22二次函数的图像(3)

合集下载

北师版数学9年级下册课件:2.2.3二次函数图象性质三

北师版数学9年级下册课件:2.2.3二次函数图象性质三

4.抛物线 5.抛物线 6.抛物线
这 样 解 答
1 2 (-1,0) ; y x 1 的顶点坐标是________ 2
y 1 x 12 2
向上平移3个单位后, (-1,3) ; 顶点的坐标是________
x=-1 的对称轴是_____.
?
1 2 y x 1 3 2
y=a(x-h)2 (a<0)
向下
直线x=h (h,0)
开口方向
对称轴
顶点坐标
增减性
在对称轴的左侧,y随着x的增 大而减小. 在对称轴的右侧, y随着x的增大而增大.
在对称轴的左侧,y随着x的增 大而增大. 在对称轴的右侧, y 随着x的增大而减小.
最值
当x=h时,最小值为0.
当x=h时,最大值为0.
y=2(x–1)2
–5 –4 –3 –2 –1 O –1 –2 –3 –4 –5
1 2 3 4 5
x
y 2x
y 2x 1
2
2
y 2( x 1)
2
2
y 2( x 1) 1
y 2( x 1)2 1 的图像可以由 y 2 x 2 先向上平移一个单位,
再向右平移一个单位,或者先向右平移一个单位再向上 平移一个单位而得到.
平移的规律总结:
y=ax2
当h>0时,向右平移h个单位
当h<0时,向左平移
h 个单位
y=a(x-h)2
当k>0时,向上平移k个单位
y=a(x-h)2+k 当k<0时,向下平移 k 个单位
抛物线
1 2 y x 2 2 2
向上
直线x=-2
1 y ( x 2) 2 3 2

二次函数的图像和性质(共82张PPT)

二次函数的图像和性质(共82张PPT)

y=ax2
向上
y轴 (0,0)
向下
y轴 (0,0)
4、二次函数y=2x2+1的图象与二次函数y=
2x2的图象开口方向、对称轴和顶点坐标是否相
同?它们有什么关系?我们应该采取什么方法
来研究这个问题?
画出函数y=2x2和函数y= 2x2+1的图象, 并加以比较
x … –1.5 –1 –0.5 0 0.5 1 1.5 …
y 1 x2 ··· 2
8
4.5
2 0.5 0 0.5 2 4.5
8
···
x
·· -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ···
y 2x2 · 8 4.5 2 0.5 0 0.5 2 4.5 8
·· ·
y y x2 8
y 2x2
···
6
y 1 x2
4
2
2
-4
-2 O
24
在对称轴左侧,y都随x的增大而增大,
在对称轴右侧,y都随 x的增大而减小 .
联系: y=a(x-h)²+k(a≠0) 的图象可以看成y=ax²的图象先沿x轴整体左(右)平移| |个单位(当 >0时,向右平移;当 <0时,向左平移),
再沿对称轴整体上(下)平移|
|个单位 (当
>0时向上平移;当 <0时,向下平移)得到的.
y 1 x2
y1
1 3
x2
2
3
y2
1 3
x2
2
的图像
在同一直角坐标系中
画出函数 y 1 x2 5 y
y1
1 3
x2
2
3
y2
的图像

2二次函数的图像和性质~22.PPT课件(人教版)

2二次函数的图像和性质~22.PPT课件(人教版)

A.50 m
B.100 m
C.160 m
D.200 m
C
).
22.1 二次函数的图像和性质
分析
建立如图22-1-9所示的平面直角坐标 系, 根据所建平面直角
坐标系的特点可设函数解析 式为y=ax2+c(a≠0). 由题意, 得B(0, 0.5),
C(1, 0), 分别将B, C两点的坐标代入y=ax2+c(a≠0), 得 a=-0.5, c=0.5, ∴函
向下(k<0)平移 |k|个单位长度, 得到的抛物线的函数解析式是
y=a(x-h)2+k.
22.1 二次函数的图像和性质
题型五 二次函数值的大小比较
例题5 已知二次函数y=2(x-1)2+k的图像上 有A(
C(2- , y3)三点, 则y1, y2, y3 的大小关系是(
A.y1>y2>y3
B.y2>y1>y3
数解析式为y=-0.5x2+0.5(-1≤x≤1). 当x=0.2时, y=0.48;当x=0.6时,
y=0.32. ∴B1C1+B2C2+B3C3+B4C4=2×(0.48+0.32)= 1.6(m), ∴所需不锈钢
支柱的总长度至少为1.6×100= 160(m).
22.1 二次函数的图像和性质
第二十二章
二次函数
22.1 二次函数的图像和性质
第二十二章
二次函数
22.1.1 二次函数
2
22.1.2 二次函数y=ax 的图像和性质
2
22.1.3 二次函数y=a(x-h) +k的图像
和性质
考场对接
22.1 二次函数的图像和性质

