基函数神经网络及应用_第五章Hermite神经网络
第五章霍普菲尔德(Hopfield)神经网络
(2)极限环
(3)混沌现象
(4)状态轨迹发散
离散型 Hopfield神经网络
• 1982年,美国加州工学院J.Hopfield提出了可用作联想存储 器和优化计算的反馈网络,这个网络称为Hopfield神经网络 (HNN)模型,也称Hopfield模型.并用它成功地探讨了旅行商 问题(TSP)的求解方法。
HNN是一种循环NN,从输 出到输入有反馈连接. HNN有离散型和连续型 两种.
• 反馈NN由于其输出端有反馈到其输入端,所以,HNN在 输入的激励下,会产生不断的状态变化.
– 当有输入之后,可以求取出HNN的输出,这个输出反馈到 输入从而产生新的输出,这个反馈过程一直进行下去. – 如果HNN是一个能稳定的网络,则这个反馈与迭代的计算 过程所产生的变化越来越小,一旦到达了稳定平衡状态, 那么HNN就会输出一个稳定的恒值. – 对于HNN来说,关键是在于确定它在稳定条件下的权系数. – 应该指出,反馈网络有稳定的,也有不稳定的. • 对于HNN来说,还存在如何判别它是稳定网络,亦或是 不稳定的问题.而判别依据是什么,也是需要确定的.
在不考虑外部输入时,则有
j 1,2,..., n
n y j (t 1) f w i, j yi (t) θ j i 1
•通常网络从某一初始状态开始经过多次更新后才可 能达到某一稳态。使用异步状态更新策略有以下优点: (1)算法实现容易,每个神经元节点有自己的状态 更新时刻.不需要同步机制; (2)以串行方式更新网络的状态可以限制网络的输 出状态,避免不同稳态以等概率出现。 一旦给出HNN的权值和神经元的阈值,网络的状态转 移序列就确定了。
神经网络基本知识
神经网络基本知识一、内容简述神经网络是机器学习的一个重要分支,是一种模拟生物神经网络结构和功能的计算模型。
它以其强大的学习能力和自适应能力广泛应用于多个领域,如图像识别、语音识别、自然语言处理等。
《神经网络基本知识》这篇文章将带领读者了解神经网络的基本概念、原理和应用。
1. 神经网络概述神经网络是一种模拟生物神经系统结构和功能的计算模型。
它由大量神经元相互连接构成,通过学习和调整神经元之间的连接权重来进行数据处理和模式识别。
神经网络的概念自上世纪五十年代提出以来,经历了漫长的发展历程,逐渐从简单的线性模型演变为复杂的多层非线性结构。
神经网络在人工智能领域发挥着核心作用,广泛应用于计算机视觉、语音识别、自然语言处理等领域。
神经网络的基本构成单元是神经元,每个神经元接收来自其他神经元的输入信号,通过特定的计算方式产生输出信号,并传递给其他神经元。
不同神经元之间的连接强度称为权重,通过训练过程不断调整和优化。
神经网络的训练过程主要是通过反向传播算法来实现的,通过计算输出层误差并反向传播到输入层,不断调整权重以减小误差。
神经网络具有强大的自适应能力和学习能力,能够处理复杂的模式识别和预测任务。
与传统的计算机程序相比,神经网络通过学习大量数据中的规律和特征,自动提取高级特征表示,避免了手动设计和选择特征的繁琐过程。
随着深度学习和大数据技术的不断发展,神经网络的应用前景将更加广阔。
神经网络是一种模拟生物神经系统功能的计算模型,通过学习和调整神经元之间的连接权重来进行数据处理和模式识别。
它在人工智能领域的应用已经取得了巨大的成功,并将在未来继续发挥重要作用。
2. 神经网络的历史背景与发展神经网络的历史可以追溯到上个世纪。
最初的神经网络概念起源于仿生学,模拟生物神经网络的结构和功能。
早期的神经网络研究主要集中在模式识别和机器学习的应用上。
随着计算机科学的快速发展,神经网络逐渐成为一个独立的研究领域。
在20世纪80年代和90年代,随着反向传播算法和卷积神经网络的提出,神经网络的性能得到了显著提升。
人工智能控制技术课件:神经网络控制
例如,在听觉系统中,神经细胞和纤维是按照其最敏感的频率分
布而排列的。为此,柯赫仑(Kohonen)认为,神经网络在接受外
界输入时,将会分成不同的区域,不同的区域对不同的模式具有
不同的响应特征,即不同的神经元以最佳方式响应不同性质的信
号激励,从而形成一种拓扑意义上的有序图。这种有序图也称之
,
,
⋯
,
)
若 输 入 向 量 X= ( 1
, 权 值 向 量
2
W=(1 , 2 , ⋯ , ) ,定义网络神经元期望输出 与
