第1章质点运动学讲解
大学精品课件:01第一章质点运动学
第二节 质点运动的描述
一、参考系 坐标系
参考系(Reference Frame) :
确定一个物体的位置总是相对于某一物体或某一物体系来确定,那 么这—物体或物体系就作为描述物体位置的基准,称为参考系。
坐标系(Coordinates) :
确定了参考系后,为了能够定量地描
r
r
r
第4页
运动方程(Motion Equation):
矢量形式:
rv(t)
v x(t)i
y(t)
v j
v z(t)k
x x(t)
参数形式:
y
y(t)
z z(t)
轨道方程( Track Equation ):
F (x, y, z) 0 G (x, y, z) 0
一般情况:Q rv s, vv v
当t0时:Q rv drv , s ds, drv ds, vv v
第 12 页
三、加速度(Acceleration)
t1时刻,质点位于A处,速度为v(t) t2时刻,质点位于A处,速度为v(t+t) t时间内,速度增量为:
瞬时速度:刻画t 时刻速度的即时变化率
lim vv
rv drv
t0 t dt
o
dr
dt
A
B''
B'
r
B
r(t) r(t+t)
显然,v 和 r(t) 曲线的斜率有一一对应关系!
第9页
速度在直角坐标系中的解析表示:
rv(t) x(t)iˆ y(t) ˆj z(t)kˆ
大学物理第1章质点运动学ppt课件
大学物理第1章质点运动学ppt课件•质点运动学基本概念•直线运动中质点运动规律•曲线运动中质点运动规律•相对运动中质点运动规律目录•质点运动学在日常生活和工程技术中应用•总结回顾与拓展延伸质点运动学基本概念01质点定义及其意义质点定义用来代替物体的有质量的点,是一个理想化模型。
质点意义突出物体具有质量这一要素,忽略物体的大小和形状等次要因素,使问题得到简化。
参考系与坐标系选择参考系定义为了研究物体的运动而选作标准的物体或物体系。
坐标系选择为了定量描述物体的位置及位置的变化,需要在参考系上建立适当的坐标系。
常用的坐标系有直角坐标系、极坐标系、自然坐标系等。
位置矢量与位移矢量位置矢量定义从坐标原点指向质点的矢量,用r表示。
位移矢量定义质点从初位置指向末位置的有向线段,用Δr表示。
质点在某时刻的位置矢量对时间的变化率,即单位时间内质点位移的矢量,用v 表示。
速度定义加速度定义速度与加速度关系质点在某时刻的速度矢量对时间的变化率,即单位时间内质点速度的变化量,用a 表示。
加速度是速度变化的原因,速度变化快慢与加速度大小成正比,方向与加速度方向相同。
速度加速度定义及关系直线运动中质点运动02规律匀速直线运动特点及应用特点质点在直线运动中,速度大小和方向均保持不变。
应用描述物体在不受外力或所受合外力为零的情况下的运动状态。
匀变速直线运动规律探究定义质点在直线运动中,加速度大小和方向均保持不变。
运动学公式包括速度公式、位移公式和速度位移关系式,用于描述匀变速直线运动的基本规律。
定义物体在重力的作用下从静止开始下落的运动。
运动学公式包括位移公式、速度公式和速度位移关系式,用于描述自由落体运动的基本规律。
运动特点初速度为零,加速度为重力加速度,方向竖直向下。
自由落体运动分析竖直上抛运动过程剖析定义物体以一定的初速度竖直向上抛出,仅在重力作用下的运动。
运动特点具有竖直向上的初速度,加速度为重力加速度,方向竖直向下。
大学物理上第一章质点运动学ppt
加法法则
当有两个或多个质点同时运动时,它们的速 度可以通过矢量加法进行合成。
速率
速度的大小称为速率,用标量符号表示。
04 质点的加速度
瞬时加速度
定义
瞬时加速度是指在某一时刻, 质点运动速度的变化率。
计算公式
$a = frac{dv}{dt}$,其中$a$是 瞬时加速度,$v$是质点的速度, $t$是时间。
定义
平均速度是指在一段时间内质点位移量与时间的比值。
关系
瞬时速度是平均速度在时间趋于零时的极限值,即平 均速度的极限状态就是瞬时速度。
应用
在分析质点运动规律时,通常先求平均速度,再通过 极限思想求得瞬时速度。
速度的矢量性质
矢量表示
