2019年辽宁省铁岭市昌图县中考数学模拟试卷(4月份)(解析版)

合集下载

辽宁省铁岭市2019-2020学年第三次中考模拟考试数学试卷含解析

辽宁省铁岭市2019-2020学年第三次中考模拟考试数学试卷含解析

辽宁省铁岭市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE1=1(AD1+AB1)﹣CD1.其中正确的是()A.①②③④B.②④C.①②③D.①③④2.估算30的值在( )A.3和4之间B.4和5之间C.5和6之间D.6和7之间3.下列几何体中,主视图和左视图都是矩形的是()A.B.C.D.4.如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是( )A.30°B.15°C.18°D.20°5.计算(-ab2)3÷(-ab)2的结果是()A.ab4B.-ab4C.ab3D.-ab36.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE= 13,其中正确结论的个数是()16A.1 B.2 C.3 D.47.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.2 C.D.8.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠49.计算111xx x---结果是( )A.0 B.1 C.﹣1 D.x10.如图,某计算机中有、、三个按键,以下是这三个按键的功能.(1).:将荧幕显示的数变成它的正平方根,例如:荧幕显示的数为49时,按下后会变成1.(2).:将荧幕显示的数变成它的倒数,例如:荧幕显示的数为25时,按下后会变成0.2.(3).:将荧幕显示的数变成它的平方,例如:荧幕显示的数为6时,按下后会变成3.若荧幕显示的数为100时,小刘第一下按,第二下按,第三下按,之后以、、的顺序轮流按,则当他按了第100下后荧幕显示的数是多少()A.0.01 B.0.1 C.10 D.10011.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα12.下列图形中,属于中心对称图形的是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.函数y =的自变量x 的取值范围是_____.14.若一个多边形的内角和为1080°,则这个多边形的边数为__________.15.如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数()y x 0xk=<的图象经过点C ,则k 的值为 .16.如图,矩形OABC 的边OA ,OC 分别在轴、轴上,点B 在第一象限,点D 在边BC 上,且∠AOD=30°,四边形OA′B′D 与四边形OABD 关于直线OD 对称(点A′和A ,B′和B 分别对应),若AB=1,反比例函数(0)ky k x=≠的图象恰好经过点A′,B ,则的值为_________.17.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1;取△ABC 和△DEF 各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图(2)中阴影部分; 取△A 1B 1C 1和△D 1E 1F 1各边中点,连接成正六角星形A 2F 2B 2D 2C 2E 2,如图(3)中阴影部分; 如此下去…,则正六角星形A 4F 4B 4D 4C 4E 4的面积为_________________.18.二次函数y=ax2+bx+c(a≠0)的部分对应值如下表:x …﹣3 ﹣2 0 1 3 5 …y …7 0 ﹣8 ﹣9 ﹣5 7 …则二次函数y=ax2+bx+c在x=2时,y=______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,反比例函数y=kx(x>0)的图象与一次函数y=2x的图象相交于点A,其横坐标为1.(1)求k的值;(1)点B为此反比例函数图象上一点,其纵坐标为2.过点B作CB∥OA,交x轴于点C,求点C的坐标.20.(6分)定义:若某抛物线上有两点A、B关于原点对称,则称该抛物线为“完美抛物线”.已知二次函数y=ax2-2mx+c(a,m,c均为常数且ac≠0)是“完美抛物线”:(1)试判断ac的符号;(2)若c=-1,该二次函数图象与y轴交于点C,且S△ABC=1.①求a的值;②当该二次函数图象与端点为M(-1,1)、N(3,4)的线段有且只有一个交点时,求m的取值范围.21.(6分)如图,直角坐标系中,⊙M经过原点O(0,0),点A30)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.(1)请直接写出⊙M的直径,并求证BD平分∠ABO;(2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.22.(8分)九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:m=,n=;扇形统计图中机器人项目所对应扇形的圆心角度数为°;从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.23.(8分)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx﹣3(m≠0)与x轴交于A(3,0),B两点.(1)求抛物线的表达式及点B的坐标;(2)当﹣2<x<3时的函数图象记为G,求此时函数y的取值范围;(3)在(2)的条件下,将图象G在x轴上方的部分沿x轴翻折,图象G的其余部分保持不变,得到一个新图象M.若经过点C(4.2)的直线y=kx+b(k≠0)与图象M在第三象限内有两个公共点,结合图象求b的取值范围.24.(10分)某快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店每天的利润.若每份套餐售价不超过10元.①试写出y与x的函数关系式;②若要使该店每天的利润不少于800元,则每份套餐的售价应不低于多少元?该店把每份套餐的售价提高到10元以上,每天的利润能否达到1560元?若能,求出每份套餐的售价应定为多少元时,既能保证利润又能吸引顾客?若不能,请说明理由.25.(10分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、点B、点C均落在格点上.(I)计算△ABC的边AC的长为_____.(II)点P、Q分别为边AB、AC上的动点,连接PQ、QB.当PQ+QB取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段PQ、QB,并简要说明点P、Q的位置是如何找到的_____(不要求证明).26.(12分)如图,将连续的奇数1,3,5,7…按如图中的方式排成一个数,用一个十字框框住5个数,这样框出的任意5个数中,四个分支上的数分别用a ,b ,c ,d 表示,如图所示.(1)计算:若十字框的中间数为17,则a+b+c+d=______.(2)发现:移动十字框,比较a+b+c+d 与中间的数.猜想:十字框中a 、b 、c 、d 的和是中间的数的______; (3)验证:设中间的数为x ,写出a 、b 、c 、d 的和,验证猜想的正确性; (4)应用:设M=a+b+c+d+x ,判断M 的值能否等于2020,请说明理由.27.(12分)九年级学生到距离学校6千米的百花公园去春游,一部分学生步行前往,20分钟后另一部分学生骑自行车前往,设x (分钟)为步行前往的学生离开学校所走的时间,步行学生走的路程为1y 千米,骑自行车学生骑行的路程为2y 千米,12y y 、关于x 的函数图象如图所示.(1)求2y 关于x 的函数解析式;(2)步行的学生和骑自行车的学生谁先到达百花公园,先到了几分钟?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】分析:只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;详解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.故④正确,故选A.点睛:本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.2.C【解析】【分析】<<5<<6,即可解出.【详解】<<∴5<<6,故选C.【点睛】此题主要考查了无理数的估算,掌握无理数的估算是解题的关键.3.C【解析】【分析】主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.【详解】A. 主视图为圆形,左视图为圆,故选项错误;B. 主视图为三角形,左视图为三角形,故选项错误;C. 主视图为矩形,左视图为矩形,故选项正确;D. 主视图为矩形,左视图为圆形,故选项错误.故答案选:C.【点睛】本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.4.C【解析】【分析】∠1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解.【详解】∵正五边形的内角的度数是15×(5-2)×180°=108°,正方形的内角是90°,∴∠1=108°-90°=18°.故选C【点睛】本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键.5.B【解析】根据积的乘方的运算法则,先分别计算积的乘方,然后再根据单项式除法法则进行计算即可得,(-ab2)3÷(-ab)2=-a3b6÷a2b2=-ab4,故选B.6.C【解析】∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,AD ABDAP ABQ AP BQ=⎧⎪∠=∠⎨⎪=⎩,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正确;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴AO OP OD OA=,∴AO2=OD•OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE•OP;故②错误;在△CQF与△BPE中FCQ EBPQ PCQ BP∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF与△DCE中,AD CDADC DCE DF CE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△DCE,∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;∵BP=1,AB=3,∴AP=4,∵△AOP∽△DAP,∴43 PB PAEB DA==,∴BE=34,∴QE=134,∵△QOE∽△PAD,∴1345 QO OE QEPA AD PD===,∴QO=135,OE=3920,∴AO=5﹣QO=125,∴tan∠OAE=OEOA=1316,故④正确,故选C.点睛:本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键.7.D【解析】【分析】由m≤x≤n和mn<0知m<0,n>0,据此得最小值为1m为负数,最大值为1n为正数.将最大值为1n 分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.【详解】解:二次函数y=﹣(x﹣1)1+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=n时y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合题意,舍去);②当m≤0≤x≤1≤n时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=1时y取最大值,即1n=﹣(1﹣1)1+5,解得:n=52,或x=n时y取最小值,x=1时y取最大值,1m=-(n-1)1+5,n=52,∴m=11 8,∵m<0,∴此种情形不合题意,所以m+n=﹣1+52=12.8.D【解析】试题分析:A.∵∠1=∠3,∴a∥b,故A正确;B.∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a∥b,故B正确;C.∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a∥b,故C正确;D.∠3和∠4是对顶角,不能判断a与b是否平行,故D错误.故选D.考点:平行线的判定.9.C【解析】试题解析:11(1)1 1111x x xx x x x----===-----.故选C.考点:分式的加减法.10.B【解析】【分析】根据题中的按键顺序确定出显示的数即可.【详解】=40,110=0.4,0.42=0.04,=0.4,10.1=40,402=400,400÷6=46…4,则第400次为0.4.故选B.【点睛】此题考查了计算器﹣数的平方,弄清按键顺序是解本题的关键.11.B【解析】【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【详解】在Rt△ABC中,AB=AC sinα,在Rt△ACD中,AD=AC sinβ,∴AB:AD=ACsinα:ACsinβ=sinsinβα,故选B.【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.12.B【解析】【分析】A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.【详解】A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;B、将此图形绕中心点旋转180度与原图重合,所以这个图形是中心对称图形;C、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;D、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.故选B.【点睛】本题考查了轴对称与中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x≠﹣1【解析】【分析】根据分母不等于2列式计算即可得解.【详解】解:根据题意得x+1≠2,解得x≠﹣1.故答案为:x≠﹣1.【点睛】考查的知识点为:分式有意义,分母不为2.14.1【解析】【分析】根据多边形内角和定理:(n ﹣2)•110 (n≥3)可得方程110(x ﹣2)=1010,再解方程即可.【详解】解:设多边形边数有x 条,由题意得:110(x ﹣2)=1010,解得:x =1,故答案为:1.【点睛】此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n ﹣2)•110 (n≥3).15.-6【解析】【分析】分析:∵菱形的两条对角线的长分别是6和4,∴A (﹣3,2).∵点A 在反比例函数()y x 0x k =<的图象上, ∴23k =-,解得k=-6. 【详解】请在此输入详解!16【解析】【详解】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=12m,A′E=32m,∴A′(12m,32m),∵反比例函数y=kx(k≠0)的图象恰好经过点A′,B,∴12m•32m=m,∴m=43,∴k=43.【点睛】本题考查反比例函数图象上点的坐标特征;矩形的性质,利用数形结合思想解题是关键.17.【解析】∵正六角星形A2F2B2D2C2E2边长是正六角星形A1F1B1D1C1E边长的12,∴正六角星形A2F2B2D2C2E2面积是正六角星形A1F1B1D1C1E面积的14.同理∵正六角星形A4F4B4D4C4E4边长是正六角星形A1F1B1D1C1E边长的1 16,∴正六角星形A4F4B4D4C4E4面积是正六角星形A1F1B1D1C1E面积的1 256.18.﹣1【解析】试题分析:观察表中的对应值得到x=﹣3和x=5时,函数值都是7,则根据抛物线的对称性得到对称轴为直线x=1,所以x=0和x=2时的函数值相等,解:∵x=﹣3时,y=7;x=5时,y=7,∴二次函数图象的对称轴为直线x=1,∴x=0和x=2时的函数值相等,∴x=2时,y=﹣1.故答案为﹣1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)k=11;(1)C(2,0).【解析】试题分析:(1)首先求出点A的坐标为(1,6),把点A(1,6)代入y=kx即可求出k的值;(1)求出点B的坐标为B(4,2),设直线BC的解析式为y=2x+b,把点B(4,2)代入求出b=-9,得出直线BC的解析式为y=2x-9,求出当y=0时,x=2即可.试题解析:(1)∵点A在直线y=2x上,其横坐标为1.∴y=2×1=6,∴A(1,6),把点A(1,6)代入kyx=,得62k=,解得:k=11;(1)由(1)得:12yx =,∵点B为此反比例函数图象上一点,其纵坐标为2,∴123yx==,解得x= 4,∴B(4,2),∵CB∥OA,∴设直线BC的解析式为y=2x+b,把点B(4,2)代入y=2x+b,得2×4+b=2,解得:b=﹣9,∴直线BC的解析式为y=2x﹣9,当y=0时,2x﹣9=0,解得:x=2,∴C(2,0).20.(1) ac<3;(3)①a=1;②m>23或m<12.【解析】【分析】(1)设A (p ,q ).则B (-p ,-q ),把A 、B 坐标代入解析式可得方程组即可得到结论;(3)由c=-1,得到p 3=1a ,a >3,且C (3,-1),求得p =得到结果;②由①可知:抛物线解析式为y=x 3-3mx-1,根据M (-1,1)、N (3,4).得到这些MN 的解析式y =34x+74(-1≤x≤3),联立方程组得到x 3-3mx-1=34x+74,故问题转化为:方程x 3-(3m+34)x-114=3在-1≤x≤3内只有一个解,建立新的二次函数:y=x 3-(3m+34)x-114,根据题意得到(Ⅰ)若-1≤x 1<3且x 3>3,(Ⅱ)若x 1<-1且-1<x 3≤3:列方程组即可得到结论.【详解】(1)设A (p ,q ).则B (-p ,-q ),把A 、B 坐标代入解析式可得:22 22ap mp c qap mp c q ⎧-+⎨++-⎩==,∴3ap 3+3c=3.即p 3=−ca ,∴−ca ≥3,∵ac≠3,∴−ca >3,∴ac <3;(3)∵c=-1,∴p 3=1a ,a >3,且C (3,-1),∴p =,①S △ABC =12××1=1,∴a=1;②由①可知:抛物线解析式为y=x 3-3mx-1,∵M (-1,1)、N (3,4).∴MN :y =34x+74(-1≤x≤3), 依题,只需联立2213744y x mx y x ⎧--⎪⎨+⎪⎩==在-1≤x≤3内只有一个解即可,∴x 3-3mx-1=34x+74, 故问题转化为:方程x 3-(3m+34)x-114=3在-1≤x≤3内只有一个解, 建立新的二次函数:y=x 3-(3m+34)x-114, ∵△=(3m+34)3+11>3且c=-114<3, ∴抛物线y =x 3−(3m+34)x−114与x 轴有两个交点,且交y 轴于负半轴. 不妨设方程x 3−(3m+34)x−114=3的两根分别为x 1,x 3.(x 1<x 3) 则x 1+x 3=3m+34,x 1x 3=−114 ∵方程x 3−(3m+34)x−114=3在-1≤x≤3内只有一个解. 故分两种情况讨论:(Ⅰ)若-1≤x 1<3且x 3>3:则()()()()1212330110x x x x ⎧--⎪⎨++≥⎪⎩<.即:()1212121239010x x x x x x x x ⎧-++⎨+++≥⎩<, 可得:m >23. (Ⅱ)若x 1<-1且-1<x 3≤3:则()()()()1212330110x x x x ⎧--≥⎪⎨++⎪⎩<.即:()1212121239010x x x x x x x x ⎧-++≥⎨+++⎩<, 可得:m <12, 综上所述,m >23或m <12. 【点睛】本题考查了待定系数法求二次函数的解析式,一元二次方程根与系数的关系,三角形面积公式,正确的理解题意是解题的关键.21.(1)详见解析;(2)(3,1). 【解析】【分析】(1)根据勾股定理可得AB 的长,即⊙M 的直径,根据同弧所对的圆周角可得BD 平分∠ABO ; (2)作辅助构建切线AE ,根据特殊的三角函数值可得∠OAB=30°,分别计算EF 和AF 的长,可得点E 的坐标.【详解】(1)∵点A ,0)与点B (0,﹣1),∴OB=1,∴,∵AB 是⊙M 的直径,∴⊙M 的直径为2,∵∠COD=∠CBO ,∠COD=∠CBA ,∴∠CBO=∠CBA ,即BD 平分∠ABO ;(2)如图,过点A 作AE ⊥AB 于E ,交BD 的延长线于点E ,过E 作EF ⊥OA 于F ,即AE 是切线,∵在Rt △ACB 中,tan ∠OAB=OB OA == ∴∠OAB=30°,∵∠ABO=90°,∴∠OBA=60°,∴∠ABC=∠OBC=12ABO ∠=30°,∴OC=OB•tan30°=1×33=,∴AC=OA ﹣OC=3, ∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE 是等边三角形,∴∴AF=12AE=3,EF=2AE =1,∴OF=OA﹣AF=233,∴点E的坐标为(233,1).【点睛】此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.22.(1)8,3;(2)144;(3)2 3 .【解析】试题分析:(1)利用航模小组先求出数据总数,再求出n .(2)小组所占圆心角=;(3)列表格求概率.试题解析:(1);(2);(3)将选航模项目的名男生编上号码,将名女生编上号码. 用表格列出所有可能出现的结果:由表格可知,共有种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有种可能.(名男生、名女生).(如用树状图,酌情相应给分)考点:统计与概率的综合运用.23.(1)抛物线的表达式为y=x2﹣2x﹣2,B点的坐标(﹣1,0);(2)y的取值范围是﹣3≤y<1.(2)b的取值范围是﹣83<b<25.【解析】【分析】(1)、将点A坐标代入求出m的值,然后根据二次函数的性质求出点B的坐标;(2)、将二次函数配成顶点式,然后根据二次函数的增减性得出y的取值范围;(2)、根据函数经过(-1,0)、(3,2)和(0,-2)、(3,2)分别求出两个一次函数的解析式,从而得出b的取值范围.【详解】(1)∵将A(2,0)代入,得m=1,∴抛物线的表达式为y=2x-2x-2.令2x-2x-2=0,解得:x=2或x=-1,∴B点的坐标(-1,0).(2)y=2x-2x-2=()21x--3.∵当-2<x<1时,y随x增大而减小,当1≤x<2时,y随x增大而增大,∴当x=1,y最小=-3.又∵当x=-2,y=1,∴y的取值范围是-3≤y<1.(2)当直线y=kx+b经过B(-1,0)和点(3,2)时,解析式为y=25x+25.当直线y=kx+b经过(0,-2)和点(3,2)时,解析式为y=54x-2.由函数图象可知;b的取值范围是:-2<b<25.【点睛】本题主要考查的就是二次函数的性质、一次函数的性质以及函数的交点问题.在解决第二个问题的时候,我们首先必须要明确给出x的取值范围是否是在对称轴的一边还是两边,然后根据函数图形进行求解;对于第三问我们必须能够根据题意画出函数图象,然后根据函数图象求出取值范围.在解决二次函数的题目时,画图是非常关键的基本功.24.(1)①y=400x﹣1.(5<x≤10);②9元或10元;(2)能,11元.【解析】【分析】(1)、根据利润=(售价-进价)×数量-固定支出列出函数表达式;(2)、根据题意得出不等式,从而得出答案;(2)、根据题意得出函数关系式,然后将y=1560代入函数解析式,从而求出x的值得出答案.【详解】解:(1)①y=400(x﹣5)﹣2.(5<x≤10),②依题意得:400(x﹣5)﹣2≥800,解得:x≥8.5,∵5<x≤10,且每份套餐的售价x(元)取整数,∴每份套餐的售价应不低于9元.(2)依题意可知:每份套餐售价提高到10元以上时,y=(x﹣5)[400﹣40(x﹣10)]﹣2,当y=1560时,(x﹣5)[400﹣40(x﹣10)]﹣2=1560,解得:x1=11,x2=14,为了保证净收入又能吸引顾客,应取x1=11,即x2=14不符合题意.故该套餐售价应定为11元.【点睛】本题主要考查的是一次函数和二次函数的实际应用问题,属于中等难度的题型.理解题意,列出关系式是解决这个问题的关键.25.5作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小【解析】【分析】(1)利用勾股定理计算即可;(2)作线段AB关于AC的对称线段AB′,作BQ′⊥A B′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB 的值最小.【详解】解:(1)AC=221+2=5.故答案为5.(2)作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB 的值最小.故答案为作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB 的值最小.【点睛】本题考查作图-应用与设计,勾股定理,轴对称-最短问题,垂线段最短等知识,解题的关键是学会利用轴对称,根据垂线段最短解决最短问题,属于中考常考题型.26.(1)68 ;(2)4倍;(3)4x,猜想正确,见解析;(4)M的值不能等于1,见解析.【解析】【分析】(1)直接相加即得到答案;(2)根据(1)猜想a+b+c+d=4x;(3)用x表示a、b、c、d,相加后即等于4x;(4)得到方程5x=1,求出的x不符合数表里数的特征,故不能等于1.【详解】(1)5+15+19+29=68,故答案为68;(2)根据(1)猜想a+b+c+d=4x ,答案为:4倍;(3)a=x-12,b=x-2,c=x+2,d=x+12,∴a+b+c+d=x-12+x-2+x+2+x+12=4x ,∴猜想正确;(4)M=a+b+c+d+x=4x+x=5x ,若M=5x=1,解得:x=404,但整个数表所有的数都为奇数,故不成立,∴M 的值不能等于1.【点睛】本题考查了一元一次方程的应用.当解得方程的解后,要观察是否满足题目和实际要求再进行取舍.27.20.24y x =﹣;(2)骑自行车的学生先到达百花公园,先到了10分钟.【解析】【分析】(1)根据函数图象中的数据可以求得2y 关于x 的函数解析式;(2)根据函数图象中的数据和题意可以分别求得步行学生和骑自行车学生到达百花公园的时间,从而可以解答本题.【详解】解:(1)设2y 关于x 的函数解析式是2y kx b +=,200404k b k b +=⎧⎨+=⎩,得0.24k b =⎧⎨=-⎩, 即2y 关于x 的函数解析式是20.24y x=﹣; (2)由图象可知,步行的学生的速度为:4400.1÷=千米/分钟,∴步行同学到达百花公园的时间为:60.160÷=(分钟), 当28y =时, 60.24x =﹣,得50x =,605010﹣=,答:骑自行车的学生先到达百花公园,先到了10分钟.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.。

辽宁省铁岭市2019-2020学年中考第四次模拟数学试题含解析

辽宁省铁岭市2019-2020学年中考第四次模拟数学试题含解析

辽宁省铁岭市2019-2020学年中考第四次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知////AB CD EF ,那么下列结论正确的是( )A .AD BC DF CE =B .BC DF CE AD = C .CD BC EF BE = D .CD AD EF AF= 2.如图,点A 、B 、C 在圆O 上,若∠OBC=40°,则∠A 的度数为( )A .40°B .45°C .50°D .55°3.如图,ABCD Y 中,E 是BC 的中点,设AB a,AD b ==u u u r r u u u r r ,那么向量AE u u u r 用向量a b r r 、表示为( )A .12a b +r rB .12a b -r rC .12a b -+r rD .12a b --r r 4.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像CD 的长( )A .16cmB .13cm C .12cm D .1cm5.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为( )A .B .C .D .6.若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为()A.15πcm2B.24πcm2C.39πcm2D.48πcm27.九年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是( )A.1010123x x=-B.1010202x x=-C.1010123x x=+D.1010202x x=+8.如图所示,在平面直角坐标系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B绕点B顺时针旋转180°,得到△BP2C;把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,则旋转第2017次后,得到的等腰直角三角形的直角顶点P2018的坐标为()A.(4030,1)B.(4029,﹣1)C.(4033,1)D.(4035,﹣1)9.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是()A.国B.厉C.害D.了10.如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,连接AF交CG于M点,则FM=()A5B.32C35D.7211.如图所示的几何体是一个圆锥,下面有关它的三视图的结论中,正确的是()A .主视图是中心对称图形B .左视图是中心对称图形C .主视图既是中心对称图形又是轴对称图形D .俯视图既是中心对称图形又是轴对称图形12.已知实数a <0,则下列事件中是必然事件的是( )A .a+3<0B .a ﹣3<0C .3a >0D .a 3>0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果某数的一个平方根是﹣5,那么这个数是_____.14.如图,已知长方体的三条棱AB 、BC 、BD 分别为4,5,2,蚂蚁从A 点出发沿长方体的表面爬行到M 的最短路程的平方是_____.15.如图,在ABC ∆中,5BC AC ==,8AB =,CD 为AB 边的高,点A 在x 轴上,点B 在y 轴上,点C 在第一象限,若A 从原点出发,沿x 轴向右以每秒1个单位长的速度运动,则点B 随之沿y 轴下滑,并带动ABC ∆在平面内滑动,设运动时间为t 秒,当B 到达原点时停止运动连接OC ,线段OC 的长随t 的变化而变化,当OC 最大时,t =______.当ABC ∆的边与坐标轴平行时,t =______.16. 如图,已知AB BC =,要使ABD CBD ∆≅∆,还需添加一个条件,则可以添加的条件是 .(只写一个即可,不需要添加辅助线)17.比较大小:512_____1(填“<”或“>”或“=”). 18.如图,在每个小正方形的边长为1的网格中,A ,B 为格点(Ⅰ)AB 的长等于__(Ⅱ)请用无刻度的直尺,在如图所示的网格中求作一点C,使得CA=CB且△ABC的面积等于32,并简要说明点C的位置是如何找到的__________________三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知三角形ABC的边AB是0的切线,切点为B.AC经过圆心0并与圆相交于点D,C,过C作直线CE丄AB,交AB的延长线于点E,(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求O的半径.20.(6分)(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)(2)(m﹣1﹣81m+)2269m mm m-++.21.(6分)某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A:0个学科,B:1个学科,C:2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:请将图2的统计图补充完整;根据本次调查的数据,每周参加课外辅导班的学科数的众数是个学科;若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有人.22.(8分)如图1,一枚质地均匀的正六面体骰子的六个面分别标有数字,,,,,,如图2,正方形的顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子朝上的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长。