实际输出 的偏差E为:
E= −
PERCEPTRON学习规则
感知器采用符号函数作为转移函数,当实际输出符合期
望时,不对权值进行调整,否则按照下式对其权值进行
单神经元网络
对生物神经元的结构和功能进行抽象和
模拟,从数学角度抽象模拟得到单神经
元模型,其中 是神经元的输入信号,
表示一个神经元同时接收多个外部刺激;
是每个输入所对应的权重,它对应
于每个输入特征,表示其重要程度;
是神经元的内部状态; 是外部输入信
号; 是一个阈值(Threshold)或称为
第三代神经网络:
2006年,辛顿(Geofrey Hinton)提出了一种深层网络模型——深度
置信网络(Deep Belief Networks,DBN),令神经网络进入了深度
学习大发展的时期。深度学习是机器学习研究中的新领域,采用无
监督训练方法达到模仿人脑的机制来处理文本、图像等数据的目的。
控制方式,通过神经元及其相互连接的权值,逼近系统
神经网络专题ppt课件
(4)Connections Science
(5)Neurocomputing
(6)Neural Computation
(7)International Journal of Neural Systems
7
3.2 神经元与网络结构
人脑大约由1012个神经元组成,而其中的每个神经元又与约102~ 104个其他神经元相连接,如此构成一个庞大而复杂的神经元网络。 神经元是大脑处理信息的基本单元,它的结构如图所示。它是以细胞 体为主体,由许多向周围延伸的不规则树枝状纤维构成的神经细胞, 其形状很像一棵枯树的枝干。它主要由细胞体、树突、轴突和突触 (Synapse,又称神经键)组成。
15
4.互连网络
互连网络有局部互连和全互连 两种。 全互连网络中的每个神经元都 与其他神经元相连。 局部互连是指互连只是局部的, 有些神经元之间没有连接关系。 Hopfield 网 络 和 Boltzmann 机 属于互连网络的类型。
16
人工神经网络的学习
学习方法就是网络连接权的调整方法。 人工神经网络连接权的确定通常有两种方法:
4
5. 20世纪70年代 代表人物有Amari, Anderson, Fukushima, Grossberg, Kohonen
经过一段时间的沉寂后,研究继续进行
▪ 1972年,芬兰的T.Kohonen提出了一个与感知机等神经 网络不同的自组织映射理论(SOM)。 ▪ 1975年,福岛提出了一个自组织识别神经网络模型。 ▪ 1976年C.V.Malsburg et al发表了“地形图”的自形成
6
关于神经网络的国际交流
第一届神经网络国际会议于1987年6月21至24日在美国加州圣地亚哥 召开,标志着神经网络研究在世界范围内已形成了新的热点。
神经网络(NeuralNetwork)
神经⽹络(NeuralNetwork)⼀、激活函数激活函数也称为响应函数,⽤于处理神经元的输出,理想的激活函数如阶跃函数,Sigmoid函数也常常作为激活函数使⽤。
在阶跃函数中,1表⽰神经元处于兴奋状态,0表⽰神经元处于抑制状态。
⼆、感知机感知机是两层神经元组成的神经⽹络,感知机的权重调整⽅式如下所⽰:按照正常思路w i+△w i是正常y的取值,w i是y'的取值,所以两者做差,增减性应当同(y-y')x i⼀致。
参数η是⼀个取值区间在(0,1)的任意数,称为学习率。
如果预测正确,感知机不发⽣变化,否则会根据错误的程度进⾏调整。
不妨这样假设⼀下,预测值不准确,说明Δw有偏差,⽆理x正负与否,w的变化应当和(y-y')x i⼀致,分情况讨论⼀下即可,x为负数,当预测值增加的时候,权值应当也增加,⽤来降低预测值,当预测值减少的时候,权值应当也减少,⽤来提⾼预测值;x为正数,当预测值增加的时候,权值应当减少,⽤来降低预测值,反之亦然。
(y-y')是出现的误差,负数对应下调,正数对应上调,乘上基数就是调整情况,因为基数的正负不影响调整情况,毕竟负数上调需要减少w的值。
感知机只有输出层神经元进⾏激活函数处理,即只拥有⼀层功能的神经元,其学习能⼒可以说是⾮常有限了。
如果对于两参数据,他们是线性可分的,那么感知机的学习过程会逐步收敛,但是对于线性不可分的问题,学习过程将会产⽣震荡,不断地左右进⾏摇摆,⽽⽆法恒定在⼀个可靠地线性准则中。
