第9章 分类数据分析
医学统计学-第9章 关联性分析
关于两种属性的关联程度,我们用pearson
列联系数表达:
对于2×2列联表
关联系数r介于
(9-10)(110-1~2) 0.5 = 0.71 之 间, 该值越大,关
联程度越高。
理论上我们还要作总体为列联系数为0的假设 检验,但这个假设等价于以上的χ2检验。
例9-3 为观察行为类型与冠心病的关系,某研究
r的取值范围在±1之间,为正值时,正相关。 为负值时,负相关。 r=0时为零相关。 ρ是总 体相关系数,r是ρ的估计值。 假设是建立ρ的基础上。。。
相关系数的计算
利用例题的资料试计算凝血酶浓度X与凝 血时间Y之间的样本相关系数。
4.相关分析条件
用于双变量正态分布资料, X、Y都是正态分布。
9.2 两个连续随机变量间的相关分析
例 某地研究2-7岁急性白血病患儿的血小
板数与出血症状程度之间的相关性,结果见下 表:试用秩相关进行分析。
首先先将实测原始数据由小到大排序 编秩,以pi表示Xi秩次;qi表示Yi的
次,见上表所示。
观察值相同的取平均秩次;将pi、qi直接 替换(9-1)中的X和Y的均数,直接得 到如下算式:
计算结果如下:
九
(9-11)
关联系数为:
关联系数的范围:
其中,R是列联表的行数,C是列联表列数。
双向有序分类资料的关联性检验
贾俊平《统计学》(第5版)课后习题-第9章 分类数据分析【圣才出品】
第9章 分类数据分析一、思考题1.简述列联表的构造与列联表的分布。
答:列联表是由两个以上的变量进行交叉分类的频数分布表。
列联表的分布可以从两个方面看,一个是观察值的分布,又称为条件分布,每个具体的观察值就是条件频数;一个是期望值的分布。
2.用一张报纸、一份杂志或你周围的例子构造一个列联表,说明这个调查中两个分类变量的关系,并提出进行检验的问题。
答:对三个生产厂甲、乙、丙提供的学习机的A、B、C三种性能进行质量检验,欲了解生产厂家同学习机性能的质量差异是否有关系。
抽查了450部学习机次品,整理成为如表9-2所示的3×3列联表。
表9-2根据抽查检验的数据表明:次品类型与厂家(即哪一个厂)生产是无关的(即是相互独立的)。
建立假设:H0:次品类型与厂家生产是独立的,H1:次品类型与厂家生产不是独立的。
可以计算各组的期望值,如表9-3所示(表中括号内的数值为期望值)。
表9-3 各组的期望值计算表所以2222(2017)(4033)(7058)9.821173358χ---=+++=…。
而自由度等于(R -1)(C -1)=(3-1)×(3-1)=4,若以0.01的显著性水平进行检验,查χ2分布表得20.01(4)13.277χ=。
由于220.019.821(4)13.277χχ=<=,故接受原假设H 0,即次品类型与厂家生产是独立的。
3.说明计算2χ统计量的步骤。
答:计算2χ统计量的步骤:(1)用观察值o f 减去期望值e f ;(2)将(o f -e f )之差平方;(3)将平方结果2)(e o f f -除以e f ;(4)将步骤(3)的结果加总,即得:22()o e ef f f χ-=∑。
4.简述ϕ系数、c 系数、V 系数的各自特点。
答:(1)ϕ相关系数是描述2×2列联表数据相关程度最常用的一种相关系数。
它的计算公式为:ϕ,式中,∑-=ee of f f 22)(χ;n 为列联表中的总频数,也即样本量。
《统计学》(贾俊平第七版)课后题及答案-统计学 贾俊平第七版
第一章导论1.什么是统计学?统计学是搜集、处理、分析、解释数据并从中得出结论的科学。
2.解释描述统计与推断统计。
描述统计研究的是数据搜集、处理、汇总、图表描述、概括与分析等统计方法。
推断统计研究的是如何利用样本数据来推断总体特征的统计方法。
3.统计数据可分为哪几种类型?不同类型的数据各有什么特点?按照计量尺度可分为分类数据、顺序数据和数值型数据;按照数据的搜集方法,可以分为观测数据和试验数据;按照被描述的现象与实践的关系,可以分为截面数据和时间序列数据。
4.解释分类数据、顺序数据和数值型数据的含义。
分类数据是只能归于某一类别的非数字型数据;顺序数据是只能归于某一有序类别的非数字型数据;数值型数据是按照数字尺度测量的观测值,其结果表现为具体的数值。
5.举例说明总体、样本、参数、统计量、变量这几个概念。
总体是包含所研究的全部个体的集合,样本是从总体中抽取的一部分元素的集合,参数是用来描述总体特征的概括性数字度量,统计量是用来描述样本特征的概括性数字度量,变量是用来说明现象某种特征的概念。
6.变量可分为哪几类?变量可分为分类变量、顺序变量和数值型变量。
分类变量是说明书屋类别的一个名称,其取值为分类数据;顺序变量是说明十五有序类别的一个名称,其取值是顺序数据;数值型变量是说明事物数字特征的一个名称,其取值是数值型数据。