速度是一个矢量,具有大小和方向,可以用 矢量符号表示。
方向与正方向
速度的方向与质点运动的方向一致,通常规 定正方向为速度的方向。
重力加速度,大小为 $9.8m/s^{2}$,方向竖 直向下。
圆周运动
圆周运动的定义
质点在平面或空间以一定半径作圆周运动的运动形式。
圆周运动的描述参数
线速度、角速度、周期和频率。
圆周运动的向心加速度
大小为$a = v^{2}/r$,方向指向圆心。
相对运动
相对运动的定义
01
两个物体相对于第三个参照物的运动。
质点运动学的基本概念
质点
没有大小、形状,只有质量的 理想化模型,用于描述实际物 体的运动。
速度
描述质点运动快慢和方向的物 理量。
参考系
用来确定质点位置和描述其运 动的参照物。
位移
质点在空间中的位置变化量。
加速度
描述质点速度变化快慢和方向 的物理量。
第一章质点运动学1大学物理教程北京邮电大版
质点运动的方法。
x
1
gt2
2
1.2.1 位置矢量 运动方程
1 位置矢量 确定质点P某一时刻在坐标系里的位置的物理量称位
r 置矢量, 简称位矢 。
r
xi
yj
zk
y
y
r
*P
k j
式中 i、j 、k 分别为x、y、z
方向的单位矢量。
z ox
i
x
例如: r 2i 3 j 5k z
r 位矢 的大小为: r r x2 y2 z2
x
dx dt
r dr r2 h2 dt
按题意
0
dr dt
由此得船速
x 0
r r2 h2
0
x2 h2 x
v = vxi = -v0
x2 h2 i x
上式中的负号表示船的速度v沿X轴的负方向。
加速度:
ax
dvx dt
0
h2 x2 h2
dx dt
v02h2 x3
a
v02h 2 x3
i
负号表示加速度a的方向与X轴的正方向相反。 由于a与v同向,所以小船是加速靠岸的。
在直角坐标系中分解:
r xi yj zk
在直角坐标系中分 解:
rA xAi yA j zAk rB xBi yB j zB k
则在直角坐标系 Oxyz 中其位移为
r (xB xA)i ( yB yA) j (zB zA)k
xi yj zk
y
yB A r
r y A A
z = z(t)
该r运动2方ti程矢(8量式t:2 )
j
方程组消去t就得到质点的轨迹方程。 例运动学方程为x=2t, y=8-t2,轨迹方程为
大学物理教程讲义质点运动学.PPT
1.1 质点运动描述
1.1.5 质点的速度和速率
1.平均速度和瞬时速度
12
1.1 质点运动描述
为什么可以这样定义质 点在t时刻的瞬间速度?如 图1.3所示。当Δt→0时,B 点→B1→B2→B3→ 无限接近 A点,AB趋近于A点的切线. 速度方向沿运动轨迹的切线 方向。
图1.3 平均速度和瞬时速度
图1.7 自然坐标系
23
1.2 圆周运动
24
1.2 圆周运动
图1.8 切向加速度和法向加速度
25
1.2 圆周运动
1.2.2 圆周运动的角量描述
用自然坐标系表述圆 周运动中质点的位置、路 程的量纲是长度时,我们 将这种表述方法称为线量 表述。同一种运动还可采 用不同的表。
图1.9 圆周运动的角量描述
28
2.角速度
图1.10 角速度的方向
1.2 圆周运动
3.角加速度
同样,可以定义角加速度β来描述角速度的变化快慢.定义逆时 针的右手螺旋方向为正方向。
与角速度一样,角加速度也有正负。 在国际单位制中,角加速度的单位是弧度·秒-2 rad·s-2)
29
1.2 圆周运动
在描述半径为R的圆周运动 时,我们同时建立平面极坐标 系和自然坐标系,如图1.11所 示。以圆心为极点,任意射线 为极轴Ox建立平面极坐标系, 逆时针为极角θ正方向。以极 轴Ox与圆周的交点O′(θ=0) 作为原点,以圆周为坐标轴, 建立自然坐标系,逆时针为自 然坐标s正方向。
经典力学的绝对时空观与人们的感觉经验相协调,容易使人接受.但 是它毕竟只是时空性质的一种假设.近代物理学表明空间和时间与物质的 存在和运动是紧密联系的,绝对时空观只是实际时空性质的一种近似。
第一讲质点运动的描述ppt课件
(3)头3秒内的位移和路程
解:
(1)
dx 4 2t
v vx
dt
