第三章长度尺寸的测量
互换性和测量技术基础-第三章 测量技术基础
测量前未能将计量器具或被测工件调整到正确 位置(或状态)而产生的误差
测量方法不完善,包括计算公式不准确,测量方法 选择不当,零件安装、定位不准确等
在进行接触测量时,由于测量力使得计量器具 和被测工件产生弹性变形而产生的误差
测量时环境条件(温度、湿度、气压、照明、振 动等)不符合标准测量条件
测量误差
阿贝测长原则
测量长度时,应使被测长度量与量仪中的标 准长度量排列在一条直线上。
活动量爪倾斜所产生的误差, 称为阿贝误差,即违反“阿贝测 长原则”而产生的测量误差。
∆
测量误差
计量器具误差
测
基准件误差
量 误
调整误差
差
产
测量方法误差
生
原
测量力误差
因
环境误差
人为误差
包括测量器具的设计制造和使用过程中的误差, 总和反映在示值误差上
• 复杂系统误差——在测量过程中测得值按复杂函数 规律变化,例如上述线性变化与周期性变化的叠加形 成复杂函数变化的系统误差。
测量误差
随机误差
在同一测量条件下,多次重复测量同一量值时, 误差大小和符号以不可预定的方式变化的测量误差.
随机误差通常服从正态分布规律。
具有放大滤波电路,特点是测量精度高,通过计 算机可实现数据处理自动化致使测量效率高
计量器具
◆光电式量仪 利用光学方法放大或准,通过光 电元件再转化为电量进行检测,以实现几何量的 测量的计量器具。
计量器具的基本度量指标
度量指标:选择和使用计量器具、研究和判断测量方 法正确性的依据,是表征计量器具的性能和功能的指标
• 相对测量(也称比较测量):计量器具的示值 仅表示被测量对已知标准量的偏差,而被测量的 量值为计量器具的示值与标准量的代数和。
极限配合与技术测量(第三章)
量块标称长度ln是指标记在量块上的量值,如图3-1中的“40”。
图3-1 量块
量块的研和性——量块的测量面非常平整和光洁,用少许压力推合量块,使它们的测量面紧密接 触,量块就能黏合在一起。量块的这种特性称为研合性。 利用量块的研合性,可以用不同尺寸的量块组合成所需的各种尺寸。
3.2 测量方法与计量器具基础
3.2.1 测量方法的分类
(1)直接测量和间接测量 直接测量指直接从计量器具的读数装置上得到被测量数值或偏差的测量方法。 间接测量指先测出与被测量有一定函数关系的量,然后通过函数关系计算出被测量值的测量方法。 (2)接触测量和非接触测量 接触测量指工件表面与计量器具测头直接接触,并有机械测量力存在的测量方法。 非接触测量指工件表面与计量器具测头不接触的测量方法。 (3)单项测量和综合测量 单项测量指单独地、彼此没有联系地测量零件各项参数的测量方法。 综合测量指同时测量零件几个相关参数的综合效应或综合参数,从而综合判断零件合格
性的测量方法。
(4)主动测量和被动测量 主动测量指在加工过程中对零件进行测量的测量方法。其测量结果可直接用于控制工件的加工过
程,能够主动及时地预防废品的产生。 被动测量指加工完成后对零件进行测量的测量方法。其测量结果只能判断零件是否合格,仅用于
发现并剔除废品。 (5)静态测量和动态测量 静态测量指测量时被测零件表面与计量器具测头相对静止的测量方法。 动态测量指测量时被测零件表面与计量器具测头相对运动的测量方法。 (6)等精度测量和不等精度测量 等精度测量指决定测量精度的全部因素或条件都不变的测量方法。 不等精度测量指在测量过程中,决定测量精度的全部因素或条件可能部分改变或完全改变的
第三章-长度测量
图 3-2 量块
3.2.3 量块 (2)量块的尺寸
量块两测量面之间的距离为其
工作尺寸L,此工作尺寸定义为上测 量面中心点与与下测量面相研合的辅 助体(如平晶)平面间的垂直距离, 它是量块的中心长度。
量块的工作尺寸被标记在量块上,
又称为公称长度。
(3)量块的尺寸标注 量块上标出的尺寸为名义上的中心长 度,称为名义尺寸(或称为标称长度)。 尺寸<6mm的量块,名义尺寸刻在上测
检测技术是实现互换性的保证。
3.1 检测技术的基本概念 (2)测量 测量是对产品进行定量检测。将被测量与作为计量单 位的标准量进行比较,从而确定被测量是标准量的几倍或 者几分之几的过程,就称为测量。 x = q×E (基本测量方程式 )
式中: x—被测量值
E—测量单位 q—比值
测量包括以下四个方面的内容:
3.1 检测技术的基本概念
(3)检验
“检验”是一个比“测量”含义更广泛的概念。 对于零件几何量的检验,通常只是判断被测零件是否 在规定的验收极限范围内,确定其是否合格,而不一定要 确定其具体的量值。
检验是对产品进行定性检测。将被测量和专用量具进
行比对,从而判断被测量是否合格的过程,就称为检验。
3.2 长度基准与量值传递 3.2.1 计量单位和计量基准 (1)计量单位
量面上;
尺寸 ≥ 6mm 的量块,名义尺寸刻在一个 非测量面上,而且该表面的左右侧面分别 为上测量面和下测量面。
(4)量块的组合 国家量块标准中规定了17种成套的量块系列,从国家标准 GB/T 6093—2001《几何量技术规范(GPS) 长度标准 量块》
中摘录的几套量块的尺寸系列如下表所示。
(5)量块的精度等级
为了满足不同应用场合的需要,国家标准对量块规定了 若干精度等级,可按“级”划分和按“等”划分量块精度 ◆量块的分级 按国标的规定,量块按制造精度分为5级,即 0、1、2、
第3章 长度测量技术基础(新版)
3.2.1 量块及其量值传递系统
• • • •