5.2 二次函数的图像和性质(第3课时)(课件)九年级数学下册课件(苏科版)

5.2  二次函数的图像和性质(第3课时)(课件)九年级数学下册课件(苏科版)

的两点,那么y1________y
2.(填“>”“<”或“=”)
当堂检测
9.已知二次函数y=(a-2)x2+a2-2的最高点为(0,2)则a=____.
-2
10.若y=x2+(k-2)的顶点是原点,则k____;若顶点位于x轴上方,
=2
>2
则k____;若顶点位于x轴下方,则k
<2 .
当堂检测
C )
A.开口向上
B.顶点坐标都是(0,0)
C.对称轴是y轴
D.在对称轴的右侧,y随x的增大而增大
5.已知函数y=x2-2,当函数值y随x的增大而减小时,x的取值范围是( D )
A.x<2
B.x>0
C.x>-2
D.x<0
当堂检测
6.在同一直角坐标系中,一次函数y=ax+k和二次函数y=ax2+k的
平移︱k︱单位.
第二种方法:描点法,三步即列表、描点和连线.
2.抛物线y=ax2+k 中的a决定什么?怎样决定的?k决定什么?它的对称
轴是什么?顶点坐标怎样表示?
a决定开口方向和大小,k决定顶点的纵坐标.
课堂小结
与y=ax2的关系 上加下减
开口方向由a的符号决定
二次函数y=ax2+k
的图像和性质
图像
又∵y轴是该抛物线的对称轴,
∴点A与点B关于y轴对称,
∴MA=MB=2,即点A的横坐标是2,

则其纵坐标y= ×22+1=2,即点A的坐标为(2,2),

故点M的坐标为(0,2).
大而______,当x=___时,取得最____值,这个值等于___.
0
5
减小

y轴

二次函数的图像和性质(共48张PPT)

二次函数的图像和性质(共48张PPT)
C、对于直线 y=ax+b 来说,由图象可以判断,a>0,b>0;而对于抛物线 y=ax2﹣bx 来说,图象开口向上,对称轴 x= >0,应在 y 轴的右侧,故符合 题意; D、对于直线 y=ax+b 来说,由图象可以判断,a>0,b>0;而对于抛物线 y=ax2﹣bx 来说,图象开口向下,a<0,故不合题意,图形错误; 故选:C.
即当 x<-2ba时, 当 x<-2ba时,y 随 x y 随 x 的增大而减
的增大而增大;在对 小;在对称轴的右
称轴的右侧,即当 x 侧,即当 x>-2ba >-2ba时,y 随 x 的 时,y 随 x 的增大
增大而减小,简记为 而增大,简记为
“左增右减” “左减右增”
15
最值
抛物线有最 抛物线有最
1、二次函数的图像和性质
函数
二次函数 y=ax2+bx+c
(a,b,c 为常数,a≠0)
a<0
a>0
图象
13
开口 对称轴、顶点
抛物线开口向 抛物线开口向
上,并向上无限 下,并向下无限
延伸
延伸
对称轴是x=-
b 2a
,顶点坐标是
-2ba,4ac4-a b2
14
增减性
在对称轴的左侧, 在对称轴的左侧,即
低点,当 高点,当
x=-2ba时, x=-2ba时,
y 有最小值, y 有最大值,
y = 最小值
y = 最大值
4ac-b2 4a
4ac-b2 4a
16
2、二次函数y=ax2+bx+c的图象特征
与系数a,b,c的关系
项目 字母
字母的符号
图象的特征
a>0 a
a<0