( m / s)
故为变速直线运动
dv
2
( m / s2 )
a
dt
故为匀变速直线运动
t 2s
v, a反向,
t 2s
t 2s
v, a同向, 故为匀加速直线运动
a)
( r、
) 是描述物体运动状态的物理量,
① 状态量:
分别表示质点任一时刻的位置
状态和运动状态。当质点的位
置状态和速度状态同时确定时,
质点的运动状态才完全确定。
a ) 是描述质点状态变化的物理量,
② 过程量:( r、
分别表示在某一时间间隔内的
位置矢量变化和速度的变化。
a ) --矢量
dt
v v0 at
v v 0 at
dx vdt (v 0 at)dt
x
t
x0
0
dx (v 0 at)dt
1 2
x x 0 v 0t at
2
例3:质点做直线运动已知a=Rx,(R>0)
求v(x)。设( = , = )
第一章 质点运动学
第一讲
质点运动的描述
基本概念:位置、速度、加速度
基本规律: 两类运动学问题。
作业:练习1 坐标系 质点 位置矢量
位移 速度 加速度
教学基本要求
一 、掌握位置矢量、位移、速度、加速
度等描述质点运动及运动变化的物理量 ,
理解它们的矢量性、瞬时性和相对性。
大学物理第一章质点运动学讲义
质点运动学的重要概念
位移
质点的位移是指质点在某一时刻相对 于参考点的位置变化量。
速度
质点的速度是指质点在某一时刻相对 于参考点的位置变化率。
加速度
质点的加速度是指质点在某一时刻相 对于参考点的速度变化率。
相对速度和相对加速度
当存在多个质点时,需要引入相对速 度和相对加速度的概念,以描述不同 质点之间的相对运动关系。
伽利略变换适用于低速运动,即速度远小于光速的情况。在 高速运动或引力场中,需要使用爱因斯坦的相对论变换。
牛顿运动定律的相对性
01
牛顿第一定律
一个质点将保持其运动状态,除非受到外力作用。在相对运动的参考系
中,牛顿第一定律速度与作用力成正比,与质量成反比。在相对运动的参考系中,
质点的描述主要包括位置、速度和加速度等基本参数,这些参数随时间变化而变 化,描述质点的运动状态。
质点运动的基本参数
位置
质点的位置可以用空间坐标来表示,通常用三维 坐标系中的坐标值描述。
速度
质点的速度是描述质点运动快慢和方向的物理量, 用矢量表示,包括大小和方向。
加速度
质点的加速度是描述质点速度变化快慢的物理量, 也是矢量,包括大小和方向。
描述一个质点相对于另一个质点的运 动速度。当两个质点相对运动时,它 们的相对速度取决于它们各自的运动 状态和方向。
相对加速度
描述一个质点相对于另一个质点的加 速度。相对加速度的大小和方向与两 个质点的相对速度有关,并影响它们 之间的相对位置和运动轨迹。
伽利略变换
伽利略变换是描述两个相对运动的惯性参考系之间关系的数 学公式。通过伽利略变换,可以计算一个质点在另一个质点 的参考系中的位置、速度和加速度。
大学物理第一章质点运动 学讲义
1质点运动学
质点运动学
§1-1 几个基本概念
一、质点 具有一定质量的几何点 两种可以把物体看作质点来处理的情况:
• 作平动的物体, 可以被看作质点
• 两相互作用着的 物体,如果它们之 间的 距离远大于本 身的线度,可以把 这两物体看作质点
质点:具有一定质量的几何点
常常把物体看成许多质 点的组合
• 如:刚体 带电体
v
r
t
平均速度的方向与t时 间内位移的方向一致
反映质点运动的快慢和 方向的物理量
zP
Q
rA
r rB
O
x
v
r
y
t
五、瞬时速度
zP
Q
精细地描述质点在某 时刻的运动情况
rA
r rB
lim
v
r
dr
t0 t dt
O
xv
y
速度的方向为轨道
P
Q
上质点所在处的切 线方向。
r
v
dr
dx
i
dy
k
axi ay j azk
瞬时加速度:
lim
a
t 0
v t
dv dt
d2r dt 2
ax
dvx dt
d2x dt 2
ay
dv y dt
d2 y dt 2
az
dvz dt
d2z dt 2
加速度的大小:
a
ax2
a
2 y
az2
加速度的方向: 当 t 趋向零时,速度增量
v
的极限方向
加速度方向始终指向曲线轨道 侧?