三、多层⽹络使⽤多层感知机就能够解决线性不可分的问题,输出层和输⼊层之间的成为隐层/隐含层,它和输出层⼀样都是拥有激活函数的功能神经元。
神经元之间不存在同层连接,也不存在跨层连接,这种神经⽹络结构称为多层前馈神经⽹络。
换⾔之,神经⽹络的训练重点就是链接权值和阈值当中。
四、误差逆传播算法误差逆传播算法换⾔之BP(BackPropagation)算法,BP算法不仅可以⽤于多层前馈神经⽹络,还可以⽤于其他⽅⾯,但是单单提起BP算法,训练的⾃然是多层前馈神经⽹络。
径向基函数(RBF)神经网络
径向基函数(RBF)神经⽹络RBF⽹络能够逼近任意的⾮线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能⼒,并有很快的学习收敛速度,已成功应⽤于⾮线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。
简单说明⼀下为什么RBF⽹络学习收敛得⽐较快。
当⽹络的⼀个或多个可调参数(权值或阈值)对任何⼀个输出都有影响时,这样的⽹络称为全局逼近⽹络。
由于对于每次输⼊,⽹络上的每⼀个权值都要调整,从⽽导致全局逼近⽹络的学习速度很慢。
BP⽹络就是⼀个典型的例⼦。
如果对于输⼊空间的某个局部区域只有少数⼏个连接权值影响输出,则该⽹络称为局部逼近⽹络。
常见的局部逼近⽹络有RBF⽹络、⼩脑模型(CMAC)⽹络、B样条⽹络等。
径向基函数解决插值问题完全内插法要求插值函数经过每个样本点,即。
样本点总共有P个。
RBF的⽅法是要选择P个基函数,每个基函数对应⼀个训练数据,各基函数形式为,由于距离是径向同性的,因此称为径向基函数。
||X-X p||表⽰差向量的模,或者叫2范数。
基于为径向基函数的插值函数为:输⼊X是个m维的向量,样本容量为P,P>m。
可以看到输⼊数据点X p是径向基函数φp的中⼼。
隐藏层的作⽤是把向量从低维m映射到⾼维P,低维线性不可分的情况到⾼维就线性可分了。
将插值条件代⼊:写成向量的形式为,显然Φ是个规模这P对称矩阵,且与X的维度⽆关,当Φ可逆时,有。
对于⼀⼤类函数,当输⼊的X各不相同时,Φ就是可逆的。
下⾯的⼏个函数就属于这“⼀⼤类”函数:1)Gauss(⾼斯)函数2)Reflected Sigmoidal(反常S型)函数3)Inverse multiquadrics(拟多⼆次)函数σ称为径向基函数的扩展常数,它反应了函数图像的宽度,σ越⼩,宽度越窄,函数越具有选择性。
完全内插存在⼀些问题:1)插值曲⾯必须经过所有样本点,当样本中包含噪声时,神经⽹络将拟合出⼀个错误的曲⾯,从⽽使泛化能⼒下降。
径向基函数神经网络课件
小批量梯度下降算法
01
总结词
小批量梯度下降算法是一种折中的方法,每次使用一小批 样本来更新模型参数,既保持了计算量小的优点,又提高 了模型的稳定性。
02 03
详细描述
小批量梯度下降算法的核心思想是在每次迭代时,随机选 择一小批样本来计算损失函数,并使用梯度下降法或其他 优化方法来更新模型参数。这种方法可以平衡计算量和训 练时间的关系,同时提高模型的稳定性。
径向基函数神经网络课件
目 录
• 径向基函数神经网络概述 • 径向基函数神经网络的基本结构 • 径向基函数神经网络的学习算法 • 径向基函数神经网络的优化策略 • 径向基函数神经网络的实现细节 • 径向基函数神经网络的实例展示 • 总结与展望
01
径向基函数神经网络概述
神经网络简介
神经网络的定义
神经网络是一种模拟人脑神经元网络结构的计算模型,通过学习样 本数据来自动提取特征和规律,并完成分类、回归等任务。
02 03
详细描述
随机梯度下降算法的核心思想是在每次迭代时,随机选择一个样本来计 算损失函数,并使用梯度下降法或其他优化方法来更新模型参数。这种 方法可以大大减少计算量和训练时间。
优缺点
随机梯度下降算法的优点是计算量小,训练时间短,适用于大规模数据 集。但是,由于只使用一个样本进行更新,可能会造成模型训练的不稳 定,有时会出现训练效果不佳的情况。
2
输出层的节点数通常与输出数据的维度相等。
3
输出层的激活函数通常采用线性函数或softmax 函数。
训练过程
01
神经网络的训练过程是通过反向 传播算法实现的。
02
通过计算损失函数对网络权重的 梯度,更新权重以减小损失函数
神经网络学习PPT课件
牛顿法
总结词
牛顿法是一种基于二阶泰勒级数的优化算法,通过迭 代更新参数,以找到损失函数的极小值点。在神经网 络训练中,牛顿法可以用于寻找最优解。