7.举例说明离散型变量和连续型变量。
离散型变量是只能去可数值的变量,它只能取有限个值,而且其取值都以整位数断开,如“产品数量”;连续性变量是可以在一个或多个区间中取任何值的变量,它的取值是连续不断的,不能一一列举,如“温度”等。
第二章数据的搜集1.什么是二手资料?使用二手资料需要注意些什么?与研究内容有关、由别人调查和试验而来、已经存在并会被我们所利用的资料为二手资料。
使用时要评估资料的原始搜集人、搜集目的、搜集途径、搜集时间且使用时要注明数据来源。
2.比较概率抽样和非概率抽样的特点。
举例说明什么情况下适合采用概率抽样,什么情况下适合采用非概率抽样。
贾俊平统计学 第七版 课后思考题
第一章导论1.什么是统计学?统计学是搜集、处理、分析、解释数据并从中得出结论的科学。
2.解释描述统计与推断统计。
描述统计研究的是数据搜集、处理、汇总、图表描述、概括与分析等统计方法。
推断统计研究的是如何利用样本数据来推断总体特征的统计方法。
3.统计数据可分为哪几种类型?不同类型的数据各有什么特点?按照计量尺度可分为分类数据、顺序数据和数值型数据;按照数据的搜集方法,可以分为观测数据和试验数据;按照被描述的现象与实践的关系,可以分为截面数据和时间序列数据。
4.解释分类数据、顺序数据和数值型数据的含义。
分类数据是只能归于某一类别的非数字型数据;顺序数据是只能归于某一有序类别的非数字型数据;数值型数据是按照数字尺度测量的观测值,其结果表现为具体的数值。
5.举例说明总体、样本、参数、统计量、变量这几个概念。
总体是包含所研究的全部个体的集合,样本是从总体中抽取的一部分元素的集合,参数是用来描述总体特征的概括性数字度量,统计量是用来描述样本特征的概括性数字度量,变量是用来说明现象某种特征的概念。
6.变量可分为哪几类?变量可分为分类变量、顺序变量和数值型变量。
分类变量是说明书屋类别的一个名称,其取值为分类数据;顺序变量是说明十五有序类别的一个名称,其取值是顺序数据;数值型变量是说明事物数字特征的一个名称,其取值是数值型数据。
7.举例说明离散型变量和连续型变量。
离散型变量是只能去可数值的变量,它只能取有限个值,而且其取值都以整位数断开,如“产品数量”;连续性变量是可以在一个或多个区间中取任何值的变量,它的取值是连续不断的,不能一一列举,如“温度”等。
第二章数据的搜集1.什么是二手资料?使用二手资料需要注意些什么?与研究内容有关、由别人调查和试验而来、已经存在并会被我们所利用的资料为二手资料。
使用时要评估资料的原始搜集人、搜集目的、搜集途径、搜集时间且使用时要注明数据来源。
2.比较概率抽样和非概率抽样的特点。
举例说明什么情况下适合采用概率抽样,什么情况下适合采用非概率抽样。
医用数据挖掘案例与实践 第9章 决策树模型分析
分类(Classification)是一种数据分析过程,即根据 记录各种属性的值确定该记录属于预定类别中的哪一 类。分类是数据挖掘中的常用方法,在医学应用中, 疾病的诊断和鉴别诊断就是典型的分类过程。
3
分类器的产生主要通过学习和测试两部分完成。学习过程是依据训练样 本(Training Sample)进行有监督的学习,通过学习得到特定的分类器 (Classifier)。测试过程是以学习得到的分类器对测试样本(Testing Sample) 进行分类,并将分类结果与该样本的类别归属进行对照,以此判断分类器的 性能。当分类器的分类性能达到预定目标后,即可用该分类器对未知数据的 类别进行判定。用于评估分类器性能的测试样本必须独立于训练样本。常用 的测试样本主要有以下几种方法:
(1)随机分组法:将已知数据集合随机的分为互不重叠的学习样本和测 试样本,训练样本量越大,对于分类器的学习就会越准确。因此,当已知数 据集较大的时候,常采用原始数据的三分之二作为训练样本,但缺点是可能 会导致不同类别的样本在两个样本中分布不均衡。
4
(2)N倍交叉验证法:将原有数据集随机的分为N组,分 别以其中的一组数据作为测试样本,其他组数据作为训练样 本进行训练和测试。这样一共训练了N次,得到N个分类准确 率。最后取N次测试的分类准确率的均值来反应分类器的性能。 特别的,当N为总样本数时,此方法则成为留一法(leaveone-out)。
log2
3 9
6 9
log2
6 9
0.918
E(age)
I
(1,
2)
6 9
(
2 6
log2
2 6
4 6
log2
4 6
)
3 9
贾俊平《统计学》(第五版)考研真题(含复试)与典型习题详解 分类数据分析
合计
赞成
35
30
65
反对
15
20
35
合计
50
50
100