2019年辽宁省铁岭市中考数学真题(解析版)

2019年辽宁省铁岭市中考数学真题(解析版)

2019年辽宁省铁岭市中考数学真题(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共10小题)1.2的相反数是()A.B.2 C.﹣2 D.02.下面四个图形中,属于轴对称图形的是()A.B.C.D.3.下列运算正确的是()A.x8÷x4=x2B.x+x2=x3C.x3•x5=x15D.(﹣x3y)2=x6y24.如图所示几何体的主视图是()A.B.C.D.5.为了建设“书香校园”,某班开展捐书活动班长将本班44名学生捐书情况统计如下:捐书本数2345810捐书人数25122131该组数据捐书本数的众数和中位数分别为()A.5,5 B.21,8 C.10,4.5 D.5,4.56.某公司招聘职员,公司对应聘者进行了面试和笔试(满分均为100分),规定笔试成绩占40%,面试成绩占60%.应聘者蕾蕾的笔试成绩和面试成绩分别为95分和90分,她的最终得分是()A.92.5分B.90分C.92分D.95分7.如图,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD,则∠A的度数是()A.45°B.50°C.55°D.80°8.在平面直角坐标系中,函数y=kx+b的图象如图所示,则下列判断正确的是()A.k>0 B.b<0 C.k•b>0 D.k•b<09.如图,在Rt△ABC中,AB=AC,BC=4,AG⊥BC于点G,点D为BC边上一动点,DE⊥BC交射线CA于点E,作△DEC关于DE的轴对称图形得到△DEF,设CD的长为x,△DEF与△ABG重合部分的面积为y.下列图象中,能反映点D从点C向点B运动过程中,y与x的函数关系的是()A.B.C.D.10.如图,∠MAN=60°,点B为AM上一点,以点A为圆心、任意长为半径画弧,交AM于点E,交AN于点D.再分别以点D,E为圆心、大于DE的长为半径画弧,两弧交于点F.作射线AF,在AF上取点G,连接BG,过点G作GC⊥AN,垂足为点C.若AG=6,则BG的长可能为()A.1 B.2 C.D.2二、填空题(共8小题)11.我国科技成果转化2018年度报告显示:2017年,我国公立研发机构、高等院校的科技成果转化合同总金额达到12100000000元.将数据12100000000用科学记数法表示为.12.若在实数范围内有意义,则x的取值范围是.13.一个不透明的布袋中只装有红球和白球两种球,它们除颜色外其余均相同.若白球有9个,摸到白球的概率为0.75,则红球的个数是.14.若x,y满足方程组,则x+y=.15.若关于x的一元二次方程ax2﹣8x+4=0有两个不相等的实数根,则a的取值范围是.16.如图,点A,B,C在⊙O上,∠A=60°,∠C=70°,OB=9,则的长为.17.如图,Rt△AOB≌Rt△COD,直角边分别落在x轴和y轴上,斜边相交于点E,且tan∠OAB=2.若四边形OAEC的面积为6,反比例函数y=(x>0)的图象经过点E,则k的值为.18.如图,在△A1C1O中,A1C1=A1O=2,∠A1OC1=30°,过点A1作A1C2⊥OC1,垂足为点C2,过点C2作C2A2∥C1A1交OA1于点A2,得到△A2C2C1;过点A2作A2C3⊥OC1,垂足为点C3,过点C3作C3A3∥C1A1交OA1于点A3,得到△A3C3C2;过点A3作A3C4⊥OC1,垂足为点C4,过点C4作C4A4∥C1A1交OA1于点A4,得到△A4C4C3;……按照上面的作法进行下去,则△A n+1C n+1∁n的面积为.(用含正整数n的代数式表示)三、解答题(共8小题)19.先化简,再求值:(1﹣)÷,其中a=﹣2,b=5﹣.20.书法是我国的文化瑰宝,研习书法能培养高雅的品格.某校为加强书法教学,了解学生现有的书写能力,随机抽取了部分学生进行测试,测试结果分为优秀、良好、及格、不及格四个等级,分别用A,B,C,D表示,并将测试结果绘制成如图两幅不完整的统计图.请根据统计图中的信息解答以下问题:(1)本次抽取的学生人数是,扇形统计图中A所对应扇形圆心角的度数是.(2)把条形统计图补充完整.(3)若该学校共有2800人,等级达到优秀的人数大约有多少?(4)A等级的4名学生中有3名女生1名男生,现在需要从这4人中随机抽取2人参加电视台举办的“中学生书法比赛”,请用列表或画树状图的方法,求被抽取的2人恰好是1名男生1名女生的概率.21.某超市用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的,已知甲玩具的进货单价比乙玩具的进货单价多1元.(1)求:甲、乙玩具的进货单价各是多少元?(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多60件,求:该超市用不超过2100元最多可以采购甲玩具多少件?22.如图,聪聪想在自己家的窗口A处测量对面建筑物CD的高度,他首先量出窗口A到地面的距离(AB)为16m,又测得从A处看建筑物底部C的俯角α为30°,看建筑物顶部D的仰角β为53°,且AB,CD都与地面垂直,点A,B,C,D在同一平面内.(1)求AB与CD之间的距离(结果保留根号).(2)求建筑物CD的高度(结果精确到1m).(参考数据:sin53°≈0.8,cos53°≈0.6,tan53≈1.3,≈1.7)23.小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).(1)求y与x的函数关系式.(2)要使日销售利润为720元,销售单价应定为多少元?(3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售利润最大,并求出最大利润.24.如图,在▱ABCD中,AD=2AB,以点A为圆心、AB的长为半径的⊙A恰好经过BC的中点E,连接DE,AE,BD,AE与BD交于点F.(1)求证:DE与⊙A相切.(2)若AB=6,求BF的长.25.如图,△ABC中,AB=AC,DE垂直平分AB,交线段BC于点E(点E与点C不重合),点F为AC上一点,点G为AB上一点(点G与点A不重合),且∠GEF+∠BAC=180°.(1)如图1,当∠B=45°时,线段AG和CF的数量关系是.(2)如图2,当∠B=30°时,猜想线段AG和CF的数量关系,并加以证明.(3)若AB=6,DG=1,cos B=,请直接写出CF的长.26.如图1,抛物线y=ax2+bx+6与x轴交于点A(﹣2,0),B(6,0),与y轴交于点C,顶点为D,直线AD交y轴于点E.(1)求抛物线的解析式.(2)如图2,将△AOE沿直线AD平移得到△NMP.①当点M落在抛物线上时,求点M的坐标.②在△NMP移动过程中,存在点M使△MBD为直角三角形,请直接写出所有符合条件的点M的坐标.2019年辽宁省铁岭市中考数学真题(解析版)参考答案一、单选题(共10小题)1.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,2的相反数是﹣2.故选:C.【知识点】相反数2.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不属于轴对称图形,故此选项错误;B、不属于轴对称图形,故此选项错误;C、属于轴对称图形,故此选项正确;D、不属于轴对称图形,故此选项错误;故选:C.【知识点】轴对称图形3.【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【解答】解:∵x8÷x4=x4,故选项A错误;∵x+x2不能合并,故选项B错误;∵x3•x5=x8,故选项C错误;∵(﹣x3y)2=x6y2,故选项D正确;故选:D.【知识点】整式的混合运算4.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到的图形是:故选:B.【知识点】简单组合体的三视图5.【分析】中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:由表可知,15出现次数最多,所以众数为5;由于一共调查了44人,所以中位数为排序后的第22和第23个数的平均数,即:5.故选:A.【知识点】众数、中位数6.【分析】根据加权平均数的计算公式和笔试成绩占40%,面试成绩占60%,列出算式,再进行计算即可.【解答】解:根据题意得:95×40%+90×60%=92(分).答:她的最终得分是92分.故选:C.【知识点】加权平均数7.【分析】连接AC并延长交EF于点M.由平行线的性质得∠3=∠1,∠2=∠4,再由等量代换得∠BAD=∠3+∠4=∠1+∠2=∠FCE,先求出∠FCE即可求出∠A.【解答】解:连接AC并延长交EF于点M.∵AB∥CF,∴∠3=∠1,∵AD∥CE,∴∠2=∠4,∴∠BAD=∠3+∠4=∠1+∠2=∠FCE,∵∠FCE=180°﹣∠E﹣∠F=180°﹣80°﹣50°=50°,∴∠BAD=∠FCE=50°,故选:B.【知识点】平行线的性质、三角形内角和定理8.【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0.∴kb<0,故选:D.【知识点】一次函数图象与系数的关系9.【分析】根据等腰三角形的性质可得BG=GC=,由△DEC与△DEF关于DE对称,即可求出当点F与G重合时x的值,再根据分段函数解题即可.【解答】解:∵AB=AC,AG⊥BC,∴BG=GC=,∵△DEC与△DEF关于DE对称,∴FD=CD=x.当点F与G重合时,FC=GC,即2x=2,∴x=1,当点F与点B重合时,FC=BC,即2x=4,∴x=2,如图1,当0≤x≤1时,y=0,∴B选项错误;如图2,当1<x≤2时,,∴选项D错误;如图3,当2<x≤4时,,∴选项C错误.故选:A.【知识点】动点问题的函数图象10.【分析】利用基本作图得到AG平分∠MON,所以∠NAG=∠MAG=30°,利用含30度的直角三角形三边的关系得到GC=3,根据角平分线的性质得到G点到AM的距离为3,然后对各选项进行判断.【解答】解:由作法得AG平分∠MON,∴∠NAG=∠MAG=30°,∵GC⊥AN,∴∠ACG=90°,∴GC=AG=×6=3,∵AG平分∠MAN,∴G点到AM的距离为3,∴BG≥3.故选:D.【知识点】垂线段最短、角平分线的性质、作图—基本作图二、填空题(共8小题)11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:12100000000=1.21×1010,故答案为:1.21×1010.【知识点】科学记数法—表示较大的数12.【分析】直接利用二次根式有意义的条件进而得出答案.【解答】解:若在实数范围内有意义,则x﹣1≥0,解得:x≥1.故答案为:x≥1.【知识点】二次根式有意义的条件13.【分析】设红球的个数是x,根据概率公式列出算式,再进行计算即可.【解答】解:设红球的个数是x,根据题意得:=0.75,解得:x=3,答:红球的个数是3;故答案为:3.【知识点】概率公式14.【分析】方程组利用加减消元法求出解得到x与y的值,代入原式计算即可求出值.【解答】解:,①+②得:4x=20,解得:x=5,把x=5代入②得:y=2,则x+y=2+5=7,故答案为:7【知识点】解二元一次方程组15.【分析】根据根的判别式即可求出答案【解答】解:由题意可知:△=64﹣16a>0,∴a<4,∵a≠0,∴a<4且a≠0,故答案为:a<4且a≠0【知识点】根的判别式16.【分析】连接OA,根据等腰三角形的性质求出∠OAC,根据题意和三角形内角和定理求出∠AOB,代入弧长公式计算,得到答案.【解答】解:连接OA,∵OA=OC,∴∠OAC=∠C=70°,∴∠OAB=∠OAC﹣∠BAC=70°﹣60°=10°,∵OA=OB,∴∠OBA=∠OAB=10°,∴∠AOB=180°﹣10°﹣10°=160°,则的长==8π,故答案为:8π.【知识点】圆周角定理、弧长的计算17.【分析】连接OE,过点E分别作EM⊥OB于点M,EN⊥OD于点N,证明△CBE≌△ADE,再证明点C为BO的中点,点A为OD的中点,设EM=EN=x,根据四边形OAEC的面积为6,列出x的方程,便可求得最后结果.【解答】解:连接OE,过点E分别作EM⊥OB于点M,EN⊥OD于点N,∵Rt△AOB≌Rt△COD,∴∠OBA=∠ODC,OA=OC,OB=OD,∴OB﹣OC=OD﹣OA,即BC=AD,又∵∠CEB=∠AED,∴△CBE≌△ADE(AAS),∴CE=AE,又∵OC=OA,OE=OE,∴△COE≌△AOE(SSS),∴∠EOC=∠EOA=45°,又∵EM⊥OB,EN⊥OD,∴EM=EN,∵tan∠OAB=2,∴,∴OB=2OA,∵OA=OC,∴OB=2OC,∴点C为BO的中点,同理可得点A为OD的中点,∴S△AOE=S△ADE,在Rt△END中,tan∠CDO=,∴EN=,设EM=EN=x,∴ND=2EN=2x,ON=EN=x,∴OD=3x,∵,∴x=2,∴E(2,2),∴k=2×2=4.故答案为4.【知识点】反比例函数系数k的几何意义、反比例函数图象上点的坐标特征、解直角三角形、全等三角形的性质18.【分析】由等腰三角形的性质得出OC2=C2C1,由含30°角直角三角形的性质得出A1C2=OA1=1,由勾股定理得出C1C2==,易证△OA2C2∽△OA1C1,得出=,则A2C2=A1C1=1,同理,A2C3=A1C2=,则S=C1C2•A2C3,同理,C2C3==,A3C3=A2C2=,A3C4=A2C3=,则S=C2C3•A3C4=,同理,C3C4==,A4C4=A3C3=,A4C5=A3C4=,则S=C3C4•A4C5=,同理推出S=.【解答】解:∵A1C1=A1O=2,A1C2⊥OC1,∴OC2=C2C1,∵∠A1OC1=30°,∴A1C2=OA1=1,∴C1C2===,∵C2A2∥C1A1,∴△OA2C2∽△OA1C1,∴=,∴A2C2=A1C1=1,同理,A2C3=A1C2=,∴S=C1C2•A2C3=××=,同理,C2C3===,A3C3=A2C2=,A3C4=A2C3=×=,∴S=C2C3•A3C4=××=,同理,C3C4===,A4C4=A3C3=,A4C5=A3C4=,∴S=C3C4•A4C5=××=…,∴S=,故答案为:.【知识点】相似三角形的判定与性质、规律型:图形的变化类、勾股定理三、解答题(共8小题)19.【分析】先化简分式,然后将a、b的值代入求值.【解答】解:原式=•=•=﹣2a﹣2b,当a=﹣2,b=5﹣,原式=﹣2()﹣2(5﹣)=﹣2+4﹣10+2=﹣6.【知识点】分式的化简求值20.【分析】(1)由C等级人数及其所占百分比可得总人数,用360°乘以A等级人数所占比例即可得;(2)总人数减去A、C、D的人数可求出B等级的人数,从而补全图形;(3)利用总人数乘以样本中A等级人数所占比例即可得;(4)列表或画树状图得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.【解答】解:(1)本次抽取的学生人数是16÷40%=40(人),扇形统计图中A所对应扇形圆心角的度数是360°×=36°,故答案为:40人、36°;(2)B等级人数为40﹣(4+16+14)=6(人),补全条形图如下:(3)等级达到优秀的人数大约有2800×=280(人);(4)画树状图为:或列表如下:男女1女2女3男﹣﹣﹣(女,男)(女,男)(女,男)女1(男,女)﹣﹣﹣(女,女)(女,女)女2(男,女)(女,女)﹣﹣﹣(女,女)女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12种等可能情况,1男1女有6种情况,∴被选中的2人恰好是1男1女的概率为.【知识点】条形统计图、列表法与树状图法、扇形统计图、用样本估计总体21.【分析】(1)设甲种玩具的进货单价为x元,则乙种玩具的进价为(x﹣1)元,根据数量=总价÷单价结合“用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的”,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进甲种玩具y件,则购进乙种玩具(2y+60)件,根据进货的总资金不超过2100元,即可得出关于y的一元一次不等式,解之取其中的整数,即可得出结论.【解答】解:(1)设甲种玩具的进货单价为x元,则乙种玩具的进价为(x﹣1)元,根据题意得:=×,解得:x=6,经检验,x=6是原方程的解,∴x﹣1=5.答:甲种玩具的进货单价6元,则乙种玩具的进价为5元.(2)设购进甲种玩具y件,则购进乙种玩具(2y+60)件,根据题意得:6y+5(2y+60)≤2100,解得:y≤112,∵y为整数,∴y最大值=112答:该超市用不超过2100元最多可以采购甲玩具112件.【知识点】分式方程的应用、一元一次不等式的应用22.【分析】(1)作AM⊥CD于M,根据矩形的性质得到CM=AB=16,AM=BC,根据正切的定义求出AM;(2)根据正切的定义求出DM,结合图形计算,得到答案.【解答】解:(1)作AM⊥CD于M,则四边形ABCM为矩形,∴CM=AB=16,AM=BC,在Rt△ACM中,tan∠CAM=,则AM===16(m),答:AB与CD之间的距离16m;(2)在Rt△AMD中,tan∠DAM=,则DM=AM•tan∠DAM≈16×1.7×1.3=35.36,∴DC=DM+CM=35.36+16≈51(m),答:建筑物CD的高度约为51m.【知识点】解直角三角形的应用-仰角俯角问题23.【分析】(1)根据题意得到函数解析式;(2)根据题意列方程,解方程即可得到结论;(3)根据题意得到w=(x﹣6)(﹣1x+280)=﹣10(x﹣17)2+1210,根据二次函数的性质即可得到结论.【解答】解:(1)根据题意得,y=200﹣10(x﹣8)=﹣10x+280,故y与x的函数关系式为y=﹣10x+280;(2)根据题意得,(x﹣6)(﹣10x+280)=720,解得:x1=10,x2=24(不合题意舍去),答:要使日销售利润为720元,销售单价应定为10元;(3)根据题意得,w=(x﹣6)(﹣10x+280)=﹣10(x﹣17)2+1210,∵﹣10<0,∴当x<17时,w随x的增大而增大,当x=12时,w最大=960,答:当x为12时,日销售利润最大,最大利润960元.【知识点】二次函数的应用、一元二次方程的应用24.【分析】(1)欲证明DE是切线,只要证明∠AED=90°即可.(2)证明△ADF∽△EBF,可得==2,推出AF=2EF,推出AF=AE=4,再利用勾股定理即可解决问题.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∵EC=EB,∴BC=2BE=2CE,∵AD=2AB,∴AB=BE,∴AB=BE=AE,∴△ABE是等边三角形,∴∠ABE=∠AEB=60°,∵AB∥CD,∴∠C=180°﹣∠ABE=120°,∵CD=AB,AB=BE=CE,∴CD=CE,∴∠CED=(180°﹣∠C)=30°,∴∠AED=180°﹣∠AEB﹣∠CED=90°,∴DE⊥AE,∵AE是⊙A的半径,∴DE与⊙A相切.(2)如图,作BM⊥AE于M.∵△AEB是等边三角形,∴AE=AB=6,∵AD∥BC,∴△ADF∽△EBF,∴==2,∴AF=2EF,∴AF=AE=4,∵BM⊥AE,BA=BE,∴AM=ME=AE=3,∴FM=1,BM===3,在Rt△BFM中,BF==2.【知识点】相似三角形的判定与性质、切线的判定与性质、平行四边形的性质25.【分析】(1)如图1,连接AE,根据线段垂直平分线的性质得到AE=BE,根据等腰直角三角形的性质得到∠BAE=∠B=45°,BE=EC=AE,∠BAE=∠EAC=∠C=45°,根据全等三角形的性质即可得到结论;(2)如图2,连接AE,根据等腰三角形的性质和三角形的内角和得到∠BAC=120°,根据线段垂直平分线的性质得到AE=BE,求得∠BAE=∠B=30°,根据相似三角形的性质得到,解直角三角形即可得到AG=CF;(3)①当G在DA上时,如图3,连接AE,根据线段垂直平分线的性质得到AD=BD=3,AE=BE,由三角函数的定义得到BE===4,根据相似三角形的性质得到=,过A作AH⊥BC于点H由三角函数的定义即可得到结论.②当点G在BD上,如图4,方法同(1).【解答】解:(1)相等,理由:如图1,连接AE,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B=45°,∴AE⊥BC,∵AB=AC,∴BE=EC=AE,∠BAE=∠EAC=∠C=45°,∵∠GEF+∠BAC=180°,∴∠AGE+∠AFE=360°﹣180°=180°,∵∠AFE+∠CFE=180°,∴∠AGE=∠CFE,∵∠GAE=∠C=45°,∴△AEG≌△CEF(AAS),∴AG=CF;故答案为:AG=CF;(2)AG=CF,理由:如图2,连接AE,∵AB=AC,∴∠B=∠C=30°,∴∠BAC=120°,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B=30°,∴∠CAE=90°,∠BAE=∠C,∵∠GEF+∠BAC=180°,∴∠AGE+∠AFE=180°,∵∠CFE+∠AFE=180°,∴∠AGE=∠CFE,∴△AGE∽△CFE,∴,在Rt△ACE中,∵∠C=30°,∴=sin C=,∴=,∴AG=CF;(3)①当G在DA上时,如图3,连接AE,∵DE垂直平分AB,∴AD=BD=3,AE=BE,∵cos B=,∴BE===4,∴AE=BE=4,∴∠BAE=∠B,∵AB=AC,∴∠B=∠C,∴∠C=∠BAE,∵∠GEF+∠BAC=180°,∴∠AGE+∠AFE=360°﹣180°=180°,∵∠AFE+∠CFE=180°,∴∠CFE=∠AGE,∴△CFE∽△AGE,∴=,过A作AH⊥BC于点H,∵cos B=,∴BH=AB=×6=,∵AB=AC,∴BC=2BH=9,∵BE=4,∴CE=9﹣4=5,∵AG=AD﹣DG=3﹣1=2,∴=,∴CF=2.5;②当点G在BD上,如图4,同(1)可得,△CFE∽△AGE,∴=,∵AG=AD+DG=3+1=4,∴=,∴CF=5,综上所述,CF的长为2.5或5.【知识点】三角形综合题26.【分析】(1)抛物线的表达式为:y=a(x+2)(x﹣6)=a(x2﹣4x﹣12)=ax2﹣4ax﹣12a,即:﹣12a=6,即可求解;(2)①将点M的坐标代入抛物线表达式,即可求解);②分∠BMD为直角、∠MBD为直角、∠MDB为直角三种情况,分别求解即可.【解答】解:(1)抛物线的表达式为:y=a(x+2)(x﹣6)=a(x2﹣4x﹣12)=ax2﹣4ax﹣12a,即:﹣12a=6,解得:a=﹣,故抛物线的表达式为:y=﹣x2+2x+6,令y=0,解得:x=4或﹣2,故点A(﹣2,0),函数的对称轴为:x=2,故点D(2,8);(2)将点A、D的坐标代入一次函数表达式:y=mx+n得:,解得:,故直线AD的表达式为:y=2x+4,设点N(n,2n+4),∵MN=OA=2,则点M(n+2,2n+4),①将点M的坐标代入抛物线表达式得:2n+4=﹣(n+2)2+2(n+1)+6,解得:n=﹣2±2,故点M的坐标为(2,4)或(﹣2,﹣4);②点M(n+2,2n+4),点B、D的坐标分别为(6,0)、(2,8),则BD2=(6﹣2)2+82,MB2=(n﹣4)2+(2n+4)2,MD2=n2+(2n﹣4)2,当∠BMD为直角时,由勾股定理得:(6﹣2)2+82=(n﹣4)2+(2n+4)2+n2+(2n﹣4)2,解得:n=,当∠MBD为直角时,同理可得:n=﹣4,当∠MDB为直角时,同理可得:n=,故点M的坐标为:(﹣2,﹣4)或(,)或(,)或(,).【知识点】二次函数综合题。