量块的“级”和“等”是从成批制造和单个检定两种不同的角度出发,对 其精度进行划分的两种形式。 按“级”使用时,以标记在量块上的标称尺寸作为工作尺寸,该尺寸包含 其制造误差。 按“等”使用时,必须以检定后的实际尺寸作为工作尺寸,该尺寸不包含 制造误差,但包含了检定时的测量误差。 就同一量块而言,检定时的测量误差要比制造误差小得多。所以,量块按 “等”使用时其精度比按“级”使用要高,且能在保持量块原有使用精度 的基础上延长其使用寿命。
定的极限偏差之内的专用量具,如光滑极限量规、螺纹量规、 功能量规等。
检验夹具:专用的检验工具。当配合比较仪时,可用来检
查更多、更复杂的参数。
33
3.3 常用计量器具和测量方法
2、根据构造特点分 • 游标式量仪:游标卡尺、游标高度尺等。
• 微动螺旋副式量仪:千分尺等。 • 机械式量仪:百分表、千分表。 • 光学机械式量仪:光学比较仪等。 • 气动量仪:压力式、气体流量计等。 • 电动量仪:电感式、电容式等。 • 光电式量仪:激光干涉、激光图像、光栅等。
其次,把计量基准的量值传递到工作计量器具(如 游标卡尺、千分尺、光学比较仪等) 计量标准:把计量基准的量值传递到工作计量器具的 一种计量器具。如量块、角度块、砝码等。
8
3.2.1 量块及其量值传递系统
量块gauge block
•耐磨材料制造 •横截面:矩形 •量块的测量面可以和另一量块的测量
面相研合而组合使用,也可以和具有类 似表面质量的辅助体表面相研合而用于 量块长度的测量。
第三章
长度测量技术基础
1、测量的基本概念 2、量值传递系统
3、计量器具和测量方法分类
习题库_第三章 测量技术基础
第三章测量技术基础一.判断题(正确的打√,错误的打×)1.我国法定计量单位中,长度单位是米m,与国际单位不一致。
()2.量规只能用来判断是否合格,不能得出具体尺寸。
()3.间接测量就是相对测量。
()4.测量所得的值即为零件的真值。
()5.通常所说的测量误差,一般是指相对误差。
()6.精密度高,正确度就一定高。
()7. 直接测量必为绝对测量。
()8. 为减少测量误差,一般不采用间接测量。
()9. 为提高测量的准确性,应尽量选用高等级量块作为基准进行测量。
()10. 使用的量块数越多,组合出的尺寸越准确。
()11. 0~25mm千分尺的示值范围和测量范围是一样的。
()12. 用多次测量的算术平均值表示测量结果,可以减少示值误差数值。
()13. 某仪器单项测量的标准偏差为σ=0.006mm,若以9次重复测量的平均值作为测量结果,其测量误差不应超过0.002mm。
()14. 测量过程中产生随机误差的原因可以一一找出,而系统误差是测量过程中所不能避免的。
()15. 选择较大的测量力,有利于提高测量的精确度和灵敏度。
()16. 对一被测值进行大量重复测量时其产生的随机误差完全服从正态分布规律。
()17.间接测量就是使用它的公称尺寸。
()18.在相对测量中,测量器具的示值范围,应大于被测尺寸的公差。
()19.加工误差只有通过测量才能得到,所以加工误差实质上就是测量误差。
()20.现代科学技术虽然很发达,但要把两个尺寸做得完全相同是不可能的。
()21.实际尺寸就是真实的尺寸,简称真值。
()22.一般说来,测量误差总是小于加工误差。
()23.量块按等使用时,量块的工件尺寸既包含制造误差,也包含检定量块的测量误差。
()24.同一公差等级的孔和轴的标准公差数值一定相等。
()二. 单项选择题:1. 对某一尺寸进行系列测量得到一列测得值,测量精度明显受到环境温度的影响.此温度误差为_____。
A、系统误差B、随机误差C、粗大误差A、绝对误差B、极限误差C、剩余误差2. 用比较仪测量零件时,调整仪器所用量块的尺寸误差,按性质为_____。
高中物理必修三 第三章 第三节 实验1 长度的测量及测量工具的选用
5.图甲、乙和丙分别是用游标卡尺和螺旋测微器测量长度,图甲读数为 _4_._1_2_0_c_m__,图乙读数为__0_.9_9_0__m_m__,图丙读数为_1_._5_1_0_m__m__.
1234567
题图甲主尺示数为4.1 cm,游标尺上 第10格对齐,精确度为0.02, 故图甲读数为41 mm+0.02×10 mm= 41.20 mm=4.120 cm. 题图乙螺旋测微器固定刻度读数为0.5 mm,螺旋上49.0格对齐,故图 乙读数为0.5 mm+0.01×49.0 mm=0.990 mm. 题图丙中半毫米刻度线已露出,此时固定刻度读数为1.5 mm,可动 刻度读数为0.010 mm,图丙读数为1.510 mm.
第三章
实验1 长度的测量及测量工具的选用
梳理教材 夯实基础 / 探究重点 提升素养 / 课时对点练
学习目标
1.掌握游标卡尺和螺旋测微器的读数方法. 2.掌握电流表、电压表的读数方法.
内容索引
Part 1
Part 2
Part 1 精析典题 提升能力
一、游标卡尺的原理及读数(*)
1.构造:主尺、游标尺(主尺和游标尺上各有一个内、外测量爪)、游标卡 尺上还有一个深度尺.(如图1所示)
针对训练1
图中游标卡尺的读数分别为__2_2_.3__ mm和__1_0_._5_0__ mm.
二、螺旋测微器的原理及读数
1.构造 如图所示,它的小砧A和固定刻度G固定在U形框架F上,可调刻度H、粗 调旋钮K和微调旋钮K′是与测微螺杆P连在一起的,并通过精密螺纹穿 过F,用锁给予锁定.
2.使用方法 当A与P并拢时,可调刻度H的零点恰好跟固定刻度G的零点重合,旋转粗 调旋钮K,将测微螺杆P旋出,把被测物体放入A、P之间的夹缝中,再旋 转粗调旋钮K,P快要接触被测物时,要停止使用旋钮K,改用微调旋钮 K′,听到“喀喀”声时停止,然后读数. 3.读数方法 L=固定刻度示数+可动刻度示数(估读一位)×0.01 mm.