详细描述
牛顿法的基本思想是,利用二阶泰勒级数近似损失函数 ,并找到该函数的极小值点。在神经网络训练中,牛顿 法可以用于寻找最优解。具体来说,根据二阶导数矩阵 (海森矩阵)和当前点的梯度向量,计算出参数更新的 方向和步长,然后更新参数。通过不断迭代,参数逐渐 调整到最优解附近。与梯度下降法相比,牛顿法在迭代 过程中不仅考虑了梯度信息,还考虑了二阶导数信息, 因此具有更快的收敛速度和更好的全局搜索能力。
07
未来展望与挑战
深度学习的发展趋势
模型可解释性
随着深度学习在各领域的广泛应用,模型的可解释性成为研究热 点,旨在提高模型决策的透明度和可信度。
持续学习与终身学习
随着数据不断增长和模型持续更新,如何实现模型的持续学习和终 身学习成为未来的重要研究方向。
多模态学习
随着多媒体数据的普及,如何实现图像、语音、文本等多模态数据 的融合与交互,成为深度学习的另一发展趋势。
深度学习
通过构建深层的神经网络结构, 提高了对复杂数据的处理能力。
循环神经网络
适用于序列数据,如自然语言 处理和语音识别等领域。
02
神经网络的基本结构
感知机模型
感知机模型是神经网络的基本单 元,由一个输入层和一个输出层 组成,通过一个或多个权重和偏
置项来计算输出。
感知机模型只能实现线性分类, 对于非线性问题无法处理。
详细描述
反向传播算法的基本思想是,首先计算神经网络的输出层与实际值之间的误差,然后将误差逐层反向传播,并根 据梯度下降法更新每一层的权重。通过不断迭代,权重逐渐调整,使得神经网络的输出逐渐接近实际值,从而降 低误差。反向传播算法的核心是计算每一层的梯度,即权重的导数,以便更新权重。
计算方法(8) 第五章 插值法(2)
由条件(2)可列出方程组 2 ( x ) ( ax b ) l i i i i ( xi ) 1 ' 2 ' ( x ) ali ( xi ) 2(axi b)l i ( xi )l i ( xi ) 0 i i
li ( xi ) 1, axi b 1, a 2l ( xi ) 0
i ( x )应满足条件: (1) i ( x )应是 2n 1次多项式;
i j 1 (2) i ( x j ) ij i j 0 'i ( x j ) 0 ( i,j 0, 1, 2, ,n)
n
利用Lagrange插值基函数li ( x ) (
j 0 ( ji )
x xj xi x j
)ห้องสมุดไป่ตู้
设
i ( x ) (ax b)l 2 i ( x )
由条件(2)可列出方程组 2 ( x ) ( ax b ) l i i i i ( xi ) 1 ' 2 ' ( x ) al ( x ) 2( ax b ) l ( x ) l i i i i i i i i ( xi ) 0
i 0
n
2
F ( t )关于t 有n 2个零点:x0,x1, ,xn,x 。 但F ' ( t )关于t 有2n 2个零点,由Rolle(罗尔)定理 必存在点 (a , b),使 F
(2 n 2)
( ) f
(2 n 2)
( ) 0 K ( x )(2n 2)! 0
n
n
i ( x )应满足条件: (1) i ( x )应是 2n 1次多项式;
神经网络方法-PPT课件精选全文完整版
信号和导师信号构成,分别对应网络的输入层和输出层。输
入层信号 INPi (i 1,根2,3据) 多传感器对标准试验火和各种环境条件
下的测试信号经预处理整合后确定,导师信号
Tk (k 1,2)
即上述已知条件下定义的明火和阴燃火判决结果,由此我们
确定了54个训练模式对,判决表1为其中的示例。
15
基于神经网络的融合算法
11
局部决策
局部决策采用单传感器探测的分析算法,如速率持续 法,即通过检测信号的变化速率是否持续超过一定数值来 判别火情。 设采样信号原始序列为
X(n) x1 (n), x2 (n), x3 (n)
式中,xi (n) (i 1,2,3) 分别为温度、烟雾和温度采样信号。
12
局部决策
定义一累加函数 ai (m为) 多次累加相邻采样值 的xi (差n) 值之和
样板和对应的应识别的结果输入人工神经网络,网络就会通过
自学习功能,慢慢学会识别类似的图像。
第二,具有联想存储功能。人的大脑是具有联想功能的。用人
工神经网络的反馈网络就可以实现这种联想。
