长大隧道控制测量方案
长大隧道控制测量方案
v1.0 可编辑可修改新建叙永至毕节铁路(川滇段)站前工程施工XZZQSG-2标长大隧道控制测量方案(DK194+~D2K230+910)中铁十七局集团叙毕铁路(川滇段)二标项目经理部二〇一六年十二月三十日目录一、工程概况 (1)二、地形地貌 (1)三、测量依据 (2)四、测量仪器及人员 (2)五、测量人员职责 (3)六、隧道洞外控制测量 (3)1.洞外控制点布设规定 (3)2.洞外平面控制测量 (4)3.洞外高程控制测量 (9)4.洞外控制点的联测及精度要求 (11)平面控制点联测 (11)隧道洞口控制点使用GPS进行加密,待平差计算结果符合规范要求后,应使用全站仪对洞外加密的点位进行角度和边长的复测,复测结果应满足四等导线测量的要求。
(11)复测方法:把仪器架设在控制点上,测量每相邻两点间的距离,并在该点上观测相邻两边之间的夹角,利用已知的控制点坐标正算出距离和坐标方位角,与已测得的距离和坐标方位角进行对比检查。
(12)高程控制点联测 (12)二、三等水准路线宜沿隧道进出口间的道路勘选。
若绕行较远时,可沿小路勘选。
本测区全部位于山区,当水准测量平均每千米单程测站大于25站时,测段往返高差不符值应满足下表的规定。
(12)表6-4-2往返测高差不符值的限差(MM) (12)水准测量等级 (12)测段往返测高差不符值限差 (12)二 (12)n (12)三 (12)n (12)四 (12)n (12)五 (12)n (12)七、隧道洞内控制测量 (12)1.洞内平面控制测量 (12)2.导线网的测量 (13)3.平差计算 (15)4.洞内高程控制 (16)5.贯通测量误差预计 (17)6.洞外高程测量误差对洞内高程影响估算 (18)7.隧道洞内布网施测注意事项 (19)八、相关工作 (19)长大隧道控制测量方案一、工程概况我标段施工起讫里程:DK194+~DK230+910,线路全长。
隧道共计8座,其中大于4公里的长大隧道3座,分别为长岭隧道,7775m;下寨隧道4104m;斑竹林隧道全长12758m,我标段施工里程为D2K222+232~D2K230+910,施工长度8678m。
隧道控制测量方案
1、编制依据(1)《铁路工程测量规范》(TB10101-2009);(2)《三.四等导线测量规范》(CH/T2007-2001);(3)《国家三、四等水准测量规范》(GB/T12898-2009);(4)牡绥铁路扩能改造工程隧道施工设计图及相关设计文件。
2、工程概况本标段涵盖两座长大隧道:红池隧道(5621米)和转心湖隧道(6676米),铁路等级: I 级,正线数目:双线,设计行车速度: 200Km/h以上。
隧道平面设计为:红池隧道进口698.13米位于直线上,出口1939米为直线、243.28米位于圆曲线和缓和曲线上,其余地段位于半径4500米的圆曲线和缓和曲线上,纵断面设计坡度进口段为10‰上坡,出口段为3.8‰上坡,进出口高差为8.305m;转心湖隧道进口666.11米位于圆曲线和缓和曲线上,其余地段为直线,纵断面设计坡度进口段为3.8‰上坡,中间设置竖曲线,出口段为5.0‰下坡,进出口高差为6.61m。
平面控制采用设计院提供CPⅠ控制点,洞口加密点由我局测量公司精测大队采用GPS进行CPⅠ控制点加密,并提供二等水准加密控制点高程。
3、测量人员及仪器保障3.1 测量人员(1)为确保本标段控制测量工作准确、快速、顺利的进行,针对此项目技术含量高,对测量精度的特别要求,项目部预计投入技术人员3人,其中工程师1人,技术员2人。
(2)建立和完善测量工作规章制度和复核流程,测量技术人员对测量资料进行整理归档。
测量人员见下表:3.2 测量仪器项目部根据测量要求,配置一定数量、精度高、技术性能稳定的仪器。
仪器在进场前已检定合格;在测量过程中如发现仪器出现异常情况,须经检定后方可再次投入使用;测量仪器指定专人管理,定期进行检定校核。
测量仪器配置表4、平面控制测量4.1 洞外控制测量红池隧道和转心湖隧道,开挖均是采用进口、出口和一个斜井三个开挖面同时进行的掘进方案,在隧道每个洞口处分别布设四个GPS控制加密点,该加密点兼做水准控制点。
长大隧道控制测量技术
隧道的横向贯通中误差有两个来源,分别为洞 外 GPS 控制测量误差和洞内导线测量误差。洞外 GPS 控制测量误差对仙女岩隧道横向贯通中误差的 影响值按洞外 GPS 控制网平差的精度结果进行预 计。洞内导线控制测量误差对仙女岩隧道横向贯通 中误差的影响值按洞内导线的设计参数进行预计。 洞外 GPS 控制测量按式( 1 )预计其测量误差 对隧道横向贯通中误差的影响值。 LJcosθ×m LC cosφ×m æ æ æ æ αJ αC ç ç M外2=mJ2+mC2+ ç ç ç ç +ç ç è ρ è è ρ è (1) 56
2 2 2
图 3 隧道洞内导线网示意图
如图 3 所示,仙女岩隧道洞内导线采取交叉导 线网形式,其中, 1 、 2 、 3 、…、 n 代表主导线 点, 1' 、 2' 、…、 n' 代表副导线点。交叉导线网的 优势在于让控制网具有很高的网型强度,检核条件 多,利于提高隧道横向贯通的精度。
3 贯通误差分析
2 隧道控制测量
隧道控制测量分为洞外控制测量和洞内控制测 量,其对贯通误差的贡献各不相同。 2.1 洞外控制测量 仙女岩隧道独立控制网为一等 GPS 控制网,高 于 CPI 控制网精度等级,仙女岩隧道独立控制网涉 及平面控制点 14 个,其中 CPI 控制点 4 个,独立控 制 点 10 个 ( 其 中 包 含 斜 井 控 制 点 3 个 ) 。 其 中 CPI36 和 CPI36-1 , CPI39 和 CPI40 为独立控制网强 制约束点。平面控制网测量的作业方法、精度指 标、使用仪器均按《高速铁路工程测量规范》中一 等 GPS 网的要求进行。 目前由于 GPS 测量的优越性,使其成为长大隧
长大隧道洞内自由测站边角精密测量控制施工工法(2)
长大隧道洞内自由测站边角精密测量控制施工工法一、前言长大隧道洞内自由测站边角精密测量控制施工工法是一种应用于隧道洞内施工的测量控制方法。
通过使用自由测站技术和边角测量仪器,可以实现对隧道洞体的精密度量和控制,确保施工质量和安全。