互换性与测量技术基础第三章
第一节 基本术语和定义
一、有关尺寸、公差和偏差的术语及定义
(一)尺寸 尺寸是以特定单位表示线性尺寸的数值,如直 径、半径、宽度、深度、高度、中心距等。
有关尺寸、公差和偏差的术语及定义
(二)基本尺寸(D,d) 基本尺寸是通过它应用上、 下偏差可算出极限尺寸的尺寸。 通常由设计者给定,用D和d表 示(大写字母表示孔、小写字 母表示轴)。它是根据产品的 使用要求,根据零件的强度、 刚度等要求,计算出的或通过 试验和类比方法而确定的,经 过圆整后得到的尺寸,一般要 符合标准尺寸系列。如图3-1所 示,φ20mm及30mm为圆柱销直 径和长度的基本尺寸。
有关配合的术语及定义
(三)间隙(X)或过盈(Y) 在孔与轴的配合中,孔的尺寸减去轴的尺寸所得 的代数差,当差值为正时叫做间隙(用X表示),当 差值为负时叫做过盈(用Y表示)。
有关配合的术语及定义
(四)配合的种类 根据孔、轴公差带之间的关系,配合分为三大 类,即间隙配合、过盈配合和过渡配合。 1.间隙配合 间隙配合是指具有间隙(包括最小间隙为零) 的配合。此时,孔的公差带在轴的公差带之上,如 图3-6所示。
}
公差与配合示意图
有关尺寸、公差和偏差的术语及定义
(七)公差带图解 前述有关尺寸、极限偏差及公差是利用图3-3a 进行分析的。从图中可见,由于公差的数值比基本 尺寸的数值小得多,不便用同一比例表示。显然, 图3-3a中的公差部分被放大了。如果只为了表明尺 寸、极限偏差及公差之间的关系,可以不必画出孔 与轴的全形,而采用简单明了的公差带图解表示, 如图3-3b所示。公差带图解由两部分组成:零线和 公差带。
高一物理必修三 科学测量 :长度的测量及测量工具
2、应用:
外
内
径
径
长 度
深
或
宽 度
度
3.分类:
10分度游标卡尺 20分度游标卡尺 50分度游标卡尺
(一)10分度游标卡尺:
1.原理:
主尺
0
1
0
5
10
游标尺
当左右测量爪合在一起时,游标尺的零刻度线与主尺的零刻度线重合
主尺:每个格表示1mm
游标尺: 9mm
10等分
每个格表示
9 mm 10
游标尺每个格比主尺每个格短 (1- 9 )mm= 1 mm=0.1mm
49 mm 50
游标尺每个格比主尺每个格短 (1- 49)mm= 1 mm 0.02mm
50
50
最小分度(精确度):0.02mm
例3、读数练习:
1.024
10mm +12 ╳ 0.02mm =10.24mm 17mm +0 ╳ 0.02mm =17.00mm
17.00 易错点:看成10分度的
注意事项:
在保证测量精度的前提下,应全面考虑测量工具的成本、耐磨性、测量效率等因 素,选择比较经济、测量效率较高的测量工具。
随着科学技术的发展,长度测量范围日益扩大,对测量工具的测量精度和效率的 要求越来越高,测量工具也不断改进。例如,利用光束的某些特性设计和制造的激 光测距仪01
9.695
1.5mm +10.1╳0.01mm =1.601mm 9.5mm +19.5╳0.01mm =9.695mm
读数= 固定刻度读数 +可动刻度读数 +估读读数 注意:固定刻度上表示0.5mm 的刻度线是否露出。
注意事项:
1、在使用螺旋测微器之前,首先应检查零点。 用左手拿尺架,右手缓慢转动微调旋钮 , 使测微螺杆F和测砧A接触,至棘轮发出声音为止, 此时可动刻度E上的零刻线应当和固定刻度B上的中间线对齐, 否则就有零点误差;
第三章 长度尺寸的测量
一、轴类零件尺寸测量
我国“公差与配合”国家标准中定义:
轴是指一切外尺寸的统称。
常用测量仪器
千分尺、卡尺 ——绝对测量,精度不高。
机械式测微仪、电动测微仪等 ——相对测量,提高精度。
1、杠杆齿轮式测微仪
示值范围: ±100μm 测量范围:180mm
1—量块组/被测件;2—测头;3—调节螺 钉; 4—度盘标记; 5—度盘; 6—横臂 紧固螺钉, 7—横臂;8 —横臂升降螺母, 9—夹头;10一立柱;11一工作台
5、经纬仪
推导
——测大尺寸
将两个经纬仪分别固定在c和d处,精确地测出两经纬仪之间的 距离l和角度α1、β1、γ1 ,和α2、β2、γ2 ,则:
在abc中:L A2 B 2 2 AB cos1 l sin 2 在acd中:A sin( 2 1 ) l sin 2 在bcd中:B sin(1 2 ) sin 2 1 sin 2 1 2 sin 2 sin 2 cos1 L l 2 2 sin ( 2 1 ) sin ( 1 2 ) sin( 2 1 ) sin(1 2 )
平板测微原理
a A B C
当平板玻璃被凸轮的位移量t带动转过 角度i时,入射光与出射光的偏移量为:
a d (tgi tg ) cosi
sin i t n , tgi sin r
由于θ、i 很小, cos i 1 ,
tgi sin i,
1 a a 0 d (sin i sin ) d (sin i sin i ) ∴ a可近似为: n t i tgi r 1 t d (n 1) a0 d (1 ) t n r r n
第三章长度尺寸测量工具汇总
第三章长度尺寸测量工具一、简易量具1、钢直尺1)钢直尺结构与规格钢板尺俗称钢尺或直尺,如图1所示,是用来测量长度的一种最常用的简单量具,可直接测量工件尺寸。
尺边平直,尺面有米制或英制的刻度,可以用来测量工件的长度、宽度、高度和深度。
有时还可用来对一些要求较低的工件表面进行平面度检查。
图1钢板尺钢板尺测量范围基本取决于钢尺的长度。
测量范围主要有:0~150 mm、0~200 mm、0~300 mm、0~500 mm等规格,其测量范围就是所能测定的最大长度。
钢板尺最小刻度一般为0.5 mm或l mm。
2)使用方法要根据被测件的形状和尺寸大小灵活掌握使用钢板尺的方法。