第三,具有容错性。神经网络可以从不完善的数据图形进行学
习和作出决定。由于知识存在于整个系统而不是一个存储单元
中,一些结点不参与运算,对整个系统性能不会产生重大影响。
18
仿真结果
19
仿真结果
20
2
7.2 人工神经元模型—神经组织的基本特征
3
7.2 人工神经元模型—MP模型
从全局看,多个神经元构成一个网络,因此神经元模型的定义 要考虑整体,包含如下要素: (1)对单个人工神经元给出某种形式定义; (2)决定网络中神经元的数量及彼此间的联结方式; (3)元与元之间的联结强度(加权值)。
神经网络及深度学习(包含matlab代码).pdf
神经网络及深度学习(包含matlab代码).pdf
神经网络可以使用中间层构建出多层抽象,正如在布尔电路中所做的那样。
如果进行视觉模式识别,那么第1 层的神经元可能学会识别边;第2 层的神经元可以在此基础上学会识别更加复杂的形状,例如三角形或矩形;第3 层将能够识别更加复杂的形状,以此类推。
有了这些多层抽象,深度神经网络似乎可以学习解决复杂的模式识别问题。
正如电路示例所体现的那样,理论研究表明深度神经网络本质上比浅层神经网络更强大。
《深入浅出神经网络与深度学习》PDF+代码分析
《深入浅出神经网络与深度学习》PDF中文,249页;PDF英文,292页;配套代码。
提取码: 6sgh
以技术原理为导向,辅以MNIST 手写数字识别项目示例,介绍神经网络架构、反向传播算法、过拟合解决方案、卷积神经网络等内容,以及如何利用这些知识改进深度学习项目。
学完后,将能够通过编写Python 代码来解决复杂的模式识别问题。
径向基神经网络
径向基神经网络1985年,Powell提出了多变量插值的径向基函数(Radical Basis Function,RBF)方法。
1988年,Moody和Darken提出了一种神经网络结构,即RBF神经网络,属于前向神经网络类型,它能够以任意精度逼近任意连续函数,特别适合于解决分类问题。
RBF网络的结构与多层前向网络类似,它是一种三层前向网络。
输入层由信号源节点组成;第二层为隐含层,隐单元数视所描述问题的需要而定,隐单元的变换函数RBF是对中心点径向对称且衰减的非负非线性函数;第三层为输出层,它对输入模式的作用做出响应。
从输入空间到隐含层空间的变换是非线性的,而从隐含层空间的输出层空间变换是线性的。
RBF网络的基本思想是:用RBF作为隐单元的“基”构成隐含层空间,这样就可以将输入向量直接映射到隐空间。
当RBF的中心点确定以后,这种映射关系也就确定了。
而隐含层空间到输出空间的映射是线性的,即网络的输出是隐单元输出的线性加权和。
此处的权即为网络可调参数。
由此可见,从总体上看,网络由输入到输出的映射是非线性的,而网络的输出对可调参数而言却是线性的。
这烟大哥网络的权就可由线性方程直接解出,从而大大加快学习速度并避免局部极小问题。
一、RBF神经元模型径向基函数神经元的传递函数有各种各样的形式,但常用的形式是高斯函数(radbas)。
与前面介绍的神经元不同,神经元radbas的输入为输入向量p和权值向量ω之间的距离乘以阈值b。
径向基传递函数可以表示为如下形式:二、RBF网络模型径向基神经网络的激活函数采用径向基函数,通常定义为空间任一点到某一中心之间欧氏距离的单调函数。
径向基神经网络的激活函数是以输入向量和权值向量之间的距dist为自变量的。
径向神经网络的激活函数一般表达式为随着权值和输入向量之间距离的减少,网络输出是递增的,当输入向量和权值向量一致时,神经元输出1。
b为阈值,用于调整神经元的灵敏度。
利用径向基神经元和线性神经元可以建立广义回归神经网络,该种神经网络适用于函数逼近方面的应用;径向基神经元和竞争神经元可以组件概率神经网络,此种神经网络适用于解决分类问题。
神经网络ppt课件
通常,人们较多地考虑神经网络的互连结构。本 节将按照神经网络连接模式,对神经网络的几种 典型结构分别进行介绍
12
2.2.1 单层感知器网络
单层感知器是最早使用的,也是最简单的神经 网络结构,由一个或多个线性阈值单元组成
这种神经网络的输入层不仅 接受外界的输入信号,同时 接受网络自身的输出信号。 输出反馈信号可以是原始输 出信号,也可以是经过转化 的输出信号;可以是本时刻 的输出信号,也可以是经过 一定延迟的输出信号
此种网络经常用于系统控制、 实时信号处理等需要根据系 统当前状态进行调节的场合