二、工法特点1. 精密度量: 该工法可实现对隧道洞体的精密测量,测量结果精度高,能满足实际工程的要求。
2. 自由测站技术: 采用自由测站技术,不需要在洞内设置固定的测站点,能够灵活地调整测量位置,提高工作效率。
3. 边角测量仪器: 采用先进的边角测量仪器,能够准确测量洞体的边角,确保施工过程中的平直度和直角度。
4. 可视化和自动化: 通过使用现代化的测量仪器和软件,实现测量结果的可视化和自动化处理,减少人工操作的误差。
三、适应范围长大隧道洞内自由测站边角精密测量控制施工工法适用于各类隧道洞体的施工,包括公路隧道、铁路隧道、地铁隧道等。
其中,对于边角要求严格的特殊隧道,如水利隧道和地质隧道,该工法尤为适用。
四、工艺原理1. 施工工法与实际工程之间的联系:详细分析和解释施工工法与实际工程之间的联系,包括控制点选择、测量方式和数据处理等方面。
2. 采取的技术措施:介绍采取的具体技术措施,如使用边角测量仪器、自由测站技术和数据处理软件等,以及如何处理测量数据并对施工进行控制。
五、施工工艺详细描述施工工法的各个施工阶段,包括准备工作、设站测角、数据处理和施工控制等。
通过具体的描述,让读者了解施工过程中的每一个细节,并能够应用于实际工程。
六、劳动组织介绍该工法的劳动组织安排,包括测量人员和施工人员的配备和分工,以及沟通协调的工作流程。
确保工法的顺利实施和施工的高效进行。
七、机具设备详细介绍该工法所需的机具设备,包括边角测量仪器、自由测站仪器、数据处理软件等。
对这些机具设备的特点、性能和使用方法进行介绍,以便读者了解和选择适合的设备。
八、质量控制介绍施工质量控制的方法和措施,包括控制点的选取、测量误差的控制和数据的有效性验证等。
长大隧道控制测量方案
新建叙永至毕节铁路(川滇段)站前工程施工XZZQSG-2标长大隧道控制测量方案(DK194+516.98~D2K230+910)中铁十七局集团叙毕铁路(川滇段)二标项目经理部二〇一六年十二月三十日目录一、工程概况 (1)二、地形地貌 (2)三、测量依据 (2)四、测量仪器及人员 (2)五、测量人员职责 (3)六、隧道洞外控制测量 (4)1.洞外控制点布设规定 (4)2.洞外平面控制测量 (4)3.洞外高程控制测量 (7)4.洞外控制点的联测及精度要求 (8)七、隧道洞内控制测量 (9)1.洞内平面控制测量 (10)2.导线网的测量 (10)3.平差计算 (13)4.洞内高程控制 (14)5.贯通测量误差预计 (14)6.洞外高程测量误差对洞内高程影响估算 (15)7.隧道洞内布网施测注意事项 (16)八、相关工作 (16)九、测量技术保证措施 (16)长大隧道控制测量方案一、工程概况我标段施工起讫里程:DK194+516.98~DK230+910,线路全长36.393km。
隧道共计8座,其中大于4公里的长大隧道3座,分别为长岭隧道,7775m;下寨隧道4104m;斑竹林隧道全长12758m,我标段施工里程为D2K222+232~D2K230+910,施工长度8678m。
1.长岭隧道起迄里程为DK199+190~DK206+965,全长7775m,最大埋深375m,除出口DK206+869~DK206+965段为车站范围,设计为双线外,其余均为单线隧道。
隧道为单面上坡,线路设计坡度为12.2 ‰、11.05‰、10.95‰、10.1‰和0‰。
隧道洞身DK204+105.458~DK205+917.09段位于半径为8000m的右偏曲线上,其余为直线。
为加快施工进度、满足防灾救援要求、施工通风等问题,于DK203+100线路前进方向右侧设置1座斜井,于线路大里程夹角45°,全长1400m,斜井作为运营期间防灾救援避难所兼紧急出口。
谈铁路长大隧道的洞内平面控制测量
S HANX I ARCHI I EC T URE
山 西 建 筑
Vo 1 . 3 9 No . 2
J a n . 2 0 1 3
・21 3・
文章编号 : 1 0 0 9 — 6 8 2 5 ( 2 0 1 3 ) 0 2 — 0 2 1 3 — 0 2
量 的精 度和可靠性 , 使 隧道 能正 确贯通 , 并 使 隧道 内各 建筑 物界 至整米 , 左线点号前冠 以字母 “ z ” , 左 线点号 前冠 以字母 “ Y ” , 例 限符合 验收精度要求 , 就显得尤为重要 。 如: Z 3 5 2+ 2 6 8 , Y 3 5 2+ 2 7 3 , 分别表示左线里程 K 3 5 2+ 2 6 8 、 右线里
阶段 的测量 精度要求 , 致使 隧道贯 通后 误差 较大 , 虽然 满足 规范 标称测角精 度 不 应 低 于 ±1 . 0 ” , 测 距 精 度 不 应 低 于 ±1 m i n+ 的精度要求 , 但 对后续 的隧道洞 内 C PI I 测 量和 c P Ⅲ测 量 的精度 2 p p m。观测前须 按要 求对 全站 仪及其 棱镜 进行 检 校 , 作 业期 间 产生很 大影 响。采用交叉导线 网, 可 以加 强测量检 核和 提高测量 仪器须在有效检定期 内。边长观测 应进行温度 、 气 压等气象元 素 精度 , 大大减小贯 通误差 , 从 而保 证无 砟轨 道施工 时 的隧道 洞 内 改正 , 温 度读 数精 确至 0 . 5℃ , 气压读数精确至 0 . 5 h P a 。
谈 铁 路 长 大 隧 道 的 洞 内 平 面 控 制 测 量
曹 文 科
( 中铁一局集团第五工程 有限公 司 , 陕西 宝鸡 7 2 1 0 0 6 )
长大隧道洞内控制测量实施方案
长大隧道洞内控制测量实施方案设计摘 要:本文对长大隧道洞内平面控制测量和高程控制测量实施性方案的设计方法进行了详细的阐述,并以白石河二号隧道洞内控制测量实施方案设计为例,具体分析了方案设计的过程和实施,确保长大隧道的顺利贯通。
关键词:长大隧道 控制测量 方案设计0.前言保证长大隧道的准确贯通,隧道控制测量是关键。
对长大隧道的贯通,规范要求贯通精度很高,隧道洞内控制测量精度的高低直接影响到贯通的精度,为了保证隧道在允许精度内贯通,首先要对洞内控制测量进行设计[1],在未贯通前对已施测的测量成果进行相应的精度估算,为了保证相应的控制测量精度还要采取相应的测量方案设计。