二次函数的图像课件(浙教版)

二次函数的图像课件(浙教版)

可以由抛物线

平移 个单位,
再向
平移
个单位而得到的。
这节课你有什么收获和体会?
能力拓展
1、 如果抛物线
是(-1,5)则 h
y
1 (x h)2 2
k
k
的顶点坐标
它的对称轴是
2、 如果一条抛物线的形状与 y 1 x2 2
3
的形状相同,且顶点坐标是(4,-2) 则函数关系式是__________
3
(1)把函数 y 1 x2 的图象作怎样的平移
3
变换,就能得到函数 y 1 (x 4)2 的图象。
3
(2)说出函数 y 1 (x 4)2 的图象的顶点坐标 和对称轴。 3
2、填写下表:
抛物线
开口方向
y =2(x+3)2
y = -3(x-1)2
向上 向下
y = -4(x-3)2 向下
向上 有最低点
a>0,向上, a<0,向下 a>0最低点, a<0最高点
y=ax2
记忆方法:
m>0,向左平移|m|个单位
m<0,向右平移|m|个单位 1. 左加右减
2.根据顶点坐标的变化(0,0)
y=a(x+m)2
(-m.0)
• 请你总结二次函数y=a(x+ m)2的图象和性质.
y ax 2 当m>0时,向左平移 当m<0时,向右平移
合作学习
用描点法,在同一直角坐标系中作出下列二次函数 的图象
y 1 x2 2
y 1 x 22
2
y 1 x 22
2
x
… -5 -4 -3 -2 -1 0 1 2 3 4 5 …

22.1.3 二次函数的图像与性质3

22.1.3  二次函数的图像与性质3
平移|h|个单位得到. 左加右减
h>0,向右平移h个单位 h<0,向左平移|h|个单位
x
… -4 -3 -2 -1 0 1 2 …
… -5.5 -3 -1.5 -1 -1.5 -3 -5.5 …
开口向下, 对称轴是直线x=-1, 顶点是(-1, -1).
x=-1 y
1
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x -2 -3 -4 -5 -6 -7 -8 -9 -10
九年级 上册
22.1.3
二次函数y=a(x-h)2+k 的图象和性质
二次函数 y = ax 2 + k 的图象和性质
函数
y = ax 2 + k(a>0) y = ax 2 + k(a<0)
k>0
图象
k<0
y
Ox y
O
x
y
O
x
y
O
x
开口方向 顶点坐标
向上 (0 ,k)
向下 (0 ,k)
二次函数 y = ax 2 + k 的图象和性质
h>0
h<0
开口向上
h>0 h<0
开口向下
a的绝对值越大,开口越小
直线x=h
(h,0)
顶点是最低点
顶点是最高点
在对称轴左侧递减 在对称轴左侧递增 在对称轴右侧递增 在对称轴右侧递减
抛物线y=ax2+k可以由抛物线y=ax2向上或向下
平移|k|个单位得到. 上加下减
k>0,向上平移k个单位 k<0,向下平移|k|个单位 抛物线y=a(x-h)2可以由抛物线y=ax2向左或向右
平移方法1:

人教版九年级上册22.二次函数的图像与性质课件(共129张)

人教版九年级上册22.二次函数的图像与性质课件(共129张)
二次函数的图象都是抛物线。
一般地,二次函数 y = ax2 + bx + c(a≠0)的图象叫做抛物线y = ax2 + bx + c
思考:这个二次函数图象有什么特征?
(1)形状是开口向上的抛物线
9
6
(2)图象关于y轴对称
3
(3)有最低点,没有最高点
-3
3
y轴是抛物线y = x 2 的对称轴,抛物线y = x 2 与它的对称 轴的交点(0,0)叫做抛物线y = x2 的顶点,它是抛物线y = x 2 的最低点.
联系(1)等式一边都是ax2+bx+c且 a ≠0 (2)方程ax2+bx+c=0可以看成是 函数y= ax2+bx+c中y=0时得到的. 区分:前者是函数.后者是方程.等式另一 边前者是y,后者是0
知识运用
例1:下列函数中,哪些是二次函数?
(1)y=3x-1 (不是 )
(2)y=3x2 ( 是 )
画形如y=ax2的函数图像: 1、函数y=x2的图像;视察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点,连线 y 10
y=x2
8
6
4
2
?
-4 -3 -2 -1 0 1 2 3 4 x -2
…二次函数的图像和性质…
• y=ax2的函数图像 • y=ax2 +k 的函数图像 • y=a(x-h)2的函数图像 • y=a(x-h)2 +k 的函数图像 • y=ax2+bx+c 的函数图像
…二次函数的图像和性质…
• y=ax2的函数图像 • y=ax2 +k 的函数图像 • y=a(x-h)2的函数图像 • y=a(x-h)2 +k 的函数图像 • y=ax2+bx+c 的函数图像