辽宁省铁岭市2019-2020学年第五次中考模拟考试数学试卷含解析

辽宁省铁岭市2019-2020学年第五次中考模拟考试数学试卷含解析

辽宁省铁岭市2019-2020学年第五次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知平面内不同的两点A (a+2,4)和B (3,2a+2)到x 轴的距离相等,则a 的值为( ) A .﹣3 B .﹣5 C .1或﹣3 D .1或﹣52.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根3.如图,在⊙O 中,弦AB=CD ,AB ⊥CD 于点E ,已知CE•ED=3,BE=1,则⊙O 的直径是( )A .2B .5C .25D .54.如图,▱ABCD 的对角线AC ,BD 相交于点O ,E 是AB 中点,且AE+EO=4,则▱ABCD 的周长为( )A .20B .16C .12D .85.如图,在△ABC 中,∠ACB=90°,∠A=30°,BC=4,以点C 为圆心,CB 长为半径作弧,交AB 于点D ;再分别以点B 和点D 为圆心,大于12BD 的长为半径作弧,两弧相交于点E ,作射线CE 交AB 于点F ,则AF 的长为( )A .5B .6C .7D .86.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( ) A .205万 B .420510⨯ C .62.0510⨯ D .72.0510⨯7.如图,三角形纸片ABC ,AB =10cm ,BC =7cm ,AC =6cm ,沿过点B 的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为()A.9cm B.13cm C.16cm D.10cm 8.-5的相反数是()A.5 B.15C.5D.15-9.两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是1:p,而在另一个瓶子中是1:q,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是()A.2P q+B.2P qPq+C.2+2p qP q Pq+++D.2+2p q pqP q+++10.已知△ABC,D是AC上一点,尺规在AB上确定一点E,使△ADE∽△ABC,则符合要求的作图痕迹是()A.B.C.D.11.如图所示,△ABC为等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG边长也为2,且AC 与DE在同一直线上,△ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A.B.C.D.12.在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A、B、C上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是△ABC的()A.三条高的交点B.重心C.内心D.外心二、填空题:(本大题共6个小题,每小题4分,共24分.)13.反比例函数y=2mx的图象是双曲线,在每一个象限内,y随x的增大而减小,若点A(–3,y1),B(–1,y2),C(2,y3)都在该双曲线上,则y1、y2、y3的大小关系为__________.(用“<”连接)14.如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起分钟该容器内的水恰好放完.15.七巧板是我国祖先创造的一种智力玩具,它来源于勾股法,如图①整幅七巧板是由正方形ABCD分割成七小块(其中:五块等腰直角三角形、一块正方形和一块平行四边形)组成,如图②是由七巧板拼成的一个梯形,若正方形ABCD的边长为12cm,则梯形MNGH的周长是cm(结果保留根号).16.把多项式3x2-12因式分解的结果是_____________.17.不等式组的解是________.18.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.若∠E+∠F=80°,则∠A=____°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)列方程解应用题:某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格.20.(6分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.21.(6分)解方程:3221xx x=+-.22.(8分)(1)计算:(12-)﹣1+12﹣(π﹣2018)0﹣4cos30°(2)解不等式组:34(1)223x xxx≥-⎧⎪-⎨-≤⎪⎩,并把它的解集在数轴上表示出来.23.(8分)如图,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等边三角形,点D在边AB上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(1)如图1,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=1.求CG的长.24.(10分)如图,AB是⊙O的直径,点F,C是⊙O上两点,且»»»AF FC CB==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=23,求⊙O的半径.25.(10分)如图,一次函数y1=kx+b的图象与反比例函数y2=mx的图象交于A(2,3),B(6,n)两点.分别求出一次函数与反比例函数的解析式;求△OAB的面积.26.(12分)如图1,直线l:y=34x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=12x2+bx+c经过点B,与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.27.(12分)嘉兴市2010~2014年社会消费品零售总额及增速统计图如下:请根据图中信息,解答下列问题:(1)求嘉兴市2010~2014年社会消费品零售总额增速..这组数据的中位数.(2)求嘉兴市近三年(2012~2014年)的社会消费品零售总额....这组数据的平均数.(3)用适当的方法预测嘉兴市2015年社会消费品零售总额(只要求列出算式,不必计算出结果).参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.2.A【解析】【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.【详解】∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有两个不相等的实数根,故选A.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.C【解析】【分析】作OH⊥AB于H,OG⊥CD于G,连接OA,根据相交弦定理求出EA,根据题意求出CD,根据垂径定理、勾股定理计算即可.【详解】解:作OH⊥AB于H,OG⊥CD于G,连接OA,由相交弦定理得,CE•ED=EA•BE,即EA×1=3,解得,AE=3,∴AB=4,∵OH⊥AB,∴AH=HB=2,∵AB=CD,CE•ED=3,∴CD=4,∵OG⊥CD,∴EG=1,由题意得,四边形HEGO是矩形,∴OH=EG=1,由勾股定理得,OA=225AH OH+=,∴⊙O的直径为25,故选C.【点睛】此题考查了相交弦定理、垂径定理、勾股定理、矩形的判定与性质;根据图形作出相应的辅助线是解本题的关键.4.B【解析】【分析】首先证明:OE=BC,由AE+EO=4,推出AB+BC=8即可解决问题;【详解】∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选:B.【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.5.B【解析】试题分析:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故选B.考点:作图—基本作图;含30度角的直角三角形.6.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2 050 000将小数点向左移6位得到2.05,所以2 050 000用科学记数法表示为:20.5×106,故选C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.A【解析】试题分析:由折叠的性质知,CD=DE ,BC=BE .易求AE 及△AED 的周长.解:由折叠的性质知,CD=DE ,BC=BE=7cm .∵AB=10cm ,BC=7cm ,∴AE=AB ﹣BE=3cm .△AED 的周长=AD+DE+AE=AC+AE=6+3=9(cm ).故选A .点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.A【解析】由相反数的定义:“只有符号不同的两个数互为相反数”可知-5的相反数是5.故选A.9.C【解析】【分析】混合液中的酒精与水的容积之比为两瓶中的纯酒精与两瓶中的水之比,分别算出纯酒精和水的体积即可得答案.【详解】设瓶子的容积即酒精与水的和是1,则纯酒精之和为:1×11p ++1×11q +=11p ++11q +, 水之和为:1p p ++1q q +, ∴混合液中的酒精与水的容积之比为:(11p ++11q +)÷(1p p ++1q q +)=2+2p q P q Pq +++, 故选C .【点睛】本题主要考查分式的混合运算,找到相应的等量关系是解决本题的关键.10.A【解析】【分析】以DA 为边、点D 为顶点在△ABC 内部作一个角等于∠B ,角的另一边与AB 的交点即为所求作的点.【详解】如图,点E 即为所求作的点.故选:A .【点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D 作一角等于∠B 或∠C ,并熟练掌握做一个角等于已知角的作法式解题的关键.11.A【解析】【分析】此题可分为两段求解,即C 从D 点运动到E 点和A 从D 点运动到E 点,列出面积随动点变化的函数关系式即可.【详解】解:设CD 的长为x ABC V ,与正方形DEFG 重合部分(图中阴影部分)的面积为y ∴当C 从D 点运动到E 点时,即02x ≤≤时,()()2111y 222x 2x x 2x 222=⨯⨯--⨯-=-+. 当A 从D 点运动到E 点时,即2x 4<≤时,()][()211y 2x 22x 2x 4x 822⎡⎤=⨯--⨯--=-+⎣⎦, y ∴与x 之间的函数关系()221y x 2x 0x 221y x 4x 8(2x 4)2⎧=-+≤≤⎪⎪⎨⎪=-+<≤⎪⎩由函数关系式可看出A 中的函数图象与所求的分段函数对应.故选A .【点睛】本题考查的动点变化过程中面积的变化关系,重点是列出函数关系式,但需注意自变量的取值范围. 12.D【解析】【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【详解】∵三角形的三条垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC 的三条垂直平分线的交点最适当.故选D .【点睛】本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.y 2<y 1<y 1.【解析】【分析】先根据反比例函数的增减性判断出2-m 的符号,再根据反比例函数的性质判断出此函数图象所在的象限,由各点横坐标的值进行判断即可.【详解】∵反比例函数y=2-m x的图象是双曲线,在每一个象限内,y 随x 的增大而减小, ∴2−m>0,∴此函数的图象在一、三象限,∵−1<−1<0,∴0>y 1>y 2,∵2>0,∴y 1>0,∴y 2<y 1<y 1.故答案为y 2<y 1<y 1.【点睛】本题考查的知识点是反比例函数图像上点的坐标特征,解题的关键是熟练的掌握列反比例函数图像上点的坐标特征.14.8。

2019年辽宁省铁岭市中考数学试题(解析版)

2019年辽宁省铁岭市中考数学试题(解析版)

2019年辽宁省铁岭市中考数学试题一、选择题(每小题3分,共30分)1.2的相反数是()A.B.2C.﹣2D.02.下面四个图形中,属于轴对称图形的是()A.B.C.D.3.下列运算正确的是()A.x8÷x4=x2B.x+x2=x3C.x3•x5=x15D.(﹣x3y)2=x6y24.如图所示几何体的主视图是()A.B.C.D.5.为了建设“书香校园”,某班开展捐书活动班长将本班44名学生捐书情况统计如下:该组数据捐书本数的众数和中位数分别为()A.5,5B.21,8C.10,4.5D.5,4.56.某公司招聘职员,公司对应聘者进行了面试和笔试(满分均为100分),规定笔试成绩占40%,面试成绩占60%.应聘者蕾蕾的笔试成绩和面试成绩分别为95分和90分,她的最终得分是()A.92.5分B.90分C.92分D.95分7.如图,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD,则∠A的度数是()A.45°B.50°C.55°D.80°8.如图,∠MAN=60°,点B为AM上一点,以点A为圆心、任意长为半径画弧,交AM于点E,交AN于点D.再分别以点D,E为圆心、大于DE的长为半径画弧,两弧交于点F.作射线AF,在AF上取点G,连接BG,过点G作GC⊥AN,垂足为点C.若AG=6,则BG的长可能为()A.1B.2C.D.29.在平面直角坐标系中,函数y=kx+b的图象如图所示,则下列判断正确的是()A.k>0B.b<0C.k•b>0D.k•b<010.如图,在Rt△ABC中,AB=AC,BC=4,AG⊥BC于点G,点D为BC边上一动点,DE⊥BC交射线CA于点E,作△DEC关于DE的轴对称图形得到△DEF,设CD的长为x,△DEF与△ABG重合部分的面积为y.下列图象中,能反映点D从点C向点B运动过程中,y与x的函数关系的是()A.B.C.D.二、填空题(每小题3分,共24分)11.我国科技成果转化2018年度报告显示:2017年,我国公立研发机构、高等院校的科技成果转化合同总金额达到12100000000元.将数据12100000000用科学记数法表示为.12.若在实数范围内有意义,则x的取值范围是.13.一个不透明的布袋中只装有红球和白球两种球,它们除颜色外其余均相同.若白球有9个,摸到白球的概率为0.75,则红球的个数是.14.若x,y满足方程组,则x+y=.15.若关于x的一元二次方程ax2﹣8x+4=0有两个不相等的实数根,则a的取值范围是.16.如图,点A,B,C在⊙O上,∠A=60°,∠C=70°,OB=9,则的长为.17.如图,Rt△AOB≌Rt△COD,直角边分别落在x轴和y轴上,斜边相交于点E,且tan ∠OAB=2.若四边形OAEC的面积为6,反比例函数y=(x>0)的图象经过点E,则k的值为.18.如图,在△A1C1O中,A1C1=A1O=2,∠A1OC1=30°,过点A1作A1C2⊥OC1,垂足为点C2,过点C2作C2A2∥C1A1交OA1于点A2,得到△A2C2C1;过点A2作A2C3⊥OC1,垂足为点C3,过点C3作C3A3∥C1A1交OA1于点A3,得到△A3C3C2;过点A3作A3C4⊥OC1,垂足为点C4,过点C4作C4A4∥C1A1交OA1于点A4,得到△A4C4C3;……按照上面的作法进行下去,则△A n+1C n+1∁n的面积为.(用含正整数n的代数式表示)三、解答题19.(10分)先化简,再求值:(1﹣)÷,其中a=﹣2,b=5﹣.20.(12分)书法是我国的文化瑰宝,研习书法能培养高雅的品格.某校为加强书法教学,了解学生现有的书写能力,随机抽取了部分学生进行测试,测试结果分为优秀、良好、及格、不及格四个等级,分别用A,B,C,D表示,并将测试结果绘制成如图两幅不完整的统计图.请根据统计图中的信息解答以下问题:(1)本次抽取的学生人数是,扇形统计图中A所对应扇形圆心角的度数是.(2)把条形统计图补充完整.(3)若该学校共有2800人,等级达到优秀的人数大约有多少?(4)A等级的4名学生中有3名女生1名男生,现在需要从这4人中随机抽取2人参加电视台举办的“中学生书法比赛”,请用列表或画树状图的方法,求被抽取的2人恰好是1名男生1名女生的概率.四、解答题21.(12分)某超市用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的,已知甲玩具的进货单价比乙玩具的进货单价多1元.(1)求:甲、乙玩具的进货单价各是多少元?(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多60件,求:该超市用不超过2100元最多可以采购甲玩具多少件?22.(12分)如图,聪聪想在自己家的窗口A处测量对面建筑物CD的高度,他首先量出窗口A到地面的距离(AB)为16m,又测得从A处看建筑物底部C的俯角α为30°,看建筑物顶部D的仰角β为53°,且AB,CD都与地面垂直,点A,B,C,D在同一平面内.(1)求AB与CD之间的距离(结果保留根号).(2)求建筑物CD的高度(结果精确到1m).(参考数据:sin53°≈0.8,cos53°≈0.6,tan53≈1.3,≈1.7)五、解答题23.(12分)小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).(1)求y与x的函数关系式.(2)要使日销售利润为720元,销售单价应定为多少元?(3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售利润最大,并求出最大利润.六、解答题24.(12分)如图,在▱ABCD中,AD=2AB,以点A为圆心、AB的长为半径的⊙A恰好经过BC的中点E,连接DE,AE,BD,AE与BD交于点F.(1)求证:DE与⊙A相切.(2)若AB=6,求BF的长.七、解答题25.(12分)如图,△ABC中,AB=AC,DE垂直平分AB,交线段BC于点E(点E与点C 不重合),点F为AC上一点,点G为AB上一点(点G与点A不重合),且∠GEF+∠BAC=180°.(1)如图1,当∠B=45°时,线段AG和CF的数量关系是.(2)如图2,当∠B=30°时,猜想线段AG和CF的数量关系,并加以证明.(3)若AB=6,DG=1,cos B=,请直接写出CF的长.八、解答题26.(14分)如图1,抛物线y=ax2+bx+6与x轴交于点A(﹣2,0),B(6,0),与y轴交于点C,顶点为D,直线AD交y轴于点E.(1)求抛物线的解析式.(2)如图2,将△AOE沿直线AD平移得到△NMP.①当点M落在抛物线上时,求点M的坐标.②在△NMP移动过程中,存在点M使△MBD为直角三角形,请直接写出所有符合条件的点M的坐标.参考答案一、选择题1.解:根据相反数的定义,2的相反数是﹣2.故选:C.2.解:A、不属于轴对称图形,故此选项错误;B、不属于轴对称图形,故此选项错误;C、属于轴对称图形,故此选项正确;D、不属于轴对称图形,故此选项错误;故选:C.3.解:∵x8÷x4=x4,故选项A错误;∵x+x2不能合并,故选项B错误;∵x3•x5=x8,故选项C错误;∵(﹣x3y)2=x6y2,故选项D正确;故选:D.4.解:从正面可看到的图形是:故选:B.5.解:由表可知,15出现次数最多,所以众数为5;由于一共调查了44人,所以中位数为排序后的第22和第23个数的平均数,即:5.故选:A.6.解:根据题意得:95×40%+90×60%=92(分).答:她的最终得分是92分.故选:C.7.解:连接AC并延长交EF于点M.∵AB∥CF,∴∠3=∠1,∵AD∥CE,∴∠2=∠4,∴∠BAD=∠3+∠4=∠1+∠2=∠FCE,∵∠FCE=180°﹣∠E﹣∠F=180°﹣80°﹣50°=50°,∴∠BAD=∠FCE=50°,故选:B.8.解:由作法得AG平分∠MON,∴∠NAG=∠MAG=30°,∵GC⊥AN,∴∠ACG=90°,∴GC=AG=×6=3,∵AG平分∠MAN,∴G点到AM的距离为3,∴BG≥3.故选:D.9.解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0.∴kb<0,故选:D.10.解:∵AB=AC,AG⊥BC,∴BG=GC=,∵△DEC与△DEF关于DE对称,∴FD=CD=x.当点F与G重合时,FC=GC,即2x=2,∴x=1,当点F与点B重合时,FC=BC,即2x=4,∴x=2,如图1,当0≤x≤1时,y=0,∴B选项错误;如图2,当1<x≤2时,,∴选项D错误;如图3,当2<x≤4时,,∴选项C错误.故选:A.二、填空题(本大题共8小题,每小题3分,共24分)11.解:12100000000=1.21×1010,故答案为:1.21×1010.12.解:若在实数范围内有意义,则x﹣1≥0,解得:x≥1.故答案为:x≥1.13.解:设红球的个数是x,根据题意得:=0.75,解得:x=3,答:红球的个数是3;故答案为:3.14.解:,①+②得:4x=20,解得:x=5,把x=5代入②得:y=2,则x+y=2+5=7,故答案为:715.解:由题意可知:△=64﹣16a>0,∴a<4,∵a≠0,∴a<4且a≠0,故答案为:a<4且a≠016.解:连接OA,∵OA=OC,∴∠OAC=∠C=70°,∴∠OAB=∠OAC﹣∠BAC=70°﹣60°=10°,∵OA=OB,∴∠OBA=∠OAB=10°,∴∠AOB=180°﹣10°﹣10°=160°,则的长==8π,故答案为:8π.17.解:连接OE,过点E分别作EM⊥OB于点M,EN⊥OD于点N,∵Rt△AOB≌Rt△COD,∴∠OBA=∠ODC,OA=OC,OB=OD,∴OB﹣OC=OD﹣OA,即BC=AD,又∵∠CEB=∠AED,∴△CBE ≌△ADE (AAS ), ∴CE =AE ,又∵OC =OA ,OE =OE , ∴△COE ≌△AOE (SSS ), ∴∠EOC =∠EOA =45°, 又∵EM ⊥OB ,EN ⊥OD , ∴EM =EN , ∵tan ∠OAB =2,∴,∴OB =2OA , ∵OA =OC , ∴OB =2OC , ∴点C 为BO 的中点, 同理可得点A 为OD 的中点, ∴S △AOE =S △ADE ,在Rt △END 中,tan ∠CDO =,∴EN =,设EM =EN =x ,∴ND =2EN =2x ,ON =EN =x , ∴OD =3x ,∵,∴x =2, ∴E (2,2), ∴k =2×2=4.故答案为4.18.解:∵A1C1=A1O=2,A1C2⊥OC1,∴OC2=C2C1,∵∠A1OC1=30°,∴A1C2=OA1=1,∴C1C2===,∵C2A2∥C1A1,∴△OA2C2∽△OA1C1,∴=,∴A2C2=A1C1=1,同理,A2C3=A1C2=,∴S=C1C2•A2C3=××=,同理,C2C3===,A3C3=A2C2=,A3C4=A2C3=×=,∴S=C2C3•A3C4=××=,同理,C3C4===,A4C4=A3C3=,A4C5=A3C4=,∴S=C3C4•A4C5=××=…,∴S=,故答案为:.三、解答题(本大题共2小题,共22分.解答应写出必要的文字说明、证明过程或演算步骤)19.解:原式=•=•=﹣2a﹣2b,当a=﹣2,b=5﹣,原式=﹣2()﹣2(5﹣)=﹣2+4﹣10+2=﹣6.20.解:(1)本次抽取的学生人数是16÷40%=40(人),扇形统计图中A所对应扇形圆心角的度数是360°×=36°,故答案为:40人、36°;(2)B等级人数为40﹣(4+16+14)=6(人),补全条形图如下:(3)等级达到优秀的人数大约有2800×=280(人);(4)画树状图为:或列表如下:(女,女∵共有12种等可能情况,1男1女有6种情况,∴被选中的2人恰好是1男1女的概率为.四、解答题(本大题共2小题,共24分.解答应写出必要的文字说明、证明过程或演算步骤) 21.解:(1)设甲种玩具的进货单价为x元,则乙种玩具的进价为(x﹣1)元,根据题意得:=×,解得:x=6,经检验,x=6是原方程的解,∴x﹣1=5.答:甲种玩具的进货单价6元,则乙种玩具的进价为5元.(2)设购进甲种玩具y件,则购进乙种玩具(2y+60)件,根据题意得:6y+5(2y+60)≤2100,解得:y≤112,∵y为整数,=112∴y最大值答:该超市用不超过2100元最多可以采购甲玩具112件.22.解:(1)作AM⊥CD于M,则四边形ABCM为矩形,∴CM=AB=16,AM=BC,在Rt△ACM中,tan∠CAM=,则AM===16(m),答:AB与CD之间的距离16m;(2)在Rt△AMD中,tan∠DAM=,则DM=AM•tan∠DAM≈16×1.7×1.3=35.36,∴DC=DM+CM=35.36+16≈51(m),答:建筑物CD的高度约为51m.五、解答题(本大题共1小题,共12分.解答应写出必要的文字说明、证明过程或演算步骤) 23.解:(1)根据题意得,y=200﹣10(x﹣8)=﹣10x+280,故y与x的函数关系式为y=﹣10x+280;(2)根据题意得,(x﹣6)(﹣10x+280)=720,解得:x1=10,x2=24(不合题意舍去),答:要使日销售利润为720元,销售单价应定为10元;(3)根据题意得,w=(x﹣6)(﹣10x+280)=﹣10(x﹣17)2+1210,∵﹣10<0,∴当x<17时,w随x的增大而增大,=960,当x=12时,w最大答:当x为12时,日销售利润最大,最大利润960元.六、解答题(本大题共1小题,共12分.解答应写出必要的文字说明、证明过程或演算步骤) 24.(1)证明:∵四边形ABCD都是平行四边形,∴AD=BC,AB=CD,∵EC=EB,∴BC=2BE=2CE,∵AD=2AB,∴AB=BE,∴AB=BE=AE,∴△ABE是等边三角形,∴∠ABE=∠AEB=60°,∵AB∥CD,∴∠C=180°﹣∠ABE=120°,∵CD=AB,AB=BE=CE,∴∠CED=(180°﹣∠C)=30°,∴∠AED=180°﹣∠AEB﹣∠CED=90°,∴DE⊥AE,∵AE是⊙A的半径,∴D E与⊙A相切.(2)如图,作BM⊥AE于M.∵△AEB是等边三角形,∴AE=AB=6,∵AD∥BC,∴△ADF∽△EBF,∴==2,∴AF=2EF,∴AF=AE=4,∵BM⊥AE,BA=BE,∴AM=ME=AE=3,∴FM=1,BM===3,在Rt△BFM中,BF==2.七、解答题(本大题共1小题,共12分,解答应写出必要的文字说明、证明过程或演算步骤25.解:(1)相等,理由:如图1,连接AE,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B=45°,∵AB=AC,∴BE=EC=AE,∠BAE=∠EAC=∠C=45°,∵∠GEF+∠BAC=180°,∴∠AGE+∠AFE=360°﹣180°=180°,∵∠AFE+∠CFE=180°,∴∠AGE=∠CFE,∵∠GAE=∠C=45°,∴△AEG≌△CEF(AAS),∴AG=CF;故答案为:AG=CF;(2)AG=CF,理由:如图2,连接AE,∵AB=AC,∴∠B=∠C=30°,∴∠BAC=120°,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B=30°,∴∠CAE=90°,∠BAE=∠C,∵∠GEF+∠BAC=180°,∴∠AGE+∠AFE=180°,∵∠CFE+∠AFE=180°,∴∠AGE=∠C FE,∴△AGE∽△CFE,∴,在Rt△ACE中,∵∠C=30°,∴=sin C=,∴=,∴AG=CF;(3)①当G在DA上时,如图3,连接AE,∵DE垂直平分AB,∴AD=BD=3,AE=BE,∵cos B=,∴BE===4,∴AE=BE=4,∴∠BAE=∠B,∵AB=AC,∴∠B=∠C,∴∠C=∠BAE,∵∠GEF+∠BAC=180°,∴∠AGE+∠AFE=360°﹣180°=180°,∵∠AFE+∠CFE=180°,∴∠CFE=∠AGE,∴△CFE∽△AGE,∴=,过A作AH⊥BC于点H,∵cos B=,∴BH=AB=×6=,∵AB=AC,∴BC=2BH=9,∵BE=4,∴CE=9﹣4=5,∵AG=AD﹣DG=3﹣1=2,∴=,∴CF=2.5;②当点G在BD上,如图4,同(1)可得,△CFE∽△AGE,∴=,∵AG=AD+DG=3+1=4,∴=,∴CF=5,综上所述,CF的长为2.5或5.八、解答题(本大题共1小题,共14分.解答应写出必要的文字说明、证明过程或演算步骤) 26.解:(1)抛物线的表达式为:y=a(x+2)(x﹣6)=a(x2﹣4x﹣12)=ax2﹣4ax﹣12a,即:﹣12a=6,解得:a=﹣,故抛物线的表达式为:y=﹣x2+2x+6,令y=0,解得:x=4或﹣2,故点A(﹣2,0),函数的对称轴为:x=2,故点D(2,8);(2)将点A、D的坐标代入一次函数表达式:y=mx+n得:,解得:,故直线AD的表达式为:y=2x+4,设点N(n,2n+4),∵MN=OA=2,则点M(n+2,2n+4),①将点M的坐标代入抛物线表达式得:2n+4=﹣(n+2)2+2(n+1)+6,解得:n=﹣2±2,故点M的坐标为(2,4)或(﹣2,﹣4);②点M(n+2,2n+4),点B、D的坐标分别为(6,0)、(2,8),则BD2=(6﹣2)2+82,MB2=(n﹣4)2+(2n+4)2,MD2=n2+(2n﹣4)2,当∠BMD为直角时,由勾股定理得:(6﹣2)2+82=(n﹣4)2+(2n+4)2+n2+(2n﹣4)2,解得:n=,当∠MBD为直角时,同理可得:n=﹣4,当∠MDB为直角时,同理可得:n=,故点M的坐标为:(﹣2,﹣4)或(,)或(,)或(,).。