平均加速度
a
v
x
t
y
第一章质点运动学
3v 1.73v, y 轴正向 沿
作业:习题1-7,1-9
练习:习题1-6
提示:1-1题为第一类质点运动学问题,即 运动方程 加速度
速度 加速度
1-2题为第二类质点运动学问题,即
速度 运动方程
§1-3
圆周运动
y
y
平面极坐标 质点在A点的位置由 (r,θ)来确定. 以(r,θ)为坐标的 坐标系称为平面极坐标系
x x(t ) 分量式 y y (t ) z z(t )
—参数方程
2.运动方程
y
y (t )
r (t )
P
x(t )
从上式中消去参数 t ,可 z (t ) z 得质点运动的轨迹方程:
o
x
f ( x, y, z) 0
选择题.已知一质点位置矢量的表达式为 : r 2i 5 j 37k ,则该质点作 (A) 匀速直线运动。 (B) 静止。 (C) 抛物线运动。 (D)一般曲线运动。
物 理 学
第一章
质点运动学
§1-1
质点运动的描述
一 参考系 质点 1.参考系 为描述物体运动而选定的标准物,称 为参考系。 参考系选取的不同,物体运动的描 述不同,即对物体运动的描述具有相 对性。 2.质点 忽略物体的体积与形状,将其抽象为 具有同等质量的点,称为质点. 质点是理想模型.
二 位置矢量
x(t ) 1.0t 2.0, (2)运动方程 2 y(t ) 0.25t 2.0, 则有 t x 2 ,带入 y 中可消去参数 t ,
可得轨迹方程为
轨迹图
t 4 s
6
y 0.25x x 3.0
2
y/m
马文蔚《物理学》(上、下)课件讲义
15
物理学
第五版
即
1-1 质点运动的描述
B
l
A
当
时, vB = 1.73v
第一章 质点运动学
沿 轴正向
16
物理学
第五版
四 加速度
反映速度大小和 方向随时间变化快慢
1 平均加速度
1-1 质点运动的描述
B
A
与 同方向
第一章 质点运动学
17
物理学
第五版
2 (瞬时)加速度
1-1 质点运动的描述
第一章 质点运动学
(1)求
时的速度.
(2)作出质点的运动轨迹图.
第一章 质点运动学
11
物理学
第五版
已知: 解 (1) 由题意可得
1-1 质点运动的描述
时速度为 速度 与 轴之间的夹角
第一章 质点运动学
12
物理学
第五版
(2)运动方程
1-1 质点运动的描述
消去参数 可得轨迹方程为
轨迹图
6 4 2
-6 -4 -2 0 2 4 6
第一章 质点运动学
13
物理学
第五版
1-1 质点运动的描述
例2 如图A、B
两物体由一长为 的 刚性细杆相连,A、B 两物体可在光滑轨道 上滑行.如物体 A以
B
l
A
恒定的速率 向左滑
行, 当 物
时, 体B的速率为多少?
第一章 质点运动学
14
物理学
第五版
解
1-1 质点运动的描述
B
l
A
两边求导得
第一章 质点运动学
四 理解伽利略速度变换式, 并会 用它求简单的质点相对运动问题.