1长大隧道控制测量方案设计1.1 平面控制测量设计洞内平面控制测量在未贯通前都是支导线。
当接到隧道工程施工任务时,首先要根据洞内相向开挖长度及设计贯通精度要求,对洞内导线进行设计,估算预期的误差、确定导线施测的等级,以保证隧道施工中线的正确,即贯通精度符合要求,更为合理、经济的选择测量设备和测量方案。
为提高测量精度, 导线边长尽量放长。
根据误差传播定律,导线测角及量边所引起的洞内横向贯通误差为:m=±22yl y m m +β其中, m y β=±"ρβm ∑2x Rm yl =±lm l ∑2y d 式中x R 为导线点至贯通面的垂直距离(m),y d 为导线边对贯通面的投影长度(m),m β为洞内测角中误差(″),lm l 为导线边长相对中误差。
m 总= ±22洞内洞外m m +1.2 高程控制测量设计隧道洞内高程控制测量精度直接影响的是高程贯通中误差,根据水准测量误差引起的高程贯通中误差来确定高程控制测量的等级。
洞内受洞外或洞内高程控制测量误差影响所产生在贯通面上的高程中误差按下式计算:mΔh=± mΔ×L式中:mΔ为每千米水准测量的偶然中误差(mm)L为洞外或洞内两开挖洞口间高程路线长度(km)。
长隧道贯通测量方案
科技创新导报长隧道贯通测量方案1 前言由于测量过程中不可避免的带有误差,因此贯通实际上总是存在偏差的。
隧道贯通接合处的偏差可能发生在空间的三个方向中,即沿隧道中心线的长度偏差,垂直于隧道中心线的左右偏差(水平面内)和上下的偏差(竖直面内)。
第一种偏差只对贯通在距离上有影响,对隧道的质量没有影响,而后两种方向上的偏差对隧道质量有着直接影响,所以这后两种方向上的偏差又称为贯通重要方向的偏差。
贯通的容许偏差是针对重要方向而言的。
2 工程概述西部开发省际公路重庆至长沙公路(简称文献标识码:A文章编号:1674-098x(2008)01(b)-0153-02渝湘高速公路)D14合同段的肖家坡隧道位于重庆市黔江区石会镇中元和沙坝乡之间,为一座上、下分离的高速公路长隧道。
左线起讫桩号为ZK51+386~ZK54+105,全长2719m;右线起讫桩号为YK51+400~YK54+130,全长2730m。
隧道线形为:左线洞身为左偏.. R4000m+右偏R-4000m圆曲线组成的复合线形,右线洞身为左偏R-4000m+右偏R-4000m圆曲线组成的复合线形,进口左右洞平曲线半径均为R-4000m,出口左右洞平曲线半径均为R-2600m;左右线纵面均为-1.950%的单向坡,隧道最大埋深约460m;进出口地形较平缓,黔江端洞门依据地形左线设置为削竹式洞门,右线设置为端墙式洞门,彭水端洞门设置为端墙式洞门,在隧道内设置4处行人横洞,3处行车横洞。
该隧道施工采用导坑开挖及全断面开挖先墙后拱法施工。
由于本隧道较长,采用两头掘进,不可能主洞贯通后进行二衬,因此测量精度关系到整个隧道的施工进行及质量,故对测量的要求很高。
隧道的贯通测量显得尤为重要。
3 选择贯通测量方案为了加快施工速度,缩短施工工期,改善通风状况及劳动条件,故该隧道采用进、出口两个工作面相向掘进。
为了保证各掘进工作面沿着设计的方向掘进,使贯通后接合处的偏差不超过《工程测量规范》允许的限差要求,满足隧道贯通的精度,所以贯通测量的方表2 RI对应值一层次有关元素起支配作用。
谈长大隧道施工控制测量方法
谈长大隧道施工控制测量方法发表时间:2019-04-24T14:58:20.657Z 来源:《建筑学研究前沿》2018年第36期作者:尹志红[导读] 本文结合某隧道施工控制测量技术与方法,简述如何实现测量精度及误差控制的方法,供大家参考。
中铁隧道集团一处有限公司重庆 401121摘要:科技在不断的发展,社会在不断的进步,长大隧道对于控制测量的要求极高,尤其是在山岭地区的长大隧道,因其受到洞外地形、通视边较短等因素的限制和影响,对于隧道的控制测量精度要求更高。
为了确保隧道的顺利贯通,要建立隧道内外施工测量控制网,使其贯通精度符合相关的规范和要求,本文结合某隧道施工控制测量技术与方法,简述如何实现测量精度及误差控制的方法,供大家参考。
关键词:长大隧道;施工;控制;测量引言高速铁路的速度均在250kM/小时以上,对线性、地形的要求比较高,因此隧道在高铁线路中的比例非常高,且长大隧道较多。
为加快施工进度,长大隧道常采用长隧短打的方法即增加工作面,多开斜井、平导、竖井等,这样各工作面之间的贯通精度直接决定了隧道的质量,因此,隧道内外施工测量控制网的建立是非常必要的,测量控制网布设的好坏,精度的高低,直接影响到贯通精度能否达到设计要求。
这对于高速铁路施工,隧道顺利贯通起着至关重要的作用,下面就某隧道在特定条件下以常规测量方法进行测量控制网的布设及其观测精度情况谈一点体会。
1工程概况某隧道最大埋深约220m,全长7288m。
最大开挖面积109.3m2,正洞主要采用三台阶法进行开挖。
2测量难点分析1)某隧道为大断面重载铁路,隧道设计铺设无砟轨道,对控制测量要求较高。
另外针对某隧道所处地形,进出口及斜井口均处在山坳之中,设计提供的控制点均在山顶位置,对洞外和洞内的联系测量提出了更高的要求。
为此,必须建构引测进洞隧道洞外施工控制网,并使之具有高精度和独立性。
2)为了确保长大隧道的正确掘进,要实现逐层控制,即:临时中线点控制掘进方向、正式中线控制临时中线点、洞内控制点控制正式中线点。
隧道控制测量和监控量测
一、洞内外控制测量
2、隧道洞外控制测量
按《工程测量规范》要求,隧道施工独立控制网旳边长投影变形值 要不大于2.5cm/km。从上表能够看出该隧道控制网达不到精度要求,为 了减小投影需建立独立网。
该隧道独立网采用既变化投影面又变化投影带旳措施。该独立网是 在北京54椭球下,以勘测网中隧道进口GPS9201点作为约束点起算,以 GPS9201-GPS9209方向作为约束方向,中央子午线 ,投影面高程H=332.10m。
一、洞内外控制测量
一、洞内外控制测量
2、隧道洞外控制测量
以某一长大隧道为例,该隧道东西走向,长约8km,中间设一斜井。该 区布设了勘测网(北京54参照椭球,0米投影面,中央子午线经度为 1 1 8 ° 1 5 ′ ) , 在测区共加密12个点GPS9201-GPS9212.