初中-数学-中考-铁岭市昌图县2019届九年级第三次模拟考试数学试题

初中-数学-中考-铁岭市昌图县2019届九年级第三次模拟考试数学试题

铁岭市昌图县2019届九年级第三次模拟考试数学试题一.选择题(满分30分,每小题3分)1、﹣|﹣5|的倒数是()A. 5B. 15C. ﹣15D. ﹣52、下列运算中,正确的是()A. (x+1)2=x2+1B. (x2)3=x5C. 2x4•3x2=6x8D. x2÷x﹣1=x3(x≠0)3、如图,几何体的左视图是()A. B.C. D.4、第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A. B. C. D.5、某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击比赛,在选拔比赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环 9.5 9.5 9.5 9.5方差/环2 5.1 4.7 4.5 5.1请你根据表中数据选一人参加比赛,最合适的人选是( )A. 甲B. 乙C. 丙D. 丁6、一个圆锥的主视图是边长为4cm 的正三角形,则这个圆锥的侧面积等于()A. 216cm πB. 212cm πC. 28cm πD. 24cm π 7、在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球不放回,再随机摸出一个小球,则两次摸出小球的标号之和为奇数的概率是( )A. 13B. 23C. 14D. 158、如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转,则这两个正方形重叠部分的面积是(( )A. 21-B. 2+1C. 33D. 21+ 9、如图,在▱ABCD 中,过对角线BD 上一点P 作EF ▱BC ,GH ▱AB ,且CG =2BG ,S ▱BPG =1,则S ▱AEPH =( )A. 3B. 4C. 5D. 610、如图所示,▱ABC 为等腰直角三角形,▱ACB =90°,AC =BC =2,正方形DEFG 边长也为2,且AC 与DE 在同一直线上,▱ABC 从C 点与D 点重合开始,沿直线DE 向右平移,直到点A 与点E 重合为止,设CD 的长为x ,▱ABC 与正方形DEFG 重合部分(图中阴影部分)的面积为y ,则y 与x 之间的函数关系的图象大致是( )A. B.C. D. 二.填空题(满分24分,每小题3分)11、在函数y=123xx+++中,自变量x的取值范围是______.12、把一张对边互相平行的纸条折成如图那样,EF是折痕,若▱EFB=32°,则▱D′FD 的度数为______°.13、已知关于x,y的方程组138x yax y+=⎧⎨+=⎩的解为12xy=-⎧⎨=⎩,写出一次函数y=﹣x+1和y=﹣833ax+的图象交点P的坐标是______.14、如图,某扇形纸扇完全打开后,外侧两竹条AB,AC的夹角为120°,AB长为27厘米,则BC的长为______厘米.(结果保留π)15、已知关于x的不等式组{321x ax-≥-≥-的整数解共有5个,则a的取值范围是______.16、如图,正方形ABCD中,AD3+2,已知点E是边AB上的一动点(不与A、B 重合)将▱ADE沿DE对折,点A的对应点为P,当▱APB是等腰三角形时,AE=______.17、如图,▱ABC中,BC=4,▱BAC=45°,以42为半径,过B、C两点作▱O,连OA,则线段OA的最大值为______.18、如图所示,已知:点A(0,0),B30),C(0,1)在▱ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个▱AA1B1,第2个▱B1A2B2,第3个▱B2A3B3,…,则第n个等边三角形的边长等于______.三.解答题19、先化简代数式1﹣1xx-÷2212xx x-+,并从﹣1,0,1,3中选取一个合适的代入求值.20、现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):步数频数频率0≤x<40008a4000≤x<8000150.38000≤x<1200012b12000≤x<16000c0.216000≤x<2000030.0620000≤x<24000d0.04请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.四.解答题21、如图:在平行四边形ABCD中,用直尺和圆规作▱BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.22、如图,OA,OB是▱O的两条半径,OA▱OB,C是半径OB上的一动点,连接AC 并延长交▱O于D,过点D作直线交OB延长线于E,且DE=CE,已知OA=8.(1)求证:ED是▱O的切线;(2)当▱A=30°时,求CD的长.五.解答题23、如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D 处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)六.解答题24、某批发商以70元/千克的成本价购入了某畅销产品1000千克,该产品每天的保存费用为300元,而且平均每天将损耗30千克,据市场预测,该产品的销售价y(元/千克)与时间x(天)之间函数关系的图象如图中的折线段ABC所示.(1)求y与x之间的函数关系式;(2)为获得最大利润,该批发商应该在进货后第几天将这批产品一次性卖出?最大利润是多少?七.解答题25、在锐角▱ABC中,正方形EFGH的两个顶点E、F在BC上,另两个顶点G、H分别在AC、AB上,BC=15cm,BC边上的高是10cm,求正方形的面积.八.解答题26、如图,抛物线y=﹣12x2+bx+c与x轴交于A(﹣1,0)和B(3,0),与y轴交于C点,点C关于抛物线的对称轴的对称点为点D.抛物线顶点为H.(1)求抛物线的解析式.(2)当点E在抛物线的对称轴上运动时,在直线AD上是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.(3)点P为直线AD上方抛物线的对称轴上一动点,连接P A,PD.当S▱P AD=3,若在x轴上存在以动点Q,使PQ+55QB最小,若存在,请直接写出此时点Q的坐标及PQ+55QB的最小值.答案第1页,共15页 参考答案1、【答案】C【分析】先化简绝对值,然后根据倒数的定义求解即可【解答】▱-|-5|=-5,▱﹣|﹣5|的倒数是-15, 选C2、【答案】D【分析】根据完全平方公式、幂的乘方、同底数幂的乘法和除法计算法则分别进行计算即可得出答案.【解答】A 、原式=22x 1x ++,计算错误;B 、根据幂的乘方法则可得原式=6x ,计算错误;C 、根据同底数幂的乘法计算法则可得原式=66x ,计算错误;D 、根据同底数幂的除法计算法则可得原式=4x ,计算正确;选D .3、【答案】A【分析】根据从左边看得到的图形是左视图,可得答案. 【解答】解:如图所示,其左视图为:.选:A .4、【答案】D【分析】根据轴对称图形和中心对称图形的定义来解.【解答】A 、不是轴对称图形,故此选项正确;B 、是轴对称图形,故此选项错误;C 、是轴对称图形,故此选项错误;D 、是轴对称图形,故此选项错误;选A .5、【答案】C【分析】先从平均数的大小确定出人选为丙和丁,再根据方差的大小进行确定即可得答案.【解答】▱=9.5x 甲,=9.5x 乙,=9.6x 丙,=9.6x 丁,9.5=9.5<9.6=9.6,▱丙和丁的平均成绩比甲和乙的平均成绩高,▱应该从丙和丁中选择一人参赛,▱2S甲=5.1,2S乙=4.7,2S丙=4.5,2S丁=5.1,4.5<4.7<5.1=5.1,▱丙的成绩最稳定,▱最合适的人选是丙,选C.6、【答案】C【分析】根据视图的意义得到圆锥的母线长为4cm,底面圆的半径为2cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】▱圆锥的主视图是边长为4cm的正三角形,▱圆锥的母线长为4cm,底面圆的半径为2cm,故圆锥底面圆的周长为4πcm,故圆锥侧面展开图的面积为S=12×4×4π=8π(cm2).选C.7、【答案】B【分析】先画树状图展示所有12种等可能的结果数,再找出其中两次摸出的小球的标号的和为奇数的结果数,然后根据概率公式求解.【解答】画树状图为:共有12种等可能的结果数,其中两次摸出的小球的标号的和为奇数的结果数为8,∴两次摸出的小球的标号的和为奇数的概率为82= 123,选:B.8、【答案】A【分析】如图,首先运用勾股定理求出AC的长度,进而求出D`C的长度;求出▱D`CE 的面积,即可解决问题.【解答】如图,▱四边形ABCD为正方形,▱AB=BC=1,且▱B=90°;▱D`CE=45°由勾股定理得:AC22112+=答案第3页,共15页由题意得:AD ′=AB =1,▱AD ′E =90°,▱D 'C-1,▱D `EC =▱D `CE =45°,▱D ′E =D `C-1,▱S ▱D `EC=211)2=32▱阴影=1311-22⨯⨯( 选A .9、【答案】B【分析】由条件可证明四边形HPFD 、BEPG 为平行四边形,可证明S 四边形AEPH =S 四边形PFCG .,再利用面积的和差可得出四边形AEPH 和四边形PFCG 的面积相等,由已知条件即可得出答案.【解答】▱EF ▱BC ,GH ▱AB ,▱四边形HPFD 、BEPG 、AEPH 、CFPG 为平行四边形,▱S ▱PEB =S ▱BGP ,同理可得S ▱PHD =S ▱DFP ,S ▱ABD =S ▱CDB ,▱S ▱ABD ﹣S ▱PEB ﹣S ▱PHD =S ▱CDB ﹣S ▱BGP ﹣S ▱DFP ,即S 四边形AEPH =S 四边形PFCG .▱CG =2BG ,S ▱BPG =1,▱S 四边形AEPH =S 四边形PFCG =4×1=4,选:B .10、【答案】A【分析】此题可分为两段求解,即C 从D 点运动到E 点和A 从D 点运动到E 点,列出面积随动点变化的函数关系式即可.【解答】设CD 的长为x ABC ,与正方形DEFG 重合部分(图中阴影部分)的面积为y ∴当C 从D 点运动到E 点时,即0x 2≤≤时,()()2111y 222x 2x x 2x 222=⨯⨯--⨯-=-+. 当A 从D 点运动到E 点时,即2x 4<≤时,()][()211y 2x 22x 2x 4x 822⎡⎤=⨯--⨯--=-+⎣⎦,y ∴与x 之间的函数关系()221y x 2x 0x 221y x 4x 8(2x 4)2⎧=-+≤≤⎪⎪⎨⎪=-+<≤⎪⎩由函数关系式可看出A 中的函数图象与所求的分段函数对应.选:A .11、【答案】x ≥2【分析】根据分式的性质及二次根式的性质即可求出x 的取值范围.【解答】▱13x +是分式, ▱x +3≠0,即x ≠-3,▱x -2≥0,即x ≥2, ▱1y x 3=+函数x 的取值范围为:x ≥2, 故答案为:x ≥212、【答案】64【分析】直接利用平行线的性质以及折叠的性质得出▱C′EG =64°,进而得出答案.【解答】解:▱EF 是折痕,▱EFB =32°,AC′▱BD′,▱▱C′EF =▱GEF=▱GFE =32°,▱▱C′EG =64°,▱CE ▱FD ,▱▱D′FD =▱FGC=▱EGB=▱C′EG =64°故答案为:64°.13、【答案】(﹣1,2)【分析】根据题意分析可知方程组的解,要求交点坐标就是求函数的解,即可解答【解答】▱关于x ,y 的方程组138x y ax y +=⎧⎨+=⎩的解为1{2x y =-=, ▱一次函数y =﹣x +1和y =833a x -+的图象交点P 的坐标是(﹣1,2). 故答案为:(﹣1,2).14、【答案】18π【分析】根据弧长公式l =180n r π列式计算即可得解.【解答】BC的长=12027180π⋅=18π(厘米),故答案为:18π15、【答案】-3<a≤-2【分析】一元一次不等式组的整数解.【解答】不等式组解得:a≤x≤2,▱不等式组的整数解有5个为2,1,0,-1,-2,▱-3<a≤-2.16、【答案】1或323 +【分析】此题考查了正方形的性质,翻折变换(折叠问题),等腰三角形性质,解题关键在于利用等腰三角形性质求边长分两种情况讨论:若AP=BP时,▱ADP是等边三角形;若AP=AB时,点P在AB的垂直平分线上,且PF▱AD,得到PF=12AB,在理折叠的性质和正方形性质即可解答【解答】若AP=BP,▱四边形ABCD 是正方形▱AD=AB,▱DAB=90°,▱折叠▱AD=DP=AP,▱ADE=▱PDE▱▱ADP是等边三角形▱▱ADP=60°▱▱ADE=30°▱AE=3AD=323+若AP=AB,如图,过点P作PF▱AD于点F,作▱MED=▱MDE,▱AP=PB,答案第5页,共15页▱点P 在AB 的垂直平分线上,且PF ▱AD ,▱PF =12AB , ▱折叠▱AD =DP =AB ,▱ADE =▱PDE▱PF =12PD ▱▱PDF =30°▱▱ADE =15°▱▱MED =▱MDE ,▱▱AME =30°,ME =MD▱AM ,ME =2AE▱AD =2AE =▱AE =1故答案为:1或33+17、【答案】2+【分析】作OF ▱BC 于F ,根据垂径定理得到BF =CF =12BC =2如图,连结OB ,利用勾股定理得OF A 在BC 所对应的一段弧上一点,于是可判断当点A 在BC 的垂直平分线上时OA 最大,此时AF ▱BC ,AB =AC ,作BD ▱AC于D ,如图,设BD =X ,则▱AB x ,AC ,在Rt ▱BDC 中利用勾股定理得到x 2=4(),再利用面积法可计算出AF +2.,∴AO =AF +OF【解答】作OF ▱BC 于F ,则BF =CF =12BC =2,如图,连结OB ,在Rt ▱OBF 中,OF▱▱BAC =45°,BC =4,▱点A 在BC 所对应的一段弧上一点,▱当点A 在BC 的垂直平分线上时OA 最大,此时AF ▱BC ,AB =AC ,作BD ▱AC 于D ,如图,设BD =x ,▱▱ABD 为等腰直角三角形,答案第7页,共15页▱AB =2BD =2x , ▱AC=2x , 在Rt ▱BDC 中,▱BC 2=CD 2+BD 2,▱42=(2x ﹣x )2+x 2,即x 2=4(2+2),▱12AF •BC =12BD •AC , ▱AF =2x x •=22+2, ▱AO =AF +OF =22+2+27,即线段OA 的最大值为22+2+27.故答案为22+2+27.18、3【分析】根据题目已知条件可推出,AA 133B 1A 2=12A 1B 13类推,第n 个等边三角形的边长等于n 32.【解答】▱OB 3OC =1,▱BC =2,▱▱OBC =30°,▱OCB =60°.而▱AA 1B 1为等边三角形,▱A 1AB 1=60°,▱▱COA 1=30°,则▱CA 1O =90°.在Rt ▱CAA 1中,AA 133 同理得:B 1A 2=12A 1B 13依此类推,第n 个等边三角形的边长等于n 32. 19、【答案】-11x +,-14. 【分析】根据分式的除法和减法可以化简题目中的式子,然后在﹣1,0,1,3中选取一个使得原分式有意义的x 的值代入即可解答本题.【解答】原式=1﹣()()()21·11x x x x x x +-+-=1﹣21x x ++=121x x x +--+=-11x +, 当x =3时,原式=﹣131+=-14. 20、【答案】(1)a =0.16,b =0.24,c =10,d =2,补全频数分布直方图见解答;(2)11340名;(3)110. 【分析】(1)根据频率=频数÷总数可得答案;(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】(1)a =8÷50=0.16,b =12÷50=0.24,c =50×0.2=10,d =50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x <20000的3名教师分别为A 、B 、C ,20000≤x <24000的2名教师分别为X 、Y ,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为答案第9页,共15页=.21、【答案】(1)见解答;(2)8.【分析】根据菱形的判定定理来证明.【解答】(1)证明:由尺规作▱BAF 的角平分线的过程可得AB =AF ,▱BAE =▱F AE , ▱四边形ABCD 是平行四边形,▱AD ▱BC ,▱▱F AE =▱AEB ,▱▱BAE =▱AEB , ▱AB =BE ,▱BE =F A ,▱四边形ABEF 为平行四边形,▱AB =AF ,▱四边形ABEF 为菱形; (2)解:▱四边形ABEF 为菱形,▱AE ▱BF ,BO =FB =3,AE =2AO ,在Rt ▱AOB 中,AO =4,▱AE =2AO =8.22、【答案】(1)证明见解答;(2)83. 【分析】切线的判定,锐角三角函数.解题关键点:熟练掌握切线的判定,锐角三角函数.()1如图连接OD .证A ODA ∠∠=,由90A ACO ∠∠+=,ED EB =,EDB EBD ACO ∠∠∠==,90ODA EDC ∠∠+=可得,即OD DE ⊥;(2)在Rt AOC 中,83OC OA tan30=⋅=求得,再证ODA A 30∠∠==,DOA 120∠=,DOC 30∠=,DOC ODC ∠∠=故,CD OC =可得.【解答】解:()1如图连接OD .OA OD =,A ODA ∠∠∴=,OA OB ⊥,AOB 90∠∴=,A ACO 90∠∠∴+=,ED EB =,EDB EBD ACO ∠∠∠∴==,ODA EDC 90∠∠∴+=,OD DE ∴⊥,DE ∴是O 的切线.()2在Rt AOC 中,OA 8=,A 30∠=, 83OC OA tan303∴=⋅=, OA OD =,ODA A 30∠∠∴==,DOA 120∠=,DOC 30∠=,DOC ODC 30∠∠∴==,83CD OC 3∴==. 23、【答案】(70﹣103)m .【分析】过点D 作DF ▱AB 于点F ,过点C 作CH ▱DF 于点H .通过解Rt ADF 得到DF 的长度;通过解Rt CDE △得到CE 的长度,则BC BE CE =-.【解答】如图,过点D 作DF ▱AB 于点F ,过点C 作CH ▱DF 于点H .则DE =BF =CH =10m ,在Rt ADF 中,▱AF =80m −10m =70m ,45ADF ∠=,▱DF =AF =70m .在Rt CDE △中,▱DE =10m ,30DCE ∠=,▱103()tan3033DE CE m ===, ▱(703).BC BE CE m =-=- 答:障碍物B ,C 两点间的距离为(703).m -答案第11页,共15页24、【答案】(1)3100(020)160(2040)x x x +≤≤⎧⎨≤⎩<(2)函数有最大值,当x =10时,利润最大为39000元【分析】(1)由函数的图象可知当0≤x ≤20时y 和x 是一次函数的关系;当20≤x ≤40时y 是x 的常数函数,由此可得出y 与之间的函数关系式;(2)设到第x 天出售,批发商所获利润为w ,根据等量关系“利润=销售总金额-收购成本-各种费用=该产品的销售价y (元/千克)×(原购入量-xx 存放天数)-收购成本-各种费用列出函数关系式,再求出函数的最值即可【解答】(1)当0≤x ≤20,把(0,100)和(20,160)代入y =kx +b 得 10016020b k b==+⎧⎨⎩, 解得:3100k b ==⎧⎨⎩, ▱y =3x +100,当20≤x ≤40时,y =160,故y 与x 之间的函数关系式是y =3100(020)160(2040)x x x +≤≤⎧⎨≤⎩<; (2)设到第x 天出售,批发商所获利润为w ,由题意得:▱当0≤x ≤20;w =(y ﹣70)(1000﹣30x )﹣300x ,由(1)得y =3x +100,▱w =(3x +100﹣70)(1000﹣30x )﹣300x ,=﹣90(x ﹣10)2+39000,▱a =﹣90<0,▱函数有最大值,当x =10时,利润最大为39000元,▱当20<x ≤40时,w =(y ﹣70)(1000﹣30x )﹣300x ,由(1)得y =160,▱w =(160﹣70)(1000﹣30x )﹣300x=﹣3000x +90000.▱﹣3000<0,▱函数有最大值,当x =20时,利润最大为30000元,▱39000>30000,▱当第10天一次性卖出时,可以获得最大利润是39000元.25、【答案】()236.HEFG S cm =正方形【分析】过A 作AD ▱BC ,交BC 于点D ,交HG 于点M ,则可证明▱AHG ▱▱ABC ,进而求出HG 的长,即可解决问题.【解答】作AD ▱BC ,交BC 于点D ,交HG 于点M ,▱四边形EFGH 是正方形,▱EH =MD =HG ,设正方形的边长HG =x ,则AM =10﹣x ,且AM ▱GH .▱HG ▱BC ,▱▱AHG ▱▱ABC ,▱GH BC=AM AD ,即15x =1010x -,解得:x =6,▱S 正方形HEFG =36(cm 2). 26、【答案】(1)21322y x x =-++(2)(0,12)或(2,32)或(﹣2,﹣12)(3)(2.5,0) 【分析】(1)把A (﹣1,0)和B (3,0),代入到抛物线的解析式,即可解答(2)存在,分三种情况讨论,▱EF 可由AC 平移得到,C 、E 为对应点,A 、F 为对应点,再把F 点代入直线AD 的解析式为y =12x +12,即可解答▱如图2所示,此时点F 与点D 重合,即可解答▱如图3所示,根据平移的规律,得知点F 的横坐标为﹣2, 代入解析式即可解答(3)如图4所示,过点B 作AD 的平行线交抛物线的对称轴于点N ,过点P 作PH 垂直于BN ,与x 轴的交点即为点Q ,设直线BN 的解析式为y =12x +b ,过点B (3,0),求出BN 的解析式,再利用解析式算出M ,N 的值,再算出PQ 5=PQ +QH ,当P 、Q 、H 三点共线时,PQ +55QB 最小,即为PH ,即可解答 【解答】(1)▱抛物线y =﹣12x 2+bx +c 与x 轴交于A (﹣1,0)和B (3,0), ▱1029032b c b c ⎧=--+⎪⎪⎨⎪=-++⎪⎩,答案第13页,共15页 解得,132b c =⎧⎪⎨=⎪⎩, ▱抛物线的解析式为:21322y x x =-++; (2)存在,分三种情况讨论,▱如图1所示,▱四边形ACEF 为平行四边形,▱EF 可由AC 平移得到,C 、E 为对应点,A 、F 为对应点,▱C (0,32),点E 的横坐标为1, ▱向右平移了一个单位,▱A (﹣1,0),▱F 的横坐标为0,▱直线AD 的解析式为y =12x +12, ▱当x =0时,y =12, ▱F (0,12). ▱如图2所示,此时点F 与点D 重合,▱F (2,32). ▱如图3所示,根据平移的规律,得知点F的横坐标为﹣2,当x=﹣2时,y=﹣12,▱F(﹣2,﹣12).综上所述:点F的坐标为(0,12)或(2,32)或(﹣2,﹣12).(3)如图4所示,过点B作AD的平行线交抛物线的对称轴于点N,过点P作PH垂直于BN,与x轴的交点即为点Q,设直线BN的解析式为y=12x+b,过点B(3,0),解得b=﹣32,▱直线BN的解析式为y=12x﹣32,▱抛物线的对称轴为直线x=1,▱N(1,﹣1),设直线AD与抛物线的对称轴的交点为点M,▱M(1,1),▱S▱ADP=PM•(x D﹣x A)•12=3,▱PM=2,▱P(1,3),▱tan▱ABN=12,▱55QB=QH,答案第14页,共15页▱PQ+5QB=PQ+QH,▱当P、Q、H三点共线时,PQ最小,即为PH,▱PN=4,▱NPH=▱ABN,▱PH.▱PQ+5QB的最小值为5,此时点Q(2.5,0).答案第15页,共15页。

铁岭市九年级数学中考模拟试卷(4月份)

铁岭市九年级数学中考模拟试卷(4月份)

铁岭市九年级数学中考模拟试卷(4月份)姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七上·北海期末) 若a为有理数,且|a|=2,那么a是()A . 2B . ﹣2C . 2或﹣2D . 42. (2分) (2017九下·睢宁期中) 2016年我省克服连续降雨等自然灾害影响,全年粮食总产达693.2亿斤,将693.2亿用科学记数法表示为()A . 6.932×1010B . 693.2×108C . 69.32×109D . 69.32×1073. (2分)(2017·桂平模拟) 下列运算正确的是()A . (a﹣2)2=a2﹣4B . =±3C . =﹣3D . a2•a4=a84. (2分)如图,正六边形ABCDEF中,AB=2,点P是ED的中点,连接AP,则AP的长为()A .B . 4C .D .5. (2分) (2020八下·滨湖期中) 下列图形中,是轴对称但不是中心对称图形的是()A .B .C .D .6. (2分)(2020·惠山模拟) 某区新教师招聘中,九位评委独立给出分数,得到一列数.若去掉一个最高分和一个最低分,得到一列新数,那么这两列数的相关统计量中,一定相等的是()A . 方差B . 众数C . 中位数D . 平均数7. (2分)(2014·绍兴) 如图,圆锥的侧面展开图是半径为3,圆心角为90°的扇形,则该圆锥的底面周长为()A . πB . πC .D .8. (2分)(2020·重庆模拟) 如图,点A在反比例函数y= 的图象上,AB⊥x轴于点B,点C在x轴上,且CO:OB=2:1.△ABC的面积为6,则k的值为()A . 2B . 3C . 4D . 59. (2分) (2019九上·绍兴期中) 如图,AB是半圆的直径,点C是弧AB的中点,点E是弧AC的中点,连结EB,CA交于点F,则的值为()A .B .C .D .10. (2分)如图,将边长为2的正方形铁丝框ABCD,变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ADB的面积为()A . 3B . 4C . 6D . 8二、填空题 (共5题;共5分)11. (1分) (2019八上·定安期末) 若m-n=2,则m2-2mn+n2=________.12. (1分)若在实数范围内有意义,则x的取值范围是________13. (1分)(2019·道外模拟) 不等式组的解集为________.14. (1分) (2019九上·辽源期末) 如图,抛物线y=ax2经过矩形OABC的顶点B,交对角线AC于点D.则的值为________.15. (1分)(2018九上·无锡月考) 已知、是方程的两个根,则代数式的值为________.三、解答题 (共9题;共75分)16. (5分)(2020·南漳模拟) 2si n60°+3tan45°17. (5分) (2018九上·腾冲期末) 化简:,将代成你喜欢的任一数,求出式子的值。