应根据测量尺寸的大小,选择恰当长度的钢板尺。
实际测量工件时,应将钢板尺拿稳,用拇指贴靠工件。
图2(a)所示为正确的测量方法;图2(b)所示为错误的测量方法。
手指位置不对,易使钢板尺不稳定,造成测量不准确。
读数时,应使视线与钢板尺垂直,而不应倾斜,否则会影响测量的准确度。
钢板尺起始端是测量的基准,应保持其轮廓完整,以免影响测量的准确度。
如果钢板尺端部已经磨损,应以另一刻度线作为基准。
(a)正确 (b)不正确图2钢板尺测量工件2、卡钳卡钳是一种间接测量的简单量具,不能直接读出测量数值,必须与钢板尺或其他带有刻度的量具一起使用才尺或其他带有刻度的量具一起使用才行。
1)卡钳的种类卡钳还分为普通卡钳和弹簧卡钳。
普通卡钳结构简单,是用铆钉或螺钉连接两个卡脚的;弹簧卡钳是用弹簧连接两个卡脚的,通过调整螺母来限制卡脚张开的大小,如图3所示。
图3 卡钳1—卡钳 2—铆钉或螺钉 3—弹簧 4—螺钉 5—调整螺母卡钳分外卡钳和内卡钳,外卡钳是由两个弧形卡脚连接起来的,两个钳口是相对的,可用来测量外尺寸,如外圆直径、厚度、宽度等。
内卡钳是由两个直形卡脚连接起来的,两个钳口是向外的,可用来测量内尺寸,如内孔、沟槽等。
卡钳适合用来测量铸、锻件毛坯。
在精加工过程中,卡钳应与千分尺配合使用,对某一加工尺寸,用预先调整好的卡钳进行测试,可提高测量精度和工作效率。
第三章尺寸公差与检测
图3-2 极限尺寸
3.1.4 偏差与公差
1.偏差
偏差是指某一尺寸减其公称尺寸所得的代数差。偏差可 以为正,可以为负,也可以为零。
上极限偏差
是指上极限尺寸减其公称尺寸所得的代数 差。孔、轴的上极限偏差分别用ES和es表示
孔的上极限偏差: ES=Xmax+ei=19+11=+30(μm)
孔的下极限偏差 EI=ES-Th=30-30=0
【例3-2】若已知某配合的公称尺寸为φ60 mm,配合公差Tf
为49 μm,最大间隙Xmax为19 μm,孔的公差Th为30 μm,轴的 下极限偏差ei为+11 μm,试画出该配合的尺寸公差带图和配 合公差带图,并说明配合的种类。
2.尺寸公差 尺寸公差简称公差,是指上极限尺寸减下极限尺寸之差,
或上极限偏差减下极限偏差之差,它是尺寸的允许变动量。 孔、轴的公差分别用Th和Ts表示。尺寸公差是一个没有符号 的绝对值。
孔的公差 T hD m a x D m in E S E I
轴的公差
T sd m ax d m ines ei
4.配合公差带图
配合公差带是指由配合允许的最大间隙(或最小过盈) 和最小间隙(或最大过盈)所限制的带域。配合公差带图是 指表示相配合的孔与轴间隙或过盈变动范围的图形,如图3-9 所示。
(a)间隙配合
(b)过盈配合
(c)过渡配合
图3-9 配合公差带图
【例3-2】若已知某配合的公称尺寸为φ60 mm,配合公差Tf
4.公差带图
由于公差的数值(μm级)与 尺寸的数值(mm级)相差很大, 不便于用同一比例绘制,因此, 在作图时,通常将公差“放大” 绘制,只画出放大的孔与轴的公 差带位置关系示意图形,这种图 形称为尺寸公差带图,简称公差 带图,如图3-4所示。
长度测量基本仪器的使用
第三章 普通物理实验实验1 长度测量基本仪器的使用【实验目的】1.熟悉游标卡尺、螺旋测微计、测量显微镜的构造、测量原理及使用方法; 2.学习有效数字和不确定度的计算,掌握误差理论与数据处理方法.【实验仪器】游标卡尺,螺旋测微计,测量显微镜,球体,圆柱等.【仪器介绍】1.游标原理普通米尺最小刻度是1mm ,因此使用米尺只能准确地测量到1mm ,为更准确地测量长度,人们采用了游标装置.游标尺有主尺(米尺)和副尺(标有N 个刻度的游标)两部分构成.由于主尺上标出的相应长度与副尺上标出的相应刻度均相差一个小量x ∆,1/(mm)x N ∆=,(常见的有三种,1/10(mm)x ∆=,1/20(mm)x ∆=,1/50(mm)x ∆=.当副尺上标有N 个刻度时,游标上这N 个刻度恰好能等分主尺上的1mm ,使读数可精确到1/(mm)N .可见,游标原理可用四个字来概括——等差细分.游标读数的方法也叫差示法.例如:1/10(mm)游标(也叫十分游标).游标上每个刻度与主尺相应刻度均差1/10(mm)x ∆=,当测量某物体长度时,先将被测物体一端和主尺的零刻线对齐,而另一端落在主尺的第k 和k+1个刻度之间(k =6,k +1=7),则物体长度L k L =+∆,L ∆为物体另一端距离第k 个刻度的距离.由于游标刻度与主尺刻度存在差值x ∆,两排刻度经对比,必然可找到游标上某个刻度(设为第n 个)与主尺上某刻度重合或最为接近,如图1-2中n =5处与主尺最为接近,即图1-2 游标卡尺读数举例图1-1 游标卡尺差示法150.510L ∆=⨯= 而 60.5 6.5()L k L mm =+∆=+= 一般而言,当游标上第n 个刻度与主尺上某一刻度重合时,主尺第k 个刻度与游标零刻线间距离为L n x ∆=∆,待测物体长度由两部分读数构成:①游标零刻线指示部分,即主尺上第k 个刻度所标示的长度,这部分可从主尺上读出,②游标刻线与主尺刻线重合部分所标示的长度,即L n x ∆=∆,这部分可从游标上读出(目前使用的游标上的刻度不是n 的值,而是n 与x ∆相乘后的结果).即L k L =+∆1/20(mm)的游标也叫“二十分游标”,游标上有20个刻度,如图1-3(a )所示,游标上每个刻度与主尺的1mm 刻度相差1/20(mm).游标上的刻度值0,25,50,75,0就是L ∆的数值.1/50(mm)的游标如图1-3(b )所示,其具体含义仿前述讨论,可以自行总结.2.