一、洞内外控制测量
2、隧道洞外控制测量
二、隧道监控量测
5、监测资料整顿及数据分析
回归分析是量测数据数学处理旳主要措施,经过对量测数据回归分 析预测最终位移值和各阶段旳位移速率。详细措施如下: 1 将量测统计及时输入计算机系统,根据统计绘制纵横断面地表下 沉曲线和洞内各测点旳位移u-时间t 旳关系曲线。 2 若位移-时间关系曲线出现反常,表白围岩和支护已呈不稳定状态, 加强监控量测频率,必要时将暂停开挖并进行加强支护处理。 3 当位移-时间关系曲线趋于平缓时,进行数据处理或回归分析,从 而推算最终位移值和掌握位移变化规律。 4 各测试项目旳位移速率明显收敛,围岩基本稳定后,进行二次衬 砌旳施作。
从上表能够看出,地面全站仪旳测量数据与独立网 GPS 坐标反算旳 数据吻合程度很好,能够验证独立网测量成果旳精度和可靠性,用该独 立网能够到达该隧道贯穿误差精度旳要求,所以该平面独立网能够作为 该隧道施工测量控制旳基准。
长大隧道CPII控制网测量方法
长大隧道CPII控制网测量方法发表时间:2020-05-22T15:54:08.577Z 来源:《城镇建设》2020年7期作者:游飞[导读] 长大隧道内因为其特殊的作业环境,旁折光、灰尘、烟气以等因素的影响摘要:长大隧道内因为其特殊的作业环境,旁折光、灰尘、烟气以等因素的影响,给建立高精度的CPII控制网变得困难。
本文通过大量的现场测量实践和数据分析,对理论CPII控制网布网形式以及测量方法进行了改进。
改进后的CPII控制网测量方法能够满足精度要求,同时也能具有较高的可靠性。
关键词:长大隧道 CPII 导线网闭合差1. 概述国家正在大规模建设高速铁路。
高速铁路由于线路等级高、速度快,大量使用长大隧道,而我国长大隧道的洞内控制测量方法几十年不变,已经难以满足特长隧道施工贯通误差控制和高速铁路隧道洞内无砟轨道施工测量控制的需要。
隧道控制测量包括洞外控制测量和洞内控制测量,其最终目的是确保相向开挖的隧道能够按规定的贯通误差正确贯通。
为确保正确贯通,测量上起控制作用的主要是洞外控制测量和洞内控制测量的方法及其精度。
随着科学的进步和测绘新技术的不断出现及其应用,目前国内外铁路、公路工程长大隧道洞外控制测量,已经普遍采用先进的卫星定位测量方式;但解放60年来我国的洞内控制测量到目前为止,仍普遍采用传统的导线环网(多边形闭合导线网、旁点导线网或交叉导线网)的形式,这与当前测绘技术的发展水平是不相称的。
除此之外,由于洞外控制测量方法已从传统的导线网或三角网的方式改变为卫星定位测量方式,差分卫星相对定位测量的高精度和洞外控制点数量的大大减少(仅需在洞口处布点),使得由洞外控制测量误差引起的横向贯通误差已大大减小,统计发现目前的隧道实际贯通误差主要由洞内导线环网的测量误差引起。
现行《高速铁路工程测量规范》TB10601规定:当相向开挖长度为20km时,洞外横向贯通允许误差为160mm,而洞内横向贯通允许误差达360mm,可见洞内的横向贯通误差比洞外的大得多。
隧道控制测量
m y
2 R x
向中误差(mm),即 其中
m yl ——由于测边误差影响,产生在贯通面上的横
ml m yl l
2 d y
m ——由导线环的闭合差求算的测角中误差(″)
Rx——导线环在隧道相邻两洞口连线的一条导线上各 点至贯通面的垂直距离(m)。 ml ——导线边边长相对中误差 l Dx——导线环在隧道相邻两洞口连线的一条导线上各 边在贯通面上的投影长度(m)。
o
x
βi-1 β1
βA 0 (A)
s1 α1
1 αA
s2 α2
β2
2
i-1
si αi
βi
i
βn-1
n-1
贯 通 面 方 向
βB
(B)
n
y
E
隧道中线
1、导线测量贯通误差计算
受洞外、洞内平面控制测量影响所产生在贯通面上的横向 中误差,按下列公式计算:
m m
2 y
m
2 yl
式中 m y ——由于测角误差影响,产生在贯通面上的 横向中误差(mm),即 m
第三节
2、现场踏勘与交桩
洞外控制测量
在研究了这些资料后,在进行实地踏勘。进一步判明 这些资料的正确性,并详细了解隧道两侧的地形,两端洞 口线路的走向,里程桩点特别是主点的设置等。踏勘的过 程也是勘测设计单位向施工单位现场交桩的过程。
3、选点布网
在了解了测区各有关资料,现场实际情况后,即可进 行测量设计,研究洞外控制网的布网方案。平面控制网的 设计,可以结合隧道的长度以及线路通过地区的地形情况, 分别布设成三角网、边角网、导线网、GPS网等。高程控 制网一般均采用水准测量,也可采用光电测距三角高程来 代替三、四等水准测量。