第1章-质点运动学ppt课件
§1-1 参考系
Function of Motion of a Particle
参考系
在描述物体运动时,必须指定其他物体或物体系 作为参考,这就是参考系〔或称参照系)。
例如: 以固定在地面上的某标志物为参考——地面参考系; 以实验室的墙壁地板为参考——实验室参考系; 研究行星运动时以恒星为参考——恒星参考系。
1. 平均加速度
速度质改点变在量t时与v间该里时的间
间隔的比值,即
a v
t
z
vA
A
vB
B
O
y
x
vA
vvB
v A
vB
称为质点在 t时间里的平均加速度
平均加速度是对一段时间而言的,它只能粗略地 表示质点速度变化的情况。
2. 瞬时加速度
当 t 0
,
v
alaim
t 0 t
d v dt
d
2
r
dt 2
v2 练习 :从加速度定义出发,导出 a n R
2. 变速圆周运动的加速度
加速度定义:a Av
v
lim
t0 t
lti m 0vt1lti m 0vt2
R B v
v
v v 1v 2
O
v v1
v2
v
v1 AB vv R
v2 v v v
v1
AB v R
a lim v1
lim v2
法向加速度分量 切向加速度分量
v2 dv a n t
R dt
说明
切向加速度反映了速度大小变化的快慢; 法向加速度反映了速度方向变化的快慢。
(匀速率圆周运动只有法向加速度,且大小不变
15.质点运动学(1)
变加速直线运动,沿x负方向
思考:质点在平面上运动,
位矢
r
at
2i
bt
2
j(a,b为
常量) , 则该质点作
(A) 匀速直线运动。 (B) 匀加速直线运动。 (C) 抛物线运动。 (D) 一般曲线运动。
大学物理
主讲老师:李瑞洁
特别声明 本课件由本人独立制作完成,凝聚着制作者 的心血和思路,仅供我班同学使用,请不要 擅自转借或上传网络。谢谢合作!
第一章 质点运动学
一、基本概念
1、 质点(particle)
——有质量, 无大小形状的理想模型
2、 参照系(reference system) 3、 坐标系(coordinate system)
r (x2 x1)i (
•区分路程s与位移
y2
r
y1
)
j
,
• s r,但ds dr
• 区分 r与r, r
r (x2 x1)2 ( y2 y1)2
r r2
r |
r1 r |,
r2
r1
且dr
dr
y1
•
0
•2 x
8、速度(velocity)
平均速度:
——单位时间的位移:v
r
t
4、位—置—r从矢原量x点i/ 位y质矢j 点(p的o有sit向io线n v段ec:toryr)
r r x2 y2 , (大小)
OP
•P(x,y)
r
tg 1
y x
(方向)
θ o
x
Байду номын сангаас
5、运动方程/ 运动函数(function of motion)
质点运动学第1讲
2-1-2 位置矢量与运动方程
位置矢量
r
xi
yj
zk
矢量的大小:r
r
x2 y2 z2
矢量的方向:OP
y
P(x ,y , z)
r
o
x
z
质点运动方程
质点的位置随时间t变化的规律
r
r (t )
x(t )i
y(t) j
z(t )k
矢量式
S
r
B
rB
x 位移!