辽宁省铁岭市2019-2020学年中考中招适应性测试卷数学试题(4)含解析

辽宁省铁岭市2019-2020学年中考中招适应性测试卷数学试题(4)含解析

辽宁省铁岭市2019-2020学年中考中招适应性测试卷数学试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知BD与CE相交于点A,ED∥BC,AB=8,AC=12,AD=6,那么AE的长等于()A.4 B.9 C.12 D.162.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=12,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(-2,y1),(52,y2)是抛物线上的两点,则y1<y2.其中说法正确的有( )A.②③④B.①②③C.①④D.①②④3.在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能...是多边形的是()A.圆锥B.圆柱C.球D.正方体4.如图,3个形状大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角为60°,A、B、C都在格点上,点D在过A、B、C三点的圆弧上,若E也在格点上,且∠AED=∠ACD,则∠AEC 度数为()A.75°B.60°C.45°D.30°5.如图,数轴上的四个点A,B,C,D对应的数为整数,且AB=BC=CD=1,若|a|+|b|=2,则原点的位置可能是()A.A或B B.B或C C.C或D D.D或A6.如图,AB切⊙O于点B,OA=3,AB=3,弦BC∥OA,则劣弧BC的弧长为()A.33πB.32πC.πD.32π7.如图所示图形中,不是正方体的展开图的是()A.B.C.D.8.在0,-2,5,14,-0.3中,负数的个数是().A.1 B.2 C.3 D.49.下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有( )A.2个B.3个C.4个D.5个10.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点E是△ABC的内心,过点E作EF∥AB交AC于点F,则EF的长为( )A.5B.15C.8D.1011.已知3x+y =6,则xy 的最大值为( )A .2B .3C .4D .612.如图,在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,若CD =2,AB =8,则△ABD 的面积是( )A .6B .8C .10D .12二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,Rt ABC V 中,90ACB ∠=︒,30B ∠=︒,2AC =,将ABC V 绕点C 逆时针旋转至A B C ''V ,使得点A '恰好落在AB 上,A B ''与BC 交于点D ,则A CD '△的面积为_________.14.如图,等边三角形的顶点A (1,1)、B (3,1),规定把等边△ABC“先沿x 轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2018次变换后,等边△ABC 的顶点C 的坐标为_____.15.如图,A 、B 、C 是⊙O 上的三点,若∠C=30°,OA=3,则弧AB 的长为______.(结果保留π)16.方程25x +_____.17.如图,直线l 1∥l 2∥l 3,等边△ABC 的顶点B 、C 分别在直线l 2、l 3上,若边BC 与直线l 3的夹角∠1=25°,则边AB 与直线l 1的夹角∠2=________.18.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H,给出下列结论:①△DFP~△BPH;②33 FP DFPH CD==;③PD2=PH•CD;④ABCD31=3BPDSS∆-正方形,其中正确的是______(写出所有正确结论的序号).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y轴的抛物线与网格对角线OM的两个交点为A,B,其顶点为C,如果△ABC 是该抛物线的内接格点三角形,AB=32,且点A,B,C的横坐标x A,x B,x C满足x A<x C<x B,那么符合上述条件的抛物线条数是()A.7 B.8 C.14 D.1620.(6分)在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这21.(6分)小雁塔位于唐长安城安仁坊(今陕西省西安市南郊)荐福寺内,又称“荐福寺塔”,建于唐景龙年间,与大雁塔同为唐长安城保留至今的重要标志.小明在学习了锐角三角函数后,想利用所学知识测量“小雁塔”的高度,小明在一栋高9.982米的建筑物底部D处测得塔顶端A的仰角为45°,接着在建筑物顶端C处测得塔顶端A的仰角为37.5°.已知AB⊥BD,CD⊥BD,请你根据题中提供的相关信息,求出“小雁塔”的高AB的长度(结果精确到1米)(参考数据:sin37.5°≈0.61,cos37.5°≈0.79,tan37.5°≈0.77)22.(8分)(2017四川省内江市)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:(1)这项被调查的总人数是多少人?(2)试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;(3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.23.(8分)在边长为1的5×5的方格中,有一个四边形OABC,以O点为位似中心,作一个四边形,使得所作四边形与四边形OABC位似,且该四边形的各个顶点都在格点上;求出你所作的四边形的面积.24.(10分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.25.(10分)我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A 、C 两地海拔高度约为1000米,山顶B 处的海拔高度约为1400米,由B 处望山脚A 处的俯角为30°,由B 处望山脚C 处的俯角为45°,若在A 、C 两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据3≈1.732)26.(12分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:调查了________名学生;补全条形统计图;在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学(,,)A B C 和2位女同学(,)D E ,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.27.(12分)如图,在Y ABCD 中,点E 是AB 边的中点,DE 与CB 的延长线交于点F(1)求证:△ADE ≌△BFE ;(2)若DF 平分∠ADC ,连接CE,试判断CE 和DF 的位置关系,并说明理由.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】由于ED∥BC,可证得△ABC∽△ADE,根据相似三角形所得比例线段,即可求得AE的长.【详解】∵ED∥BC,∴△ABC∽△ADE,∴BADA=ACAE,∴BADA=ACAE=86,即AE=9;∴AE=9.故答案选B.【点睛】本题考查的知识点是相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质. 2.D【解析】【分析】根据图象得出a<0, a+b=0,c>0,即可判断①②;把x=2代入抛物线的解析式即可判断③,根据(-2,y1),(52,y2)到对称轴的距离即可判断④.【详解】∵二次函数的图象的开口向下,∴a<0,∵二次函数的图象y轴的交点在y轴的正半轴上, ∴c>0,∵二次函数图象的对称轴是直线x=1 2 ,∴a=-b,∴b>0,∴abc<0,故①正确;∵a=-b, ∴a+b=0,故②正确;4a+2b+c=0,故③错误; ∵()151-2222->- , 12,y y <∴故④正确;故选D..【点睛】本题考查了二次函数的图象与系数的关系的应用,题目比较典型,主要考查学生的理解能力和辨析能力. 3.C【解析】【分析】根据各几何体的主视图可能出现的情况进行讨论即可作出判断.【详解】A. 圆锥的主视图可以是三角形也可能是圆,故不符合题意;B. 圆柱的主视图可能是长方形也可能是圆,故不符合题意;C. 球的主视图只能是圆,故符合题意;D. 正方体的主视图是正方形或长方形(中间有一竖),故不符合题意,故选C.【点睛】本题考查了简单几何体的三视图——主视图,明确主视图是从物体正面看得到的图形是关键. 4.B【解析】【分析】将圆补充完整,利用圆周角定理找出点E 的位置,再根据菱形的性质即可得出△CME 为等边三角形,进而即可得出∠AEC 的值.【详解】将圆补充完整,找出点E 的位置,如图所示.∵弧AD 所对的圆周角为∠ACD 、∠AEC ,∴图中所标点E 符合题意.∵四边形∠CMEN 为菱形,且∠CME=60°,故选B.【点睛】本题考查了菱形的性质、等边三角形的判定依据圆周角定理,根据圆周角定理结合图形找出点E的位置是解题的关键.5.B【解析】【分析】根据AB=BC=CD=1,|a|+|b|=2,分四种情况进行讨论判断即可.【详解】∵AB=BC=CD=1,∴当点A为原点时,|a|+|b|>2,不合题意;当点B为原点时,|a|+|b|=2,符合题意;当点C为原点时,|a|+|b|=2,符合题意;当点D为原点时,|a|+|b|>2,不合题意;故选:B.【点睛】此题主要考查了数轴以及绝对值,解题时注意:数轴上某个数与原点的距离叫做这个数的绝对值.6.A【解析】试题分析:连接OB,OC,∵AB为圆O的切线,∴∠ABO=90°,在Rt△ABO中,OA=23A=30°,∴3AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,则劣弧»BC长为6033ππ⨯=.故选A.考点: 1.切线的性质;2.含30度角的直角三角形;3.弧长的计算.7.C【解析】【分析】由平面图形的折叠及正方形的展开图结合本题选项,一一求证解题.【详解】解:A、B、D都是正方体的展开图,故选项错误;C、带“田”字格,由正方体的展开图的特征可知,不是正方体的展开图.故选C.【点睛】此题考查正方形的展开图,难度不大,但是需要空间想象力才能更好的解题8.B【解析】【分析】根据负数的定义判断即可【详解】解:根据负数的定义可知,这一组数中,负数有两个,即-2和-0.1.故选B.9.C【解析】【分析】根据平方根,数轴,有理数的分类逐一分析即可.【详解】①∵,∴是错误的;②数轴上的点与实数成一一对应关系,故说法正确;③∵=4,故-2是的平方根,故说法正确;④任何实数不是有理数就是无理数,故说法正确;⑥无理数都是无限小数,故说法正确;故正确的是②③④⑥共4个;故选C.【点睛】本题考查了有理数的分类,数轴及平方根的概念,有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无限不循环小数,其中有开方开不尽的数,如等,也有π这样的数.10.A【解析】【分析】过E作EG∥AB,交AC于G,易得CG=EG,EF=AF,依据△ABC∽△GEF,即可得到EG:EF:GF,根据斜边的长列方程即可得到结论.【详解】过E作EG∥BC,交AC于G,则∠BCE=∠CEG.∵CE平分∠BCA,∴∠BCE=∠ACE,∴∠ACE=∠CEG,∴CG=EG,同理可得:EF=AF.∵BC∥GE,AB∥EF,∴∠BCA=∠EGF,∠BAC=∠EFG,∴△ABC∽△GEF.∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=BC:BC:AC=4:3:5,设EG=4k=AG,则EF=3k=CF,FG=5k.∵AC=10,∴3k+5k+4k=10,∴k=56,∴EF=3k=52.故选A.【点睛】本题考查了相似三角形的判定与性质,等腰三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构相似三角形以及构造等腰三角形.11.B【解析】【分析】根据已知方程得到y=-1x+6,将其代入所求的代数式后得到:xy=-1x2+6x,利用配方法求该式的最值.【详解】解:∵1x+y=6,∴y=-1x+6,∴xy=-1x 2+6x=-1(x-1)2+1.∵(x-1)2≥0,∴-1(x-1)2+1≤1,即xy 的最大值为1.故选B .【点睛】考查了二次函数的最值,解题时,利用配方法和非负数的性质求得xy 的最大值.12.B【解析】分析:过点D 作DE ⊥AB 于E ,先求出CD 的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD=2,然后根据三角形的面积公式列式计算即可得解.详解:如图,过点D 作DE ⊥AB 于E ,∵AB=8,CD=2,∵AD 是∠BAC 的角平分线,90C ,∠=︒∴DE=CD=2,∴△ABD 的面积11828.22AB DE =⋅=⨯⨯= 故选B.点睛:考查角平分线的性质,角平分线上的点到角两边的距离相等.二、填空题:(本大题共6个小题,每小题4分,共24分.)133【解析】【分析】首先证明△CAA′是等边三角形,再证明△A′DC 是直角三角形,在Rt △A′DC 中利用含30度的直角三角形三边的关系求出CD 、A′D 即可解决问题.【详解】在Rt △ACB 中,∠ACB=90°,∠B=30°,∴∠A=60°,∵△ABC 绕点C 逆时针旋转至△A′B′C ,使得点A′恰好落在AB 上,∴CA=CA′=2,∠CA′B′=∠A=60°,∴△CAA′为等边三角形,∴∠ACA′=60°,∴∠BCA′=∠ACB -∠ACA′=90°-60°=30°,∴∠A′DC=180°-∠CA′B′-∠BCA′=90°,在Rt △A′DC 中,∵∠A′CD=30°,∴A′D=12CA′=1,∴12A CD S CD A D ''=⋅⋅△112==故答案为:2 【点睛】本题考查了含30度的直角三角形三边的关系,等边三角形的判定和性质以及旋转的性质,掌握旋转的性质“对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等”是解题的关键.14.(﹣2016+1)【解析】【分析】据轴对称判断出点C 变换后在x 轴上方,然后求出点C 纵坐标,再根据平移的距离求出点A 变换后的横坐标,最后写出即可.【详解】解:∵△ABC 是等边三角形AB =3﹣1=2,∴点C 到x 轴的距离为1+2×2, 横坐标为2,∴C (2+1),第2018次变换后的三角形在x 轴上方,点C ,横坐标为2﹣2018×1=﹣2016,所以,点C 的对应点C′的坐标是(﹣2016+1)故答案为:(﹣2016,3+1)【点睛】本题考查坐标与图形变化,平移和轴对称变换,等边三角形的性质,读懂题目信息,确定出连续2018次这样的变换得到三角形在x 轴上方是解题的关键.15.π【解析】∵∠C=30°,∴∠AOB=60°,∴»603180AB l ππ⨯==.即»AB 的长为π. 16.x=1【解析】【分析】无理方程两边平方转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到无理方程的解.【详解】两边平方得:(x+1)1=1x+5,即x 1=4,开方得:x=1或x=-1,经检验x=-1是增根,无理方程的解为x=1.故答案为x=117.【解析】试题分析:如图:∵△ABC 是等边三角形,∴∠ABC=60°,又∵直线l 1∥l 2∥l 3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35°.考点:1.平行线的性质;2.等边三角形的性质.18.①②③【解析】【分析】依据∠FDP=∠PBD ,∠DFP=∠BPC=60°,即可得到△DFP ∽△BPH ;依据△DFP ∽△BPH,可得FP DF PH BP ==BP=CP=CD,即可得到FP DF PH CD ==;判定△DPH ∽△CPD ,可得PH PD PD PC=,即PD 2=PH•CP ,再根据CP=CD ,即可得出PD 2=PH•CD ;根据三角形面积计算公式,结合图形得到△BPD 的面积=△BCP 的面积+△CDP 面积﹣△BCD的面积,即可得出14BPD ABCD S S =V 正方形. 【详解】∵PC=CD ,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD ,∵∠DFP=∠BPC=60°,∴△DFP ∽△BPH ,故①正确;∵∠DCF=90°﹣60°=30°,∴tan ∠DCF=DF CD = ∵△DFP ∽△BPH ,∴3FP DF PH BP ==, ∵BP=CP=CD ,∴FP DF PH CD ==,故②正确; ∵PC=DC ,∠DCP=30°,∴∠CDP=75°,又∵∠DHP=∠DCH+∠CDH=75°,∴∠DHP=∠CDP ,而∠DPH=∠CPD ,∴△DPH ∽△CPD ,∴PH PDPD PC=,即PD2=PH•CP,又∵CP=CD,∴PD2=PH•CD,故③正确;如图,过P作PM⊥CD,PN⊥BC,设正方形ABCD的边长是4,△BPC为正三角形,则正方形ABCD的面积为16,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,∴∠PCD=30°∴PN=PB•sin60°=4×3=23,PM=PC•sin30°=2,∵S△BPD=S四边形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD=12×4×23+12×2×4﹣12×4×4=43+4﹣8=43﹣4,∴31BPDABCDSS-=V正方形,故④错误,故答案为:①②③.【点睛】本题考查了正方形的性质、相似三角形的判定与性质、解直角三角形等知识,正确添加辅助线、灵活运用相关的性质定理与判定定理是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.C【解析】【分析】根据在OB上的两个交点之间的距离为2可知两交点的横坐标的差为3,然后作出最左边开口向下的抛物线,再向右平移1个单位,向上平移1个单位得到开口向下的抛物线的条数,同理可得开口向上的抛物线的条数,然后相加即可得解.【详解】解:如图,开口向下,经过点(0,0),(1,3),(3,3)的抛物线的解析式为y=﹣x2+4x,然后向右平移1个单位,向上平移1个单位一次得到一条抛物线,可平移6次,所以,一共有7条抛物线,同理可得开口向上的抛物线也有7条,所以,满足上述条件且对称轴平行于y轴的抛物线条数是:7+7=1.故选C.【点睛】本题是二次函数综合题.主要考查了网格结构的知识与二次函数的性质,二次函数图象与几何变换,作出图形更形象直观.20.(1)13(2)14【解析】【分析】(1)由小亮打第一场,再从其余三人中随机选取一人打第一场,求出恰好选中大刚的概率即可;(2)画树状图得出所有等可能的情况数,找出小莹和小芳伸“手心”或“手背”恰好相同的情况数,即可求出所求的概率.【详解】解:(1)∵确定小亮打第一场,∴再从小莹,小芳和大刚中随机选取一人打第一场,恰好选中大刚的概率为13;(2)列表如下:所有等可能的情况有8种,其中小莹和小芳伸“手心”或“手背”恰好相同且与大刚不同的结果有2个,则小莹与小芳打第一场的概率为21 84 .【点睛】本题主要考查了列表法与树状图法;概率公式.21.43米【解析】【分析】作CE⊥AB于E,则四边形BDCE是矩形,BE=CD=9.982米,设AB=x.根据tan∠ACE=AEEC,列出方程即可解决问题.【详解】解:如图,作CE⊥AB于E.则四边形BDCE是矩形,BE=CD=9.982米,设AB=x.在Rt△ABD中,∵∠ADB=45°,∴AB=BD=x,在Rt△AEC中,tan∠ACE==tan37.5°≈0.77,∴=0.77,解得x≈43,答:“小雁塔”的高AB的长度约为43米.【点睛】本题考查解直角三角形的应用-仰角俯角问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用构建方程的思想思考问题.22.(1)50;(2)108°;(3)12.【解析】分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C 组的人数;(2)画出树状图,由概率公式即可得出答案.本题解析:解:(1)调查的总人数是:19÷38%=50(人).C组的人数有50-15-19-4=12(人),补全条形图如图所示.(2)画树状图如下.共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=61 122.点睛:本题考查了列表法与树状图、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.23.(1)如图所示,见解析;四边形OA′B′C′即为所求;(2)S四边形OA′B′C′=1.【解析】【分析】(1)结合网格特点,分别作出点A、B、C关于点O成位似变换的对应点,再顺次连接即可得;(2)根据S四边形OA′B′C′=S△OA′B′+S△OB′C′计算可得.【详解】(1)如图所示,四边形OA′B′C′即为所求.(2)S四边形OA′B′C′=S△OA′B′+S△OB′C′=×4×4+×2×2=8+2=1.【点睛】本题考查了作图-位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.24.(1)12;(2)规则是公平的;【解析】试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;(2)分别计算出小王和小李去植树的概率即可知道规则是否公平.试题解析:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P(小王)=34;(2)不公平,理由如下:∵P(小王)=34,P(小李)=14,34≠14,∴规则不公平.点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.25.隧道最短为1093米.【解析】【分析】作BD⊥AC于D,利用直角三角形的性质和三角函数解答即可.【详解】如图,作BD⊥AC于D,由题意可得:BD=1400﹣1000=400(米),∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵tan30°=BDAD,即40033AD=,∴3(米),在Rt△BCD中,∵tan45°=BDCD,即4001CD=,∴CD=400(米),∴3(米),答:隧道最短为1093米.【点睛】本题考查了解直角三角形的应用,正确添加辅助线构建直角三角形是解题的关键.26.50 见解析(3)115.2° (4)3 5【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 º×它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=15÷30%=50(名)故答案为50;(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,故答案为115.2°;(4)画树状图如图.由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)==.点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.27.(1)见解析;(1)见解析.【解析】【分析】(1)由全等三角形的判定定理AAS证得结论.(1)由(1)中全等三角形的对应边相等推知点E是边DF的中点,∠1=∠1;根据角平分线的性质、等量代换以及等角对等边证得DC=FC,则由等腰三角形的“三合一”的性质推知CE⊥DF.【详解】解:(1)证明:如图,∵四边形ABCD是平行四边形,∴AD∥BC.又∵点F在CB的延长线上,∴AD∥CF.∴∠1=∠1.∵点E是AB边的中点,∴AE=BE,∵在△ADE与△BFE中,12DEA FEB AE BE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△BFE(AAS).(1)CE⊥DF.理由如下:如图,连接CE,由(1)知,△ADE≌△BFE,∴DE=FE,即点E是DF的中点,∠1=∠1.∵DF平分∠ADC,∴∠1=∠2.∴∠2=∠1.∴CD=CF.∴CE⊥DF.。

2019年辽宁省铁岭市昌图县中考数学模拟试卷(4月份)(解析版)

2019年辽宁省铁岭市昌图县中考数学模拟试卷(4月份)(解析版)

2019年辽宁省铁岭市昌图县中考数学模拟试卷(4月份)一、选择题(每小题3分,共30分)1.﹣3的绝对值是()A.3 B.﹣3 C.D.2.如图为一个台阶,它的主视图正确的是()A.B.C.D.3.下列运算正确的是()A.a3•b3=(ab)3B.a2•a3=a6C.a6÷a3=a2D.(a2)3=a54.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数B.方差C.众数D.中位数5.将点A(﹣2,3)绕坐标原点逆时针旋转90后得到点A',则点A'的坐标为()A.(2,3)B.(3,2)C.(﹣2,﹣3)D.(﹣3,﹣2)6.向一个半径为2的圆中投掷石子(假设石子全部投入圆形区域内),那么石子落在此圆的内接正方形中的概率是()A.B.C.D.7.一个圆锥的轴截面是一个边长为2cm的等边三角形,则它的侧面积是()A.4πB.2πC.πD.8.关于x的一元二次方程有两个实数根,则m的取值范围是()A.m≤1 B.m<1 C.﹣3≤m≤1 D.﹣3<m<19.如图,三角形OAB和三角形BCD是等腰直角三角形,点B、D在x轴上,∠ABO =∠CDB=90°,点A在双曲线上,若△OAC的面积为,则k的值为()A.B.C.﹣9 D.﹣1210.如图,二次函数y=ax2+bx+c的对称轴是直线x=1,且经过点(﹣1,0),则下列结论:①abc<0;②2a﹣b=0;③a<﹣;④若方程ax2+bx+c﹣2=0的两个根为x1和x2,则(x1+1)(x2﹣3)<0,正确的有()个.A.1 B.2 C.3 D.4二、填空题(本题8小题,每小题3分,共24分)11.截止2018年底,中国互联网用户达8.29亿.数据8.29亿用科学记数法表示为.12.在实数范围内分解因式:x3﹣2x=.13.如图,已知∠ACB=90°,直线MN∥AB,若∠1=33°,则∠2=°.14.已知+|y﹣3|=0,那么x y=.15.如图,AB为⊙O的直径,弦CD⊥直径AB,垂足为E,连接OC,BD,如果∠D。