如果要检验男女教师对教师体制改革的看法是否相同,提出的原假设为( )。
A.H0:π1=π2=35 B.H0:π1=π2=50 C.H0:π1=π2=65
6 / 19
圣才电子书
D.H0:π1=π2=0.65
十万种考研考证电子书、题库视频学习平台
156 162
圣才电子书
A.0.6176
十万种考研考证电子书、题库视频学习平台
B.1.2352
C.2.6176
D.3.2352
【答案】B
【解析】 2 检验可以用于变量间拟合优度检验和独立性检验,可以用于测定两个分类 变量之间的相关程度。用 fo 表示观察值频数,用 fe 表示期望值频数,则 2 统计量为:
圣才电子书
十万种考研考证电子书、题库视频学习平台
第 9 章 分类数据分析
一、单项选择题
1.列联分析是利用列联表来研究( )。
A.两个数值型变量的关系
B.两个分类变量的关系
C.两个数值型变量的分布
D.一个分类变量和一个数值型变量的关系
【答案】B
【解析】列联表是由两个以上的变量进行交叉分类的频数分布表,列联分析是利用列联
【解析】表中的行是态度变量,这里划分为三类,即赞成,中立和反对;表中的列是单 位变量,这里划分为两类,即男同学和女同学,即 3×2 列联表。
5.一所大学为了解男女学生对后勤服务质量的评价,分别抽取了 300 名男学生和 240
名女学生进行调查,得到的结果如表 9-2 所示。
表 9-2 关于后勤服务质量评价的调查结果
贾俊平《统计学》复习笔记课后习题详解及典型题详解 第9章~第10章【圣才出品】
第9章分类数据分析9.1复习笔记一、分类数据与χ2统计量1.分类数据按照所采用的计量尺度不同,可以将统计数据分为分类数据、顺序数据和数值型数据。
分类数据和顺序数据都是只能归于某一类别的非数字型数据,它们是对事物进行分类的结果,其结果均表现为类别,用文字来表述,不过顺序数据的类别是有序的;数值型数据是按数字尺度测量的观测值,其结果表现为具体的数值。
分类数据是对事物进行分类的结果,其特征是,调查结果虽然用数值表示,但不同数值描述了调查对象的不同特征。
数值型数据可以转化为分类数据。
分类数据的结果是频数,χ2检验是对分类数据的频数进行分析的统计方法。
2.χ2统计量χ2统计量可以对分类数据做拟合优度检验和独立性检验,可以用于测定两个分类变量之间的相关程度。
若用f o 表示观察值频数,用f e 表示期望值频数,则χ2统计量可以写为:22()o e e f f f χ-=∑χ2检验:χ2检验是利用随机样本对总体分布与某种特定分布拟合程度的检验,也就是检验观察值与理论值之间的紧密程度。
χ2检验主要用于拟合优度检验和独立性检验。
(1)χ2统计量的特征①χ2≥0,因为它是对平方值结果的汇总;②χ2统计量的分布与自由度有关;③χ2统计量描述了观察值与期望值的接近程度。
两者越接近,即f o-f e的绝对值越小,计算出的χ2值越小;反之,f o-f e的绝对值越大,计算出的χ2值也越大。
χ2检验正是通过对χ2的计算结果与χ2分布中的临界值进行比较,做出是否拒绝原假设的统计决策。
(2)χ2分布与自由度的密切关系自由度越小,χ2的分布就越向左边倾斜;随着自由度的增加,χ2分布的偏斜程度趋于缓解,逐渐显露出对称性,随着自由度的继续增大,χ2分布将趋近于对称的正态分布。
(3)应用χ2检验统计量的注意事项①各组的理论频数f e不得小于总频数n;②总频数应较大,至少大于50;③如果某组理论频数小于5,可将相邻的若干组合并,直至理论频数大于5为止;④倘若有两个以上的单元,如果20%的单元期望频数f e小于5,则不能应用χ2检验。
第九章 属性(分类)数据分析[最新]
SAS软件与统计Байду номын сангаас用教程
STAT
9.1.1 属性数据分析与列联表
1. 属性变量与属性数据分析
从变量的测量水平来看分为两类:连续变量和属性 (Categorical) 变量,属性变量又可分为有序的 (Ordinal) 和无序的变量。 对属性数据进行分析,将达到以下几方面的目的: 1) 产生汇总分类数据——列联表; 2) 检验属性变量间的独立性(无关联性); 3) 计算属性变量间的关联性统计量; 4) 对高维数据进行分层分析和建模。
SAS软件与统计应用教程
表9-1 关于改革方案的调查结果(单位:人)
一分公司 二分公司 三分公司 四分公司 合计
STAT
赞成该方案
反对该方案 合计
68
32 100
75
45 120
57
33 90
79
31 110
279
141 420
表中的行 (row) 是态度变量,这里划分为两类:赞成改 革方案或反对改革方案;表中的列 (column)是单位变量, 这里划分为四类,即四个分公司。表 9-1 所示的列联表 称为24表。