高速铁路长大隧道洞内导线控制测量技术分析
高速铁路长大隧道洞内导线控制测量技术分析摘要:长大隧道作为高速铁路常见的结构形式,通常会采取从两侧施工贯通方式进行施工处理,防止出现施工风险问题。
其中,测量控制作为隧道施工贯通的重要导向,通过选择合理的测量方法可以及时获取隧道相关施工数据,严加控制以及应对处理,保障高速铁路长大隧道工程建设质量安全。
针对于此,本文主要以长大隧道洞内导线控制测量为研究对象,研究分析常用的控制测量技术,对导线控制对导线控制测量重点以及注意事项,以供参考。
关键词:高速铁路;长大隧道;洞内导线;控制测量;技术分析1 高速铁路长大隧道洞内导线控制测量技术方法分析1.1全站仪测量全站仪测量方法作为高速铁路长大隧道洞内导线控制测量技术常用的方法,主要对三角测量进行充分应用,获取精确科学的数据。
在实际测量过程中,需要以GPS为首要测量边,同时还需要对隧道洞口三角网点进行布设测量,必须详细检查已知的GPS点,确认结果测定无误后才可以进一步开展洞内延伸测量工作。
其中,为确保洞内测量数据的精确性,测量人员需要对所获取到的测量数据进行详细检查。
需要注意的是,测量人员要严格控制测量时间,最好可以采用两测回以及六测回方式进行测量处理,如果是短距离测量,应优先选择两测回方式。
除此之外,整个测量过程需要加强对气压以及温度等影响因素的高度重视,必须全力排查影响因素,保障数据精确度[1]。
1.2陀螺定向测量陀螺定向测量需要借助陀螺经纬仪测量方式实现精准测量过程,通过实施一系列测量处理,可以加强对陀螺方位角的全面控制。
经过换算操作后,可以获取相对精确的隧道施工数据。
然而需要注意的是,陀螺定向测量容易受到子午线收敛角的干扰影响,导致方位角存在偏差问题。
针对于此,对于长大隧道洞内导线测量工作而言,利用完陀螺定向测量技术之后,测量人员应该对所获取到的数据进行整合处理,尽量消除子午线收敛角所带来的偏差影响[2]。
由于受陀螺经纬仪精度影响,实际作业时一般不采用这种方法。
谈长大隧道控制测量方法
谈长大隧道控制测量方法【摘要】本文主要通过一些具体的工程测量方法来对隧道控制测量其方案进行了相关论述,得出一套有效方法来提高测量精度,用以同类工程的参考。
用其理论和实践使工程得以顺利完成,提高经济效益。
【关键词】控制测量;隧道;施工测量中图分类号:u45 文献标识码:a 文章编号:引言一般长大隧道会穿越两个地质较活跃的断裂带,地质情况比较复杂,地下水涌出量多,施工的难度大。
因此必须制定合理有效的施工测量计划及控制测量方案,才能确保特长大隧道的准确贯通。
编制依据为:《新建铁路测量规范》(tb 10101-99)、《精密工程测量规范》(gb/t 15314-94)等;测量作业的主要的任务:1、对隧道施工进行首级控制测量;2、对施工平面和高程控制网进行加密测量。
参考资料为该工程技术要求标准、线路平面总图、隧道洞口布置计划图、设计水准基点表、平面控制桩表等。
1.洞外控制网对首级洞外控制网进出口联测和加密时采用gps。
首先复测设计水准点和导线点,无误后,对施工控制网进行加密;在其施工的隧道进出口增设gps控制点和精密导线点、水准点,来满足测量精度的要求。
施工控制网的加密分两方面:1、施工高程控制网加密测量:施工高程控制网加密测量采用精密水准仪按二等水准测量的要求施测;2、施工平面控制网加密:施工平面控制网采用 gps 按 b 级网的精度要求进行施测。
1.1 洞外控制点数量及控制点选点要求设计长大隧道控制网的网型之前,首先要进行隧道地形图资料的收集,和原始地貌勘察。
当隧道为直线时,应在隧道进出口周围的中线上进行洞口点的选择,此外设置两个或以上定向点,为提高联系进洞测试方位的准确性,消除或降低来自垂线偏差的影响,洞口点和定向点必须通视,定向点之间不通视,定向点与洞口点之间的距离应大于 400m ,并且所有定向点的高(程)度选择应大概相等。
当隧道为曲线时,还应在网中包含曲线的主点、切线上两点等主要控制点。
为安置 gps 接收机和接收卫星信号,控制点应选择在视野开阔、大于15度的高度截止角处无障碍物,并且无强电磁源,无大面积反射面的地方。
长大隧道控制测量方案