该矢量大小的改变 一个矢量的改变,包括
和该矢量方向的改变
位矢方向
的改变 r (t )
dr
r(t t ) r(t )
r
r
r
r(t
t )
r(t )
位矢大小
的改变
0 r (t t) dr
2-1-4 速度
描12.. 述平瞬质均时点速速位度度置变 化li快tmr0t慢和rt 运ddr动t 方向的矢y 量
内容
§2-1 直角坐标系中质点运动的描述 §2-2 自然坐标系中质点运动的描述 §2-3 相对运动(自学)
2-1-1 参考系 质点模型
质点: 只有质量而没有大小和形状的理想模型。
参考系: 定性描述物体运动而选作参考的物体。
运动描述的相对性 参考系选择是任意的
坐标系: 固定在参考系上,定量描述空间位置的有
A
rA
A B B
rB
2. 瞬时加速度:
o
B
y
x
a
lim t 0 t
d
dt
d dt
dr d t
d
2
r
质点运动学ppt课件
切向加速度 度
速度大小变化产生的加速
法向加速度 度
速度方向变化产生的加速
大小:
方向: 切线方向
圆周运大动小的:总加速度
方向: 指向圆心
的大小
20
自然坐标系
B
沿着质点的运动轨迹,选取任意一点为 A 坐标原点,建立自然坐标系。
切向单位矢量
法向单位矢量 O
两者的方向互相垂直,且均随时间变化。
速度:
其大小为:
3.常用参考系 : 太阳参考系(太阳 ─ 恒星参考系)
地心参考系(地球 ─ 恒星参考系) 地面参考系或实验室参考系 质心参考系
3
坐标系:固结在参考系上的一组有刻度的射线、曲线或角度。
1.坐标系是参考系的数学抽象。
直角坐标系, 极坐标系,球坐标系,自然坐标系等 2.参考系选定后,坐标系还可任选。在同一参考系中用不同的 坐标系描述同一运动, 物体的运动形式相同,但其运动的数学 表述却可以不同。
1
15
3 2
16
二、 圆周运动
质点做曲线运动时: 看作各个瞬间做不同曲率半径的 圆周运动
质点位置
线速度
(圆周运动速率)
角速度 线量与角量关系:
对匀速圆周运动:
加速度
17
切向加速度 大小:
方向: 切线方向。
线量与角量关系: 角加速度
18
法向加速度 大小: 方向: 指向圆心方向。
19
圆周运动的加速度
1.2 质点运动的描述
Y机械运Βιβλιοθήκη 研究y物体 (质点)位置随时间的改变。
A
B
t t0
O
x
z
X
Z
n
质点的运动函数或运动方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 质点运动学一、基本要求1.理解描述质点运动的位矢、位移、速度、加速度等物理量意义;2.熟练掌握质点运动学的两类问题:即用求导法由已知的运动学方程求速度和加速度,并会由已知的质点运动学方程求解位矢、位移、平均速度、平均加速度、轨迹方程;用积分法由已知的质点的速度或加速度求质点的运动学方程;3.理解自然坐标系,理解圆周运动中角量和线量的关系,会计算质点做曲线运动的角速度、角加速度、切向加速度、法向加速度和总加速度; 4.了解质点的相对运动问题。
二、基本内容(一)本章重点和难点重点:掌握质点运动学方程的物理意义,利用数学运算求解位矢、位移、速度、加速度、轨迹方程等。
难点:将矢量运算方法及微积分运算方法应用于运动学解题。
(提示:矢量可以有黑体或箭头两种表示形式,教材中一般用黑体形式表示,学生平时作业及考试必须用箭头形式表示)(二)知识网络结构图⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧相对运动总加速度法向加速度切向加速度角加速度角速度曲线运动轨迹方程参数方程位矢方程质点运动方程运动方程形式平均加速度加速度平均速度速度位移位矢基本物理量,,,,:)(,,(三)基本概念和规律1.质点的位矢、位移、运动方程(1)质点运动方程()(t r ):k t z j t y i t x t r)()()()(++=(描述质点运动的空间位置与时间的关系式)(2)位矢(r ):k z j y i x r ++= (3)位移(r ∆):k z j y i x r ∆+∆+∆=∆(注意位移r ∆和路程s ∆的区别,一般情况下:S r ∆≠∆ ,r r r∆∆≠∆或; 位移大小:()()222)(z y x r ∆+∆+∆=∆;径向增量:21212122222212z y x z y x r r r r ++-++=-=∆=∆(4)参数方程:⎪⎩⎪⎨⎧===)()()(t z z t y y t x x(5)轨迹方程:从参数方程中消去t ,得:0),,(=z y x F 2.