SAS软件与统计应用教程
STAT
第九章 属性(分类)数据分析
9.1 属性数据及其分析
9.2 SAS中的属性数据分析
SAS软件与统计应用教程
STAT
9.1
属性数据及其分析
9.1.1 属性数据分析与列联表
9.1.2 属性变量关联性分析
9.1.3 属性变量关联度计算
9.1.4 有序变量关联性分析
SAS软件与统计应用教程
STAT
3. V系数
新高考数学一轮教师用书:第9章 第3节 成对数据的统计分析
气象预报某天的最高气温为 34 ℃,则可以预测该天这种饮料的销售量为
__________杯.
128 [由题意 x=34 时,该小卖部大约能卖出热饮的杯数^y=2×34+60=128 杯.]
(对应学生用书第 180 ⻚) 考点 1 相关关系的判断
判定两个变量正、负相关的方法 (1)画散点图:点的分布从左下⻆到右上⻆,两个变量正相关;点的分布从左 上⻆到右下⻆,两个变量负相关. (2)相关系数:r>0 时,正相关;r<0 时,负相关. (3)线性回归直线方程中:b^>0 时,正相关;b^<0 时,负相关.
(2)回归方程:方程^y=b^x+a^是两个具有线性相关关系的变量的一组数据(x1,y1),
(x2,y2),…,(xn,yn)的回归方程,其中a^,b^是待定参数.
n
∑ (xi- x )(yi- y )
n
∑
xiyi-n-x -y
b^=i=1
=i=1
n
n
∑ (xi- x )2
i=1
∑ x2i -nx2
i=1
a^= y -b^ x .
3.回归分析
(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法.
(2)样本点的中心
对于一组具有线性相关关系的数据(x1,y1),(x2,y2),…,(xn,yn),其中(-x ,-y )
称为样本点的中心.
(3)相关系数
当 r>0 时,表明两个变量正相关;
为样本容量.
[常用结论]
1.回归直线必过样本点的中心( x , y ). 2.当两个变量的相关系数|r|=1 时,两个变量呈函数关系.
一、思考辨析(正确的打“√”,错误的打“×”)
(1)“名师出高徒”可以解释为教师的教学水平与学生的水平成正相关关系.
贾俊平《统计学》章节题库(分类数据分析)详解【圣才出品】
第9章分类数据分析一、单项选择题1.列联分析是利用列联表来研究()。
A.两个数值型变量的关系B.两个分类变量的关系C.两个数值型变量的分布D.一个分类变量和一个数值型变量的关系【答案】B【解析】列联表是由两个或以上的变量进行交叉分类的频数分布表,列联分析是利用列联表来研究两个分类变量之间的关系。
2.列联表中的每个变量()。
A.只能有一个类别B.只能有两个类别C.对类别没有限制D.可以有两个或两个以上的类别【答案】D3.设列联表的行数为3,列数为4,则χ2检验的自由度为()。
A.3B.4C.6D.12【答案】C【解析】列联分析中,χ2检验的自由度=(行数-1)(列数-1)=(R-1)(C-1)=(3-)×(4-1)=6。
4.一所大学准备采取一项学生对餐厅改革意见的调查,为了解男女学生对这一措施的看法,分别抽取了300名男学生和240名女学生进行调查,得到的结果如表9-1所示。
这个表格是()。
A.4×3列联表B.3×2列联表C.2×3列联表D.3×4列联表【答案】B【解析】表中的行是态度变量,这里划分为三类,即赞成、中立和反对;表中的列是单位变量,这里划分为两类,即男同学和女同学,因此这个表格是3×2列联表。
5.一所大学为了解男女学生对后勤服务质量的评价,分别抽取了300名男学生和240名女学生进行调查,得到的结果如表9-2所示。
这个列联表的最下边一行称为()。
A.总频数B.条件频数C.行边缘频数D.列边缘频数【答案】D6.某中学为了解教师对新课标改革的看法,分别抽取了300名男教师和240名女教师进行调查,得到的结果如表9-3所示。
这个列联表的最右边一列称为()。
A.总频数B.条件频数C.行边缘频数D.列边缘频数【答案】C7.某大学为了解学生对研究生奖学金制度改革的看法,分别抽取了300名男研究生和240名女研究生进行调查,得到的结果如表9-4所示。
贾俊平《统计学》章节题库(分类数据分析)【圣才出品】
观察值
105
78
期望值
102
8l
根据这个列联表计算的 Χ2 统计量为( )。
A.0.6176
B.1.6176
C.0.3088
D.1.3088
【答案】A
【解析】 2 f0 fe 2 45 482 42 392 105 1022 78 812
87
反对
105
78