辽宁省铁岭市2019-2020学年中考数学四模试卷含解析

辽宁省铁岭市2019-2020学年中考数学四模试卷含解析

辽宁省铁岭市2019-2020学年中考数学四模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知△ABC,△DCE,△FEG,△HGI是4个全等的等腰三角形,底边BC,CE,EG,GI在同一直线上,且AB=2,BC=1.连接AI,交FG于点Q,则QI=()A.1 B.616C.666D.432.对于二次函数,下列说法正确的是()A.当x>0,y随x的增大而增大B.当x=2时,y有最大值-3C.图像的顶点坐标为(-2,-7)D.图像与x轴有两个交点3.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°-12αB.90°+12αC.2D.360°-α4.下列立体图形中,主视图是三角形的是()A.B.C.D.5.计算(﹣3)﹣(﹣6)的结果等于()A.3 B.﹣3 C.9 D.186.关于x的方程=无解,则k的值为()A.0或B.﹣1 C.﹣2 D.﹣3 7.一元二次方程x2﹣5x﹣6=0的根是()A .x 1=1,x 2=6B .x 1=2,x 2=3C .x 1=1,x 2=﹣6D .x 1=﹣1,x 2=68.如图,嘉淇同学拿20元钱正在和售货员对话,且一本笔记本比一支笔贵3元,请你仔细看图,1本笔记本和1支笔的单价分别为( )A .5元,2元B .2元,5元C .4.5元,1.5元D .5.5元,2.5元9.如图,矩形ABCD 中,AB =4,BC =3,F 是AB 中点,以点A 为圆心,AD 为半径作弧交AB 于点E ,以点B 为圆心,BF 为半径作弧交BC 于点G ,则图中阴影部分面积的差S 1-S 2为( )A .13124π-B .9π1?24-C .1364π+D .610.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,下列方程组正确的是( )A .B .C .D .11.下列计算结果正确的是( )A .329()a a -=B .236a a a ⋅=C .3332a a a +=D .0(cos 600.5)1︒-= 12.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数k y x=(x>0)的图象经过顶点B ,则k 的值为A.12 B.20 C.24 D.32二、填空题:(本大题共6个小题,每小题4分,共24分.)13.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等.设甲每小时搬运xkg货物,则可列方程为_____.14.如图,在△ABC中,∠ACB=90°,AC=BC=3,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=2,则sin∠BFD的值为_____.15.一元二次方程x2+mx+3=0的一个根为- 1,则另一个根为.16.如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB的面积为__________ .17.某篮球架的侧面示意图如图所示,现测得如下数据:底部支架AB的长为1.74m,后拉杆AE的倾斜角∠EAB=53°,篮板MN到立柱BC的水平距离BH=1.74m,在篮板MN另一侧,与篮球架横伸臂DG等高度处安装篮筐,已知篮筐到地面的距离GH的标准高度为3.05m.则篮球架横伸臂DG的长约为_____m(结果保留一位小数,参考数据:sin53°≈45,cos53°≈35,tan53°≈43).18.若一个多边形每个内角为140°,则这个多边形的边数是________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.求证:BE = DF ;连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论.20.(6分)先化简:21111x x x ⎛⎫-÷ ⎪+-⎝⎭,再请你选择一个合适的数作为x 的值代入求值. 21.(6分)如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P 使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由. 22.(8分)如图,在东西方向的海岸线MN 上有A ,B 两港口,海上有一座小岛P ,渔民每天都乘轮船从A ,B 两港口沿AP ,BP 的路线去小岛捕鱼作业.已知小岛P 在A 港的北偏东60°方向,在B 港的北偏西45°方向,小岛P 距海岸线MN 的距离为30海里.求AP ,BP 的长(参考数据:2≈1.4,3,5);甲、乙两船分别从A ,B 两港口同时出发去小岛P 捕鱼作业,甲船比乙船晚到小岛24分钟.已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?23.(8分)观察规律并填空.21133(1)2224-=⨯=221113242(1)(1)2322333--=⨯⨯⨯=2221111324355(1)(1)(1)2342233448---=⨯⨯⨯⨯⨯= ⋯⋯2222211111(1)(1)(1)(1)(1)2345n-----=L L ______(用含n 的代数式表示,n 是正整数,且 n ≥ 2) 24.(10分)如图,在ABC V 中,AB AC =,AE 是角平分线,BM 平分ABC ∠交AE 于点M ,经过B M ,两点的O e 交BC 于点G ,交AB 于点F ,FB 恰为O e 的直径.求证:AE 与O e 相切;当14cos 3BC C ==,时,求O e 的半径. 25.(10分)在连接A 、B 两市的公路之间有一个机场C ,机场大巴由A 市驶向机场C ,货车由B 市驶向A 市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C 的路程y (km )与出发时间x (h )之间的函数关系图象.直接写出连接A 、B 两市公路的路程以及货车由B 市到达A 市所需时间.求机场大巴到机场C 的路程y (km )与出发时间x (h )之间的函数关系式.求机场大巴与货车相遇地到机场C 的路程.26.(12分)如图,AB 是⊙O 的直径,点E 是»AD 上的一点,∠DBC=∠BED .求证:BC 是⊙O 的切线;已知AD=3,CD=2,求BC 的长.27.(12分)先化简,再求值:22211·1441x x x x x x -++--+-,其中x 是从-1、0、1、2中选取一个合适的数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】解:∵△ABC 、△DCE 、△FEG 是三个全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=2BC=2,∴AB BI =24=12BC AB ,=12,∴AB BI =BC AB .∵∠ABI=∠ABC ,∴△ABI ∽△CBA ,∴AC AI =AB BI.∵AB=AC ,∴AI=BI=2.∵∠ACB=∠FGE ,∴AC ∥FG ,∴QI AI =GI CI =13,∴QI=13AI=43.故选D . 点睛:本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解AB ∥CD ∥EF ,AC ∥DE ∥FG 是解题的关键.2.B【解析】【详解】 二次函数22114(2)344y x x x =-+-=---, 所以二次函数的开口向下,当x <2,y 随x 的增大而增大,选项A 错误;当x=2时,取得最大值,最大值为-3,选项B 正确;顶点坐标为(2,-3),选项C 错误;顶点坐标为(2,-3),抛物线开口向下可得抛物线与x 轴没有交点,选项D 错误,故答案选B.考点:二次函数的性质.3.C【解析】试题分析:∵四边形ABCD 中,∠ABC+∠BCD=360°﹣(∠A+∠D )=360°﹣α,∵PB 和PC 分别为∠ABC 、∠BCD 的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD )=12(360°﹣α)=180°﹣12α, 则∠P=180°﹣(∠PBC+∠PCB )=180°﹣(180°﹣12α)=12α. 故选C .考点:1.多边形内角与外角2.三角形内角和定理.4.A考查简单几何体的三视图.根据从正面看得到的图形是主视图,可得图形的主视图【详解】A、圆锥的主视图是三角形,符合题意;B、球的主视图是圆,不符合题意;C、圆柱的主视图是矩形,不符合题意;D、正方体的主视图是正方形,不符合题意.故选A.【点睛】主视图是从前往后看,左视图是从左往右看,俯视图是从上往下看5.A【解析】原式=−3+6=3,故选A6.A【解析】方程两边同乘2x(x+3),得x+3=2kx,(2k-1)x=3,∵方程无解,∴当整式方程无解时,2k-1=0,k=,当分式方程无解时,①x=0时,k无解,②x=-3时,k=0,∴k=0或时,方程无解,故选A.7.D【解析】【分析】本题应对原方程进行因式分解,得出(x-6)(x+1)=1,然后根据“两式相乘值为1,这两式中至少有一式值为1.”来解题.(x-6)(x+1)=1x 1=-1,x 2=6故选D .【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法.8.A【解析】【分析】可设1本笔记本的单价为x 元,1支笔的单价为y 元,由题意可得等量关系:①3本笔记本的费用+2支笔的费用=19元,②1本笔记本的费用﹣1支笔的费用=3元,根据等量关系列出方程组,再求解即可.【详解】设1本笔记本的单价为x 元,1支笔的单价为y 元,依题意有:322013x y x y +=-⎧⎨-=⎩,解得:52x y =⎧⎨=⎩. 故1本笔记本的单价为5元,1支笔的单价为2元.故选A .【点睛】本题考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系设出未知数,列出方程组.9.A【解析】【分析】根据图形可以求得BF 的长,然后根据图形即可求得S 1-S 2的值.【详解】∵在矩形ABCD 中,AB=4,BC=3,F 是AB 中点,∴BF=BG=2,∴S 1=S 矩形ABCD -S 扇形ADE -S 扇形BGF +S 2,∴S 1-S 2=4×3-22903902360360ππ⨯⨯⨯⨯-=13124π-, 故选A .本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.10.D【解析】试题解析:设现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,由题意得.故选D .考点:由实际问题抽象出二元一次方程组11.C【解析】【分析】利用幂的乘方、同底数幂的乘法、合并同类项及零指数幂的定义分别计算后即可确定正确的选项.【详解】A 、原式6a =,故错误;B 、原式5a =,故错误;C 、利用合并同类项的知识可知该选项正确;D 、cos600.5︒=,cos600.50︒-=,所以原式无意义,错误,故选C .【点睛】本题考查了幂的运算性质及特殊角的三角函数值的知识,解题的关键是能够利用有关法则进行正确的运算,难度不大.12.D【解析】【详解】如图,过点C 作CD ⊥x 轴于点D ,∵点C 的坐标为(3,4),∴OD=3,CD=4.∴根据勾股定理,得:OC=5.∵四边形OABC 是菱形,∴点B 的坐标为(8,4).∵点B 在反比例函数(x>0)的图象上, ∴. 故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.5000x =8000600+x 【解析】【分析】设甲每小时搬运x 千克,则乙每小时搬运(x+600)千克,根据甲搬运5000kg 所用时间与乙搬运8000kg 所用时间相等建立方程求出其解就可以得出结论.【详解】解:设甲每小时搬运x 千克,则乙每小时搬运(x+600)千克, 由题意得:5000x =8000600+x . 故答案是:5000x =8000600+x . 【点睛】本题考查了由实际问题抽象出分式方程,根据题意找到等量关系是关键.14.12【解析】分析:过点D 作DG ⊥AB 于点G .根据折叠性质,可得AE=DE=2,AF=DF ,CE=1,在Rt △DCE 中,由勾股定理求得3CD =所以DB=33;在Rt △ABC 中,由勾股定理得2AB =;在Rt △DGB 中,由锐角三角函数求得326DG -=,326GB -=; 设AF=DF=x ,则FG= 3263x --,在Rt △DFG 中,根据勾股定理得方程22326326((322x +--=2x ,解得326x =sin BFD ∠.的值 详解:如图所示,过点D 作DG ⊥AB 于点G .根据折叠性质,可知△AEF ≅△DEF ,∴AE=DE=2,AF=DF ,CE=AC-AE=1,在Rt △DCE 中,由勾股定理得2222213CD ED CE =-=-, ∴DB=33-在Rt △ABC 中,由勾股定理得22223332AB AC BC +=+=在Rt △DGB 中,2326sin (33)22DG DB B =⋅=⨯=,326sin 2GB DB B =⋅=; 设AF=DF=x ,得FG=AB-AF-GB=3263x --, 在Rt △DFG 中,222DF DG GF =+, 即22326326)(3)x --+--=2x , 解得326x =∴sin BFD ∠=DG DF =12. 故答案为12. 点睛:主要考查了翻折变换的性质、勾股定理、锐角三件函数的定义;解题的关键是灵活运用折叠的性质、勾股定理、锐角三角函数的定义等知识来解决问题.15.-1.【解析】【分析】因为一元二次方程的常数项是已知的,可直接利用两根之积的等式求解.【详解】∵一元二次方程x 2+mx+1=0的一个根为-1,设另一根为x 1,由根与系数关系:-1•x 1=1,解得x 1=-1.故答案为-1.16.16【解析】【详解】设扇形的圆心角为n°,则根据扇形的弧长公式有:π·4=8 180n,解得360πn=所以22360S==16360360扇形π4πrπ=n17.1.1.【解析】【分析】过点D作DO⊥AH于点O,先证明△ABC∽△AOD得出ABAO=CBDO,再根据已知条件求出AO,则OH=AH-AO=DG.【详解】解:过点D作DO⊥AH于点O,如图:由题意得CB∥DO,∴△ABC∽△AOD,∴ABAO=CBDO,∵∠CAB=53°,tan53°=43,∴tan∠CAB=CBAB=43,∵AB=1.74m,∴CB=1.31m,∵四边形DGHO为长方形,∴DO=GH=3.05m,OH=DG,∴1.74AO=2.323.05,则AO=1.1875m,∵BH=AB=1.75m,∴AH=3.5m,则OH=AH-AO≈1.1m,∴DG≈1.1m.故答案为1.1.【点睛】本题考查了相似三角形的性质与应用,解题的关键是熟练的掌握相似三角形的性质与应用.18.九【解析】【分析】根据多边形的内角和定理:180°•(n-2)进行求解即可.【详解】由题意可得:180°⋅(n−2)=140°⋅n,解得n=9,故多边形是九边形.故答案为9.【点睛】本题考查了多边形的内角和定理,解题的关键是熟练的掌握多边形的内角和定理.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)四边形AEMF是菱形,证明见解析.【解析】【分析】(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE≌△ADF;(2)由于四边形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF是菱形.【详解】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∵AD AB AF AE ⎧⎨⎩==,∴Rt△ADF≌Rt△ABE(HL)∴BE=DF;(2)四边形AEMF是菱形,理由为:证明:∵四边形ABCD是正方形,∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),BC=DC (正方形四条边相等),∵BE=DF (已证),∴BC-BE=DC-DF (等式的性质),即CE=CF ,在△COE 和△COF 中,CE CF ACB ACD OC OC ⎪∠⎪⎩∠⎧⎨===,∴△COE ≌△COF (SAS ),∴OE=OF ,又OM=OA ,∴四边形AEMF 是平行四边形(对角线互相平分的四边形是平行四边形),∵AE=AF ,∴平行四边形AEMF 是菱形.20.x ﹣1,1.【解析】【分析】先通分计算括号里的,再计算括号外的,最后根据分式性质,找一个恰当的数2(此数不唯一)代入化简后的式子计算即可.【详解】 解:原式=(1)(1)1x x x x x++⨯-=x ﹣1, 根据分式的意义可知,x≠0,且x≠±1,当x =2时,原式=2﹣1=1.【点睛】本题主要考查分式的化简求值,化简过程中要注意运算顺序,化简结果是最简形式,难点在于当未知数的值没有明确给出时,所选取的未知数的值必须使原式的各分式都有意义,且除数不能为零.21.(1)y=x 2-4x+3.(2)当m=52时,四边形AOPE 面积最大,最大值为758.(3)P 点的坐标为 :P 1,12),P 2(32-,2),P 3(2,2),P 4(52-,12). 【解析】分析:(1)利用对称性可得点D 的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得点P的坐标;同理可得其他图形中点P的坐标.详解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2-4x+3;(2)如图2,设P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四边形AOPE=S△AOE+S△POE,=12×3×3+12PG•AE,=92+12×3×(-m2+5m-3),=-32m2+152m,=32(m-52)2+758,∵-32<0,∴当m=52时,S有最大值是758;(3)如图3,过P作MN⊥y轴,交y轴于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2-4m+3),则-m2+4m-3=2-m,解得:5+555-∴P 5+51+555-15-);如图4,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则-m2+4m-3=m-2,解得:3+5或352-;P3+515-35-1+5);综上所述,点P的坐标是:5+51+5或55-,15-)或3+515-或35-,52).点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.22.(1)AP=60海里,BP=42(海里);(2)甲船的速度是24海里/时,乙船的速度是20海里/时【解析】【分析】(1)过点P作PE⊥AB于点E,则有PE=30海里,由题意,可知∠PAB=30°,∠PBA=45°,从而可得AP =60海里,在Rt△PEB中,利用勾股定理即可求得BP的长;(2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据甲船比乙船晚到小岛24分钟列出分式方程,求解后进行检验即可得.【详解】(1)如图,过点P作PE⊥MN,垂足为E,由题意,得∠PAB=90°-60°=30°,∠PBA=90°-45°=45°,∵PE=30海里,∴AP=60海里,∵PE⊥MN,∠PBA=45°,∴∠PBE=∠BPE=45°,∴PE =EB =30海里,在Rt △PEB 中,BP =22PE EB +=302≈42海里, 故AP =60海里,BP =42(海里);(2)设乙船的速度是x 海里/时,则甲船的速度是1.2x 海里/时,根据题意,得6042241.260x x -=, 解得x =20,经检验,x =20是原方程的解,甲船的速度为1.2x =1.2×20=24(海里/时)., 答:甲船的速度是24海里/时,乙船的速度是20海里/时.【点睛】本题考查了勾股定理的应用,分式方程的应用,含30度角的直角三角形的性质,等腰直角三角形的判定与性质,熟练掌握各相关知识是解题的关键.23.12n n + 【解析】【分析】由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的(1﹣12)和(1+1n )相乘得出结果. 【详解】 2222211111111112345n -----L L ()()()()() =1111111111111111223344n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+⨯-⨯+⨯-⨯+⨯⨯-⨯+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L =132431...22334n n+⨯⨯⨯⨯⨯⨯ =12n n+. 故答案为:12n n+. 【点睛】本题考查了算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.24.(1)证明见解析;(2)32.【解析】【分析】(1)连接OM,证明OM∥BE,再结合等腰三角形的性质说明AE⊥BE,进而证明OM⊥AE;(2)结合已知求出AB,再证明△AOM∽△ABE,利用相似三角形的性质计算.【详解】(1)连接OM,则OM=OB,∴∠1=∠2,∵BM平分∠ABC,∴∠1=∠3,∴∠2=∠3,∴OM∥BC,∴∠AMO=∠AEB,在△ABC中,AB=AC,AE是角平分线,∴AE⊥BC,∴∠AEB=90°,∴∠AMO=90°,∴OM⊥AE,∵点M在圆O上,∴AE与⊙O相切;(2)在△ABC中,AB=AC,AE是角平分线,∴BE=12BC,∠ABC=∠C,∵BC=4,cosC=1 3∴BE=2,cos∠ABC=13,在△ABE中,∠AEB=90°,∴AB=cos BE ABC=6,设⊙O的半径为r,则AO=6-r,∵OM ∥BC ,∴△AOM ∽△ABE , ∴∴OM AO BE AB=, ∴626r r -=, 解得32r =, ∴O e 的半径为32. 【点睛】本题考查了切线的判定;等腰三角形的性质;相似三角形的判定与性质;解直角三角形等知识,综合性较强,正确添加辅助线,熟练运用相关知识是解题的关键.25.(1)连接A 、B 两市公路的路程为80km ,货车由B 市到达A 市所需时间为43h ;(2)y=﹣80x+60(0≤x≤34);(3)机场大巴与货车相遇地到机场C 的路程为1007km . 【解析】【分析】 (1)根据AB AC BC =+可求出连接A 、B 两市公路的路程,再根据货车13h 行驶20km 可求出货车行驶60km 所需时间; (2)根据函数图象上点的坐标,利用待定系数法即可求出机场大巴到机场C 的路程y (km )与出发时间x (h )之间的函数关系式;(3)利用待定系数法求出线段ED 对应的函数表达式,联立两函数表达式成方程组,通过解方程组可求出机场大巴与货车相遇地到机场C 的路程.【详解】解:(1)60+20=80(km),14802033÷⨯=(h) ∴连接A. B 两市公路的路程为80km ,货车由B 市到达A 市所需时间为43h . (2)设所求函数表达式为y=kx+b(k≠0),将点(0,60)、3(,0)4代入y=kx+b , 得:6030,4b k b =⎧⎪⎨+=⎪⎩ 解得:8060k b =-⎧⎨=⎩, ∴机场大巴到机场C 的路程y(km)与出发时间x(h)之间的函数关系式为38060(0).4y x x =-+≤≤(3)设线段ED对应的函数表达式为y=mx+n(m≠0)将点14 (,0)(,60) 33、代入y=mx+n,得:13460,3m nm n⎧+=⎪⎪⎨⎪+=⎪⎩解得:6020mn=⎧⎨=-⎩,∴线段ED对应的函数表达式为146020().33y x x=-≤≤解方程组80606020,y xy x=-+⎧⎨=-⎩得471007xy⎧=⎪⎪⎨⎪=⎪⎩,∴机场大巴与货车相遇地到机场C的路程为1007km.【点睛】本题考查一次函数的应用,掌握待定系数法求函数关系式是解题的关键,本题属于中档题,难度不大,但过程比较繁琐,因此再解决该题是一定要细心.26.(1)证明见解析(2)BC=【解析】【分析】(1)AB是⊙O的直径,得∠ADB=90°,从而得出∠BAD=∠DBC,即∠ABC=90°,即可证明BC是⊙O 的切线;(2)可证明△ABC∽△BDC,则BC CDCA BC=,即可得出10.【详解】(1)∵AB是⊙O的切直径,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC 是⊙O 的切线;(2)解:∵∠BAD=∠DBC ,∠C=∠C ,∴△ABC ∽△BDC , ∴BC CD CA BC=,即BC 2=AC•CD=(AD+CD )•CD=10,∴.考点:1.切线的判定;2.相似三角形的判定和性质.27.12-. 【解析】【分析】先把分子分母因式分解,约分后进行通分化为同分母,再进行同分母的加法运算,然后再约分得到原式=12x -,由于x 不能取±1,2,所以把x=0代入计算即可. 【详解】22211·1441x x x x x x -++--+-, =()()2211•11(2)1x x x x x x -+++--- =12(1)(2)(1)(2)x x x x x -+---- =()()112x x x --- =12x -, 当x=0时,原式=11022=--.。

辽宁省铁岭市2019-2020学年中考数学模拟试题(4)含解析

辽宁省铁岭市2019-2020学年中考数学模拟试题(4)含解析

辽宁省铁岭市2019-2020学年中考数学模拟试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在⊙O中,O为圆心,点A,B,C在圆上,若OA=AB,则∠ACB=()A.15°B.30°C.45°D.60°2.下列图形中,阴影部分面积最大的是A.B.C.D.3.如图,三棱柱ABC﹣A1B1C1的侧棱长和底面边长均为2,且侧棱AA1⊥底面ABC,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为()A.3B.23C.22D.44.如图,数轴上表示的是下列哪个不等式组的解集()A.53xx≥-⎧⎨>-⎩B.53xx>-⎧⎨≥-⎩C.53xx<⎧⎨<-⎩D.53xx<⎧⎨>-⎩5.数据3、6、7、1、7、2、9的中位数和众数分别是()A.1和7 B.1和9 C.6和7 D.6和96.某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是()A.0.69×10﹣6B.6.9×10﹣7C.69×10﹣8D.6.9×1077.若3x>﹣3y,则下列不等式中一定成立的是()A .0x y +>B .0x y ->C .0x y +<D .0x y -<8.如图,为了测量河对岸l 1上两棵古树A 、B 之间的距离,某数学兴趣小组在河这边沿着与AB 平行的直线l 2上取C 、D 两点,测得∠ACB =15°,∠ACD =45°,若l 1、l 2之间的距离为50m ,则A 、B 之间的距离为( )A .50mB .25mC .(50﹣5033)m D .(50﹣253)m 9.下列各式中计算正确的是 A .()222x y x y +=+B .()236x x =C .()2236x x = D .224a a a +=10.如图,四边形ABCD 是菱形,AC=8,DB=6,DH ⊥AB 于H ,则DH=( )A .245B .125C .12D .2411.二次函数224y x x =-++的最大值为( ) A .3 B .4 C .5D .612.某射手在同一条件下进行射击,结果如下表所示: 射击次数(n )1020 50 100 200 500 …… 击中靶心次数(m ) 8 194492178451……击中靶心频率()0.80 0.95 0.88 0.92 0.89 0.90 ……由此表推断这个射手射击1次,击中靶心的概率是( ) A .0.6B .0.7C .0.8D .0.9二、填空题:(本大题共6个小题,每小题4分,共24分.)13.11201842-⎛⎫ ⎪⎝⎭=_____.14.若一元二次方程x 2﹣2x ﹣m=0无实数根,则一次函数y=(m+1)x+m ﹣1的图象不经过第_____象限. 15.如图,△ABC 是⊙O 的内接三角形,AD 是⊙O 的直径,∠ABC=50°,则∠CAD=________ .16.如图①,四边形ABCD 中,AB ∥CD ,∠ADC=90°,P 从A 点出发,以每秒1个单位长度的速度,按A→B→C→D 的顺序在边上匀速运动,设P 点的运动时间为t 秒,△PAD 的面积为S ,S 关于t 的函数图象如图②所示,当P 运动到BC 中点时,△PAD 的面积为______.17.一个不透明的袋子中装有6个球,其中2个红球、4个黑球,这些球除颜色外无其他差别.现从袋子中随机摸出一个球,则它是黑球的概率是______.18.规定:()a b a b b ⊗=+,如:()2323315⊗=+⨯=,若23x ⊗=,则x =__. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,已知抛物线y=x 2+bx+c 过A ,B ,C 三点,点A 的坐标是(3,0),点C 的坐标是(0,-3),动点P 在抛物线上.(1)b =_________,c =_________,点B 的坐标为_____________;(直接填写结果)(2)是否存在点P ,使得△ACP 是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由;(3)过动点P 作PE 垂直y 轴于点E ,交直线AC 于点D ,过点D 作x 轴的垂线.垂足为F ,连接EF ,当线段EF 的长度最短时,求出点P 的坐标.20.(6分)如图,在每个小正方形的边长为1的网格中,点A ,B ,M ,N 均在格点上,P 为线段MN 上的一个动点(1)MN的长等于_______,(2)当点P在线段MN上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的,(不要求证明)21.(6分)新定义:如图1(图2,图3),在△ABC中,把AB边绕点A顺时针旋转,把AC边绕点A 逆时针旋转,得到△AB′C′,若∠BAC+∠B′AC′=180°,我们称△ABC是△AB′C′的“旋补三角形”,△AB'C′的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”(特例感知)(1)①若△ABC是等边三角形(如图2),BC=1,则AD=;②若∠BAC=90°(如图3),BC=6,AD=;(猜想论证)(2)在图1中,当△ABC是任意三角形时,猜想AD与BC的数量关系,并证明你的猜想;(拓展应用)(3)如图1.点A,B,C,D都在半径为5的圆上,且AB与CD不平行,AD=6,点P是四边形ABCD内一点,且△APD是△BPC的“旋补三角形”,点P是“旋补中心”,请确定点P的位置(要求尺规作图,不写作法,保留作图痕迹),并求BC的长.22.(8分)如图,将矩形OABC放在平面直角坐标系中,O为原点,点A在x轴的正半轴上,B(8,6),点D是射线AO上的一点,把△BAD沿直线BD折叠,点A的对应点为A′.(1)若点A′落在矩形的对角线OB上时,OA′的长=;(2)若点A′落在边AB的垂直平分线上时,求点D的坐标;(3)若点A′落在边AO的垂直平分线上时,求点D的坐标(直接写出结果即可).23.(8分)如图,△ACB 与△ECD 都是等腰直角三角形,∠ACB=∠ECD=90°,点D 为AB 边上的一点, (1)求证:△ACE ≌△BCD ;(2)若DE=13,BD=12,求线段AB 的长.24.(10分)如图,在▱ABCD 中,点O 是对角线AC 、BD 的交点,点E 是边CD 的中点,点F 在BC 的延长线上,且CF =12BC ,求证:四边形OCFE 是平行四边形.25.(10分)如图,方格纸中每个小正方形的边长都是1个单位长度,ABC ∆在平面直角坐标系中的位置如图所示.(1)直接写出ABC ∆关于原点O 的中心对称图形111A B C ∆各顶点坐标:1A ________1B ________1C ________;(2)将ABC ∆绕B 点逆时针旋转90︒,画出旋转后图形22A BC ∆.求ABC ∆在旋转过程中所扫过的图形的面积和点C 经过的路径长.26.(12分)已知:如图,在Rt △ABO 中,∠B=90°,∠OAB=10°,OA=1.以点O 为原点,斜边OA 所在直线为x 轴,建立平面直角坐标系,以点P (4,0)为圆心,PA 长为半径画圆,⊙P 与x 轴的另一交点为N ,点M 在⊙P 上,且满足∠MPN=60°.⊙P 以每秒1个单位长度的速度沿x 轴向左运动,设运动时间为ts ,解答下列问题:(发现)(1)MN n的长度为多少;(2)当t=2s 时,求扇形MPN (阴影部分)与Rt △ABO 重叠部分的面积.(探究)当⊙P和△ABO的边所在的直线相切时,求点P的坐标.(拓展)当MN n与Rt△ABO的边有两个交点时,请你直接写出t的取值范围.27.(12分)已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=1.(1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.i)求证:△CAE∽△CBF;ii)若BE=1,AE=2,求CE的长;(2)如图②,当四边形ABCD和EFCG均为矩形,且AB EFkBC FC==时,若BE=1,AE=2,CE=3,求k的值;(3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据题意得到△AOB是等边三角形,求出∠AOB的度数,根据圆周角定理计算即可.【详解】解:∵OA=AB,OA=OB,∴△AOB 是等边三角形, ∴∠AOB=60°, ∴∠ACB=30°, 故选B . 【点睛】本题考查的是圆周角定理和等边三角形的判定,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键. 2.C 【解析】 【分析】分别根据反比例函数系数k 的几何意义以及三角形面积求法以及梯形面积求法得出即可: 【详解】A 、根据反比例函数系数k 的几何意义,阴影部分面积和为:xy=1.B 、根据反比例函数系数k 的几何意义,阴影部分面积和为:xy 3=.C 、如图,过点M 作MA ⊥x 轴于点A ,过点N 作NB ⊥x 轴于点B ,根据反比例函数系数k 的几何意义,S △OAM =S △OAM =13xy 22=,从而阴影部分面积和为梯形MABN 的面积:()113242+⨯=. D 、根据M ,N 点的坐标以及三角形面积求法得出,阴影部分面积为:11632⨯⨯=. 综上所述,阴影部分面积最大的是C .故选C . 3.B 【解析】分析:易得等边三角形的高,那么左视图的面积=等边三角形的高×侧棱长,把相关数值代入即可求解. 详解:∵三棱柱的底面为等边三角形,边长为2,作出等边三角形的高CD 后, ∴等边三角形的高223AC AD -=2×33=故选B .点睛:本题主要考查的是由三视图判断几何体.解决本题的关键是得到求左视图的面积的等量关系,难点是得到侧面积的宽度. 4.B【解析】【分析】根据数轴上不等式解集的表示方法得出此不等式组的解集,再对各选项进行逐一判断即可.【详解】解:由数轴上不等式解集的表示方法得出此不等式组的解集为:x≥-3,A、不等式组53xx≥-⎧⎨>-⎩的解集为x>-3,故A错误;B、不等式组53xx>-⎧⎨≥-⎩的解集为x≥-3,故B正确;C、不等式组53xx<⎧⎨<-⎩的解集为x<-3,故C错误;D、不等式组53xx<⎧⎨>-⎩的解集为-3<x<5,故D错误.故选B.【点睛】本题考查的是在数轴上表示一元一次不等式组的解集,根据题意得出数轴上不等式组的解集是解答此题的关键.5.C【解析】【分析】如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数. 一组数据中出现次数最多的数据叫做众数.【详解】解:∵7出现了2次,出现的次数最多,∴众数是7;∵从小到大排列后是:1,2,3,6,7,7,9,排在中间的数是6,∴中位数是6故选C.【点睛】本题考查了中位数和众数的求法,解答本题的关键是熟练掌握中位数和众数的定义.6.B【解析】试题解析:0.00 000 069=6.9×10-7,故选B.点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.7.A【解析】两边都除以3,得x>﹣y,两边都加y,得:x+y>0,故选A.8.C【解析】【分析】如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AM=BN.通过解直角△ACM和△BCN 分别求得CM、CN的长度,则易得AB =MN=CM﹣CN,即可得到结论.【详解】如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AB=MN,AM=BN.在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=503tan6033BN==︒(m),∴MN=CM﹣CN=50﹣5033(m).则AB=MN=(50﹣503)m.故选C.【点睛】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.9.B【解析】【分析】根据完全平方公式对A 进行判断;根据幂的乘方与积的乘方对B 、C 进行判断;根据合并同类项对D 进行判断. 【详解】A. ()2222x y x xy y +=++,故错误. B. ()236x x =,正确.C. ()2239x x =,故错误. D. 2222a a a +=, 故错误. 故选B. 【点睛】考查完全平方公式,合并同类项,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键. 10.A 【解析】 【分析】 【详解】解:如图,设对角线相交于点O , ∵AC=8,DB=6,∴AO=12AC=12×8=4,BO=12BD=12×6=3, 由勾股定理的,AB=22AO BO +=2243+=5,∵DH ⊥AB ,∴S 菱形ABCD =AB•DH=12AC•BD , 即5DH=12×8×6,解得DH=245. 故选A .【点睛】本题考查菱形的性质. 11.C 【解析】试题分析:先利用配方法得到y=﹣(x ﹣1)2+1,然后根据二次函数的最值问题求解.。