x1
…… …… ……
…… yi …… …… …… …… xi
再励学习
再励学习是介于上述两者之间的一种学习方法
19
2.3.2 学习规则
Hebb学习规则
这个规则是由Donald Hebb在1949年提出的 他的基本规则可以简单归纳为:如果处理单元从另一个处
理单元接受到一个输入,并且如果两个单元都处于高度活 动状态,这时两单元间的连接权重就要被加强 Hebb学习规则是一种没有指导的学习方法,它只根据神经 元连接间的激活水平改变权重,因此这种方法又称为相关 学习或并联学习
9
2.1.2 研究进展
重要学术会议
International Joint Conference on Neural Networks
IEEE International Conference on Systems, Man, and Cybernetics
World Congress on Computational Intelligence
复兴发展时期 1980s至1990s
神经网络原理与应用第1讲:基础知识PPT课件
1957年,心理学家Frank Rosenblatt提出了感知机模 型,它可以识别一些简单的
模式,但无法处理异或 (XOR)问题。
1974年,Paul Werbos提出 了反向传播算法,解决了感 知机模型无法学习异或问题
的问题。
2006年,加拿大多伦多大学 的Geoffrey Hinton等人提出 了深度学习的概念,开启了
权重更新是根据损失函数的梯度调整权重的过程,通过不断 地迭代优化,使神经网络逐渐接近最优解。权重更新的过程 通常使用梯度下降法或其变种进行。
03
神经网络的类型
前馈神经网络
总结词
前馈神经网络是最基本的神经网络类型,信息从输入层开始,逐层向前传递,直 至输出层。
详细描述
前馈神经网络中,每一层的神经元只接收来自前一层的输入,并输出到下一层。 这种网络结构简单,易于训练和实现,常用于模式识别、分类和回归等任务。
利用神经网络进行游戏AI的决 策和策略制定,如AlphaGo
等。
02
神经网络的基本概念
神经元模型
总结词
神经元是神经网络的基本单元,模拟 生物神经元的行为。
详细描述
神经元模型通常包括输入信号、权重 、激活函数和输出信号等部分。输入 信号通过权重进行加权求和,经过激 活函数处理后得到输出信号。
激活函数
06
神经网络的应用实例
图像识别
总结词
图像识别是神经网络应用的重要领域之一, 通过训练神经网络识别图像中的物体、人脸 等特征,可以实现高效的图像分类、目标检 测等功能。
详细描述
神经网络在图像识别领域的应用已经取得了 显著的成果。例如,卷积神经网络(CNN) 被广泛用于图像分类、目标检测和人脸识别 等任务。通过训练神经网络,可以自动提取 图像中的特征,并基于这些特征进行分类或 检测目标。这大大提高了图像识别的准确性
神经网络理论基础PPT课件
20世纪80年代,随着反向传播算法的提出,神经网络重 新受到关注。反向传播算法使得神经网络能够通过学习来 调整权重,从而提高了网络的性能。
感知机模型
1957年,心理学家Frank Rosenblatt提出了感知机模型 ,它是最早的神经网络模型之一,用于解决模式识别问题 。
深度学习的兴起
神经网络的模型
总结词
神经网络的模型是由多个神经元相互连接而成的计算模型,它能够模拟生物神经系统的 复杂行为。
详细描述
神经网络模型可以分为前馈神经网络、反馈神经网络和自组织神经网络等类型。前馈神 经网络中,信息从输入层逐层传递到输出层,每一层的输出只与下一层相连。反馈神经 网络中,信息在神经元之间来回传递,直到达到稳定状态。自组织神经网络能够根据输
入数据的特性进行自组织、自学习。
神经网络的参数
总结词
神经网络的参数是用于调整神经元之间连接强度的可训练参 数,它们在训练过程中不断优化以实现更好的性能。
详细描述
神经网络的参数包括权重和偏置等。权重用于调整输入信号 对激活函数的影响程度,偏置则用于调整激活函数的阈值。 在训练过程中,通过反向传播算法不断调整参数,使得神经 网络能够更好地学习和逼近目标函数。
作用
误差函数用于指导神经网络的训练, 通过最小化误差函数,使网络逐渐 逼近真实数据。
梯度下降法
基本思想
梯度下降法是一种优化算法,通 过不断调整神经网络的参数,使
误差函数逐渐减小。
计算方法
计算误差函数的梯度,并根据梯 度信息更新网络参数。