速度和加速度 直角坐标系中(1)速度(v):k dt dz j dt dy i dt dx dt r d v++==(2)平均速度(v):tr v ∆∆=(3)加速度(a ):k dt z d j dty d i dt x d dt r d dt v d a22222222++===(4)平均加速度(a):tv a ∆∆=(注意速度和速率的区别:dt rd v =,但一般情况下dtdr dt r d ≠) 3.曲线运动描述质点的曲线运动,常采用自然坐标系(由切向和法向组成),在自然坐标系中,质点的(线)速度和加速度为:(1)速度:t t e dtds e v v== (2)加速度:n n t t n t e a e a a a a+=+= 其中:切向加速度(t a )t t e dtdv a=,量度速度量值的变化; 法向加速度(n a )n n e v aρ2=,量度速度方向的变化,ρ为曲率半径。
4.圆周运动(1)角速度(ω):t d d θω=(2)线速度(v ):dtdsv =(3)角加速度(βα或):22d d d d t t θωα== (4)总加速度()a:n t n t e R e R a a a2ωα+=+=(大小取模:222)()(ωαR R a a a n t +=+=)且有角量与线量关系式: θR s =ωR v = 22n t d d ωαR R v a R t va ====5.相对运动一个运动质点在两个作相对平动的参考系中的速度关系为:u v v+'=(矢量和)式中:v 为绝对速度,是质点相对于S 系的速度,v '为相对速度,是质点相对于S '系的速度,u为牵连速度,是S '系相对于S 系的速度。
(四)容易混淆的概念 1.瞬时速度和平均速度瞬时速度(简称速度),对应于某时刻的速度,是质点位置矢量随时间的变化率,用求导法;平均速度是质点的位移除以时间,对应的是某个时间段内的速度平均值,不用求导法。
2. 瞬时加速度和平均加速度瞬时加速度(简称加速度),对应于某时刻的加速度,是质点速度矢量随时间的变化率,用求导法;平均加速度是质点的速度增量除以时间,对应的是某个时间段内加速度的平均值,不用求导法。
3.质点运动方程、参数方程和轨迹方程质点运动方程(即位矢方程),是质点位置矢量对时间的函数;参数方程是质点运动方程的分量式;而轨迹方程则是从参数方程中消去t 得到的,反映质点运动的轨迹特点。
4.绝对速度、相对速度和牵连速度绝对速度是质点相对于静止参照系的速度;相对速度是质点相对于运动参照系的速度;牵连速度是运动参照系相对于静止参照系的速度。
(五)思考问答问题1 位置矢量r 和位移r ∆有何区别?r ∆和r∆意义相同吗?答:位置矢量r(简称位矢)是从坐标原点指向质点所在位置的有向线段,描述了某时刻质点的位置;而位移r∆是初位置指向末位置的有向线段,反映了质点位置的变化,二者意义不同。
末位置的位矢和初位置的位矢之差即为该段时间内的质点的位移,若取初位置为坐标原点,则末位置的位矢和位移一致。
质点的瞬时速度为该时刻位矢对时间的一阶导数,而不是位移对时间的导数。
r ∆是矢量增量的模,即位移的大小;r∆为矢量模的增量,即位矢的径向增量,二者意义不同。
问题2 如果一质点的加速度与时间的关系是线性的,那么它的速度与时间、位矢与时间的关系是否也是线性的呢?答:它的速度与时间、位矢与时间的关系不是线性的。
问题3 物体在某一时刻开始运动,在t ∆时间后,经任一路径回到出发点,此时速度的大小和开始时相同,但方向一般不同,试问在t ∆时间内平均速度是否为零?平均加速度是否为零?答:平均速度v ∆是物体的位移r∆与时间t ∆的比值,而这段时间内位移为零,所以平均速度v∆为零。
平均加速度a ∆是物体速度的增量v∆与时间t ∆的比值,由于初、末速度的方向不同,所以v ∆不为零,平均加速度a∆也不为零。
问题 4 圆周运动中质点的加速度是否一定和速度方向垂直?任意曲线运动的加速度是否一定不与速度方向垂直?答:不管是圆周运动还是任意曲线运动,质点的总加速度均为切向加速度和法向加速度的矢量和。
在匀速率圆周运动中,速度的大小不变,切向加速度为0,质点的加速度为法向加速度,且其方向与线速度方向垂直,指向圆心。
而在变速率圆周运动中,速度的大小也随时间的变化而变化,质点的加速度不但有法向分量还有切向分量,因此,加速度的方向一般不垂直于沿切向的速度方向,也不一定指向圆心(法向)。
在匀速率曲线运动中,只要速度方向有变化,加速度只能有法向分量,而且一定与沿曲线切向的速度方向垂直,并指向质点所在处曲线的曲率中心。
在变速曲线运动中,切向加速度不为零,故加速度一定不与速度方向垂直,但一定指向轨迹的凹侧。