游标卡尺游标卡尺的构造如图1-4所示,卡钳E 和E '同刻有毫米的主尺A 相连,游标框W 上附有游标B 以及卡钳F 和F ',推动游标框W 可使游标B 连同卡钳F 、F '沿主尺滑(a )图1-3 二十分、五十分游标(b )动.当两对钳口E 与F ,E '与F '紧靠时,游标的零点(即零刻度线)与主尺的零点相重合.用游标卡尺测定物体长度时,用卡钳E F 或E 'F '卡着被测物体,显然此时游标零点与主尺零点间距离恰好等于卡钳E 、F 间或卡钳E '、F '的距离,所以从游标零点在主尺上的位置,根据游标原理就可测出物体的长度(卡钳E 'F '部分是用来测量物体的内部尺寸,如管的内径等).图中螺钉C 是用来固定油标框的,防止游标框在主尺上滑动以便于读数.游标卡尺的零点校正:使用游标卡尺测量之前,应先把卡钳E 、F 合拢,检查游标的“0”线和主尺的“0”线是否重合,如不重合,应记下零点读数,此即为游标卡尺的零点误差,用它对测量结果加以校正.即待测量0x x x '=-,x '为未作零点校正的测量值,0x 为零点读数.0x 可以正,也可以负.3.螺旋测微计(又称千分尺) (1) 螺旋测微原理螺旋测微计是比游标卡尺更精密的量具,实验室中常用它来测量金属丝的直径或金属薄片的厚度等,其最小刻度为1/100(mm)外形如图1-5所示,1—测砧;2—测微螺杆;3—制动栓;47—可动刻度;8—尺架.螺旋测微计主要部分是内部有一很精密的丝杠和螺母(图中未画出),常见的螺旋测微计如图1-5所示,其量程为15mm ,分度值为0.01mm .螺旋测微计的测微螺杆2的螺距0.5mm ,螺杆后端与微分套筒6、棘轮5相连接.当微分套筒旋转(测微螺杆也随之转动)一周,测微螺杆沿轴线方向运动一个螺距(0.5mm ).微分套筒前沿上一周刻有50个等分格线,因此微分套筒每转过一格,螺杆沿轴线方向运动0.01mm (0.5/50mm ).(2) 读数方法螺旋测微计固定套管上沿轴向刻有一条细线,在其下方刻有15分格,每分格1mm ;在其上方,与下方“0”线错开0.5mm 处开始,每隔1mm 刻有一条线;这就使得主尺5678图1-5 螺旋测微计的分度值为0.5mm .在测量时,把物体放在测微螺杆和测砧的测量面之间,旋转棘轮使测量面与待测物体接触,当听到棘轮咔、咔的响声便可读数.先将主尺上没有被微分套管前段遮住的刻度读出,再读出固定套管横线所对准的微分套筒上可动刻度的读数,还要估读一位,即读到0.001mm .把主尺上读出的数(如0.5mm ,1.0mm ,1.5mm 等)和从微分套筒读出的数(小于0.5mm )相加,即是测量值.使用螺旋测微计测量时,要注意防止读错主尺数(整圈数),如图1-6所示的三例,(a )比(b )多转一圈,读数相差0.5mm ,(a )的读数为5.904mm ,(b )的读数为5.404mm .(c )的微分套筒转的圈数是3而不是4,读数为1.758mm 而不是2.258mm .螺旋测微计尾端有一棘轮装置5,拧动棘轮可使测微螺杆移动,当测微螺杆与物体(或测砧)相接后的压力达到某一数值时,棘轮将滑动并有咔咔的响声,微分套管不再转动,测微螺杆也停止前进,这时就可读数.设置棘轮可保证每次的测量条件(对被测物的压力)一定,并能保护螺旋测微计的精密的螺纹.不使用棘轮而直接转动微分套筒去卡住物体时,由于对被测物的压力不稳定,而测不准.另外,如果不使用棘轮,微分套筒上的螺纹将发生变形和增加磨损,降低了仪器的准确度,这是使用螺旋测微计必须注意的问题.不夹被测物而使测微螺杆与测砧相接时,微分套筒上的零线应当刚好和固定套管上的横线对齐.实际使用的螺旋测微计,由于调整得不充分或使用的不当,其初始状态和上述要求不符,即有一个不等于零的零点读数,并注意零点读数的符号不同.每次测量之后,要从测量值的平均值中减去零点读数.4.测量显微镜测量长度时,如果被测物体较小,常用光学仪器来进行测量,其中最常用的就是测量显微镜,它可用来测量刻线距离、刻线宽度、圆孔直径、圆孔间距离,还可检查表面质量等,用途较广.测量显微镜的外观如图1-7所示.目镜1安插在棱镜座2的目镜套管内,棱镜座能够转动,物镜4直接接在镜筒3上,组合成显微镜.转动调焦手轮15能使显微镜上下升降进行调焦,立柱锁紧螺丝10可将035404535404502025300(a)(b)(c)5.904mm5.404mm 1.758mm 图1-6 螺旋测微计读数显微镜装置紧固在立柱的适当位置上.测量时,旋转测微鼓轮11,测量显微镜沿水平方向移动.测微鼓轮边上刻线100等分,每格相当移动量0.01mm ,读数方法与螺旋测微计相同.图1-7 测量显微镜1—目镜;2—棱镜座;3—镜筒;4—物镜;5—弹簧压片;6—台面玻璃; 7—反光镜;8—旋转手轮;9—底座;10—立柱锁紧螺丝;11—测微鼓轮;12—横杆;13—横杆锁紧螺丝;14—标尺;15—调焦手轮使用时,先将被测物体牢靠安置在台面玻璃6上,然后转动调焦手轮,求得清晰视场.(此时被测物体由物镜放大经转向棱镜形成实像的分划板上,目镜将实像再放大一次,形成一个放大虚像于观察者眼睛的明视距离处).如测量一圆孔直径,使目镜中十字分划线与圆孔的一侧相切(如图1-8中实圆位置)记下测量初读数,再旋转测微鼓轮,使视场移动到十字分划线与圆孔另一侧相切(如图1-8中虚圆位置).记下测量读数,前后读数差值即为圆孔直径.使用中应注意:显微镜调焦时,先将镜筒下降使物镜接近被测物件表面,然后逐渐上升,直到出现清晰表面,防止碰损物镜.显微镜支架在立柱上必须用锁紧螺丝10固紧,以免使用时不慎下降而损坏仪器.如被测物件属透明物体或物体体积甚小未能充满视场,在其边缘处进行测量时,可随光源方向转动反光镜,以取得适当亮度的视场.123 45 6 7891011 14151213图1-8 十字分划线【实验原理】1.