优化策略
采用不同的学习率或适应学习 率策略,以加快训练速度并避免
2006年,深度学习的概念被提出,神经网络的层次开始 增加,提高了对复杂数据的处理能力。
人工神经网络理论及应用.ppt课件
ww1ij (k )
m
yi1
j1
1 yi1
w2ji e j
yi1 (1
yi1 )
uj
对比Hebb规则: 各项
如遇到隐含层多于1层,可依次类推
yi (1 yi ) y1jei
yi1(1
yi1) u j
m
yi1
1 yi1
w2jie
j
j1
演示
BP算法演示
BP学习算法评述
优点
代入上式,有 因此
ym yi1
ym (1
ym )wmi
J
T
e
e yi1
m j 1
y j (1
y j ) w2jiej
即误差进行反向传输
BP学习步骤:误差反传(隐含层)
w1
w2
u1
e1
yi1 wi1j
yi1(1 yi1)u j
un
… …
…
em
综合上述结果
y1
Δwi1j
k
dJ dwi1j
主要内容
神经元数学模型 感知器 多层前馈网络与BP算法※ BP算法评述
神经元数学模型
n
y f wjxj
j1
n
设 p wj x j 则 yi f ( pi ) j 1
作用 函数
f
(
x)
1, 0,
x0 x0
i
f (xi )
(a)
f (x)
1
0 x
(b) 作用函数
MP神经元模型
感知器(感知机)
包含感知层,连接层和反应层。
感知层:接受二值输入; 连接层:根据学习规则不断调整权值 输出层:取为对称型阶跃函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
切比雪夫(Chebyshev)多项式,它也可以表示成为 U n ( x) 也 值 得 注 意 的 是 , 雅 可 比 ( Jacobi ) 多 项 式 J n
sin(n 1) arccos x 1 x2
, ( x 1) 。
( , )
( x) 还 是 二 阶 线 性 齐 次 微 分 方 程
c H ( x)
i 0 i i
n
(5.3)
可以是 f ( x) 的最佳均方逼近(其中,理论上,ci
f ( x) Hi ( x)dx
Hi2 ( x)dx , i 0,1, 2,, n ) 。
由上述定理 5.1 可知,对于未知目标函数 f ( x) ,若采用 Hermite 多项式 H n ( x), n 0,1,2, 对 其做最佳均方逼近,则可用 H n ( x), n 0,1,2, 的加权和函数
y
HCNN
sort ( )
y
sort ( y )
HCNN
Chaotic initial value 图 5.5 HCNN 异步加密原理框图
一、 加密算法 在图 5.5 中,发送方进行如下操作: Step1 用已知的混沌序列样本做为 Hermite 神经网络(HNN)的训练模式,确定网络权值 c j , 当 J 时,Hermite 混沌神经网络(HCNN)辨识模型因此构造成功(需保密) ,并通过秘密信道 传送给接收方; Step2 对于给定的明文序列 M m1m2 mq ; q M 为明文序列长度; 任选混沌初值 y0(可公 开) ,代入 HCNN 辨识模型,计算即可得到非线性序列 y [ y (1), y (2), , y ( q )] (保密) ; Step3 计算 sort ( y ) , 为将序列 y 从小到大排序后的下标向量(保密) ;则明文根据 进 行置换可得密文,即 C M ( ) (可公开) 。 Step4 通过公开信道将混沌初值 y0 和密文 C 传送给接收方。 二、异步解密算法 在图 5.5 中,接收方进行如下操作: Step1 从公开信道接收密文 C 和混沌初值, 易得 q C , 将 y0 代入经秘密信道传送来的 HCNN 辨识模型即可得到与发送方相同的非线性序列 y ; Step2 计算 sort ( y ) , sort ( ) ,则密文根据 置换可得明文,即 M C ( ) 。
d n e x 定义 5.1 H n ( x) ( 1) e , x dx n
n x2
2
(5.1)
可以证明,上述 Hermite 多项式是定义在 ( , ) 上关于权函数 ( x) e 式,且满足如下递推关系公式:
x2
的 n 次正交多项
H n ( x) 2 xH n 1 ( x) 2(n 1)H n 2 ( x); n 2,3, 4,...