长大隧道控制测量方案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN新建叙永至毕节铁路(川滇段)站前工程施工XZZQSG-2标长大隧道控制测量方案(DK194+~D2K230+910)中铁十七局集团叙毕铁路(川滇段)二标项目经理部二〇一六年十二月三十日目录一、工程概况 (1)二、地形地貌 (2)三、测量依据 (2)四、测量仪器及人员 (2)五、测量人员职责 (3)六、隧道洞外控制测量 (4)1.洞外控制点布设规定 (4)2.洞外平面控制测量 (5)3.洞外高程控制测量 (9)4.洞外控制点的联测及精度要求 (11)七、隧道洞内控制测量 (12)1.洞内平面控制测量 (12)2.导线网的测量 (14)3.平差计算 (16)4.洞内高程控制 (17)5.贯通测量误差预计 (18)6.洞外高程测量误差对洞内高程影响估算 (19)7.隧道洞内布网施测注意事项 (20)八、相关工作 (20)九、测量技术保证措施 (20)长大隧道控制测量方案一、工程概况我标段施工起讫里程:DK194+~DK230+910,线路全长。
隧道共计8座,其中大于4公里的长大隧道3座,分别为长岭隧道,7775m;下寨隧道4104m;斑竹林隧道全长12758m,我标段施工里程为D2K222+232~D2K230+910,施工长度8678m。
1.长岭隧道起迄里程为DK199+190~DK206+965,全长7775m,最大埋深375m,除出口DK206+869~DK206+965段为车站范围,设计为双线外,其余均为单线隧道。
隧道为单面上坡,线路设计坡度为‰、‰、‰、‰和0‰。
隧道洞身DK204+~DK205+段位于半径为8000m的右偏曲线上,其余为直线。
为加快施工进度、满足防灾救援要求、施工通风等问题,于DK203+100线路前进方向右侧设置1座斜井,于线路大里程夹角45°,全长1400m,斜井作为运营期间防灾救援避难所兼紧急出口。
长大隧道贯通
式等号右边的后两项。在实际测距过程中还存在着测距仪对中误差mT、反射 镜对中误差mC以及周期误差me。因此,光电测距仪的测距误差通常用固定误 差A(与边长无关的随机性偶然误差)和比例误差B(与边长大小成比例的随机性
偶然误差)表示,如下式:
M D A BD
(2)水平角测量的误差
洞内测角和地面一样,不可避免地存在着以下几方面的误差: (a)测量工作通常是利用测量仪器进行的,由于每一种仪器都具有 一定限度的精密度,因而使观测值的精密度受到一定的限制,由于 仪器所产生的这种误差称为仪器误差;仪器误差主要包括:视轴差 的影响,水平轴倾斜误差的影响,竖轴倾斜误差的影响。 (b)由于瞄准和读数不正确所引起的误差。由于瞄准和读数随测角 方法
(d)零点误差椭圆法 从进、出口点和定向点分别经洞内导线推算贯通点P的坐标,在不考虑洞内导 线测量误差的情况下,若将βj、βC和Sjp、Scp视为不含误差的虚拟观测值,P 点的点位差在垂直于隧道轴线方向投影值(P点横坐标差)的中误差,即为横 向贯通误差影响值,可按两贯通点P的相对误差椭圆即零点误差椭圆计算,即 椭圆在贯通面上的投影即为影响值:
mh0
f
2 h
L
N
则式中 N表示闭(附)合水准路线的个数; fh表示闭(附)合水准路线的高程闭合差; L表示闭(附)合水准路线的长度。
(b)根据多个复测支线的往返测高差不符值求得单位长度高差中误差 当用复测水准支线终点的高程闭合差fH求单位长度中误差时
mh0
长大隧道贯通测量及误差分析
一、隧道控制测量
一般小于500m的隧道,称为短隧道;在500m到3000m之间的 为中长隧道;3000m至10000m的称为长隧道;10000m以上 的,称为特长隧道;铁路上通常把单座隧道两洞门之间长度在 5000m之上的称为长大隧道。根据《高速铁路工程测量规范》 中规定:隧道长度大于1500m时,通过平面控制网模拟数据分 析洞外控制测量产生的横向贯通误差影响,并进行洞内测量设 计。
广昆铁路公山长大隧道洞内控制测量方案设计
第 5期
陈 国平 ,张光宇 :广昆铁路公 山长大隧道洞 内控制测量方案设计
Pr g a o n r lM e s r m e ti n s a u n lo o r m fCo to a u e n n Go g h n T n e f
Gu n - n Ral y a g Ku i wa
CHE o pn N Gu — ig ,ZH ANG Gu n — u a gy
2 隧道洞 内控制测量设计
为了保证长大隧道的准确贯通 ,隧道控制测量是关键 。隧道洞内控制测量精度的高低直接影响到贯 通的精度 ,为了保证贯通精度 ,在未贯通前须对 已施测的测量成果进行相应的精度估算 ,还要采取相应 的测量方案设计… 。 隧道贯通面上贯通误差的影响值 由洞外 、洞 内控制测量 2部分组成 ,由于洞外采用 G S网作为控 P
广 昆铁 路公 山长 大 隧道 洞 内控 制测 量 方 案设 计
陈国平 ,张光 宇
.