183
合计
150
120
270
这个列联表的最下边一行称为( )。
A.列边缘频数
B.行边缘频数
3 / 25
圣才电子书
C.条件频数
十万种考研考证电子书、题库视频学习平台
D.总频数
【答案】A
7.一所大学准备采取一项学生在宿舍上网收费的措施,为了解男女学生对这一措施的
2.设 R 为列联表的行数,C 为列联表的列数,则 Χ2 分布的自由度为( )。 A.R B.C C.R×C D.(R-1)×(C-1) 【答案】D
【解析】 2 检验的自由度=(行数-1)(列数-1)=(R-1)(C-1)。
1 / 25
圣才电子书 十万种考研考证电子书、题库视频学习平台
看法,分别抽取了 150 名男学生和 120 名女学生进行调查,得到的结果如下:
男学生
女学生
合计
赞成
45
42
87
反对
105
78
183
合计
150
120
270
根据这个列联表计算的赞成上网收费的行百分比分别为( )。
A.51.7%和 48.3%
B.57.4%和 42.6%
C.30%和 70%
D.35%和 65%
医学统计学-第9章 关联性分析
线性?程度如何?是正相关还是负相关? ⑵统计推断:两者的关系是否有统计学意
义?根据专业知识下结论。
9.2.2 相关系数的统计推断
r是样本相关系数,是总体相关系数ρ的估计
值,要想判断X、Y间是否有相关关系,就要检
验r是否来自总体相关系数ρ为零的总体。方法
本例 ν=n对-2=15-2=13,r0.05,13=0.514, 得到: p<0.05,即相关系数有统计学意义。
tr =
− 0.926 = −8.874,
1 − (0.926)2
ν = 15 − 2 = 13
15 − 2
可按公式(9-2) 计算
查附表C2(教材560),t 0.05,13=2.160;t> t 0.05,13,按α=0.05水准,拒绝H0,接受H1,故 可以认为凝血酶浓度与凝血时间呈负相关关系。
9.2.3 Spearman 秩相关
一、秩相关的概念及其统计描述 前面指出:Pearson积矩相关的假设检验要求
X和Y均服从正态分布。对那些不服从正态 分布或等级资料、总体分布未知的资料,因 难以进行分析,所以就不宜用积矩相关系数 来描述相关性。
此时,可采用等级相关(rank correlation), 或称秩相关来描述两个变量间相关的程度与方 向。该法是利用两变量的秩次大小作线性相关 分析,对原变量的分布不作要求,属非参数统 计方法。
例 某地研究2-7岁急性白血病患儿的血小
板数与出血症状程度之间的相关性,结果见下 表:试用秩相关进行分析。
首先先将实测原始数据由小到大排序 编秩,以pi表示Xi秩次;qi表示Yi的
次,见上表所示。
观察值相同的取平均秩次;将pi、qi直接 替换(9-1)中的X和Y的均数,直接得 到如下算式:
统计学第9章分类数据分析
可解释性
分类结果应具有可解释性,能够清晰地说明各类 别的特征和差异,方便用户理解和应用。
避免过拟合
在训练分类模型时,应避免过拟合现象,确保模 型泛化能力良好,能够适用于不同的数据集和场 景。
交叉验证
采用交叉验证方法评估分类模型的性能,以客观 地评价分类结果的准确性和可靠性。
谢谢聆听
02
目的:通过频数分布表,可以直观地了解数据的分布情况 ,发现数据的异常值和缺失值,以及数据的离散程度和集 中趋势。
03
制作步骤
04
1. 将数据按照某一属性进行分类。
05
2. 统计每一类别的频数和频率。
06
3. 制作频数分布表,包括类别、频数、频率和累积频数 、累积频率等列。
列联表分析
定义:列联表分析是一种将两个或多 个分类变量进行联合,并分析它们之
社会阶层划分
通过分类数据分析,将社会人群划分为不同的阶层,分析不同阶 层的社会特征和行为模式。
人口普查
分类数据分析可以用于人口普查数据的分析和处理,提供更准确 的人口统计信息。
舆情分析
通过分类数据分析,了解公众对某一事件或话题的态度和意见, 为政策制定和舆论引导提供依据。
06 分类数据分析的注意事项
优势比和相对风险
基本概念
相对风险
优势比(Odds Ratio)和相对风险 (Relative Risk)是衡量分类数据关 联强度的指标。
表示暴露于某因素下发生事件的相对危 险度,计算方法为相对风险=暴露组的 事件发生率/非暴露组的事件发生率。
优势比
表示一个事件发生的相对概率,计算 方法为优势比=事件组的发生概率/非 事件组的发生概率。
分类数据分析
目录
计算机数据库(经济会计类)分类数据分析(new)随堂讲义
分类数据的整理结果表现为頻数。
如,某班学生,男生10人,女生20人