其前数个显性表达式可如下写出:
(5.2)
H0 ( x) 1 H1 ( x) 2 x H2 ( x) 4 x2 2 H3 ( x) 8x3 12 x H4 ( x) 16 x4 48x2 12
另外,对于 Hermite 正交基函数,我们有如下定理:
定理 5.1 设连续目标函数 f ( x) C ( , ) , 则 y ( x)
j 0,1,2, n 1 ,可由(5.2)式递
神经网络输出 y
c
j 0
n 1
j
H j (net j ) ;
神经网络输出误差 et f t yt ,
t 1, 2, , s ;
训练指标 J
1 s 2 et ; 2 t 1
权值修正公式 cj
J et H j (net j ), j 0,1,2,n 1 cj
Hn-1
图 5.4 用于混沌异步加密之 Hermite 神经网络模型
§5.4.2 基于 HCNN 的“一次一密”加密算法设计
HCNN“一次一密”异步加密算法原理如图 5.5 所示。
5
Sender
M
+ Public Channel
C M ( )
+
M C ( )
Receiver
sort ( y )
1
c H ( x) 去近似代替 f ( x) 。
i 0 i i
n 1
§5.2 Hermite 神经网络建模及权值学习算法
在 1 n 1 的神经网络中,令输入层至隐层神经元的权值恒为 1,所有神经元的阀值恒为 0,隐 神经元的激励函数分别为(5.2)式定义的 Hermite 正交基函数,隐层至输出层神经元的权值记为 ci , 则 Hermite 神经网络(HNN)输入输出关系为 y
2 ( x) mite 神经网络异步加密
正如上一章指出,1996 年 Milanovic 和 Crounse 等人分别提出了基于神经网络混沌同步的对称 加密算法[12,13],这种加密算法简单且易于软硬件实现;其后许多学者将混沌同步和神经网络应用于 保密通讯之中[14-18],但混沌同步通讯系统要求必须收发两端严格同步,不可避免地存在参数匹配、 信道噪音和收发两端的时间同步等问题。为了克服这一缺限,我们也可以构造 Hermite 神经网络[1,2] 来训练已知的 Logistic 混沌序列,并因此提出一种新的基于 Hermite 混沌神经网络(HCNN)的“一 次一密”异步加密算法。
当 2 / 3 时,由上述公式可写出其前 n 项表达式:
4
0 ( x) 1 1 ( x) x
2 4 3 9 4 32 3 ( x ) x x 3 9 81 1 16 2 112 4 4 ( x) x x 9 27 243 5 10 nn ( x) 2(n ) xn 1 ( x) (n )n 2 ( x) 3 3 4 3
3
值得指出的是,当 时,情况比较简单,称作超球多项式;更具体而言, 1) 当 0 , 也即是关于权函数 ( x) 1, ( x 1) 时, 相应的正交多项式称作勒让德 (Legendre) 多项式,它也可以表示成为 Ln ( x)
1
0
( x i x x 2 cos ) n d , ( x 1) ; 1 1 x2 , ( x 1) 时,相应的正交多项式称作第一
§5.3.3 Gegenbauer 多项式
由下式所定义的多项式称为 Gegenbauer 多项式:
定义 5.3
j ( x, )
(2 ) j (2 j ) k x 1 k 1 ( ) , j 0,1, 2, ( 1/ 2) k 2 k 0 k !( j k )!
第五章 Hermite 神经网络
本章主要介绍 Hermite 正交基函数及其它几种相关的常用正交基函数(为了读者对相关内容 的全面了解和理解)的定义和性质、Hermite 神经网络模型、构建方法、学习算法及其在混沌加密中 的应用等内容。
§5.1 Hermite 正交基函数及逼近定理[1,2]
由下式所定义的多项式称为 Hermite 正交基函数:
§5.3.2 Jacobi 多项式
由下式所定义的多项式称为 Jacobi 多项式:
定义 5.3 J n
( , )
( x)
dn [( x 2 1) n ( x)]; x [1,1] n n n !2 ( x) dx 1
其中, ( x) (1 x) (1 x) 为权函数, 1, 1 是给定的实数。
(5.4)
c j (k 1) c j (k ) c j (k ), k 0,1, 2,
其中 0 为学习率, k 为学习次数(或称为迭代次数) 。
§5.3 其它正交多项式基函数神经网络
前面已经分别介绍了 Chebyshev 神经网络 (于第三章) 、 Legendre 神经网络 (于第四章) 和 Hermite 神经网络(于本章) ,从本质上可以看出,上述这些神经网络有相似共通之处:
(1 x 2 ) y [ ( 2) x] y n( n 1) y 0 的解。
另外,如果讨论的是无限区间 [0, ) ,则关于权函数 ( x) e
x
或 ( x) e
x2
的正交多项式
系 Ln ( x)n 0 与 H n ( x)n 0 ,分别被称为拉盖尔(Laguerre)多项式与埃尔米特(Hermite)多项式, 它们还依次满足微分方程 xy (1 x) y ny 0 和 y 2 xy 2ny 0 。
L0 ( x) 1, L1 ( x) 1 x 2 Lk 1 ( x) (1 2k x) Lk ( x) k Lk 1 ( x), k 1, 2,
由上述定义的多项式函数也即 Laguerre 正交基函数,可以如下写出其前 n 项:
L0 ( x) 1, L1 ( x) 1 x, L2 ( x) x2 4 x 2, L3 ( x) x3 9 x2 18x 6, L4 ( x) x4 16 x3 72 x2 96 x 24, Ln1 ( x) (2n 3 x) Ln2 ( x) (n 2)2 Ln3 ( x).
2
1)网络结构相近(拓扑结构均为三层前向网络,且隐神经元个数为基函数个数) ; 2)学习算法相近(均可采用基于梯度下降的 BP 迭代学习算法) 。 在这些神经网络模型中, 唯一不同的仅仅在于其隐层神经元是由各种不同的正交多项式基函数构成; 正是基于以上事实,对于其它正交多项式基函数神经网络的建模,我们因此不再专门介绍。下面仅 列出其基本定义和递推公式[3-11]。