( .昆 明冶金高等专科学校 测绘学院 ,云南 昆明 6 0 3 ; 1 5 0 3
ห้องสมุดไป่ตู้
2 中国交通建设 集团第二航务 工程 局 第 五工程分公 司 ,湖北 武汉 4 0 1 ) . 30 4
摘 要: 对长大隧道洞 内控制测量方案的设计和具体 实施 方法进行 了详 细的阐述 ,并 以广 昆铁路线公 山隧道洞 内
Ab t a t h a e e c i e n d t i t e d sg n mp e n a in me h d ft e c n rlme s r — s r c :T e p p rd s r d i eal h e in a d i l me tt t o s o o t a u e b o h o me tp o r m o g t n e sa d a ay e h a o to r o t l o n n i et e t n esw t o g - n r g a i l n u n l n n lz d t e ly u f e c n r i t s u n l i G n s n wi o p i d h h
隧道控制测量
隧道洞内控制测量第一部分设计阶段一、准备工作洞内导线设计,一般先作导线边长设计,在做测量精度设计。
导线边长需根据隧道长度、路线平面形状、施工方法以及断面宽度作选择。
原则上隧道越长,导线边也应尽可能选得长一些,但是必须保证正常通风下通视良好。
直线地段一般选择250~500米,曲线地段按Rf C8确定,其中,R为曲线半径,f为断面宽度。
精度等级确定见表1平面控制测量设计要素表1平面控制测量设计要素洞内高程测量设计,高程控制网的布设可以结合导线控制点的埋设,水准备的布设密度一般不大于200米。
高铁高程控制测量的精度等级采用国家二等水准测量,每千米高程测量偶然中误差限差为1mm。
二、方案确定1、平面控制测量1)、导线测量的技术要求应符合表2的规定。
表2 导线测量的技术要求注:表中n为测站数。
2)、角观测宜采用方向观测法,并符合表3的规定。
表3 水平角方向观测法的技术要求3)、边长测量应符合表4的规定。
表4 边长测量技术要求注:①、一测回是全站仪盘左、盘右各测量一次的过程②、测距仪精度等级划分如下Ⅰ级∣md∣≤2mmⅡ级 2 mm<∣md∣≤5mmⅢ级 5 mm<∣md∣≤10mmⅣ级 10 mm<∣md∣≤20mmmd为每千米测距标准偏差。
即按测距仪出厂标称精度的绝对值,归算到1km的测距标准偏差。
③、mD=a+b×D式中: mD----仪器测距中误差(mm),a----标称精度中的固定误差(mm),b----标称精度中的的比例系数(mm/km),D----测距长度(km)4)、测距边的斜距应进行气象和仪器常数改正。
气压、气温读数取位应符合表5的规定。
三等及以上等级测量应在测站和反射镜站分别测记,四等及以下等级可在测站进行测记。
当测边两端气象条件差异较大时,应在测站和反射镜站分别测记,取两端平均值进行气象改正;当测区平坦,气象条件差异不大时,四等及以下等级也可记录上午和下午的平均气压、气温。
表5 气压、气温读数取位要求2、高程控制测量1)、水准观测的技术要求见表7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长大隧道控制测量方案Last revision on 21 December 2020新建叙永至毕节铁路(川滇段)站前工程施工XZZQSG-2标长大隧道控制测量方案(DK194+~D2K230+910)中铁十七局集团叙毕铁路(川滇段)二标项目经理部二〇一六年十二月三十日目录长大隧道控制测量方案一、工程概况我标段施工起讫里程:DK194+~DK230+910,线路全长。
隧道共计8座,其中大于4公里的长大隧道3座,分别为长岭隧道,7775m;下寨隧道4104m;斑竹林隧道全长12758m,我标段施工里程为D2K222+232~D2K230+910,施工长度8678m。
1.长岭隧道起迄里程为DK199+190~DK206+965,全长7775m,最大埋深375m,除出口DK206+869~DK206+965段为车站范围,设计为双线外,其余均为单线隧道。
隧道为单面上坡,线路设计坡度为‰、‰、‰、‰和0‰。
隧道洞身DK204+~DK205+段位于半径为8000m的右偏曲线上,其余为直线。
为加快施工进度、满足防灾救援要求、施工通风等问题,于DK203+100线路前进方向右侧设置1座斜井,于线路大里程夹角45°,全长1400m,斜井作为运营期间防灾救援避难所兼紧急出口。
2.下寨隧道起迄里程为D2K208+923~D2K213+027,全长4104m,最大埋深380m,设计为单线隧道。
隧道为单面上坡,线路设计坡度为‰、‰。
隧道洞身D2K208+923~D2K210+段位于半径为800m的左偏曲线上,D2K213+~D2K213+027段位于半径为800m的右偏曲线上,其余为直线。
3.斑竹林隧道起迄里程为D2K222+232~D2K234+990,全长12758m,最大埋深570m,我标段施工里程为D2K222+232~D2K230+910,施工长度8678m,进口段D2K222+232~D2K222+370段为下坪车站范围,隧道采用车站段双线衬砌,其余均为单线隧道。
线路设计坡度为6‰、‰、11‰、7‰和-3‰的人字坡。
全隧D2K222+~D2K223+段位于半径R=2000的左偏曲线上;D2K226+~D2K228+段位于半径R=8000的右偏曲线上,其余为直线。
为加快施工进度、满足防灾救援要求、施工通风等问题,于D2K224+400线路前进方向右侧设置1座横洞,与线路小里程夹角36°,全长1200m,坡度为‰、-1‰。
采用双车道无轨运输。
二、地形地貌1.长岭隧道:测区属侵蚀中低山地貌,地形连绵起伏,沟壑纵横,隧区绝对高程900~1250m,相对高差80~320m。
隧道进口距乡村道路较远,出口右侧100m的沟边有乡村公路相通,交通条件一般。
隧道进出口及洞身DK204+700~DK206+800段居民点密集。
2.下寨隧道:测区属低、中山剥蚀、侵蚀地貌,地形连绵起伏,沟壑纵横,隧区绝对高程800~1450m,相对高差100~650m。
自然斜坡一般10°~40°,局部陡峻,坡度达70°~80°。
地貌受岩性控制,沿软弱带及可溶岩地段多形成侵蚀沟槽。
隧道进口位于马家坝一沟谷内,附近无公路通行,只有进口右侧约350m处有高田至马家坝的乡村公路通过,隧道出口位于高田乡一沟谷内,附近也无公路通行,隧区交通条件较差。
3.斑竹林隧道:隧区属低中山侵蚀地貌,地形连绵起伏,陡峻,沟壑、谷溪纵横,随区海拔约1000~17300m,相对高差150~730m。
自然斜坡一般15°~40°,局部陡峻,坡度达60°~80°。