2019年辽宁省铁岭市昌图县中考数学模拟试卷(4月份)(解析版)

2019年辽宁省铁岭市昌图县中考数学模拟试卷(4月份)(解析版)

.2019年辽宁省铁岭市昌图县中考数学模拟试卷(4月份)一、选择题(每小题3分,共30分)1.﹣3的绝对值是()A.3B.﹣3C.D.2.如图为一个台阶,它的主视图正确的是()A.B.C.D.3.下列运算正确的是()3?b3=(ab)3B.a2?a3=a6A.a632 C.a÷a=a235 D.(a)=a4.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数B.方差C.众数D.中位数5.将点A(﹣2,3)绕坐标原点逆时针旋转90后得到点A',则点A'的坐标为()A.(2,3)B.(3,2)C.(﹣2,﹣3)D.(﹣3,﹣2)6.向一个半径为2的圆中投掷石子(假设石子全部投入圆形区域内),那么石子落在此圆的内接正方形中的概率是()A.B.C.D.7.一个圆锥的轴截面是一个边长为2cm的等边三角形,则它的侧面积是()A.4πB.2πC.πD.8.关于x的一元二次方程有两个实数根,则m的取值范围是()A.m≤1B.m<1C.﹣3≤m≤1D.﹣3<m<19.如图,三角形OAB和三角形BCD是等腰直角三角形,点B、D在x轴上,∠ABO=∠CDB=90°,点A在双曲线上,若△OAC的面积为,则k的值为()A.B.C.﹣9D.﹣12210.如图,二次函数y=ax+bx+c的对称轴是直线x=1,且经过点(﹣1,0),则下列结论:①abc2<0;②2a﹣b=0;③a<﹣;④若方程ax+bx+c﹣2=0的两个根为x1和x2,则(x1+1)(x2﹣3)<0,正确的有()个.A.1B.2C.3D.4二、填空题(本题8小题,每小题3分,共24分)11.截止2018年底,中国互联网用户达8.29亿.数据8.29亿用科学记数法表示为.3﹣2x=.12.在实数范围内分解因式:x13.如图,已知∠ACB=90°,直线MN∥AB,若∠1=33°,则∠2=°.y14.已知+|y﹣3|=0,那么x=.15.如图,AB为⊙O的直径,弦CD⊥直径AB,垂足为E,连接OC,BD,如果∠D=55°,那么∠DCO=°.16.在一个不透明的口袋中装有40个红、白两色小球,这些小球除颜色外都相同,如果从中随机摸是,那么袋中一共有白球个.出一球为红球的概率17.△ABC三个顶点的坐标分别是A(3,4),B(1,1),C(4,1),将△ABC以点O为位似中心,位似比为缩小后,点A对应点A′的坐标是.18.如图,点B1是△ABC的边AB的中点,过点B1作BC边的平行线交AC边于点C1,点B2是△AB1C1的边AB1的中点,过点B2作B1C1边的平行线交AC1于点C2,如此继续作下去⋯⋯,若△ABC的面积为S,则四边形B n B n﹣1C n﹣1?n的面积为.三、解答题(第19题10分,第20题12分,共22分)19.(10分)先化简再求值:,其中x=.20.(12分)某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从果组建了4个足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结计图(如图①,②,要求每位学生只能选择一兴趣小组,并绘制成如图所示的两幅不完整的统问题:种自己喜欢的球类),请你根据图中提供的信息解答下列;,并把条形统计图补充完整(1)九(1)班的学生人数为(2)扇形统计图中m=,n=,表示“足球”的扇形的圆心角是度;出2名学生参加学校的排球队,(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选的2名学生恰好是1男1女的概率.出请用列表或画树状图的方法求选21.如图,?ABCD中,点E,F分别是BC和AD边上的点,AE垂直平分BF,交BF于点P,连接EF,PD.(1)求证:平行四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.22.小强和小明同学在学习了“平面镜反射原理后,”自己用一个小平面镜MN做实验.他们先将平面镜放在平面上,如图,用一束与平面成30°角的光线照射平面镜上的A处,使光影正好落在边C点,他们不改变光线的角度,原地将平面镜转动了7.5°角,即∠对面墙面上一幅画的底MAM′=7.5°,使光影落在C点正上方的D点,测得C D=10cm,求平面镜放置点与墙面的距离AB.(≈ 1.73,结果精确到0.1).23.如图,AC是⊙O的直径,点B为⊙O上一点,PA切⊙O于点A,PB与AC的延长线交于点M,∠CAB=∠APB.(1)求证:PB是⊙O的切线;(2)当sinM=,OA=2时,求MB,AB的长.24.某工厂加工一种商品,每天加工件数不超过100件时,每件成本80元,每天加工超过100件时,每多加工5件,成本下降2元,但每件成本不得低于70元.设工厂每天加工商品x(件),每件商品成本为y(元),(1)求出每件成本y(元)与每天加工数量X(件)之间的函数关系式,并注明自变量的取值范围;(2)若每件商品的利润定为成本的20%,求每天加工多少件商品时利润最大,最大利润是多少?25.正方形ABCD的边长为6,它的对角线AC、BD相交于点O,∠EPF=45°,两边与正方形的边AB、AD分别交于E、F两点,①如图1,当点∠EPF的顶点P在点O处,且AO平分∠EPF时,求证BE=DF;②如图2,将①中的∠EPF绕点O旋转,写出线段BE、DF之间的数量关系,并说明理由;③当点P为线段AC的三等分点,且AE=1时,直接写出线段DF的长.226.如图,二次函数y=ax+b x+的图象经过A(﹣1,0),B(3,0),与y轴相交于点C.点P 为第一象限的抛物线上的一个动点,过点P分别做BC和x轴的垂线,交BC于点E和F,交x 轴于点M和N.(1)求这个二次函数的解析式;(2)求线段PE最大值,并求出线段PE最大时点P的坐标;(3)若S△PMN=3S△PEF时,求出点P的坐标.WORD格式整理2019年辽宁省铁岭市昌图县中考数学模拟试卷(4月份)参考答案与试题解析一、选择题(每小题3分,共30分)1.【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.【点评】考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【分析】根据主视图是从正面看到的图形,可得答案.【解答】解:根据主视图是从正面看到的可得:它的主视图是故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.【分析】A、原式利用积的乘方运算法则变形得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、原式=(ab)3,正确;5B、原式=a,错误;3C、原式=a,错误;6,错误,D、原式=a故选:A.【点评】此题考查了同底数幂的乘法,除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.4.【分析】根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比了5次短跑训练成绩的方差.较这两名学生【解答】解:由于方差能反映数据的稳定性,需要比较这两名学生了5次短跑训练成绩的方差.故选:B.【点评】此题主要考查了方差,关键是掌握方差所表示的意义.5.【分析】如图,作A E⊥x轴于E,A′F⊥x轴于F.证明△AOE≌△OA′F(AAS),推出OF=AE=3,A′F=OE=2即可解决问题.【解答】解:如图,作A E⊥x轴于E,A′F⊥x轴于F.∵A(﹣2,3),∴AE=3,OE=2,∵∠AOE+∠A′OF=90°,∠A′OF+∠A′=90°,∴∠AOE=∠A′,∵∠AEO=∠A′FO=90°,OA=OA′,∴△AOE≌△OA′F(AAS),∴OF=AE=3,A′F=OE=2,∴A′(﹣3,﹣2),故选:D.图度和合旋转的角【点评】本题主要考查了旋转的性质,解题时注意:图形或点旋转之后,要结.形的特殊性质来求出旋转后的点的坐标6.【分析】先得出圆内接正方形的边长,再用正方形的面积除以圆的面积即可得.2,2的圆内接正方形边长为【解答】解:∵半径为∴圆的面积为4π,正方形的面积为8,则石子落在此圆的内接正方形中的概率是=,故选:D.【点评】本题考查了几何概率的求法:求某事件发生在某个局部图形的概率等于这个局部的面积.与整个图形的面积的比7.【分析】易得圆锥的底面半径及母线长,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:∵圆锥的轴截面是一个边长为2cm的等边三角形,∴底面半径=1cm,底面周长=2πcm,2∴圆锥的侧面积=×2π×2=2π(cm),故选:B.式.【点评】本题考查圆锥的计算,解题的关键是理解题意,记住扇形的面积公8.【分析】利用二次根式有意义的条件和判别式的意义得到,然后解不等式组即可.【解答】解:根据题意得,3≤m≤1.解得﹣故选:C.224ac有如下【点评】本题考查了根的判别式:一元二次方程ax﹣+b x+c=0(a≠0)的根与△=b 关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.9.【分析】设A B=OB=a,CD=BD=b,则O D=a+b,由已知条件根据△OAC的面积=梯形ABDC(a+b)?b=,即可得出a 的面积+△OAB的面积﹣△OCD的面积得出(a+b)?b+a2﹣的值,从而得出A的坐标,根据待定系数法即可求得k.O D=a+b,A B=OB=a,CD=BD=b,则【解答】解:设∵△OAC的面积为,∴S△OAC=S梯形ABDC+S△OAB﹣S△OCD=,2∴(a+b)?b+a﹣(a+b)?b=,解得a=3,∴A(﹣3,3),∵点A在双曲线上,∴k=﹣3×3=﹣9,故选:C.【点评】本题考查了三角形面积的计算、反比例函数的系数k的几何意义,等腰直角三角形的性题的关键.质;熟练掌握等腰直角三角形的性质和反比例函数解析式的求法是解决问10.【分析】由图象可知,a<0,b>0,c>0,﹣=1,因此abc<0,﹣b=2a,2a﹣b=4a≠0,b+c=0,3a+c=0,c=﹣3a>2,a<﹣,故③正确;1时,a﹣x=﹣故①正确,②错误;当由对称轴直线x=1,抛物线与x轴左侧交点(﹣1,0),可知抛物线与x轴另一个交点(3,0),1,x2>3,所以x1+1<0,x2﹣3>0,因此(x1+1)(x2﹣3)<0.由图象可知,y=2时,x1<﹣=1,【解答】解:由图象可知,a<0,b>0,c>0,﹣∴abc<0,﹣b=2a,2a﹣b=4a≠0,故①正确,②错误;x=﹣1时,a﹣b+c=0,3a+c=0,c=﹣3a>2,a<﹣,故③正确;由对称轴直线x=1,抛物线与x轴左侧交点(﹣1,0),可知抛物线与x轴另一个交点(3,0),由图象可知,y=2时,x1<﹣1,x2>3,∴x1+1<0,x2﹣3>0,∴(x1+1)(x2﹣3)<0.故④正确.故选:C.【点评】本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解题的关键.二、填空题(本题8小题,每小题3分,共24分)11.【分析】科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【解答】解:数据8.29亿用科学记数法表示为8.29×108.8故答案为:8.29×10.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|a的值以及n的值.<10,n为整数,表示时关键要正确确定12.【分析】提取公因式x后运用平方差公式进行二次分解即可.32【解答】解:x﹣2x=x(x﹣2)=x(x+)(x﹣).2【点评】本题考查提公因式法、平方差公式分解因式,把2写成()是继续利用平方差公式进行因式分解的关键.13.【分析】直接利用已知得出∠ACN的度数,再利用平行线的性质得出答案.【解答】解:∵∠ACB=90°,∠1=33°,∴∠ACN=57°,∵直线MN∥AB,∴∠2=∠ACN=57°.故答案为:57°.【点评】此题主要考查了平行线的性质,正确得出∠ACN的度数是解题关键.14.【分析】先根据非负数的性质列出关于x、y的方程,求出x、y的值,再把x、y的值代入所求代数式进行计算即可.【解答】解:∵+|y﹣3|=0,∴x+2=0,解得x=﹣2;y﹣3=0,解得y=3.∴x y=(﹣2)3=﹣8.故答案为:﹣8.【点评】本题考查的是非负数的性质,几个非负数的和为0时,这几个非负数都为0.15.【分析】根据垂直求出∠CEO,根据圆周角定理求出∠COB,根据三角形的外角性质求出即可.【解答】解:∵AB⊥CD,∴∠CEO=90°,∵∠D=55°,∴由圆周角定理得:∠COB=2∠BDC=110°,∴∠DCO=∠COB﹣∠CEO=20°,故答案为:20.【点评】本题考查了三角形的外角性质,垂直定义和圆周角定理,能根据圆周角定理求出∠COB =2∠BDC是解此题的关键.16.【分析】直接利用白球个数÷小球总数=得到白球的概率进而得出答案.【解答】解:设袋中一共有白球x个,根据题意可得:∵从中随机摸出一球为红球的概率是,∴从中随机摸出一球为白球的概率是,∴=,解得:x=24.故答案为:24.【点评】此题主要考查了概率公式,正确应用概率求法是解题关键.17.【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,即可求得答案.【解答】解:∵点A,B的坐标分别为A(3,4),B(1,1),∴将△ABC以点O为位似中心,位似比为缩小后,点A对应点A′的坐标是:(1.5,2)或(﹣1.5,﹣2).故答案为:( 1.5,2)或(﹣1.5,﹣2).【点评】此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.18.【分析】根据点B1是△ABC的边AB的中点,B1C1∥BC,可表示出△AB1C1的面积,同理可表示出△AB2C2、△AB n﹣1C n﹣1、△AB n?n的面积,即可求出四边形B n B n1C n﹣1?n的面积.﹣【解答】解:∵点B1是△ABC的边AB的中点,B1C1∥BC,∴△AB1C1~△ABC,相似比为1:2,∴△AB1C1与△ABC的面积比为1:4,∴△AB1C1的面积为S;∵点B2是△AB1C1的边AB1的中点,B1C1∥B2C2,∴△AB2C2~△AB1C1,相似比为1:2,∴△AB2C2与△AB1C1的面积比为1:4,∴△AB2C2的面积为S;同理可得:△AB n﹣1C n﹣1的面积为S,△AB n?n的面积为S,∴四边形B n B n﹣1C n﹣1?n的面积为S;故答案为:S.【点评】本题考查了相似三角形的判定与性质,解题的关键是熟练运用相似三角形的面积比等于相似比的平方.三、解答题(第19题10分,第20题12分,共22分)19.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=[+]÷=?(x2﹣1)=x2+1,当x=﹣2时,原式=12+1=13.【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.20.【分析】(1)根据喜欢篮球的人数与所占的百分比列式计算即可求出学生的总人数,再求出喜欢足球的人数,然后补全统计图即可;(2)分别求出喜欢排球、喜欢足球的百分比即可得到m、n的值,用喜欢足球的人数所占的百分比乘以360°即可;(3)画出树状图,然后根据概率公式列式计算即可得解.【解答】解:(1)九(1)班的学生人数为:12÷30%=40(人),喜欢足球的人数为:40﹣4﹣12﹣16=40﹣32=8(人),补全统计图如图所示;(2)∵×100%=10%,×100%=20%,∴m=10,n=20,表示“足球”的扇形的圆心角是20%×360°=72°;故答案为:(1)40;(2)10;20;72;(3)根据题意画出树状图如下:一共有12种情况,恰好是1男1女的情况有6种,∴P(恰好是1男1女)==.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.【分析】(1)根据线段垂直平分线的性质和平行四边形的性质即可得到结论;(2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可.【解答】(1)证明:∵AE垂直平分BF,∴AB=AF,∴∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC.∴∠FAE=∠AEB,∴∠AEB=∠BAE,∴AB=BE,∴AF=BE.∵AF∥BC,∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形;(2)解:作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,∴AP=AB=2,∴PH=,DH=5,∴tan∠ADP==.个判定定理,【点评】本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几难度不大.22.【分析】根据题意,作出合适的辅助线,然后利用锐角三角函数即可求得AB的长.【解答】解:作AE⊥M′N′,设A B=x米,∵∠PAE=∠DAE,∴∠N′AD=∠M′AP=7.5°+30°=37.5°,∴∠DAB=37.5°+7.5°=45°,∴在Rt△ABD中,DB=AB=x,又∵在Rt△ABC中,BC=AB?tan∠CAB=x?=x,∴x﹣x=10,解得,x=5(3+)≈23.7(米),离AB是23.7米.答:平面镜放置点与墙面的距【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.23.【分析】(1)连接OB,根据切线的性质得到OA⊥AP,求得∠OBM=90°,OB⊥MP,根据求得的判定定理即可得到结论;(2)连接BC,解直角三角形得到MC=1,MB==,根据圆周角定理得到∠ABC=90°,根据相似三角形的性质得到AB=CB,根据勾股定理即可得到结论.【解答】(1)证明:连接OB,∵∠CAB=∠COB,∠CAB=∠APB,∴∠COB=∠APB,∵PA切⊙O于点A,∴OA⊥AP,∴∠APB+∠M=90°,∴∠COB+∠M=90°,∴∠OBM=90°,∴OB⊥MP,∴PB是⊙O的切线;(2)解:连接BC,∵∠OBM=90°,∴sinM=,∴OM==3,∴MC=1,MB==,∵AC是⊙O的直径,∴∠ABC=90°,∴∠OBA+∠OBC=90°,∵∠MBC+∠OBC=90°,∵∠M=∠M,∴△MCB∽△MBA,∴,∴AB=CB,222∵BC=AC+AB,∴BC2+5BC2=42,∴BC=,∴AB=.作出确的【点评】本题考查了切线的判定和性质,相似三角形的判定和性质,解直角三角形,正.辅助线是解题的关键24.【分析】(1)分两部分写函数解析式;w元,当0<x≤100时,w=20%×80x=16x,当100<x≤125时,w (2)设每天加工的利润为150)2+1800,结合函数图象求解;=﹣(x﹣【解答】解:(1)当0<x≤100时,y=80∵∴当100<x≤125时,∴y=,w元,(2)设每天加工的利润为当0<x≤100时,w=20%×80x=16x,∵k=16,∴w对x的增大而增大,∴当x=100时,w最大,最大为1600元;当100<x≤125时,w=20%(﹣x+120)x=﹣(x﹣150)2+1800,+24x=﹣∵a=﹣<0,开口向下,∴当x<150时,w随x的增大而增大,∴当x=125时,w最大,最大值为1750元,∵1750>1600,∴当x=125时,w最大,1750元.答:每天加工125件时,利润最大,最大利润为【点评】本题考查分段函数解析式,二次函数最值,一次函数最值;能够根据已知条件列出合理的表达式,结合函数图象求解是关键.25.【分析】(1)证明△AEO≌△AFO(ASA),得到AB﹣A E=AD﹣A F;(2)证明△BEO∽△DOF,得到;(3)分两种情况①AP=AC,②AP=AC;过点P作PM⊥AB,过F作FN⊥AP,证明Rt△EPM∽Rt△FPN,设A N=x,根据对对应边成比例,得到x的值,再在等腰直角三角t△ANF中求出AF即可;【解答】解:(1)∵AO平分∠EPF,∴∠EPA=∠FPA,∵在正方形ABCD中,∠BAC=∠DAC,OA=OA,∴△AEO≌△AFO(ASA),∴AE=AF,∵AB=AD,∴AB﹣A E=AD﹣A F,∴BE=BF;(2)∵在正方形ABCD中,∠ABD=∠ADB=45°,∴∠BEO+∠BOE=135°,∵∠EPF=45°,∴∠BOE+∠DOF=135°,∴∠BEO=∠DOF,∴△BEO∽△DOF,WORD格式整理∴,∴BE?DF=OB?OD,∵BD=6,∴OB=OD=3,∴BE?DF=18;(3)或;①过点P作PM⊥AB,过F作FN⊥AP,如图①,∵∠EPF=45°,∠MAP=45°,∴∠APM=45°,∴∠EPM=∠FPN,∴Rt△EPM∽Rt△FPN,∴,∵正方形ABCD的边长为6,∴AC=6,∵点P为线段AC的三等分点,∴AP=2,∵Rt△AMP是等腰直角三角形,∴AM=PM=2,∵AE=1,∴EM=1,∵Rt△ANF是等腰直角三角形,设A N=x,∴,∴x=,∴AF=,∴FD=6﹣=;②过点P作PM⊥AB,过F作FN⊥AP,如图②,∵∠EPF=45°,∠MAP=45°,∴∠APM=45°,∴∠EPM=∠FPN,∴Rt△EPM∽Rt△FPN,∴,∵正方形ABCD的边长为6,∴AC=6,∵点P为线段AC的三等分点,∴AP=4,∵Rt△AMP是等腰直角三角形,∴AM=PM=4,∵AE=1,∴EM=3,∵Rt△ANF是等腰直角三角形,设A N=x,∴,∴x=,∴AF=,∴FD=6﹣=;【点评】 本题考查三角形的全等, 三角形的相似; 分类讨论; 熟练掌握三角形相似的判定和性质,正方形的性质是解题的关键.26.【分析】 (1)根据点 A ,B 的坐标,利用待定系数法即可求出二次函数的解析式; (2)利用二次函数图象上点的坐标特征可求出点 C 的坐标,由 OB ,OC 的长可得出∠ ABC =30°,结合 PN ⊥x 轴, PE ⊥BC 可得出 PE =PF ,由点 B ,C 的坐标,利用待定系数法可求出直线2BC 的解析式, 设点 P 的坐标为(x ,﹣x + x+ ),则 点 F 的坐标为( x ,﹣x + ),进而可得出 PE =﹣x 2+ x ,再利用二次函数的性质,即可解决最值问题;(3)由∠ PEF =∠ PNM ,∠ P =∠ P 可得出△ PEF ∽△ PNM ,利用相似三角形的性质结合 S△PMN=3S△PEF可得出 PN = PE ,再结合( 2)可得出关于 x 的一元二次方程,解之取其较小值即可 得出 x 的值,将其代入点P 的坐标中即可得出结论.2【解答】 解:( 1)将 A (﹣1, 0), B (3,0)代入 y =ax+bx+ ,得:,解得: ,∴二次函数的解析式为y =﹣x 2+ x+ .(2)当 x = 0 时, y = ,∴点 C 的坐标为( 0, ), ∴tan ∠ABC = =,∴∠ ABC =30°. ∵PN ⊥x 轴,∴∠ PFE =∠ BFN =60°, 又∵ PE ⊥ BC , ∴sin ∠PFE =,∴PE=PF.B C的解析式为y=mx+n(m≠0),设直线将B(3,0),C(0,)代入y=mx+n,得:,解得:,∴直线B C的解析式为y=﹣x+.(x,﹣x2+x+),则点F的坐标为(x,﹣x+),设点P的坐标为22∴PE=[﹣x+x+﹣(﹣x+)]=﹣x+x.又∵PE=﹣x2+x=﹣(x﹣)2+,﹣<0,∴当x=时,PE取得最大值,最大值为,此时点P的坐标为(,).(3)∵∠PEF=∠PNM,∠P=∠P,∴△PEF∽△PNM,∴=()2.∵S△PMN=3S△PEF,∴=,∴PN=PE.22∴(﹣x+x)=﹣x+x+,解得:x1=2,x2=3(舍去),∴点P的坐标为(2,).【点评】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、待定系数法求一次函数解析式、二次函数的性质、解直角三角形、相似三角形的性质以及解一元二次方程,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用二次函数图象上点的坐标特征及一次函数图象上点的坐标特征,找出PE=﹣x2+x;(3)利用相似三角形的性质结合(2)的结论,找出关于x的一元二次方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年辽宁省铁岭市昌图县中考数学模拟试卷(4月份)一、选择题(每小题3分,共30分)1.