9.1.2 c2统计量
c可以用于测定两个分类变量之间的相关程度,如文化程度对假日安排(国外 游、国内游、在家休息)的影响
分类数据
分类–
第 9 章 分类数据分析
原假设:一般是原有的、传统的观点或结论, 或原有的看法、状况。——不能轻易否定 备择假设:是新的、可能的猜测,或需要用 证据来证明的命题。 ——需要用证据来验证 的命题 举例说明: 例1:采用新技术后,将会使产品寿命达到 5000小时以上 H0: 5000(原来的状况,不能轻易否定的) H1: >5000(需要用证据来验证)
例如:性别 (男, 女),地区(城市,乡村)
各类别用符号或数字代码来测度 如,男和女分别用0和1表示 使用分类或顺序尺度
–
你吸烟吗?
1.是;2.否
–
你赞成还是反对这一改革方案?
1.赞成;2.反对
4. 5.
对分类数据的描述和分析通常使用列联表 可使用c检验
c
统计量
1.
2.
用于检验分类变量拟合优度
9.5.2卡方分布的期望值准则
卡方分布进行独立性检验,要求样本量 必须足够大,特别是每个单元的期望頻 数(fe)不能过小,否则,检验将会出现错 误结论。 准则一:如果只有两个单元(或两个类 别),每个单元的期望頻数必须是5或5 以上。 准则二:倘若有两个以上单元,如果 20%的单元期望頻数(fe)小于5,则不能
c 统计量
c分布与自由度的关系
9.2 拟合优度检验(P221)
拟合优度检验
第9章 Excel综合应用2——饮料店销售数据分析
2020/2/27
第9章 饮料销售数据分析
29
9.2.5 用数据透视表深入分析饮料销售数据
(5)第3次将“销售额”字段拖动到“∑数值”区域中,在“值字段设置”对 话框中设置如下:在“值汇总方式”中选择“平均值”,并将“自定义名称”的内 容更改为“平均值项:销售额”,单击“数字格式”按钮,在打开的“设置单元格 格式”对话框中,将数值的“小数位数”设置为“2”。
12
9.2.2 用SUMIF函数和SUMIFS函数统计各饮料店销售额
2.用SUMIFS函数统计5种饮料在各饮料店的销售额 SUMIFS函数的功能:对区域中满足多个条件的单元格求和。 SUMIFS的语法:
SUMIFS(sum_range, criteria range1,criteria1,[ criteria range2,criteria2],...)
在“嵌套汇总”工作表中,用嵌套分类汇总统计每种饮料在所有饮料店的 “销售额”和“毛利润”,操作步骤如下:
(1)在“嵌套汇总”工作表中,按“饮料名称”为“主要关键字”、“饮料 店”为“次要关键字”进行排序;
2020/2/27
第9章 饮料销售数据分析
17
9.2.3 用分类汇总统计“销售额”和“毛利润”
2020/2/27
第9章 饮料销售数据分析
23
9.2.4 用两轴线-柱图比较“销售额”和“毛利润”
3.设置图表格式 为“毛利润”添加系列名称标签。
2020/2/27
第9章 饮料销售数据分析
24
9.2.5 用数据透视表深入分析饮料销售数据
1.用数据透视表统计各种饮料在各饮料店的销售额 在“销售记录”工作表中,用数据透视表统计各种饮料在各饮料店的销售额, 操作步骤如下: (1)在“销售记录”工作表中单击数据区中的任一单元格,在“插入”选项卡 的“表格”组中单击“数据透视表”按钮 ,打开“创建数据透视表”对话框。 (2)在对话框中系统会自动选择数据区,在“选择放置数据透视表的位置”区 域中选择“新工作表”,创建数据透视表“Sheet1”。
统计学课件第9篇章分类数据分析
谢谢聆听
其他回归模型
总结词
除了线性回归分析和Logistic回归分析之外,还有许多其他类型的回归模型可 供选择。
详细描述
这些模型包括岭回归、套索回归、多项式回归、逐步回归等,每种模型都有其 特定的适用场景和假设条件。选择合适的回归模型需要考虑数据的特征、模型 的预测精度和解释性等因素。
06 分类数据分析的实际应用
市场细分分析
市场细分
通过分类数据分析,将市场划分为不 同的细分市场,以便更好地理解客户 需求和行为,从而制定更有效的营销 策略。
消费者行为研究
通过分析消费者的购买行为、偏好和 态度,了解不同细分市场的消费者需 求和趋势,以优化产品设计和市场定 位。
人口统计学研究
人口普查
利用分类数据分析对人口普查数据进行处理和分析,了解人口分布、年龄结构、 性别比例等人口统计学特征。
05 分类数据的回归分析
线性回归分析
总结词
线性回归分析是一种通过建立自变量与因变量之 间的线性关系来预测因变量的方法。
总结词
