和训练。
在之前的学习中,学生已经掌握了等差数列的基本概念和通项公式,为本节课的学习提供了知识储备。
但学生对于数列求和的方法可能还比较陌生,需要通过本节课的学习,引导学生从特殊到一般,逐步掌握等差数列求和的方法。
三、教学目标1、知识与技能目标学生能够理解等差数列求和公式的推导过程,掌握等差数列求和公式,并能熟练运用公式解决相关问题。
2、过程与方法目标通过公式的推导,培养学生的观察、分析、归纳和推理能力;通过公式的应用,提高学生的数学运算能力和解决实际问题的能力。
3、情感态度与价值观目标让学生在自主探究和合作交流中,体验数学学习的乐趣,激发学生的学习兴趣和创新精神,培养学生的团队合作意识。
四、教学重难点1、教学重点等差数列求和公式的推导和应用。
2、教学难点等差数列求和公式的推导过程中所蕴含的数学思想方法。
五、教法与学法1、教法根据本节课的教学内容和学生的实际情况,我将采用启发式教学法、讲授法和练习法相结合的教学方法。
通过启发引导,让学生自主探究等差数列求和公式的推导过程;通过讲授,让学生明确公式的应用方法和注意事项;通过练习,让学生巩固所学知识,提高应用能力。
2、学法在教学过程中,我将引导学生采用自主探究法、合作交流法和归纳总结法进行学习。
高中数学说课文稿等差数列

优秀教案名师精编高中数学说课稿等差数列本节课讲述的是等差数列〔第一课时〕的内容。
一、教材分析1、教材的地位和作用:数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的性质与应用等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的根底上,对数列的知识进一步深入和拓广。
同时等差数列也为今后学习等比数列提供了学习比照的依据。
2、教学目标根据课程标准的要求和学生的实际水平,确定了本次课的教学目标(1〕在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想。
(2〕在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
(3〕在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
3、教学重点和难点根据课程标准的要求我确定本节课的教学重点为:①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
.优秀教案名师精编由于学生第一次接触不完全归纳法 ,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。
同时,学生对“数学建模〞的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。
二、学情教法选择:对于高中学生,知识经验比拟贫乏,虽然他们的智力开展已到了形式运演阶段,但并不具备教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理开展特点,从而促进思维能力的进一步开展。
本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学优秀说课稿-等差数列高中数学优秀说课稿等差数列本节课讲述的是人教版高一数学(上)§3.2等差数列(第一课时)的内容。
一、教材分析1、教材的地位和作用:数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。
同时等差数列也为今后学习等比数列提供了学习对比的依据。
2、教学目标根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标a 在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。
b 在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
c 在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
3、教学重点和难点根据教学大纲的要求我确定本节课的教学重点为:①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。
同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。
二、学情分析对于高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。
三、教法分析针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。
学法指导在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
四、教学程序本节课的教学过程由(一)复习引入(二)新课探究(三)应用举例(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。
(一)复习引入:1.从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______ 。
(N﹡;解析式)通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。
2. 小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为: 100,98,96,94,92 ①3. 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为 5,15,25,35,45 ②通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。
由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。
(二) 新课探究1、由引入自然的给出等差数列的概念:如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。
强调:①“从第二项起”满足条件;②公差d一定是由后项减前项所得;③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:an+1-an=d (n≥1)同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。
1. 9 ,8,7,6,5,4,……;√ d=-12. 0.70,0.71,0.72,0.73,0.74……;√ d=0.013. 0,0,0,0,0,0,…….; √ d=04. 1,2,3,2,3,4,……;×5. 1,0,1,0,1,……×其中第一个数列公差<0, 第二个数列公差>0,第三个数列公差=0由此强调:公差可以是正数、负数,也可以是02、第二个重点部分为等差数列的通项公式在归纳等差数列通项公式中,我采用讨论式的教学方法。
给出等差数列的首项,公差d,由学生研究分组讨论a4 的通项公式。
通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。
整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。
若一等差数列{an }的首项是a1,公差是d,则据其定义可得:a2 - a1 =d 即: a2 =a1 +da3 – a2 =d 即: a3 =a2 +d = a1 +2da4 – a3 =d 即: a4 =a3 +d = a1 +3d……猜想: a40 = a1 +39d进而归纳出等差数列的通项公式:an=a1+(n-1)d此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:a2 – a1 =da3 – a2 =da4 – a3 =d……an – an-1=d将这(n-1)个等式左右两边分别相加,就可以得到 an– a1= (n-1) d即 an=a1+(n-1) d (1)当n=1时,(1)也成立,所以对一切n∈N﹡,上面的公式都成立因此它就是等差数列{an}的通项公式。
在迭加法的证明过程中,我采用启发式教学方法。
利用等差数列概念启发学生写出n-1个等式。
对照已归纳出的通项公式启发学生想出将n-1个等式相加。
证出通项公式。
在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n-1)×2 ,即an=2n-1 以此来巩固等差数列通项公式运用同时要求画出该数列图象,由此说明等差数列是关于正整数n一次函数,其图像是均匀排开的无穷多个孤立点。
用函数的思想来研究数列,使数列的性质显现得更加清楚。
(三)应用举例这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。
通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。
当其中的部分量已知时,可根据该公式求出另一部分量。
例1(1)求等差数列8,5,2,…的第20项;第30项;第40项(2)-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?在第一问中我添加了计算第30项和第40项以加强巩固等差数列通项公式;第二问实际上是求正整数解的问题,而关键是求出数列的通项公式an例2在等差数列{an}中,已知a5=10,a12 =31,求首项a1与公差d。
在前面例1的基础上将例2当作练习作为对通项公式的巩固例3 是一个实际建模问题建造房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面5.8米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米?这道题我采用启发式和讨论式相结合的教学方法。
启发学生注意每级台阶“等高”使学生想到每级台阶离地面的高度构成等差数列,引导学生将该实际问题转化为数学模型------等差数列:(学生讨论分析,分别演板,教师评析问题。
问题可能出现在:项数学生认为是16项,应明确a1为第2层的楼底离地面的高度,a2表示第一级台阶离地面的高度而第16级台阶离地面高度为a17,可用课件展示实际楼梯图以化解难点)设置此题的目的:1.加强同学们对应用题的综合分析能力,2.通过数学实际问题引出等差数列问题,激发了学生的兴趣;3.再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法(四)反馈练习1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。
目的:使学生熟悉通项公式,对学生进行基本技能训练。
2、书上例3)梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。
计算中间各级的宽度。
目的:对学生加强建模思想训练。
3、若数列{an} 是等差数列,若 bn = k an ,(k为常数)试证明:数列{bn}是等差数列此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。
(五)归纳小结(由学生总结这节课的收获)1.等差数列的概念及数学表达式.强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数2.等差数列的通项公式 an= a1+(n-1) d会知三求一3.用“数学建模”思想方法解决实际问题(六)布置作业必做题:课本P114 习题3.2第2,6 题选做题:已知等差数列{an}的首项a1= -24,从第10项开始为正数,求公差d的取值范围。
(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)五、板书设计在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。
§3.2 等差数列一、等差数列1、定义注:“从第二项起”及“同一常数”用红色粉笔标注二、等差数列的通项公式例题与练习(省略)。