﹣3的绝对值是()A.3B.﹣3C.D.2.如图为一个台阶,它的主视图正确的是()A.B.C.D.3.下列运算正确的是()A.a3•b3=(ab)3B.a2•a3=a6C.a6÷a3=a2D.(a2)3=a54.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数B.方差C.众数D.中位数5.将点A(﹣2,3)绕坐标原点逆时针旋转90后得到点A',则点A'的坐标为()A.(2,3)B.(3,2)C.(﹣2,﹣3)D.(﹣3,﹣2)6.向一个半径为2的圆中投掷石子(假设石子全部投入圆形区域内),那么石子落在此圆的内接正方形中的概率是()A.B.C.D.7.一个圆锥的轴截面是一个边长为2cm的等边三角形,则它的侧面积是()A.4πB.2πC.πD.8.关于x的一元二次方程有两个实数根,则m的取值范围是()A.m≤1B.m<1C.﹣3≤m≤1D.﹣3<m<19.如图,三角形OAB和三角形BCD是等腰直角三角形,点B、D在x轴上,∠ABO=∠CDB=90°,点A在双曲线上,若△OAC的面积为,则k的值为()A.B.C.﹣9D.﹣1210.如图,二次函数y=ax2+bx+c的对称轴是直线x=1,且经过点(﹣1,0),则下列结论:①abc<0;②2a﹣b=0;③a<﹣;④若方程ax2+bx+c﹣2=0的两个根为x1和x2,则(x1+1)(x2﹣3)<0,正确的有()个.A.1B.2C.3D.4二、填空题(本题8小题,每小题3分,共24分)11.截止2018年底,中国互联网用户达8.29亿.数据8.29亿用科学记数法表示为.12.在实数范围内分解因式:x3﹣2x=.13.如图,已知∠ACB=90°,直线MN∥AB,若∠1=33°,则∠2=°.14.已知+|y﹣3|=0,那么x y=.15.如图,AB为⊙O的直径,弦CD⊥直径AB,垂足为E,连接OC,BD,如果∠D=55°,那么∠DCO =°.16.在一个不透明的口袋中装有40个红、白两色小球,这些小球除颜色外都相同,如果从中随机摸出一球为红球的概率是,那么袋中一共有白球个.17.△ABC三个顶点的坐标分别是A(3,4),B(1,1),C(4,1),将△ABC以点O为位似中心,位似比为缩小后,点A对应点A′的坐标是.18.如图,点B1是△ABC的边AB的中点,过点B1作BC边的平行线交AC边于点C1,点B2是△AB1C1的边AB1的中点,过点B2作B1C1边的平行线交AC1于点C2,如此继续作下去……,若△ABC的面积为S,则四边形B n B n﹣1C n﹣1∁n的面积为.三、解答题(第19题10分,第20题12分,共22分)19.(10分)先化简再求值:,其中x=.20.(12分)某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为,并把条形统计图补充完整;(2)扇形统计图中m=,n=,表示“足球”的扇形的圆心角是度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.21.如图,▱ABCD中,点E,F分别是BC和AD边上的点,AE垂直平分BF,交BF于点P,连接EF,PD.(1)求证:平行四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.22.小强和小明同学在学习了“平面镜反射原理后,”自己用一个小平面镜MN做实验.他们先将平面镜放在平面上,如图,用一束与平面成30°角的光线照射平面镜上的A处,使光影正好落在对面墙面上一幅画的底边C点,他们不改变光线的角度,原地将平面镜转动了7.5°角,即∠MAM′=7.5°,使光影落在C点正上方的D点,测得CD=10cm,求平面镜放置点与墙面的距离AB.(≈1.73,结果精确到0.1).23.如图,AC是⊙O的直径,点B为⊙O上一点,PA切⊙O于点A,PB与AC的延长线交于点M,∠CAB =∠APB.(1)求证:PB是⊙O的切线;(2)当sin M=,OA=2时,求MB,AB的长.24.某工厂加工一种商品,每天加工件数不超过100件时,每件成本80元,每天加工超过100件时,每多加工5件,成本下降2元,但每件成本不得低于70元.设工厂每天加工商品x(件),每件商品成本为y(元),(1)求出每件成本y (元)与每天加工数量X (件)之间的函数关系式,并注明自变量的取值范围; (2)若每件商品的利润定为成本的20%,求每天加工多少件商品时利润最大,最大利润是多少? 25.正方形ABCD 的边长为6,它的对角线AC 、BD 相交于点O ,∠EPF =45°,两边与正方形的边AB 、AD 分别交于E 、F 两点,①如图1,当点∠EPF 的顶点P 在点O 处,且AO 平分∠EPF 时,求证BE =DF ;②如图2,将①中的∠EPF 绕点O 旋转,写出线段BE 、DF 之间的数量关系,并说明理由; ③当点P 为线段AC 的三等分点,且AE =1时,直接写出线段DF 的长.26.如图,二次函数y =ax 2+bx +的图象经过A (﹣1,0),B (3,0),与y 轴相交于点C .点P 为第一象限的抛物线上的一个动点,过点P 分别做BC 和x 轴的垂线,交BC 于点E 和F ,交x 轴于点M 和N .(1)求这个二次函数的解析式;(2)求线段PE 最大值,并求出线段PE 最大时点P 的坐标; (3)若S △PMN =3S △PEF 时,求出点P 的坐标.2019年辽宁省铁岭市昌图县中考数学模拟试卷(4月份)参考答案与试题解析一、选择题(每小题3分,共30分)1.【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.【点评】考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【分析】根据主视图是从正面看到的图形,可得答案.【解答】解:根据主视图是从正面看到的可得:它的主视图是故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.【分析】A、原式利用积的乘方运算法则变形得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、原式=(ab)3,正确;B、原式=a5,错误;C、原式=a3,错误;D、原式=a6,错误,故选:A.【点评】此题考查了同底数幂的乘法,除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.4.【分析】根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生了5次短跑训练成绩的方差.【解答】解:由于方差能反映数据的稳定性,需要比较这两名学生了5次短跑训练成绩的方差.故选:B.【点评】此题主要考查了方差,关键是掌握方差所表示的意义.5.【分析】如图,作AE⊥x轴于E,A′F⊥x轴于F.证明△AOE≌△OA′F(AAS),推出OF=AE=3,A′F=OE=2即可解决问题.【解答】解:如图,作AE⊥x轴于E,A′F⊥x轴于F.∵A(﹣2,3),∴AE=3,OE=2,∵∠AOE+∠A′OF=90°,∠A′OF+∠A′=90°,∴∠AOE=∠A′,∵∠AEO=∠A′FO=90°,OA=OA′,∴△AOE≌△OA′F(AAS),∴OF=AE=3,A′F=OE=2,∴A′(﹣3,﹣2),故选:D.【点评】本题主要考查了旋转的性质,解题时注意:图形或点旋转之后,要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.6.【分析】先得出圆内接正方形的边长,再用正方形的面积除以圆的面积即可得.【解答】解:∵半径为2的圆内接正方形边长为2,∴圆的面积为4π,正方形的面积为8,则石子落在此圆的内接正方形中的概率是=,故选:D.【点评】本题考查了几何概率的求法:求某事件发生在某个局部图形的概率等于这个局部的面积与整个图形的面积的比.7.【分析】易得圆锥的底面半径及母线长,那么圆锥的侧面积=底面周长×母线长÷2. 【解答】解:∵圆锥的轴截面是一个边长为2cm 的等边三角形, ∴底面半径=1cm ,底面周长=2πcm , ∴圆锥的侧面积=×2π×2=2π(cm 2), 故选:B .【点评】本题考查圆锥的计算,解题的关键是理解题意,记住扇形的面积公式. 8.【分析】利用二次根式有意义的条件和判别式的意义得到,然后解不等式组即可.【解答】解:根据题意得,解得﹣3≤m ≤1. 故选:C .【点评】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2﹣4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.9.【分析】设AB =OB =a ,CD =BD =b ,则OD =a +b ,由已知条件根据△OAC 的面积=梯形ABDC 的面积+△OAB 的面积﹣△OCD 的面积得出(a +b )•b +a 2﹣(a +b )•b =,即可得出a 的值,从而得出A 的坐标,根据待定系数法即可求得k .【解答】解:设AB =OB =a ,CD =BD =b ,则OD =a +b , ∵△OAC 的面积为,∴S △OAC =S 梯形ABDC +S △OAB ﹣S △OCD =, ∴(a +b )•b +a 2﹣(a +b )•b =, 解得a =3, ∴A (﹣3,3), ∵点A 在双曲线上,∴k =﹣3×3=﹣9, 故选:C .【点评】本题考查了三角形面积的计算、反比例函数的系数k的几何意义,等腰直角三角形的性质;熟练掌握等腰直角三角形的性质和反比例函数解析式的求法是解决问题的关键.10.【分析】由图象可知,a<0,b>0,c>0,﹣=1,因此abc<0,﹣b=2a,2a﹣b=4a≠0,故①正确,②错误;当x=﹣1时,a﹣b+c=0,3a+c=0,c=﹣3a>2,a<﹣,故③正确;由对称轴直线x=1,抛物线与x轴左侧交点(﹣1,0),可知抛物线与x轴另一个交点(3,0),由图象可知,y =2时,x1<﹣1,x2>3,所以x1+1<0,x2﹣3>0,因此(x1+1)(x2﹣3)<0.【解答】解:由图象可知,a<0,b>0,c>0,﹣=1,∴abc<0,﹣b=2a,2a﹣b=4a≠0,故①正确,②错误;x=﹣1时,a﹣b+c=0,3a+c=0,c=﹣3a>2,a<﹣,故③正确;由对称轴直线x=1,抛物线与x轴左侧交点(﹣1,0),可知抛物线与x轴另一个交点(3,0),由图象可知,y=2时,x1<﹣1,x2>3,∴x1+1<0,x2﹣3>0,∴(x1+1)(x2﹣3)<0.故④正确.故选:C.【点评】本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解题的关键.二、填空题(本题8小题,每小题3分,共24分)11.【分析】科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n 为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【解答】解:数据8.29亿用科学记数法表示为8.29×108.故答案为:8.29×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【分析】提取公因式x后运用平方差公式进行二次分解即可.【解答】解:x3﹣2x=x(x2﹣2)=x(x+)(x﹣).【点评】本题考查提公因式法、平方差公式分解因式,把2写成()2是继续利用平方差公式进行因式分解的关键.13.【分析】直接利用已知得出∠ACN的度数,再利用平行线的性质得出答案.【解答】解:∵∠ACB=90°,∠1=33°,∴∠ACN=57°,∵直线MN∥AB,∴∠2=∠ACN=57°.故答案为:57°.【点评】此题主要考查了平行线的性质,正确得出∠ACN的度数是解题关键.14.【分析】先根据非负数的性质列出关于x、y的方程,求出x、y的值,再把x、y的值代入所求代数式进行计算即可.【解答】解:∵+|y﹣3|=0,∴x+2=0,解得x=﹣2;y﹣3=0,解得y=3.∴x y=(﹣2)3=﹣8.故答案为:﹣8.【点评】本题考查的是非负数的性质,几个非负数的和为0时,这几个非负数都为0.15.【分析】根据垂直求出∠CEO,根据圆周角定理求出∠COB,根据三角形的外角性质求出即可.【解答】解:∵AB⊥CD,∴∠CEO=90°,∵∠D=55°,∴由圆周角定理得:∠COB=2∠BDC=110°,∴∠DCO=∠COB﹣∠CEO=20°,故答案为:20.【点评】本题考查了三角形的外角性质,垂直定义和圆周角定理,能根据圆周角定理求出∠COB=2∠BDC是解此题的关键.16.【分析】直接利用白球个数÷小球总数=得到白球的概率进而得出答案.【解答】解:设袋中一共有白球x个,根据题意可得:∵从中随机摸出一球为红球的概率是,∴从中随机摸出一球为白球的概率是,∴=,解得:x=24.故答案为:24.【点评】此题主要考查了概率公式,正确应用概率求法是解题关键.17.【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k ,即可求得答案.【解答】解:∵点A ,B 的坐标分别为A (3,4),B (1,1),∴将△ABC 以点O 为位似中心,位似比为缩小后,点A 对应点A ′的坐标是:(1.5,2)或(﹣1.5,﹣2).故答案为:(1.5,2)或(﹣1.5,﹣2).【点评】此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标比等于±k .18.【分析】根据点B 1是△ABC 的边AB 的中点,B 1C 1∥BC ,可表示出△AB 1C 1的面积,同理可表示出△AB 2C 2、△AB n ﹣1C n ﹣1、△AB n ∁n 的面积,即可求出四边形B n B n ﹣1C n ﹣1∁n 的面积. 【解答】解:∵点B 1是△ABC 的边AB 的中点,B 1C 1∥BC , ∴△AB 1C 1~△ABC ,相似比为1:2, ∴△AB 1C 1与△ABC 的面积比为1:4, ∴△AB 1C 1的面积为S ;∵点B 2是△AB 1C 1的边AB 1的中点,B 1C 1∥B 2C 2, ∴△AB 2C 2~△AB 1C 1,相似比为1:2, ∴△AB 2C 2与△AB 1C 1的面积比为1:4, ∴△AB 2C 2的面积为S ;同理可得:△AB n ﹣1C n ﹣1的面积为S ,△AB n ∁n 的面积为S ,∴四边形B n B n ﹣1C n ﹣1∁n 的面积为S ;故答案为:S .【点评】本题考查了相似三角形的判定与性质,解题的关键是熟练运用相似三角形的面积比等于相似比的平方.三、解答题(第19题10分,第20题12分,共22分) 19.【分析】根据分式的运算法则即可求出答案. 【解答】解:原式=[+]÷=•(x2﹣1)=x2+1,当x=﹣2时,原式=12+1=13.【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.20.【分析】(1)根据喜欢篮球的人数与所占的百分比列式计算即可求出学生的总人数,再求出喜欢足球的人数,然后补全统计图即可;(2)分别求出喜欢排球、喜欢足球的百分比即可得到m、n的值,用喜欢足球的人数所占的百分比乘以360°即可;(3)画出树状图,然后根据概率公式列式计算即可得解.【解答】解:(1)九(1)班的学生人数为:12÷30%=40(人),喜欢足球的人数为:40﹣4﹣12﹣16=40﹣32=8(人),补全统计图如图所示;(2)∵×100%=10%,×100%=20%,∴m=10,n=20,表示“足球”的扇形的圆心角是20%×360°=72°;故答案为:(1)40;(2)10;20;72;(3)根据题意画出树状图如下:一共有12种情况,恰好是1男1女的情况有6种,∴P(恰好是1男1女)==.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.【分析】(1)根据线段垂直平分线的性质和平行四边形的性质即可得到结论;(2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF =∠ADB=30°,AP⊥BF,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可.【解答】(1)证明:∵AE垂直平分BF,∴AB=AF,∴∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC.∴∠FAE=∠AEB,∴∠AEB=∠BAE,∴AB=BE,∴AF=BE.∵AF∥BC,∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形;(2)解:作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,∴AP=AB=2,∴PH=,DH=5,∴tan∠ADP==.【点评】本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大.22.【分析】根据题意,作出合适的辅助线,然后利用锐角三角函数即可求得AB的长.【解答】解:作AE⊥M′N′,设AB=x米,∵∠PAE=∠DAE,∴∠N′AD=∠M′AP=7.5°+30°=37.5°,∴∠DAB=37.5°+7.5°=45°,∴在Rt△ABD中,DB=AB=x,又∵在Rt△ABC中,BC=AB•tan∠CAB=x•=x,∴x﹣x=10,解得,x=5(3+)≈23.7(米),答:平面镜放置点与墙面的距离AB是23.7米.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.23.【分析】(1)连接OB,根据切线的性质得到OA⊥AP,求得∠OBM=90°,OB⊥MP,根据求得的判定定理即可得到结论;(2)连接BC,解直角三角形得到MC=1,MB==,根据圆周角定理得到∠ABC=90°,根据相似三角形的性质得到AB=CB,根据勾股定理即可得到结论.【解答】(1)证明:连接OB,∵∠CAB=∠COB,∠CAB=∠APB,∴∠COB=∠APB,∵PA切⊙O于点A,∴OA⊥AP,∴∠APB+∠M=90°,∴∠COB+∠M=90°,∴∠OBM=90°,∴OB⊥MP,∴PB是⊙O的切线;(2)解:连接BC,∵∠OBM=90°,∴sin M=,∴OM==3,∴MC=1,MB==,∵AC是⊙O的直径,∴∠ABC=90°,∴∠OBA+∠OBC=90°,∵∠MBC+∠OBC=90°,∵∠M=∠M,∴△MCB∽△MBA,∴,∴AB=CB,∵BC2+AB2=AC2,∴BC2+5BC2=42,∴BC=,∴AB=.【点评】本题考查了切线的判定和性质,相似三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.24.【分析】(1)分两部分写函数解析式;(2)设每天加工的利润为w元,当0<x≤100时,w=20%×80x=16x,当100<x≤125时,w=﹣(x﹣150)2+1800,结合函数图象求解;【解答】解:(1)当0<x≤100时,y=80∵∴当100<x≤125时,∴y=,(2)设每天加工的利润为w元,当0<x≤100时,w=20%×80x=16x,∵k=16,∴w对x的增大而增大,∴当x=100时,w最大,最大为1600元;当100<x≤125时,w=20%(﹣x+120)x=﹣+24x=﹣(x﹣150)2+1800,∵a=﹣<0,开口向下,∴当x<150时,w随x的增大而增大,∴当x=125时,w最大,最大值为1750元,∵1750>1600,∴当x=125时,w最大,答:每天加工125件时,利润最大,最大利润为1750元.【点评】本题考查分段函数解析式,二次函数最值,一次函数最值;能够根据已知条件列出合理的表达式,结合函数图象求解是关键.25.【分析】(1)证明△AEO≌△AFO(ASA),得到AB﹣AE=AD﹣AF;(2)证明△BEO∽△DOF,得到;(3)分两种情况①AP=AC,②AP=AC;过点P作PM⊥AB,过F作FN⊥AP,证明Rt△EPM∽Rt△FPN,设AN=x,根据对对应边成比例,得到x的值,再在等腰直角三角t△ANF中求出AF即可;【解答】解:(1)∵AO平分∠EPF,∴∠EPA=∠FPA,∵在正方形ABCD中,∠BAC=∠DAC,OA=OA,∴△AEO≌△AFO(ASA),∴AE=AF,∵AB=AD,∴AB﹣AE=AD﹣AF,∴BE=BF;(2)∵在正方形ABCD中,∠ABD=∠ADB=45°,∴∠BEO+∠BOE=135°,∵∠EPF=45°,∴∠BOE+∠DOF=135°,∴∠BEO=∠DOF,∴△BEO∽△DOF,∴,∴BE•DF=OB•OD,∵BD=6,∴OB=OD=3,∴BE•DF=18;(3)或;①过点P作PM⊥AB,过F作FN⊥AP,如图①,∵∠EPF=45°,∠MAP=45°,∴∠APM=45°,∴∠EPM=∠FPN,∴Rt△EPM∽Rt△FPN,∴,∵正方形ABCD的边长为6,∴AC=6,∵点P为线段AC的三等分点,∴AP=2,∵Rt△AMP是等腰直角三角形,∴AM=PM=2,∵AE=1,∴EM=1,∵Rt△ANF是等腰直角三角形,设AN=x,∴,∴x=,∴AF=,∴FD=6﹣=;②过点P作PM⊥AB,过F作FN⊥AP,如图②,∵∠EPF=45°,∠MAP=45°,∴∠APM=45°,∴∠EPM=∠FPN,∴Rt△EPM∽Rt△FPN,∴,∵正方形ABCD的边长为6,∴AC=6,∵点P为线段AC的三等分点,∴AP=4,∵Rt△AMP是等腰直角三角形,∴AM=PM=4,∵AE=1,∴EM=3,∵Rt△ANF是等腰直角三角形,设AN =x , ∴, ∴x =, ∴AF =,∴FD =6﹣=;【点评】本题考查三角形的全等,三角形的相似;分类讨论;熟练掌握三角形相似的判定和性质,正方形的性质是解题的关键.26.【分析】(1)根据点A ,B 的坐标,利用待定系数法即可求出二次函数的解析式;(2)利用二次函数图象上点的坐标特征可求出点C 的坐标,由OB ,OC 的长可得出∠ABC =30°,结合PN ⊥x 轴,PE ⊥BC 可得出PE =PF ,由点B ,C 的坐标,利用待定系数法可求出直线BC 的解析式,设点P 的坐标为(x ,﹣x 2+x +),则点F 的坐标为(x ,﹣x +),进而可得出PE =﹣x 2+x ,再利用二次函数的性质,即可解决最值问题;(3)由∠PEF =∠PNM ,∠P =∠P 可得出△PEF ∽△PNM ,利用相似三角形的性质结合S △PMN =3S △PEF 可得出PN =PE ,再结合(2)可得出关于x 的一元二次方程,解之取其较小值即可得出x 的值,将其代入点P 的坐标中即可得出结论.【解答】解:(1)将A (﹣1,0),B (3,0)代入y =ax 2+bx +,得:,解得:,∴二次函数的解析式为y=﹣x2+x+.(2)当x=0时,y=,∴点C的坐标为(0,),∴tan∠ABC==,∴∠ABC=30°.∵PN⊥x轴,∴∠PFE=∠BFN=60°,又∵PE⊥BC,∴sin∠PFE=,∴PE=PF.设直线BC的解析式为y=mx+n(m≠0),将B(3,0),C(0,)代入y=mx+n,得:,解得:,∴直线BC的解析式为y=﹣x+.设点P的坐标为(x,﹣x2+x+),则点F的坐标为(x,﹣x+),∴PE=[﹣x2+x+﹣(﹣x+)]=﹣x2+x.又∵PE=﹣x2+x=﹣(x﹣)2+,﹣<0,∴当x=时,PE取得最大值,最大值为,此时点P的坐标为(,).(3)∵∠PEF=∠PNM,∠P=∠P,∴△PEF∽△PNM,∴=()2.∵S△PMN =3S△PEF,∴=,∴PN=PE.∴(﹣x2+x)=﹣x2+x+,解得:x1=2,x2=3(舍去),∴点P的坐标为(2,).【点评】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、待定系数法求一次函数解析式、二次函数的性质、解直角三角形、相似三角形的性质以及解一元二次方程,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用二次函数图象上点的坐标特征及一次函数图象上点的坐标特征,找出PE=﹣x2+x;(3)利用相似三角形的性质结合(2)的结论,找出关于x的一元二次方程.。

相关文档
最新文档