基岩出漏状况一般,地表植被较发育,多为林地、灌木林、旱地。
隧道进口位于一深切沟谷内,无公路通行,总体而言,该隧交通条件较差。
三、测量依据(1)《工程测量规范》(GB 50026-2007);(2)《铁路工程测量规范》(TB10101-2009);(3)《高速铁路工程测量规范》(TB10601-2009);(4)《国家一、二等水准测量规范》(GB/T 12897-2006);(5)《国家三、四等水准测量规范》(GB/T 12898-2009);(6)《全球定位(GPS)铁路测量规范》(TB10054-97)(7)《全球定位(GPS)测量规范》(GB/18314-2001)四、测量仪器及人员隧道洞外GPS测量采用7台徕卡GPS接收机,标称精度:5+;水准测量采用Trimble DiNi03电子水准仪,标称精度:;导线测量采用徕卡1201全站仪,标称精度1″+,在使用前经专门机构检测,测量精度满足施工要求。
精密测量队由三名测量工程师和10名测量工(控制测量)组成。
根据工程建设需要,在平时施工导线测量过程中,我项目部成立精测队,分部下设测量队长一名,测量员3人。
测量组成员如下:精测队长:王盼分部测量负责人:王波、张贺贺、范明鑫组员:孙昊、张利伟、梁智超、鲍大炜、杨雷、杨杰、商昂、邓鹏飞、赵钦各分部测量负责人负责指导洞内导线测量,数据的整理及计算,王盼负责全线测量工作复核;五、测量人员职责1、在工程开工前,对测量控制网进行复测,发现问题立即向监理单位呈报。
建立相应等级的施工控制加密网控制点至各施工工作面所需部位。
2、根据本施工处的生产计划安排,积极配合各工程部门保质、保量、保安全的完成各项相关测量任务。
3、做好与外部及内部相关部门之间的技术交流、沟通工作,对外部文件及图纸进行分类保管。
4、负责各施工工作面的施工放样,定期检查,并将结果通知所在施工部位的技术员,做好交底记录。
5、提供符合设计要求的设计轴线,以满足规范要求,并负责检查与复核工作。
6、定期监测复核控制点的位移情况,如超出规范,应及时纠正,并向有关单位汇报。
六、隧道洞外控制测量1.洞外控制点布设规定(1)洞外平面控制网应沿两洞口连线方向布设成多边形组合图形,构成闭合检核条件。
(2)控制点应布设在视野开阔、通视良好、土质坚实、不易破坏的地方。
(3)视线应超越和旁离障碍物1m以上。
通过水田、沙滩时,应适当增加视线高度。
(4)测站和后视场地应清理和平整,以利于观测。
(5)除水准点可在稳固的基石上刻凿外,其余控制点均应埋设混凝土包金属标志。
(6)每个洞口平面控制点布设不应少于3个,水准点不应少于2个。
(7)用于向洞内传递方向的洞外联系边不宜小于300m。
(8)洞口平面控制点应便于向洞内引测导线。
(9)GPS控制网进洞联系边最大俯仰角不宜大于5°,导线网、三角网的最大仰俯角不宜大于15°。
(10)洞口附近的水准点应尽可能与隧道洞口等高,两水准点间高差以水准测量1~2站即可联测为宜。
2.洞外平面控制测量隧道洞外控制网布设:根据《铁路工程测量规范》中规定:洞外平面控制测量,结合隧道长度、平面形状、线路通过地区的地形和环境,宜采用GPS 测量、导线测量。
JM1-14 、JM1-15和JM1-16,出口位置布设点位为JM2-5、JM2-6和JM2-7,斜井位置布设点位为JM2-1 、JM2-2、JM2-3和JM2-4。
长岭隧道洞外GPS控制网示意图JM2-10 ,JM2-11和JM2-12,出口位置布设点位为JM3-2 ,JM3-3和JM3-4。
下寨隧道洞外GPS控制网示意图JM4-1 、JM4-2、JM4-3和JM4-4,出口位置点位由3标中铁8局布设,横洞位置布设点位为JM4-6 、JM4-7和JM4-8。
斑竹林隧道洞外GPS控制网示意图°00′00",投影面大地高为580m、870m和1070m,投影后东方向坐标加常数为500km,北方向坐标加常数为0。
本管段测量的坐标系统与设计相同,椭球采用WGS84坐标系参考椭球,边长投影在抵偿高程面上,投影长度的变形值:铺设有砟轨道地段不大于km,即投影长度变形(包括高程归化、高斯正投影变形之和)不大于1/40000,中央子午线经度为105°,其中长岭隧道投影面大地高为870米,下寨隧道和斑竹林隧道投影面大地高为1070米。
控制网加密测量时按四等GPS平面控制网技术要求进行测量。
CPI、CPII GPS控制网测量的精度指标(表6-2-3),C、D级GPS平面控制网技术要求(表6-2-4)表6-2-4 C、D级GPS平面控制网复测技术要求内业平差计算时,采用徕卡公司配备的LGO数据处理软件,以复测后提交的控制点为基准,解算各个加密控制点。
3.洞外高程控制测量根据《铁路工程测量规范》定:洞外高程控制测量应根据设计精度,结合地形情况,水准线路长度以及仪器设备条件,采用水准测量或光电测距三角高程测量,长大隧道洞外高程控制网采用二等水准测量。
各级水准测量精度指标(即测规对高程测量的限差规定)二等水准测量必须往返观测,不允许采用两台仪器同方向左右观测,三、四等均可以左右路线观测,计算结果单位为毫米。
各级水准测量主要技术要求高程测量方法二等水准测量,路线采用往、返观测。
复测采用附合水准路线,由一个已知点出发,最后附合到另一个已知点,控制测量时一般采用闭合水准路线,由一个已知点出发,最后回到该已知点上,由此计算增设的新水准点高程。
隧道洞外高程控制网采用二等水准测量。
使用Trimble DiNi 03电子水准仪,按二等水准测量规范要求进行施测。
长岭隧道:在进口处加密水准点,从三等水准点BM21 出发,按闭合水准路线进行往返测量;在出口处加密水准点,从三等水准点BM22 出发,按闭合水准路线进行往返测量。
下寨隧道:在进口处加密水准点,从三等水准点BM23 出发,按闭合水准路线进行往返测量;在出口处加密水准点,从三等水准点XCPI36-1 出发,按闭合水准路线进行往返测量。
斑竹林隧道:在进口处加密水准点,从三等水准点BM27 出发,按闭合水准路线进行往返测量;在横洞口处加密的三等水准点JM4-8 出发,按闭合水准路线进行往返测量。
水准测量有关精度计算外业、内业完成后,应进行精度统计、分析及评定。
(1)、往返闭合差计算,如超限必须查找原因或重测。
(2)、每千米水准测量高差的偶然中误差或全中误差。
M△=√1/4n×[△△/L]△——水准路线测段往返高差不符值(mm);L——水准测段长度(km);N——往返测的水准路线测段数。
(3)、检测已测段高差之差(即复测值与设计值不符值的限差)。
二等水准测量,限差为6√L,不超限采用原设计成果,超限采用复测成果。
这一项是衡量实测精度与设计精度是否相符。
4. 洞外控制点的联测及精度要求平面控制点联测隧道洞口控制点使用GPS进行加密,待平差计算结果符合规范要求后,应使用全站仪对洞外加密的点位进行角度和边长的复测,复测结果应满足四等导线测量的要求。