圆柱体体积测量 圆柱体的体积公式为:214V d h π= (1-1)式中d 、h 分别为圆柱体的直径和高度,均属直接测量量,用游标卡尺进行测量.由于直接测量量存在误差,故间接测量量V 也会有误差.由误差理论可知,一个量的测量误差对于总误差的贡献,不仅取决于其本身误差的大小,还取决于误差传递系数.其体积的标准偏差为()s V = (1-2)式中()s d 、()s h 分别为圆柱体直径和高度相应测量列的标准偏差.V d ∂∂、Vh∂∂分别为相应的误差传递系数.可由对(1-1)式求偏导数求得:2V d h d π∂=⋅∂,24V d h π∂=∂ (1-3) 式中d 、h 分别为圆柱体直径和高度多次测量的平均值.d 、h 分别为独立测量值,它们有限次测量中任一测量列的标准偏差为:()s x =(1-4)式中n 为测量次数,i x 为第i 次测量值,x 为平均值.根据(1-4)式可以求出d 、h 各量的测量列的标准偏差()s d 、()s h ;再由(1-2)式和(1-3)式可求出体积的标准偏差()s V .2.钢球体积测量 钢球的体积公式为:316V d π= (1-5)式中d 为钢球的直径,用螺旋测微计进行测量.3.圆孔的内径(或细丝的直径)的测量 圆孔的内径(或细丝的直径)为:12d x x =- (1-6)式中1x 、2x 为读数显微镜测量的两次读数值.【实验内容与步骤】1.圆柱体体积的测量(1) 检查游标卡尺,观察是否有零点误差,如有,必须记录零点误差; (2) 用游标卡尺测量圆柱体的直径d 和高度h 各5次,并记录数据; (3) 按有效数字运算法则计算圆柱体的体积及其标准偏差; (4) 计算圆柱体体积的不确定度,正确表达实验结果. 2.钢球体积的测量(1) 弄清螺旋测微计的构造和读数方法,记录螺旋测微计的零点误差(注意其正负值);(2) 用螺旋测微计测量钢球的直径d ,在不同部位测量5次,记录实验数据; (3) 计算钢球直径的标准偏差()s d 、体积及标准偏差()s V ; (4) 计算钢球的不确定度,并正确表达实验结果. 3.圆孔内径的测量(1) 将带有圆孔的样品牢靠地安置在读数显微镜的台面玻璃上; (2) 转动调焦手轮,得到清晰圆孔实像和虚像;(3) 旋转测微鼓轮,使目镜中十字分划线与圆孔的实像相切,记下测微鼓轮上的读数1x ;(4) 再旋转测微鼓轮,使目镜中十字分划线与圆孔的虚像相切,记下测微鼓轮上的读数2x ;(5) 步骤(2)、(3)的读数1x 与2x 之差即为圆孔直径d ; (6) 在不同方位重复上述实验步骤共5次,记录测量数据; (7) 计算圆孔内径及其不确定度,并正确表达实验结果.【数据处理】1.圆柱体体积的测量表1-1 圆柱体体积测量数据表游标卡尺型号 精度B u =卡 零点读数h u ==mm , 214V d h π== mm 3,V u == mm 3,测量结果V V V u =±=( ± ) mm 3.2.钢球体积的测量表1-2 钢球体积测量数据表螺旋测微计型号 精度B u =千 零点读数316V d π== mm 3,d V uu V d=⋅= mm 3,测量结果V V V u =±=( ± ) mm 3.3.圆孔的内径的测量表1-3 圆孔内径测量数据表读数显微镜型号 精度B u =① d 通过表格计算得.②()S d =③d u =d u .④(mm)d d d u =±.【注意事项】1.使用游标卡尺时(1) 被测物体的长度应和游标卡尺相平行.(2) 不要夹物过紧,使卡钳钳口能和被测物体表面接触即可.(3) 保护钳口,免受不必要的弯曲和磨损,致使游标卡尺失去应有精度.(4) 测量前,先把卡钳E,F靠紧,此时如果游标零点不和主尺零点重合,在测量中需要消除这个系统误差,如游标零点在右边,其读数为a,则测量长度值为L时,实际长度为L-a,a称零点误差(如游标零点在主尺零点的左边,应如何校准,自行考虑).2.使用测微计时(1) 用测微计测量长度产生误差的主要原因是由螺旋将待测物体压紧程度不同所引起的.为消除这一缺点,测微计备有特殊装置棘轮5,当测微螺杆2将接近待测物体时,旋转棘轮5使测微螺杆2前进、直至有咔、咔响声时,即停止旋转,便可读数,从而避免测砧1、测微螺杆2将待测物体压得过紧或过松之弊,测微计上装置3是止动器,锁紧止动器3,能阻止螺旋进退.(2) 测微计使用时,亦需求零点校正量(如何校准,可自行考虑).(3) 测微计的螺旋十分精细,因此旋动时要轻,不要急.另外用毕后,测砧1、测微螺杆2间要留有间隙,以免热胀冷缩而损坏螺旋.【思考题】1.简述游标卡尺的构造及游标原理.准确度为1/20mm的游标卡尺如何读数?2.简述螺旋测微计的构造及其原理.3.游标卡尺、螺旋测微计及读数显微镜如何使用?4.游标卡尺、螺旋测微计如何进行零点校准?5.螺旋测微计的读数方法和游标卡尺有哪些异同点?螺旋测微计棘轮的作用是什么?。
长度计量基础知识及长度量具检定(课件3)
历史悠久 基础性强
长度是七个国际基本单位(米,
千克, 秒, 安 [培], 开[尔文], 摩[尔], 坎[德拉])之一, 是其他导出单位的基本组成, 如: 速度(m/s), 磁场强度(A/m)等, 长度单位量值的准确性决 定着导出单位的准确度。
第一节 长度计量的任务和内容
测量的基本概念 第二节 计量器具的基本计量特 性 第三节 长度测量的基本原则 第四节 长度计量的一般测量程 序
第一节.测量的基本概念
一.有关测量的名词 1.测量:通过实验获得并可合理赋予某量一个或多 个量值的过程。 2.计量:实现单位统一、量值准确可靠的活动。 3.测试:是指具有试验性质的测量。为试验和测量 的全过程。 4.检验:判断被测物理量是否合格(在规定范围内) 的过程,通常不一定要求测出具体值。(检验的 主要对象是工件)。如用光滑极限量规检验孔和 轴的直径.