问题5 下列说法是否正确:(1)质点做圆周运动时加速度指向圆心; (2)匀速圆周运动的加速度为恒量;(3)只有法向加速度的运动一定是圆周运动; (4)只有切向加速度的运动一定是直线运动。
答:(1)错。
质点做非匀速率圆周运动时,加速度不一定指向圆心。
(2)错。
质点做匀速圆周运动时,只有法向加速度,加速度的大小不变但方向不断变化且始终指向圆心。
(3)错。
只有法向加速度的运动,切向加速度为0,则速率不变。
由:R v a n 2=圆周运动中半径R 一定,由此Rv a n 2=的大小也一定。
应该说只有法向加速度且其大小不变的的运动一定是圆周运动。
(4)正确。
只有切向加速度的运动,其法向加速度为0,∞→==R Rv a n ,02一定是直线 运动。
三、解题方法运动学主要分为两类问题:第一类问题:已知运动方程求速度和加速度,用求导法;第二类问题:已知质点加速度以及在起始状态时的初位矢和初速度,求速度、位矢或质点运动方程,用积分法。
其中,第一类问题的解题方法是求导,而求解第二类问题则需要积分。
求导不需附加条件,而积分则需要相应的初始条件,积一次分,需一个初始条件;有些情况下,不能直接积分,需做变量代换。
另外,在不同坐标系下(例如直角坐标系与自然坐标系),物理量的表达式不同,故学习中要准确掌握。
四、解题指导1. 已知质点运动参数方程为:⎩⎨⎧-=-=)cos 1( sin t R y t R x ωω 式中ω,R 为常量,试求:(1)质点轨迹方程是什么?作何运动?(2) 1秒末的位矢。
(3) 速度和加速度大小。
[分析]:这是已知运动方程求速度、加速度的典型问题,即运动学第一类问题,通过求导法进行计算。
解:(1)由参数方程消去t ,可得轨迹方程为:222)(R R y x =-+这是以R 为半径,圆心位于(0,)R 点的圆的方程,即质点作圆周运动。
(2)运动方程矢量形式为:j t R i t R r)cos 1(sin ωω-+-=将s t 1=代入上式得:j R i R r)cos 1(sin 1ωω-+-=(3)由速度定义:j t R i t R dtr d v ωωωωsin cos +-==其中:t R t x v x cos d d ωω-==,t R t y v y sin d d ωω==大小:ωR v v v y x =+=22可见v 的值为一常量,表明质点作匀速率圆周运动,角速度为ω。
再由加速度定义:j t R i t R dtvd a ωωωωcos sin 22+== 其中:t R t va x x sin d d 2ωω==,tR t v a y y cos d d 2ωω==大小:222ωR a a a y x =+=2.一质点在xOy 平面上运动,运动方程为:4321,532-+=+=t t y t x (式中t 以s 计,x ,y 以m 计)。
求:(1)以时间t 为变量,写出质点位置矢量的表示式;(2)求出s t 1= 时刻和s t 2= 时刻的位置矢量,计算这1秒内质点的位移; (3)计算s t 0=时刻到s t 4=时刻内的平均速度;(4)求出质点速度矢量表示式,计算s t 4=时质点的速度; (5)计算s t 0=到s t 4= 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算s t 4=时质点的加速度。
(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。
[分析]:本题是最基本的直角坐标系下运动学第一类问题,意在强化直角坐标系下的运动学各基本概念。
题目中给出的是参数方程形式,可用矢量式直接写出质点运动方程形式,再用求导法求出速度和加速度。
解:(1)位矢方程(质点运动方程)为: j t t i t r)4321()53(2-+++=m(2)将1=t ,2=t 代入上式即有:j i r 5.081-= m ,j i r4112+=mj i r r r5.4312+=-=∆m(3)∵ j i r j i r1617,4540+=-=∴ 104s m 534201204-⋅+=+=--=∆∆=j i ji r r t r v (4) 1s m )3(3d d -⋅++==j t i trv 则: j i v 734+= 1s m -⋅(5) ∵ j i v j i v73,3340+=+=∴ 204s m 1444-⋅==-=∆∆=j v v t v a (6)2s m 1d d -⋅==j tv a ,这说明该点只有y 方向的加速度,且为恒量。