线性回归分析的假设包括线性关系、误差项独立 同分布、误差项无偏和误差项同方差。
详细描述
线性回归分析基于最小二乘法原理,通过拟合一 条直线来描述自变量和因变量之间的关系。这种 方法适用于因变量是连续变量的数据,并且自变 量和因变量之间存在线性关系。
选择合适的图形类型,将频数分布表 中的数据按照分类变量进行分组并绘 制图形。
相对频率与累积频率
相对频率
01
某一组的频数与总频数之比,用于表示该组在总体中的相对重
要程度。
累积频率
02
某一组的相对频率与前面所有组的相对频率之和,用于表示该
组及之前所有组在总体中的相对重要程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9 -9
统计学
STATISTICS (第四版)
列联表的结构
(r c 列联表的一般表示)
列(cj)
列(cj)
行(ri)
j =1
j =2
…
i =1
f11
f12…i=2f源自1f22…:
:
:
:
合计
c1
c2
…
fij 表示第 i 行第 j 列的观察频数
合计
r1 r2
:
n
9 - 10
统计学
STATISTICS (第四版)
列联表
(例题分析)
【例】一个集团公司在四个不同的地区设有分公司,现该集 团公司欲进行一项改革,此项改革可能涉及到各分公司的利 益,故采用抽样调查方式,从四个分公司共抽取420个样本 单位(人),了解职工对此项改革的看法,调查结果如下表
一分公司 二分公司 三分公司 四分公司 合计
赞成该方案 68
75
57
等价于检验三个公司的期望购买人数和实际购买人数是否9一- 2致8 。
统计学
STATISTICS (第四版)
拟合优度检验
(例题分析1-1)
【例9.1】 1912年4月15日,豪华巨轮泰坦尼克号与 冰山相撞沉没。当时船上共有共2208人,其中男 性1738人,女性470人。海难发生后,幸存者为 718人,其中男性374人,女性344人,以的显著 性水平( 0.05)检验存活状况与性别是否有关。
赞成 反对
合计
男学生 45 105 150
女学生 42 78 120
合计 87 183 270
9 - 18
c 统计量
统计学
STATISTICS (第四版)
概述
c2检验(Chi-square test)是现代统计 学的创始人之一,英国人K . Pearson( 1857-1936)于1900年提出的一种具有广 泛用途的统计方法,因此又称为Pearson c2检验。可用于两个或多个率或构成比间 的比较,定性资料的关联度分析,拟合 优度检验等等。
列边缘分布(频数)
列观察值的合计数的分布 例如,四个分公司接受调查的人数分别为100人,120人,
90人,110人
2. 条件分布与条件频数
表中每个具体的观察值都是变量 X 条件下变量 Y 的 频数,或在变量 Y 条件下变量 X 的频数,称为条件 分布(频数)
9 - 13
统计学
STATISTICS (第四版)
在全部420个样本中,赞成改革方案的人数为279,占66.4%;反对的人数占 33.6%。在各分公司对改革方案看法相同的前提下,各分公司赞成(反对) 这项改革不同态度的期望频数为分公司总样本数*66.4%(33.6%)。9等- 价27于 检验各分公司赞成方案的实际频数与期望频数是否一致。
统计学
STATISTICS (第四版)
统计学
STATISTICS (第四版)
c 统计量
拟合优度检验:
1. 用于检验一个分类变量中各类别的期望频数和观察频数 是否有显著差异。
2. 其实际为假设检验
3. 在原假设为观察频数和实际频数一致的前提下,有如下
检验统计量:
c 2 c ( fo fe )2
j 1
fe
其自由度为C 1 式中:fo —每一类别的观察频数
观察值的分布
(图示)
条件频数
行边缘分布
一分公司 二分公司 三分公司 四分公司 合计
赞成该方案 68
75
57
79 279
反对该方案 32
75
33
31 141
合计 100 120 90 110 420
列边缘分布
9 - 14
统计学
STATISTICS (第四版)
百分比分布
(概念要点)
1. 条件频数反映了数据的分布,但不适合对比
9 - 16
统计学
STATISTICS (第四版)
练 习 (1)
(1) 列联分析是利用列联表来研究: ( A ) A. 两个分类变量的关系 B . 两个数值型变量的关系 C. 一个分类变量和一个数值型变量的关系 D. 两个数值型变量的分布
(2) 以下列联表中,最右边一列称为:( B ) A. 列边缘频数; B. 行边缘频数; C. 条件频数; D. 总频数