第一节.测量的基本概念
二.测量过程-----测量过程的四要素
1.
测量对象和被测量 2. 测量单位和标准量 3. 测量方法(直接、间接、组合) 4. 测量准确度-测量结果与真值的一致程度。
第二节.计量器具的基本计量特性
计量器具:单独地或连同辅助设备一起用以进行测量的器具, 包括计量基准和计量标准.分为:量具,量仪和测量装置 1. 标称值:计量器具(测量仪器)上表明其特性或指导其 使用的量值,该量值为圆整值或近似值。 2. 标称范围:计量(测量)仪器的操纵器件调到特定位置 时可得到的示值范围。 3. 测量范围:计量(测量)的误差处在规定极限内的一组 被测量的值。 4. 示值误差:计量器具示值与被测量(约定)真值之差。 真值是不能确定的,采用的是约定真值。
立卧式测长仪
量程较短的称为测长仪。仪器的测量座是一个独立 部件。由内装100mm线纹标尺的量轴和细分值为 0.001mm的读数显微镜所组成。根据测量座在仪器 中的布置分立式测长仪和卧式万能测长仪(简称万 能测长仪)两种。立式测长仪用于测量外尺寸;卧 式测长仪除能测量外尺寸外,主要用于测量内尺寸。 量程在500mm以上的仪器体形较大,称为测长机。 测长机常用于绝对测量。
第三章 长度尺寸的测量
基本内容
1、立式测长仪
2、卧式测长仪
测长仪
测长仪结构中带有长度标尺,通常是线纹尺,也可以 是光栅尺。测量时,用此尺作为标准尺与被测长度做比 较,通过显微镜读数以得到测量结果。由于测长仪的设 计完全遵循阿贝原则,所以又称为阿贝测长仪。可以对 长度进行绝对测量。也可借助其它基准(如量块)进行 比较测量。
1、卧式测长仪
卧式测长为光学机械式测量仪器,配备有各 种附件,除测量内、外尺寸外,还可测量内、外 螺纹中径等,因此又称为万能卧式测长仪。
四部分:
Hale Waihona Puke 卧式测长仪结构A-底距 B-工作台 C-测量体 D-尾座
测量原理
读数:
53.1756
二氧化锡薄膜
火星土壤
遭疟疾感染的人体红血球和蓝藻
长度测量的方法
长度测量的方法
长度是物体在某一方向上的距离,是物体的尺寸之一。
在科学研究和工程实践中,对长度的准确测量是非常重要的。
本文将介绍一些常见的长度测量方法。
首先,最常见的长度测量方法之一是使用尺子或标尺。
尺子是一种用于测量长度的工具,通常用于测量较小的物体,如纸张、书本等。
使用尺子进行长度测量时,需要将尺子的起点与被测物体的起点对齐,然后读取尺子上与被测物体末端对齐的刻度值,即可得到被测物体的长度。
其次,另一种常见的长度测量方法是使用卷尺。
卷尺是一种可以自由伸缩的测量工具,通常用于测量较长的物体,如桌子、地板等。
使用卷尺进行长度测量时,只需将卷尺的起点与被测物体的起点对齐,然后拉伸卷尺直至覆盖整个被测物体,读取卷尺上的刻度值即可得到被测物体的长度。
除了尺子和卷尺,还有一种常见的长度测量方法是使用激光测距仪。
激光测距仪是一种利用激光技术测量距离的仪器,通常用于测量较远距离的物体,如建筑物、山体等。
使用激光测距仪进行长
度测量时,只需将激光测距仪对准被测物体,按下测量按钮,即可得到被测物体的长度。
此外,还有一些特殊情况下的长度测量方法。
比如在地质勘探中,可以利用地震波测距的方法来测量地下岩层的厚度;在天文观测中,可以利用星等测距的方法来测量星体的距离。
总之,长度测量是科学研究和工程实践中不可或缺的一部分,而不同的测量方法适用于不同的场合。
掌握这些长度测量方法,可以帮助我们准确地获取被测物体的尺寸信息,为科学研究和工程设计提供可靠的数据支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 sin i) n
r
a0
d (1
1) n
t r
d (n 1) rn
t
二、孔类零件尺寸测量
我国“公差与配合”国家标准中定义: 孔是指一切内尺寸的统称。
1、卧式测长仪
卧式测长为光学机械式测量仪器,配备有各 种附件,除测量内、外尺寸外,还可测量内、外 螺纹中径等,因此又称为万能卧式测长仪。
第三章 长度尺寸的测量
基本内容
长度尺寸的常用测量仪器及方法: 轴类零件尺寸测量 孔类零件尺寸测量 大尺寸测量 微小尺寸测量 纳米测量
思考题
1、举例说明长度尺寸测量仪器的测量原理,分析其结构 组成和精度。 2、设计凸轮轮廓曲线的测量方法,包括方案、仪器、步 骤、注意事项。 3、设计细丝/光纤直径测量系统,画出系统原理框图。系 统要求:自动在线检测,实时给出测量结果,并对不合格 尺寸予以报警。
原理
l
Байду номын сангаас
s=atgφ ≈ aφ y/l = φ (R/r) s=a(r / R)( y/l)
2、立式光学计
示值范围: ±100μm 测量范围:180mm