22.3 二次函数y=ax^2+c的图像与性质

22.3 二次函数y=ax^2+c的图像与性质

(4)抛物线y=-3x2+5的开口 下 ,对称轴是 y轴 , 顶点坐标是 (0,5) ,在对称轴的左侧,y随x的增大 而 增大 ,在对称轴的右侧,y随x的增大而 减小 , 当x= 0 时,取得最 大 值,这个值等于 5 。 (5)抛物线y=7x2-3的开口 上 ,对称轴是 y轴 , 顶点坐标是 (0,-3) ,在对称轴的左侧,y随x的增大 而 减小,在对称轴的右侧,y随x的增大而 增大, 当x= 0 时,取得最 小 值,这个值等于 -3 。 6.二次函数y=ax2+k (a≠0)的图象经过点A(1,-1),B (2,5),则函数y=ax2+c的表达式为 y=2x2-3。若 点C(-2,m),D(n ,7)也在函数的图象上,则点C的坐 标为 (-2, 5) 点D的坐标为 ( 5 ,7)或 ( 5 . ,7)
(0, 0)
y2
2.函数y=3x2+5与y=3x2的图象的不同之处是( C)
A.对称轴
B.开口方向
C.顶点
D.形状
3.已知抛物线y=2x2–1上有两点(x1,y1 ) ,(x1,2(填“<”或“>”) 4.已知一个二次函数图像的顶点在y轴上,并且 离原点1个单位,图像经过点(–1,0),求该二次 函数解析式。 1 2 5.已知抛物线 y x ,把它向下平移,得到的 2 抛物线与x轴交于A、B两点,与y轴交于C点, 若△ABC是直角三角形,那么原抛物线应向下 平移几个单位?
y2
y1 y3 y4 x2 x4 x3 x1
D.y4>y2>y3>y1
(2)已知二次函数y=ax2+c ,当x取x1,x2(x1≠x2, x1,x2分别是A,B两点的横坐标)时,函数值相等, 则当x取x1+x2时,函数值为 ( D) A. a+c B. a-c C. –c D. c
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


待定系数法
1.已知抛物线的顶点坐标为( - 4,1),且抛 物线经过(-2,7),求其解析式。
2.已知抛物线如图所示,试求出该抛物线的
解析式:
y (2,4)
(0,1)
O
x

3.已知抛物线y= -2x2+bx+c的顶点坐标 为(2,2), (1)写出此抛物线的解析式(顶点式)。
(2)求出b、c的值。
顶点式: y a x m2 k
填表
( 0,0 ) Y轴 Y最值=0 原点 ( -m,0 )直线x=-mY最值=0 x轴 ( 0,k ) Y轴 Y最值=k Y轴
整理
二次函数 y a x m2 k 的图像特征:
⑴顶点坐标:(-m,k ) ⑵对称轴:直线 x=-m ⑶开口方向及最值:当x=-m时 ,
(3)此抛物线经过怎样的平移可以得到 y=-2x2的图象.
图象平移
y ax2 y a x m2 y a x m2 k
见书34页---35页 课内练习:第1、2题 作业题:第2题
y最大(小)值=k
练习
1.说出下列抛物线的顶点坐标和对称轴,并画出草图
(1) y x 12 +1
(2) y 3x2 2
(3) y 3(1 x)2 2 4 y 2 x 22
2.如果一条抛物线的形状与
y 1 x2 +2 3
的形状
相同,且顶点坐标是( 4,-2),则函数关系式

相关文档
最新文档