合,所以称为列联表
6. 一个 R 行 C 列的列联表称为 R C 列联表
9 -8
统计学
STATISTICS (第四版)
列联表的结构
(2 2 列联表)
列(cj) 行 (ri)
i =1
i =2 合计
列( cj )
j =1
j =1
f11 f21 f11+ f21
f12 f22 f12+ f22
合计
f11+ f12 f21+ f22
62.5% 17.8%
45 31.9% 37.5% 10.7% 28.6%
20.4%
63.35 13.6%
33 23.4% 36.7% 7.9% 21.4%
总百分比
四分公司
合计
79
66.4%
28.3%
71.8% 18.8%
31 22.0% 28.2% 7.4% 26.2%
— — 33.6%
— — 100%
数为: 0.325470=153人,若男女性期望的存活人数和
实际的存活人数非常接近,则可以认为存活率与性别无关
,反之,则认为存状况与性别相关。因此可以利用c2统计
量来检验。
男
女
合计
实际生存 人数
374
344
718
总人数
1738
470
2208
期望生存 人数
1738×0.325 470×0.325
9 - 30
79 279
反对该方案 32
75
33
31 141
合计 100 120 90 110 420
9 - 11
统计学
STATISTICS (第四版)
列联表的分布
9 - 12
统计学
STATISTICS (第四版)
观察值的分布
1. 边缘频数
行边缘分布(频数)
行观察值的合计数的分布 例如,赞成改革方案的共有279人,反对改革方案的141人
9 -3
统计学
STATISTICS (第四版)
学习目标
1. 解释列联表 2. 进行 c2 检验
拟合优度检验 独立性检验 3. 测度列联表中的相关性
9 -4
9.1 分类数据
9.1.1 分类数据 补充:列联表的构造
列联表的分布 9.1.2 c2统计量
统计学
STATISTICS (第四版)
分类数据
赞成 反对
合计
男学生 45 105 150
女学生 42 78 120
合计 87 183 270
9 - 17
统计学
STATISTICS (第四版)
(3) 对于学生宿舍上网收费的新措施,男女学生的抽样调查结果 如下列联表所示,在男女生赞成的比例相同的前提下,男女 生赞成该措施的期望频数分别为: ( A ) A. 48和39 B . 102和81 C. 15和14 D. 25和19
二分公司 三分公司 四分公司
赞成该方 案
实际频数 期望频数
68
75
57
79
100*66.4%=66 150*66.4%=80 90*66.4%=60 110*66.4%=73
反对该方 案
实际频数 期望频数
32
75
33
31
100*33.6%=34 150*33.6%=40 90*33.6%=30 110*33.6%=37
统计学
STATISTICS (第四版)
第 9 章分类数据分析
9 -1
统计学
STATISTICS (第四版)
概述
第七、八章介绍的估计和检验方法仅主 要针对数值型变量。而列联分析是针对分 类变量进行分析的方法。
9 -2
统计学
STATISTICS (第四版)
第 9 章 分类数据分析
9.1 分类数据与c2统计量 9.2 拟合优度 检验 9.3 列联分析:独立性检验 9.4 列联表中的相关测量 9.5 列联分析中应注意的问题
fe —每一类别的期望频数 9 - 24
统计学 拟合优度检验的期望频数的
STATISTICS (第四版)
计算
若可求出第i行第j列元素的期望概率pij, 则一个实际频数 fij 的期望频数eij ,是总频 数的个数 n 乘以该实际频数 fij 的期望概 率pij
eij n pij
9 - 25
统计学
1. 分类变量的取值表现为类别
例如:性别 (男, 女)
2. 各类别可用符号或数字代码来测度
例如:性别 (男用1表示, 女用0表示)
3. 顺序数据也可以看作分类数据
原料的质量等级:一等品、二等品、三等品
4. 数值型数据也可以转化为分类数据
数学期末考试成绩是一个数值型数据,可以根据分数段 将成绩为“优秀”、“良好”、“及格”和“不及格” 几个类别
STATISTICS (第四版)
期望频数的计算举例
举例:要检验各分公司对某项改革方案的 看法是否相同?
赞成该方 案
反对该方 案
实际频数 实际频数
一分公司 68 32
二分公司 三分公司 四分公司
75
57
79
45
33
31
9 - 26
统计学
STATISTICS (第四版)
期望频数的分布
(例题分析)