1—反射镜;2—目镜;3、19—示值范围调节 螺钉; 4—光学计管; 5—螺钉; 6—立柱, 7—横臂;8 —横臂紧固螺钉;9—横臂升降螺 母,10一底座;11一工作台调整螺钉;12一 圆工作台;13 —测杆抬升器; 14—测帽; 15 —光学计管固定螺钉;16 —偏心调节螺钉; 17 —偏心环固定螺钉;18 —零位微调螺钉
一、轴类零件尺寸测量
我国“公差与配合”国家标准中定义: 轴是指一切外尺寸的统称。
常用测量仪器
千分尺、卡尺 ——绝对测量,精度不高。 机械式测微仪、电动测微仪等
——相对测量,提高精度。
1、杠杆齿轮式测微仪
示值范围: ±100μm 测量范围:180mm
1—量块组/被测件;2—测头;3—调节螺 钉; 4—度盘标记; 5—度盘; 6—横臂 紧固螺钉, 7—横臂;8 —横臂升降螺母, 9—夹头;10一立柱;11一工作台
卧式测长仪结构
四部分: A-底距 B-工作台 C-测量体 D-尾座
测量原理
读数: 53.1756
2、光学灵敏杠杆
在测量过程中主要起精确瞄准定位的作用。
光路:照明光源4分划板1(3组双刻线) 透镜反射镜2 物镜组7 目镜米字线
分划板。 平面反射镜2与测量杆3连结在一起。 6为产生测力的弹簧。
测量
球形调幅测量平面零件或用平面测帽测量钢球。
2、调整工作台:工作台面与测量杆移动方向垂直,否则将带来测量误差。
3、调整反射镜和视度环:量块组(按被测件的基本尺寸选择量块并组合)置于工作台中央。
然后转动反射镜1将光线从侧面窗口射入,轻微拨动测杆抬升器13,使能从目境中观察到亮刻度 线,踏划线1;若刻线不清楚,可旋转目镜2上的视度环直到刻度线清晰为止。
光路
照明光由反射镜9从侧面窗口 射入,经棱角7反射,照亮分划板 4上的刻度尺6。它位于物镜11和 目镜的公共焦面上,并处于光轴 一侧(反射回的刻度尺像位于另一 侧)。此时照亮的刻度尺经10-直角 棱镜折转90˚。经物镜11,到达反 射镜13,再返回到分划板4,从目 镜5中便可观察到刻度尺6的像。
若被测零件有尺寸有偏差,将
5、测量零件实际偏差: 测量位置按要求选取,放入零件的必须轻压抬升器避免磨
损,测完后要用量块组校验零位,允许变化不超过±1格。
3、球径仪
球径仪是利用测 弦的矢高,间接 测量球面(—般为 光学镜头)曲率半 径的光学仪器。
平板玻璃摆动式目镜测微器
正弦机构。转动微动手轮3,经伞齿轮副4带动端面凸轮5和分度盘8(活动分划板)同 步转动,而端面凸轮通过杠杆6使平板玻璃7摆动,导致固定分划板2上的标尺刻线 象(7)平移(至双刻线中间),从而达到测微目的。
D= |n2一n1|十d测头 式中,d测头为测头直径,其数值标示在测量杆上。
用光学灵敏杠杆测量孔径的测量误差约为±0.002mm。
灵敏枉杆测量头的尺寸和几何形状精度一般要求在0.5μm之内,应采用
不低于3度的量块在超级光学计(或相当精度的仪器)上进行比较测量。
3、光滑极限量规
——没有刻线的专用量具,用其检验工件的尺寸是否在规定的极限尺寸范围 之内。
正确安装在万能(或大、小型)工具显微镜的物镜7上,
将测杆深入被测孔内,通过横向(或纵向)移动,找到最大直径的返回 点处,并从目镜8中使双刻线组对称地跨在米字线中间虚线的两旁,此时 进行第一次读数n1;旋转调整帽,调整测力弹簧6的方向(有测力方向箭头 标记),使测头与工件的另一侧接触。双刻线瞄准后进行第二次读数n2(仪 器正常时,不必再找返回点)。被测孔径为:
平板测微原理
a
当平板玻璃被凸轮的位移量t带动转过 角度i时,入射光与出射光的偏移量为:
A B C
a d(tgi tg ) cosi
sin i n , tgi t 由于θ、i 很小, cosi 1 , tgi sin i,
s in
r
∴
a可近似为a:
a0
d(sini sin ) d(sini
4、调整仪器零位:
(1)粗调:松开横臂紧固螺钉8,旋转横臂升降螺母,使横臂下降至测帽与量块间有 0.5mm左右的间隔再旋紧螺钉8。
(2)细调,转动偏心调令螺钉16,从目镜2中观察,使零件刻度线与指标线(虚线)、 重合,再旋紧螺钉15。
(3)微调节:首先轻轻按动抬升器13使测帽起落2—3次,此时零位可能有变化。再旋 转零位微调螺钉18,偏转直角棱镜10,使零刻度线与固定指标线完全重合。
y f tg2
(2)
∵s 为微小位移量,
∴tgφ≈φ ,tg2φ≈2φ。
由于近似线性的处理,便
∴
y2f s a
即:
s0
a
造y成了原理误差Δs。 2f
(y为刻尺在O’点的示值的真值,s0为被 测量理论值)
立式光学计原理图
使用
1、选择测帽: 球形、平面形和刀刃形三种测帽,选择测帽的原则:与零件为点接触,如用
使测杆14上、下移动,因而反射
镜偏转α角度,使返回的划线尺像
的零刻度相对于指示线3产生相应
y
的移动,因而反映出被测零件的
偏差数值。
原理
O’
当反射镜为垂直光轴时,像与原像重合,
即y =0。
当测量时测杆移动s 距离后,反射镜绕支
点摆动φ 角。且:
tg s
a
(1)
反射光线偏转2φ角。则在分划板上的刻
尺的像偏移度y: