推广的积分中值定理及其应用

合集下载

积分中值定理广义

积分中值定理广义

积分中值定理广义积分中值定理是微积分中的重要定理之一,它广泛应用于各个领域。

它通过一个简洁的数学表达式,揭示了函数在某个区间上的平均变化率与极值点的关系,为我们研究函数的性质和解决实际问题提供了有力的工具。

积分中值定理的广义形式描述了函数在闭区间上的平均值与极值点的关系。

它的数学表达式为:若函数f(x)在闭区间[a,b]上连续,则存在一个点c∈(a,b),使得∫[a,b]f(x)dx=(b-a)f(c)。

其中,(b-a)表示区间长度,f(c)表示函数在[a,b]上的平均值。

这个定理的意义是多方面的。

首先,它将函数的平均值与极值点联系起来,帮助我们直观地理解和分析函数的性质。

例如,如果函数在某个区间上的平均值恰好等于0,那么根据积分中值定理,我们可以得出存在某个点c,使得函数在该点上的值为0。

这对于寻找函数的零点或根的位置提供了一种方法。

其次,积分中值定理还可以用于求解实际问题。

例如,在物理学领域中,我们常常需要计算某个物理量在某个时间段内的平均值。

利用积分中值定理,我们可以将问题转化为求解函数的积分,从而得到所需的平均值。

这种方法在速度、加速度、质量等物理量的平均计算中得到了广泛应用。

另外,积分中值定理还与微分中值定理有着密切的联系。

微分中值定理研究的是函数在某一点处的斜率与在区间内的平均斜率之间的关系,而积分中值定理则研究的是函数的平均值与极值点的关系。

这两个定理相互补充,共同揭示了函数的性质和在数学和实际问题中的应用。

综上所述,积分中值定理广义形式为我们研究函数的性质和解决实际问题提供了重要的数学工具。

它帮助我们从数学的角度分析函数的平均值与极值点之间的关系,促进了我们对函数性质的理解。

同时,积分中值定理与微分中值定理相辅相成,共同构成了微积分中的重要基石。

在学习和应用中,我们应根据具体问题的需求合理地引用和运用积分中值定理,以求得更精确的结果。

积分中值定理与推广积分中值定理区间问题

积分中值定理与推广积分中值定理区间问题

积分中值定理与推广积分中值定理区间问题一、积分中值定理的基本概念1.1 积分中值定理的定义积分中值定理是微积分中的重要定理之一,它是对函数在闭区间上的平均值与极限值之间的关系进行了精确的描述。

积分中值定理的内容主要包括了两个部分:第一部分是零点定理,即如果函数在闭区间上连续,并且在该闭区间上取得了最大值和最小值,那么在该闭区间上一定存在至少一个点使得函数的导数等于零;第二部分是平均值定理,即如果一个函数在一个闭区间上连续,那么一定存在至少一个点,使得该点的导数等于函数在该区间上的平均增量。

积分中值定理的内容简单而深刻,它为我们理解函数在闭区间上的性质提供了重要的依据。

1.2 积分中值定理的应用积分中值定理在实际问题中有着广泛的应用,它不仅可以帮助我们理解函数的性质,还可以为我们提供在实际问题中对函数的特定取值进行估计的依据。

比如在物理学中,积分中值定理可以用来描述物体在某一时刻的速度与位移之间的关系;在经济学中,积分中值定理可以用来解释市场上产品的供求关系;在生物学中,积分中值定理可以用来分析生物体在生长过程中的变化规律等等。

积分中值定理是微积分中的基础定理之一,它在我们的日常生活和各个学科领域中都有着重要的地位。

二、推广积分中值定理区间问题2.1 区间问题的提出在积分中值定理的基础上,我们可以进一步进行推广,即考虑函数在开区间上的性质。

具体来说,我们可以考虑以下问题:如果一个函数在一个开区间上连续,那么它在该开区间上是否一定存在着一个点,使得该点的导数等于函数在该开区间上的平均增量呢?这个问题就是推广积分中值定理区间问题。

2.2 区间问题的解决针对区间问题,我们可以通过微积分中的基本原理进行研究。

我们可以利用函数的连续性和导数的存在性来证明函数在开区间上的平均增量一定存在,然后利用积分中值定理的零点定理和平均值定理来证明在该开区间上一定存在着一个点,使得该点的导数等于函数在该开区间上的平均增量。

积分第一中值定理的推广研究

积分第一中值定理的推广研究

积分第一中值定理的推广研究伴随时代的不断发展,数学同样在快速进步。

积分中值定理对于微积分的学习有着非常重要的作用。

本文就积分第一中值定理的推广进行深入地研究。

标签:积分第一中值定理;推广;应用1 积分第一中值定理定理1 如果在上连续,那么至少有一点,使得:证因为在上连续,所以其有最小值与最大值。

由:运用积分不等式性质可得:根据连续函数的介值性可知,至少有一点,使得:定理2 如果在上连续,那么至少有一点,使得:证因为在上连续,繼而在上可积。

将其原函数定位,那么按照存在定理便能够获悉,在上连续,同时在上可导,依据拉格朗日中值定理可知存在一点使得:可得:2 积分第一中值定理的推广2.1 积分第一中值定理的改进定理3 如果在上连续,那么至少有一点,使得:成立。

证明:令,由于在上连续,因此在上连续,在内可导,同时可得,对在内由拉格朗日微分中值定理得:至少有一点,使得:即例1 若上连续,非负,严格单调减函数,证明:证明:根据定3可得:(2-1)(2-2)根据公式(2-1)、(2-2)两边乘以得:由于,因此,又因在内连续,非负函数,因此。

2.2 推广的积分第一中值定理的改进定理4 如果、在内连续,同时在内不变号,那么至少有一点,使得:证明:假设满足,则:(1)在时,以上等式成立。

(2)在不恒等于0时,那么至少有一点,使得,由连续性知。

又因在内连续,进而必然存在着最小值与最大值,即:进而(2-3)1)假设公式(2-3)中左边等号成立,也就是:(2-4)或者在内连续,同时,那么在内便有。

由于不恒等于0,因此必然有一点,使得,即,那么在上至少有一点使。

依据公式(2-4)得。

2)假设(2-3)右边等号成立,同理也可证得结论成立。

3)假设(2-3)严格不等式成立,即:因为,则有:由连续函数的介质性定理知在上至少存在一点使得:或因此能够证明定理2成立。

3 结论综上所述,本文针对积分第一中值定理的定义、改进以及推广等进行了详细的研究,使得人们对积分第一中值定理有了大概的了解。

积分中值定理推广

积分中值定理推广

积分中值定理推广一、引言积分中值定理是微积分中的重要定理之一,它可以用来证明许多重要的数学结论。

本文将对积分中值定理进行推广,探讨其更广泛的应用。

二、积分中值定理首先,我们需要回顾一下积分中值定理的基本形式。

设$f(x)$在$[a,b]$上连续,则存在$c\in(a,b)$使得$\int_a^bf(x)dx=f(c)(b-a)$。

这个定理的意义是:在一个区间上,函数的平均值等于它在某个点处的函数值。

这个结论非常直观易懂,并且具有广泛的应用。

三、一般化积分中值定理然而,在实际问题中,我们经常遇到不连续或不可导的函数。

此时,我们需要将积分中值定理进行推广。

设$f(x)$在$[a,b]$上满足以下条件:1. $f(x)$在$(a,b)$内可导;2. $\lim\limits_{x\to a^+}f(x)$和$\lim\limits_{x\to b^-}f(x)$存在;3. $\int_a^bf'(x)dx$存在。

则存在$c\in(a,b)$使得$\int_a^bf'(x)dx=f(c)-f(a)+f(b)-f(c)=f(b)-f(a)$。

这个结论的意义是:在一个区间上,函数的平均变化率等于它在某个点处的导数值。

四、推广应用这个定理可以用来证明许多重要的数学结论。

下面列举几个例子。

1. 泰勒展开式设$f(x)$在$x_0$处$n$阶可导,则存在$c\in(x_0,x)$使得$f(x)=\sum_{k=0}^{n-1}\dfrac{f^{(k)}(x_0)}{k!}(x-x_0)^k+\dfrac{f^{(n)}(c)}{n!}(x-x_0)^n$。

这个结论可以通过将$f(x)$在$x_0$处展开为$n$次泰勒多项式,然后应用一般化积分中值定理得到。

2. 柯西中值定理设$f(x)$和$g(x)$在$[a,b]$上连续且在$(a,b)$内可导,并且$g'(x)\neq 0$,则存在$c\in(a,b)$使得$\dfrac{f(b)-f(a)}{g(b)-g(a)}=\dfrac{f'(c)}{g'(c)}$。

积分第一中值定理的推广研究

积分第一中值定理的推广研究

积分第一中值定理的推广研究积分第一中值定理是微积分学中的一个基本定理,它建立了函数在一定区间内的平均值与某一点的关系。

根据第一中值定理,对于区间 $[a,b]$ 上的连续函数 $f(x)$,存在$c\in[a,b]$,使得$$\int_a^b f(x)dx=f(c)(b-a)$$其中 $f(c)$ 表示 $f(x)$ 在$[a,b]$ 中的平均值。

在实际应用中,有许多特殊情况需要对积分第一中值定理进行推广研究,以适应更复杂的情形。

下面我们将介绍一些常见的推广形式。

1. 有界函数的积分中值定理对于区间 $[a,b]$ 上的有界函数 $f(x)$,仍然存在 $c\in[a,b]$,使得$$\int_a^b f(x)dx=f(c)(b-a)$$证明如下:设 $M$ 和 $m$ 分别为 $f(x)$ 在 $[a,b]$ 上的最大值和最小值,即$$m\leq f(x) \leq M \quad (a\leq x \leq b)$$则$$m(b-a) \leq \int_a^b f(x)dx \leq M(b-a)$$因此$$m\leq \frac{\int_a^b f(x)dx}{b-a}\leq M$$由有界函数的最小上界公理,$\frac{\int_a^b f(x)dx}{b-a}$ 存在最小上界和最大下界 $m'$ 和 $M'$,满足$$m\leq m' \leq \frac{\int_a^b f(x)dx}{b-a}\leq M'\leq M$$则对于 $m'$ 和 $M'$,存在 $c_1\in[a,b]$ 和 $c_2\in[a,b]$,使得$$f(c_1)=m', \qquad f(c_2)=M'$$则由连续函数的介值定理可知,存在 $c\in[a,b]$,使得$$m'\leq f(c) \leq M'$$因此$$\int_a^b f(x)dx=f(c)(b-a)$$对于曲线 $C$ 上的连续函数 $f(x,y)$,设弧长参数为 $s$,切向量为 $\vec{T}$,则存在 $s_1$ 和 $s_2$,使得$$\int_C f(x,y)ds=f(s_2)-f(s_1)$$其中 $f(s)$ 表示$f(x,y)$ 在曲线 $C$ 上的平均值。

积分中值定理的证明及其推广

积分中值定理的证明及其推广

积分中值定理的证明及其推广积分中值定理是微积分中的一个重要定理,它是指在一定条件下,函数在某个区间上的平均值等于函数在该区间上某一点的函数值。

下面我们来证明一下积分中值定理,并推广一下它的应用。

我们来证明积分中值定理。

假设函数f(x)在区间[a,b]上连续,那么根据连续函数的介值定理,存在一个点c∈[a,b],使得f(c)等于f(x)在[a,b]上的平均值,即:f(c) = 1/(b-a) * ∫[a,b] f(x)dx这就是积分中值定理的表述。

证明过程中,我们利用了连续函数的介值定理,即如果f(x)在[a,b]上连续,那么f(x)在[a,b]上取遍介于f(a)和f(b)之间的所有值。

接下来,我们来推广一下积分中值定理的应用。

首先,我们可以利用积分中值定理来证明柯西-施瓦茨不等式。

假设f(x)和g(x)在区间[a,b]上连续可导,那么有:|∫[a,b] f(x)g(x)dx| ≤ ∫[a,b] |f(x)| |g(x)| dx证明过程中,我们可以将f(x)g(x)拆成两个函数的和,然后利用积分中值定理来证明不等式。

积分中值定理还可以用来证明泰勒公式的余项。

假设f(x)在区间[a,b]上n+1阶可导,那么有:f(x) = ∑[k=0,n] f^(k)(a)/k! * (x-a)^k + Rn(x)其中Rn(x)为余项,满足:Rn(x) = f^(n+1)(c)/(n+1)! * (x-a)^(n+1)其中c∈[a,x]。

证明过程中,我们可以利用拉格朗日中值定理来证明余项公式。

积分中值定理是微积分中的一个重要定理,它不仅可以用来计算函数在某个区间上的平均值,还可以推广到其他应用中,如柯西-施瓦茨不等式和泰勒公式的余项。

)积分中值定理的推广和应用情形

)积分中值定理的推广和应用情形

积分中值定理的推广和应用———积分中值定理的推广定理和应用情形The IntegralMeanValue TheoremforIts Spreading andApplication——Extension theorem of integralmean value theorem andits application论文作者:专业:指导老师:完成时间:摘要积分中值定理和微分中值定理在微积分学中有着重要的地位,微分中值定理是研究函数的有力工具,反映了导数的局部性和与函数的整体性之间的关系,而积分中值定理在证明有关中值问题时具有极其重要的作用。

它是数学分析课程中定积分部分的一个基本定理之一。

积分中值定理包括积分第一中值定理和积分第二中值定理,在之前的数学分析课程中我们已经学习了这两个定理的证明,但这两个定理的推广与应用尚未提及。

在这里,我讨论了积分第一中值定理和积分第二中值定并给出了这些定理的详细证明过程,并且给出了集中推广形式。

在积分中值定理的应用方面,我给出了一些较简单的情形如估计积分值,求含有定积分的极限,确定积分号等,并且通过列举例题,加以归纳总结,并且充分体现积分中值定理在学习解题练习中的应用。

The integralmean value theoremandthe differential mea nvalue theorem playan importantrole inthe calculus.Diff erential meanvaluetheorem is a powerful tool to studythe function. It reflects therelation between thelocal property ofthederivativeand theintegral of thefunction. Andthe integral m eanvalue theorem plays a veryimportant role inthe proof of the mean value problem. It is one ofthe basictheorems of thedefinite integral partinthecourse of mathematicalanalysis. The integralmean value theoreminclude sthe first mean value theorem of integrals andthe secondmean value theoremof integrals,we havelearnedtheproof of thetwo theoremsIn thecourse ofmathematical analysis. B utthe extension and application ofthese twotheorems have not beenmentionedyet. Here,Idiscuss the first meanvalue t heoremofintegrals and the secondmean value of the integ rals andgive a detailed proof ofthesetheorems and Igi ve the form of centralized generalizations here.In the applicationofthe integralmean valuetheorem, I give some simple situations such as the estimationofthe integralvalue, andthe limit of the definite integral, theintegral numberand soon.And by citing examples,Isummarized and fully reflect the integralmean value theoreminthea pplication of learning problem solvingexercises.关键词:积分中值定理; 推广;应用Ke ywo rd: mean value t heorem o f int egral s; ext ension; Applic ation1 引言中值定理在数学分析中占有非常重要的地位,学好积分中值定理和微分中值定理能为进一步学好微积分理论打下坚实的基础。

对积分中值定理的一点思考

对积分中值定理的一点思考

对于积分中值定理的一点思考摘要积分中值定理是高等数学中重要的一部分,中值定理是人们认识高等数学世界、解决数学问题的重要武器,本文在数学分析教材中第一积分中值定理的条件下,证明了介值点ξ必可在开区间),(b a 内取得,并且给出几分中值定理及其推广的一些应用.关键词 积分中值定理 积分中值定理应用 积分中值定理的推广 第一积分中值定理 极限一 引言推广的积分第一中值定理:若函数f(x)与g(x)在闭区间[a, b]上连续,且g(x)在[a, b]上不变号,则在[a, b]上至少存在一点ξ使得⎰⎰=babax d x g f x d x g x f )()()()()()(ξ (1)推广的积分中值定理可改进如下:定理1:若函数f(x)与g(x)在闭区间[a, b]上连续,且g(x)在[a, b]上不变号,则在),(b a 上至少存在一点ξ使得⎰⎰=babax d x g f x d x g x f )()()()()()(ξ。

对其证明如下:因为)(x f 在],[b a 上连续,故)(x f 在],[b a 上存在最大值和最小值,不妨分别设为M 和m,即M x f m ≤≤)(,则必存在x x x x b a 2121],,[,<∈,使m f x =)(1,M f x =)(2,又因为)(x g 在],[b a 上不变号,不妨设0)(≥x g ,则⎰≥badx x g 0)(,且有)()()()(x Mg x g x f x mg ≤≤,又)(x f 和)(x g 都在],[b a 可积,则)()(x g x f 在],[b a 也可积,从而有 ⎰⎰⎰≤≤bababadx x g M dx x g x f dx x g m )()()()( (2)(1) 当⎰=b adx x g 0)(时,有⎰=b adx x g m 0)(以及⎰=badx x g M 0)(,由(2)得⎰=badx x g x f 0)()(,因此对),(b a ∈∀ξ,有dx x g f dx x g x f bab a ⎰⎰=)()()()(ξ 。

积分中值定理的推广及应用

积分中值定理的推广及应用

积分中值定理的推广及应用
贝叶斯积分中值定理(Bayesian Trapzoidal Midpoint Theorem)是20世纪
90年代出现的一种新型数学理论,其应用十分广泛,涵盖统计学、算法研究和信
号处理等多个领域。

这一定理的提出,使学者们在做数学研究和解决实际问题时,能够更好地利用贝叶斯积分这一优秀的数学工具,结果也引起了不少学者的关注。

贝叶斯积分中值定理指的是,在二维空间内,任意函数的贝叶斯积分,都可以
按照确定的比例(即中值)分解成若干份,每份代表一个状态。

这一定理有效地拓展了贝叶斯积分的应用范畴,使其能够成功扩张到一般非线性函数上,从而得以分析更多实际场景。

贝叶斯积分中值定理可以拓展到更高维度,并在实际应用中起到积极的作用。

例如,它可用于几何图形的识别与匹配、机器学习,以及定性评价。

此外,一些统计模型及动力学系统中,贝叶斯积分中值定理也展示出显著的优势,可以有效解决复杂优化寻优问题。

就生活娱乐方面来说,贝叶斯积分中值定理可以广泛应用于以人类峰值感受为
基础的娱乐设备中,例如虚拟现实技术、3D视觉等,不仅能够给用户带来视觉冲击,还能够帮助用户更快的感受到内容的魅力。

另外,它还可以应用于网络游戏与音乐节目的推荐系统,从而个性化的推荐让玩家或用户更佳的体验游戏和音乐节目。

总之,贝叶斯积分中值定理可以让众多领域发挥出更为精确的数学优势,它拓
展了贝叶斯积分这一行之有年工具,有助于更多实际场景的分析研究。

特别是在生活娱乐方面,由贝叶斯积分中值定理支撑的技术更能满足用户对娱乐方式以及游戏与音乐节目等内容的需求。

积分中值定理的推广形式

积分中值定理的推广形式

积分中值定理的推广形式
中值定理是数学中一条非常重要的定理,它用于描述曲线各点的特定关系。

它的推广形式,称为中值定理的推广版,也称为向量概念性中值定理。

它实际上是当一组等式存在多个未知量,且将每一组等式看作是多个向量的乘积时,所得的未知量的近似解的定理。

中值定理的推广版是实际操作中遇到的数值解法较为实用的定理,许多数值解法应用于该定理能够得到精确的近似解,从而提高计算效率。

中值定理的推广版在实际应用中,主要用来解决同时存在多个未知量的数值问题,可以形成多个向量的乘积。

基于此,先将相关的向量参数记录下来,然后使用中值定理的推广版以及向量参数,来求出未知量。

该方法在解无约束非线性方程组问题时,结果可以一定程度上加快求解过程并获得准确的结果。

另外,在结构化图像配准问题、结构化信号配准问题以及局部极大值检测问题中,中值定理的推广版也能起到很好的作用,在提取相关特征时起到提高计算效率的作用。

综上所述,中值定理的推广版对于求解多元未知量的问题具有很强的实用性,同时它还能用于在结构化信号配准、图像配准、局部极大值检测等多种问题中,节省计算时间,从而提升计算效率。

广义积分中值定理的推广与应用_李元玉

广义积分中值定理的推广与应用_李元玉

乙b
b]可 积 ,n ∈R 且 n ≥1,则 存 在 ξ ∈[a,b],使 f(x)g(x) a
乙ξ
dx=n(f b) g(x)dx a
3.3.3 在广义Riemann积分中的推广
定理6 (关于无限区间上广义函数的广义积分中值
定理)设(f x)在半直线[a,+∞]上有界连续,g(x)是[a,+∞]
乙+∞
存在ξ,η∈[a,b],使:
乙 乙 乙 b
ξ

(f x)dx=m (f x)dx+n (f x)dx (2.2.1)


ξ
乙 乙 乙 b
η

(f x)dx=n (f x)dx+m (f x)dx (2.2.2)


η
3 广义积分中值定理
3.1 广义积分中值定理
广义积分中值定理[3]:设(f x),g(x)在[a,b]上连续,且g
乙+∞
设函数(f x)在区间[a,b]上可积,则称 (f x)dx为第 a
收敛,反之称之为发散。
乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙乙 镇海区:镇海区形成以机械电子、轻工纺织、精细化学
等产业为主导的区域经济发展体系,高新技术产业快速发
展。由于涉外企业规模庞大,贸易往来频繁,七成涉外企业
何意义:若f在[a,b]上非负连续,则y=(f x)在[a,b]上的曲边
乙 梯形面积等于以(f ξ)为高,[a,b]为底的矩形面积。b1-a
b a
(f x)dx理解为(f x)在区间[a,b]上所有函数的平均值。
2.2 积分中值定理的推广
推广[2]函数(f x)在[a,b]可积,m,n∈R,且m≤1≤n,则

积分第一中值定理的推广研究

积分第一中值定理的推广研究

积分第一中值定理的推广研究积分第一中值定理是微积分中的重要定理之一,它在基本定理的基础上提供了更为广泛的应用场景。

本文将对积分第一中值定理进行推广研究,拓展其应用范围和深化理解。

积分第一中值定理最初的形式可以表述为:若函数f(x)在闭区间[a,b]上连续,在(a,b)上可导,那么存在一个点c∈(a,b),使得∫[a,b]f(x)dx = f(c)(b-a)这个定理的物理直观解释是,积分值等于函数在[a,b]上的平均值乘以区间的长度。

其中c称为中值点,表示在[a,b]上有一个点使得函数的瞬时增长率等于其在整个区间上的平均增长率。

在推广研究中,我们可以考虑将积分第一中值定理应用于更为复杂的场景。

当函数f(x)在[a,b]上不连续但可积时,是否存在类似的定理?答案是存在的,我们可以将[a,b]划分为多个小区间,并在每个小区间上应用积分第一中值定理。

然后将这些子区间的积分值进行累加,即可得到整个区间[a,b]上的积分值。

这个推广后的定理在实际问题中非常有用,能够适用于更多的函数情况。

另一个推广研究方向是将积分第一中值定理应用于多元函数。

在一元函数情况下,积分第一中值定理通过在(a,b)上应用微分中值定理得到。

同样地,在多元函数情况下,可以通过应用多元微分中值定理来推导积分第一中值定理的推广形式。

这个推广后的定理在研究多变量函数的平均值和积分值之间的关系时非常有意义。

还可以进一步探究积分第一中值定理的推广形式对不连续或不可导函数的应用。

在实际问题中,我们经常遇到不连续或不可导的函数,而这些函数的积分值又具有实际意义。

研究如何更准确地描述这些函数的积分值是一个重要的方向。

微分中值定理的推广及应用

微分中值定理的推广及应用

微分中值定理的推广及应用
微分中值定理是微积分中极为重要的一个定理,但它仅适用于单点处的导数。

为了推广微分中值定理的应用范围,有以下两种推广方式:
(1)广义中值定理
广义中值定理是指在区间 $[a, b]$ 上,如果函数 $f(x)$ 满足以下两个条件:
(a)$f(x)$ 在 $[a, b]$ 内连续;
(b)$f(x)$ 在 $(a, b)$ 内可导,
则存在一个 $c\\in (a, b)$ 使得:
$$ f'(c) = \\frac{f(b) - f(a)}{b - a} $$
我们可以将这个式子看作微分中值定理的推广,其中
$\\frac{f(b) - f(a)}{b - a}$ 是函数在 $[a, b]$ 上的平均值。

广义中值定理可用于证明一些函数的性质,例如,如果函数的导数不为零,则函数一定不是单调函数。

(2)高阶中值定理
高阶中值定理是指在区间 $[a, b]$ 上,如果函数 $f(x)$ 满足以下两个条件:
(a)$f(x)$ 在 $[a, b]$ 内 $n$ 次可导;
(b)$f(x)$ 在 $(a, b)$ 内 $(n+1)$ 次可导,
则存在 $n$ 个不同的点 $c_1,c_2,\\cdots,c_n$,使得:
$$ f^{(n)}(c_1) = f^{(n)}(c_2) = \\cdots = f^{(n)}(c_n) $$
其中 $f^{(n)}(x)$ 表示函数 $f(x)$ 的 $n$ 阶导数。

这个定理奠定了 Taylor 定理的基础,可以用于计算函数在某些点的近似值。

例如,在数值分析中,我们可以通过高阶中值定理来构造新的数值积分公式。

积分中值定理与推广积分中值定理区间问题

积分中值定理与推广积分中值定理区间问题

积分中值定理与推广积分中值定理区间问题积分中值定理与推广积分中值定理区间问题在微积分中,积分中值定理是一个重要的定理,它是连续函数与积分之间的有力联系。

这个定理不仅帮助我们理解积分的几何意义,而且可以应用到各种实际问题中,给出准确的结果。

本文将介绍积分中值定理,并针对其进行推广,特别是在区间问题上的应用。

我们来回顾一下积分中值定理的基本形式。

设函数f(x)在闭区间[a, b]上连续,且在开区间(a, b)可导。

则存在一个点c,使得∫[a, b]f(x)dx = f(c) * (b - a)在这里,f(c)表示函数f(x)在区间[a, b]上的中值。

这个定理告诉我们,对于连续函数,在一个闭区间上的积分等于该区间上函数值的平均值乘以区间的长度。

接下来,我们来考虑推广积分中值定理的区间问题。

对于一个闭区间[a, b]上的函数f(x),我们并不知道在哪个点c上取得了积分中值。

我们希望找到一个区间[a, b'],其中包含了所有可能的中值点。

为了解决这个问题,我们引入推广积分中值定理。

设函数f(x)在闭区间[a, b]上连续,且在开区间(a, b)可导。

我们定义函数g(x) = ∫[a, x]f(t)dt - f(a) * (x - a),这里x∈[a, b]。

显然,函数g(x)也是连续的,并且在开区间(a, b)可导。

根据积分中值定理,存在一个点c,使得g'(c) = 0。

这意味着在闭区间[a, b]上,函数f(x)的中值就是c。

我们可以通过求函数g(x)的导数来找到函数f(x)的中值所在的区间。

具体来说,我们计算g'(x) = f(x) - f(a),根据这个表达式,我们可以找到所有满足g'(x) = 0的点x,它们构成了可能的中值所在的区间。

现在,让我们来看一个具体的例子来理解推广积分中值定理在区间问题中的应用。

考虑函数f(x) = x^2 - 2x + 1在闭区间[0, 2]上的情况。

)积分中值定理的推广和应用情形

)积分中值定理的推广和应用情形

积分中值定理的推广和应用———积分中值定理的推广定理和应用情形The Integral Mean Value Theorem for Its Spreading andApplication——Extension theorem of integral mean value theorem and itsapplication论文作者:专业:指导老师:完成时间:摘要积分中值定理和微分中值定理在微积分学中有着重要的地位,微分中值定理是研究函数的有力工具,反映了导数的局部性和与函数的整体性之间的关系,而积分中值定理在证明有关中值问题时具有极其重要的作用。

它是数学分析课程中定积分部分的一个基本定理之一。

积分中值定理包括积分第一中值定理和积分第二中值定理,在之前的数学分析课程中我们已经学习了这两个定理的证明,但这两个定理的推广与应用尚未提及。

在这里,我讨论了积分第一中值定理和积分第二中值定并给出了这些定理的详细证明过程,并且给出了集中推广形式。

在积分中值定理的应用方面,我给出了一些较简单的情形如估计积分值,求含有定积分的极限,确定积分号等,并且通过列举例题,加以归纳总结,并且充分体现积分中值定理在学习解题练习中的应用。

The integral mean value theorem and the differential mean value theorem play an important role in the calculus.Differential mean value theorem is a powerful tool to study the function.It reflects the relation between the local property of the derivative and the integral of the function. And the integral mean value theorem plays a very important role in the proof of the mean value problem.It is one of the basic theorems of the definite integral part in the course of mathematical analysis.The integral mean value theorem includes the first mean value theorem of integrals and the second mean value theorem of integrals,we have learned the proof of the two theorems In the course of mathematical analysis.But the extension and application of these two theorems have not been mentioned yet.Here, I discuss the first mean value theorem of integrals and the second mean value of the integrals and give a detailed proof of these theorems and I give the form of centralized generalizations here.In the application of the integral mean value theorem, I give some simple situations such as the estimation of the integral value, and the limit of the definite integral, the integral number and so on.And by citing examples,I summarized and fully reflect the integral mean value theorem in the application of learning problem solving exercises.关键词:积分中值定理;推广;应用Keyword:mean value theorem of integrals; extension; Application1 引言中值定理在数学分析中占有非常重要的地位,学好积分中值定理和微分中值定理能为进一步学好微积分理论打下坚实的基础。

推广的中值定理公式

推广的中值定理公式

推广的中值定理公式推广的中值定理公式是微积分中的重要定理之一,它在数学分析和物理学等领域中有广泛的应用。

该定理的核心思想是,如果一个函数在某个区间上连续且可导,那么在这个区间内一定存在至少一个点,使得函数的导数等于函数在该区间两个端点的函数值之差的比值。

中值定理公式的形式可以表示为:如果函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,那么存在一个点c∈(a, b),使得f'(c)=(f(b)-f(a))/(b-a)。

这个公式的意义在于,它将函数的平均变化率与函数在某个点的瞬时变化率联系了起来。

换句话说,中值定理告诉我们,对于任意的两个点a和b,函数在这个区间内的平均变化率等于函数在某个点的瞬时变化率。

这个公式的证明可以通过利用拉格朗日中值定理来完成。

拉格朗日中值定理是中值定理的一个特殊形式,它假设函数在闭区间[a, b]上连续,在开区间(a, b)上可导,并且存在一个点c∈(a, b),使得f'(c)=(f(b)-f(a))/(b-a)。

拉格朗日中值定理的证明过程相对简单,它基于导函数的连续性和介值定理。

中值定理的应用非常广泛,特别是在微积分和数学分析中。

通过中值定理,我们可以推导出许多重要的数学定理和公式,例如泰勒展开式、柯西中值定理等。

同时,中值定理也可以用于解决实际问题,例如求解函数的最值、证明函数的性质等。

举个例子来说明中值定理的应用。

假设我们要证明一个函数在某个区间内是递增的,我们可以利用中值定理来证明。

首先,我们可以证明函数在这个区间内是连续的,并且在这个区间内可导。

然后,我们可以选择这个区间内的任意两个点a和b,并利用中值定理来证明f'(x)>0,即函数在这个区间内是递增的。

除了在数学领域的应用外,中值定理还可以应用于物理学中。

例如,在物理学中,我们经常需要计算物体的平均速度和瞬时速度。

通过中值定理,我们可以将物体在某个时间段内的平均速度与物体在某个时刻的瞬时速度联系起来,从而更好地理解物体的运动规律。

推广的积分中值定理及其应用

推广的积分中值定理及其应用

推广的积分中值定理及其应用摘要:定积分是微积分的重要组成部分,而积分中值定理是定积分的重要性质之一,所以积分中值定理在微积分中占了很重要的地位,本文系统的叙述了推广的积分中值定理包括:ξ必可以在开区间中取得,导函数的积分中值定理等多个方面,我们所学知识中积分中值定理与微分中值定理的中间点的存在区间是不统一的,但推广后的积分中值定理能够与微分中值定理的存在区间从形式上统一起来,使与其相关的理论得以联系和应用.同时,在本篇论文中以实例的形式列举了推广的积分中值定理在确定零点分布、证明积分不等式、求极限等方面的应用,显然,推广的积分中值定理的优点就在于此,它可以解决原积分中值定理无法解决的问题,这表明了积分中值定理在推广后更具有应用性.关键词:积分中值定理;导函数;微分中值定理Promotion of Integral Mean ValueTheorem and Its ApplicationAbstract:Definite integral is an important component of calculus, the mean value theorem is one of the important properties of the definite integral, so integral mean value theorem in calculus plays a very important position .This paper describes the system topromote the integral mean value theorem, including: ξwill be achieved in the open interval ,of the derivatives and other integral mean value theorem, we have the knowledge of the differential mean value theorem and the Intermediate Value Theorem Existence interval is not uniform, but after the promotion of integral mean value theorem and the Mean Value Theorem to the presence of range from the formal unity, so that contact can be associated with the theory and application. Meanwhile, in this paper an example to cite a form of integral mean value theorem in determining the zeros to prove inequality, such as the application of limit, obviously, to promote the advantages of integral mean value theorem in this, it Can solve the original integral mean value theorem can not solve the problem, suggesting that the integral mean value theorem in the promotion of a more applied after.Keywords: Integral mean value theorem, derivative, mean value theorem1预备知识在本部分中具体叙述了这篇论文中所需要的相关知识,包括导函数介值性定理、拉格朗日中值定理以及变上限积分函数的定义和性质等,这些理论知识为第二部分的定理推导以及证明做了铺垫,所以起了重要的作用.1.1设()g x 在[,]a b 上非负可积,且()0abg x dx >⎰则存在[,](,)c d a b ⊂使得()0dcg x d x >⎰1.2 设()f x 在[,]a b 上连续,0x ,1x ,2x [,]a b ∈若10()()f x f x >,20()()f x f x <,则存在(,)a b ξ∈,使得0()()f f x ξ=1.3若函数()f x 在[,]a b 上可导,且''()()f a f b +-≠,k 为介于'()f a +,'()f b -之间的任意数,则在(,)a b 内至少存在一点ξ,使得'()f k ξ=1.4若'()f x 为[,]a b 上的非负导函数,且存在0[,]x a b ∈,使'0()0f x >,则必有'()0baf x dx >⎰1.5(拉格朗日中值定理)若函数()f x 满足如下条件: (1)()f x 在闭区间[,]a b 上连续; (2)()f x 在开区间(,)a b 内可导;则在(,)a b 内至少存在一点ξ使得'()()()f b f a f b aξ-=-1.6变上限积分函数:设()f x 在[,]a b 上可积,x 为[,]a b 内任意一点,则称函数()()xax f t dt φ=⎰为变上限积分函数1.7变上限积分函数有以下若干性质 (1)有界性命题1 设函数()f x 在[,]a b 上可积,则()x φ在[,]a b 上有界(2)连续性命题2 设函数()f x 在[,]a b 上可积,则()x φ在[,]a b 上连续 (3)可积性命题3 设函数()f x 在[,]a b 上可积,则()x φ在[,]a b 上可积 (4)可微性(原函数存在定理)()f x 在[,]a b 上连续,则()x φ在[,]a b 上处处可导.且'()()()xad x f t dt f x dx φ==⎰ [,]x a b ∈2 推广的积分中值定理积分第一中值定理在数学分析教材中为:若()f x 在[,]a b 上连续,则至少存在一点[,]a b ξ∈,使得()()()baf x dx f b a ξ=-⎰推广的积分第一中值定理在数学分析教材中为:()f x ,()g x 都在[,]a b 上连续,且()g x 在[,]a b 上不变号,则至少存在一点[,]a b ξ∈,使得()()()()bbaaf xg x dx f g x dx ξ=⎰⎰我们知道积分中值定理可用于确定数列及函数列的极限,确定零点分布,判别函数的敛散性,证明积分不等式等.但观察上述式子我们发现ξ的取值有时会在两个端点处取得,有的习题用原有的积分中值定理不能够解答出来.例如在证明积分不等式时,运用原有的积分中值定理我们只可以证明≤或≥的情况,所以带有一定的局限性.下面我们对原有的积分中值定理做一下加强,使“ξ”的范围由闭区间缩小到开区间,即得到了下面所叙述的推广的积分中值定理.2.1积分第一中值定理的推广定理 2.1(1)若()f x 在闭区间[,]a b 上连续,则在开区间(,)a b 内至少存在一点ξ使得:()()()baf x dx f b a ξ=-⎰成立证明: 作辅助函数()()x aF x f t dt =⎰ [,]x a b ∈则()F x 是[,]a b 的可微函数,且'()()F x f x =.由微积分学中值定理,至少存在一点(,)a b ξ∈,使得:'()()()()F b F a F b a ξ-=-注意到()()ba Fb f x dx =⎰,()0F a =,即有()()()baf x dx f b a ξ=-⎰(,)a b ξ∈2.2推广的第一积分中值定理的加强引理1 设()g x 在[,]a b 上非负可积,且()0ba g x dx >⎰,则存在[,](,)c d ab ⊂使得()0dcg x dx >⎰证明:用反证法作辅助函数()()b x a xG x g t dt -+=⎰[0,]2b a x -∈,则()G x 是[0,]2b a-上的非负连续函数.若命题不成立,则对任意的(0,)2b ax -∈有()G x ≡0,令x o →+,得(0)()0b a G g t dt ==⎰,产生矛盾.引理2 ()f x 在[,]a b 上连续,0x ,1x ,2x [,]a b ∈,若10()()f x f x >,20()()f x f x <,则存在(,)a b ξ∈,使得0()()f f x ξ=证明:作辅助函数0()()()H x f x f x =-,我们不妨设12x x <,因为()f x 在[,]a b 上连续,故()H x 也连续,从而在12[,]x x 上连续.1()0H x >,2()0H x <由连续函数的零点定理知存在12(,)x x ξ∈使得()0H ξ=即当然0()()f f x ξ=其中(,)a b ξ∈.引理3 若()g x 在[,]a b 上连续且不恒为零,则积分()0ba g x dx >⎰证明:倘若有某0[,]x a b ∈,使0()0g x >,由连续函数的局部保号性知存在0x 的某邻域00(,)x x δδ-+,使在其中0()()02g x g x ≥>,则 00000000()()()()()00()02bx x b x aax x x g x g x dx g x dx g x dx g x dx dx g x δδδδδδδ-++-+-=++≥++=>⎰⎰⎰⎰⎰证毕.定理 2.2 设()f x 在[,]a b 上连续,()g x 在[,]a b 上可积不变号,则至少存在一点(,)a b ξ∈使得()()()()bbaaf xg x dx f g x dx ξ=⎰⎰证法1(2)证明:1︒()0bag x dx =⎰时,此时,由推广的积分中值定理知,存在[,]a b ξ∈使得()()()()bbaaf xg x dx f g x dx ξ=⎰⎰=0于是对任意的0(,)x a b ∈有0()()()()bbaaf xg x dx f x g x dx =⎰⎰命题成立2︒当()0g x ≥,且()0bag x dx >⎰时,若命题不成立,即不存在(,)a b ξ∈,使得()()()()bbaaf xg x dx f g x dx ξ=⎰⎰则由推广的积分中值定理知,只能有()()()()b baaf xg x dx f a g x dx =⎰⎰ (1)或者 ()()()()b baaf xg x dx f b g x dx =⎰⎰ 成立 (2)若是命题不成立而(1)成立,则在(,)a b 内()()f x f a ≠ 由引理2在(,)a b 内恒有()()f x f a >或者()()f x f a <,不妨设()()f x f a >,而对()g x 运用引理2存在[,](,)c d a b ⊂,使得()0dc g x dx >⎰于是()()()()()()()()()()bbcdbaaacdf ag x dx f x g x dx f x g x dx f x g x dx f x g x dx ==++⎰⎰⎰⎰⎰=123()()()()()()c d bacdf g x dx f g x dx f g x dx ξξξ++⎰⎰⎰其中1[,]a c ξ∈,2[,]c d ξ∈,3[,]d b ξ∈,这是根据推广的积分中值定理得出的,由于1()()f f a ξ≥,()0cag x dx ≥⎰,2()()f f a ξ>,()0dcg x dx >⎰,3()f ξ中的3b ξ≠时3()()f f a ξ>.当3b ξ=时,对()()f x f a >,0x b →-,由()f x 在[,]a b 上的连续性可知,()()f b f a ≥而()0dd g x dx ≥⎰,综上可得到()()()()()()()()()()b c d b baacdaf ag x dx f a g x dx f a g x dx f a g x dx f a g x dx >++>⎰⎰⎰⎰⎰这是一个矛盾,因此命题成立.若是命题不成立而(2)成立,同样可得出矛盾,因此定理得以证明3︒ 当()0g x ≤,且()0ba g x dx <⎰时此时()0g x -≥,且[()]0bag x dx ->⎰,由情形2的讨论知,存在(,)a b ξ∈,使得()[()]()[()]bb aaf xg x dx f g x dxξ-=-⎰⎰ 即有()()()()bbaaf xg x dx f g x dx ξ=⎰⎰ (,)a b ξ∈总之,定理2.2完全得以证明证法2(3)证明:令()()xaF x f t dt =⎰,由拉格朗日中值定理知,(,)a b ξ∃∈,使得'()()()F b F a F b aξ-=-,即()()()baf x dx f b a ξ=-⎰不妨设()0g x ≥,[,]x a b ∈,若()g x 在[,]a b 上恒为零,则结论显然成立.若()g x 在[,]a b 上连续且不恒为零,则积分()0ba g x dx >⎰令()()()x aF x f t g t dt =⎰,()()xaG x g t dt =⎰,在[,]a b 上应用柯西中值定理,(,)a b ξ∃∈,使''()()()()()()()()()()()()()babaf tg t dtF b F a F f g fG b G a G g g t dtξξξξξξ-=⇒==-⎰⎰即()()()()bbaaf xg x dx f g x dx ξ=⎰⎰2.3积分第二中值定理的推广在数学分析教材中积分第二中值定理是这样叙述的,设函数()f x 在[,]a b 上可积 (1)若函数()g x 在[,]a b 上减,且()0g x ≥,则存在[,]a b ξ∈,使得()()()()baaf xg x dx g a f x dx ξ=⎰⎰(2)若函数()g x 在[,]a b 上增,且()0g x ≥,则存在[,]a b η∈,使得()()()()bbaf xg x dx g b f x dx η=⎰⎰其推论为:设函数()f x 在[,]a b 上可积,若()g x 为单调函数,则存在[,]a b ξ∈,使得()()()()()()bbaaf xg x dx g a f x dx g b f x dx ξξ=+⎰⎰⎰现在研究一下推论的情形:在第一积分中值定理中,我们把ξ的取值区间由闭区间缩小到开区间,但对于积分第二中值定理是否可以做这样的加强呢,看一下下面的例子:在闭区间[,]a b 上()1f x =,1[,)()2x a b g x x b ∈⎧=⎨=⎩若在(,)a b 上存在ξ使得()()()()()()bbaaf xg x dx g a f x dx g b f x dx ξξ=+⎰⎰⎰即 ()()()()2()2b a g a a g b b a b b a ξξξξξ-=-+-=-+-=--所以b ξ=,即ξ在[,]a b 的端点.这个例子告诉我们积分第一中值定理的加强结果对于积分第二中值定理不一定成立,但是这里的有限区间[,]a b 却可以换成[,)a +∞或(,]b -∞或(,)-∞+∞.此处只讨论第一种情况定理 2.3(4)设()g x 在[,)a +∞上单调有界,()f x 在[,)a +∞上可积,且()f x 没有+∞以外的瑕点,则存在[,)a ξ∈+∞使得()()()()()()aaf xg x dx g a f x dx g f x dx ξξ+∞+∞=++∞⎰⎰⎰这里()lim ()x g g x →+∞+∞=证明:不妨设()g x 在[,)a +∞上单调下降,由于()g x 有界,所以()g x 在+∞处有有限的极限,记为()g +∞,于是可记()()()G x g x g =-+∞,则()0G x ≥,而对于任意的有穷区间[,]a A ,由第二积分中值定理可知,总有[,]a A η∈使得:()()()()Aaaf x G x dx G a f x dx η=⎰⎰而()()A aF A f x dx =⎰是[,)a +∞上的关于A 的连续函数,又()f x 在[,)a +∞上可积,则()F A 在[,)a +∞上有有穷的下确界和上确界,不妨记[,)inf ()A a m F A ∈+∞=,[,)sup ()A a M F A ∈+∞=,则有()m F A M ≤≤又因为()()()()Aaaf x G x dx G a f x dx η=⎰⎰所以有()()()()AamG a G x f x dx MG a ≤≤⎰再令A →+∞,则有()()()()amG a G x f x dx MG a +∞≤≤⎰令 ()()()aG a G x f x dx μ+∞=⎰, (3)则有()()()mG a G a MG a μ≤≤如果()0G a ≠则m M μ≤≤,因为()()AaF A f x dx =⎰是[,)a +∞上的关于A 的连续函数,所以()F A 可以达到其上确界M 和下确界m 及上确界和下确界之间的任意值,即存在[,)a ξ∈+∞使得()af x dx ξμ=⎰将其带入(3)式就有()()()()aaG a f x dx G x f x dx ξ+∞=⎰⎰即(()())()(()())()aag a g f x dx g x g f x dx ξ+∞-+∞=-+∞⎰⎰所以()()()()()()aaf xg x dx g a f x dx g f x dx ξξ+∞+∞=++∞⎰⎰⎰如果()0G a =,因为()g x 在[,)a +∞上单调下降,所以()G x 在[,)a +∞上单调下降,又因为()0G x ≥即()0G x =所以()()g x g =+∞,即()g x =常数,那么对任意的[,)a ξ∈+∞,都有()()()()()()aaf xg x dx g a f x dx g f x dx ξξ+∞+∞=++∞⎰⎰⎰证毕.这个定理告诉我们:第二积分中值定理虽然在有限开区间上不一定成立,但在无穷区间上却是成立的.通过以上的推导过程我们会发现在积分中值定理的前提下,ξ必可以在开区间中取得.在微积分学中积分中值定理和微分中值定理两者在一定意义上是互逆的、对立的,这种辩证的对立统一使微积分的内容更加丰富多彩,但两者中间点ξ的存在区间是不统一的,给其相关理论和应用带来了不便,但改动之后,推广的积分中值定理与微分中值定理的取值区间得以统一,从而更能体现积分中值定理的中值性,以及两个定理之间的联系.一方面可由微分中值定理推出积分中值定理根据牛顿—莱布尼茨公式:()()()ba f x dx Fb F a =-⎰其中()F x 是()f x 在[,]a b 上的原函数即'()()F x f x =,[,]x a b ∈,显然()F x 在[,]a b 上满足拉格朗日中值定理的条件,于是至少存在一点(,)a b ξ∈使得'()()()()F b F a F b a ξ-=-()()f b a ξ=- (,)a b ξ∈即()()()baf x dx f b a ξ=-⎰(,)a b ξ∈另一方面,推广的积分中值定理推出微分中值定理:若()f x 在[,]a b 上有连续的导函数,直接计算得:'()()()baf x dx f b f a =-⎰ (4)而由推广的积分中值定理至少存在一点(,)a b ξ∈,使得''()()()baf x dx f b a ξ=-⎰(5)由(4)和(5)有'()()()()f b f a f b a ξ-=-,这正是微分中值定理.2.4 导函数的积分中值定理及其应用在微积分学中,积分中值定理与微分中值定理都有着很重要的地位,下面我们将积分中值定理条件下的连续函数推广到导函数,并用Darboux 定理给出了详尽的证明,由此我们得出了导函数积分中值定理.引理1(5)(Darboux ) 若函数()f x 在[,]a b 上可导,且''()()f a f b +-≠,k 为介于'()f a +,'()f b -之间的任意数,则在(,)a b 内至少存在一点ξ,使得'()f k ξ=引理2 若'()f x 为[,]a b 上的非负导函数,且存在0[,]x a b ∈,使'0()0f x >,则必有'()0baf x dx >⎰定理 2.4(6)若'()f x 为[,]a b 上的导函数,()g x 为[,]a b 上的连续函数,且()g x 在[,]a b 上不变号,则至少存在一点ξ[,]a b ∈,使得''()()()()bbaaf xg x dx f g x dx ξ=⎰⎰证明:不妨设()0g x ≥,'()f x 在[,]a b 上的最大值和最小值为别为M 与m ,其中M 可以取+∞,m 可以取-∞,在a 点取'()f a +,在b 点取'()f b -,令()0ba I g x dx =≥⎰,又'()()()()mg x f x g x Mg x ≤≤,([,])x a b ∈,则有'()()()()bbbaaam g x dx f x g x dx M g x dx ≤≤⎰⎰⎰当0I =或m M =时,任意取(,)a b ξ∈均可当0I >或m M <时,令'1()()b a u f x g x dx I=⎰ ()m u M ≤≤ 当m u M ≤≤时,由Darboux 定理知,至少存在一点(,)a b ξ∈,使得'()f u ξ= 当m u M =<时,利用反证法证明存在(,)a b ξ∈,使得'()f u ξ=若对一切的(,)x a b ∈,有'()0f x u ->且()0baI g x dx =>⎰,则()g x 在[,]a b 上不恒为零,即存在0[,]x a b ∈,使得0()0g x >,由连续函数的保号性知存在0x 的邻域00(,)x x σσ-+(当0x a =或0x b =时,则为右邻域或左邻域)使得对于任意的00(,)x x x σσ∈-+,有0()()02g x g x ≥>,则 0000'''0()(())()(())()(())2bx x ax x g x f x u g x dx f x u g x dx f x u dx σσσσ++--->-≥-⎰⎰⎰ 由引理2可得00'(())0x x f x u dx σσ+-->⎰,从而有'(())()0b af x ug x dx ->⎰另一方面:''0(())()()()()0bbbaaaf x ug x dx f x g x dx u g x dx uI uI <-=-=-=⎰⎰⎰出现矛盾,故原命题成立,即当m u M =<时,存在(,)a b ξ∈,使得'()f u ξ=当m u M <=时,同理可证必存在(,)a b ξ∈,使得'()f u ξ=成立同理可证二阶导函数,n 阶导函数对上述的导函数的积分中值定理成立,只要我们把它们看成一阶连续导函数和n-1阶连续导函数的导函数,便可用同样的方法得证.定理2.4的应用说明例1 设函数()f x 在[,]a b 上二次可微,证明存在一点(,)a b ξ∈,使得''324().[()()]()2b aa bf f x f dx b a ξ+=--⎰ 证明:记02a bx +=,将被积函数在0x x =处按泰勒公式展开,得 2'''0000()()()()()()2x x f x f x x x f x f η--=-+其中η在x 与0x 之间,因为'00()()0bax x f x dx -=⎰,即2''00()(()())()2bbaax x f x f x dx f dx η--=⎰⎰由定理知存在(,)a b ξ∈使32''''2''00()()()()()()12bba ab a x x f dx f x x dx f ηξξ--=-=⎰⎰从而''324().[()()]()2b a a bf f x f dx b a ξ+=--⎰例2 已知导函数'()f x 在[1,2]上有界,求证2'1lim ()0nx n f x e dx -→∞=⎰证明:导函数'()f x 在[1,2]上有界,所以存在正数M ,对[1,2]ξ∈,有'()f M ξ<,由定理1知,存在1(1,2)ξ∈,2(1,2)ξ∈, 使得222'''1111()()()n nnx x f x edx f edx f eξξξ---==⎰⎰从而有2'1lim ()0nx n f x e dx -→∞=⎰3 推广的积分中值定理的应用3.1用于确定零点分布例3 (7)证明:若()f x 在[,]a b 上连续,且()()0b ba af x dx xf x dx ==⎰⎰,则在(,)a b 内至少存在两点1x ,2x 使得12()()f x f x =证明:设()()xa F x f t dt =⎰那么我们有()()()0baf x dx F b F a =-=⎰,所以()()F b F a ==0又因为()()()()bbbba aaaxf x dx xdF x xF x F x dx ==-=⎰⎰⎰ ()()()()bF b aF a F b a ξ---所以可得; ()()()()b a F b F b a ξ-=-,所以()()()F b F F a ξ===0 证毕例4(8) 证明:若()f x 在[0,]π上连续,且0()()cos 0f x dx f x xdx ππ==⎰⎰,证明:存在两点1ξ,2ξ (0,)π∈,使得 12()()0f f ξξ==证明:令0()()xF x f t dt =⎰ 即'()()F x f x =,()(0)0F F π==00()cos cos ()cos ()()cos f x xdx xdF x xF x F x d xππππ==-⎰⎰⎰()sin ()sin .0F x xdx F πξξπ===⎰所以()0F ξ= (0,)ξπ∈,对()F x 在(0,)ξ,(,)ξπ上使用罗尔定理,即存在1(0,)x ξ∈,2(,)x ξπ∈满足'1()0F x =,'2()0F x =,即12()()0f x f x ==证毕 例5(3)假如()f x 在[0,]π上连续,且0()sin ()cos 0f x xdx f x xdx ππ==⎰⎰,则()f x 在(0,)π内至少有两个零点.证明:由已知条件,并运用推广的积分中值定理得0()sin ()sin 2()()0f x xdx f xdx f f ππξξξ===⇒=⎰⎰,(0,)ξπ∈即()f x 在(0,)π有一个零点,假如仅有一个零点x ξ=,则()f x 在[,]a ξ与[,]b ξ上均不变号,且异号,那么()sin()f x x dx ξ-在[0,]π上保持同号,连续且不恒为零,必有()sin()0f x x dx πξ->⎰(或0<)与已知0()sin()cos ()sin sin ()cos 0f x x dx f x xdx f x xdx πππξξξ-=-=⎰⎰⎰矛盾.3.2 证明积分不等式在证明积分不等式时,常常考虑积分中值定理以便去掉积分符号,如果被积函数是两个函数之积时,可考虑用积分第一或第二中值定理,对于某些不等式的证明运用原积分中值定理只能得到“≥”的结论,或者不等式根被就不能得以证明,而运用了推广的积分中值定理后,则可以得到“>”的结论,或者成功的解决.例6(9) 假设()f x 在[0,1]上连续并且单调递减,证明对任何的(0,1)a ∈有1()()af x dx a f x dx >⎰⎰证明:将要证的不等式移项11()()()()()aa a af x dx a f x dx f x dx a f x dx a f x dx -=--⎰⎰⎰⎰⎰1(1)()()aaa f x dx a f x dx =--⎰⎰因为()f x 单调递减,所以在区间[0,]a 上()()f x f a ≥,即0()()af x dx af a ≥⎰,再对上式右边第二项运用推广的积分中值定理,即存在ξ其中1a ξ<<,使上式变成1(1)()()(1)()()(1)(1)[()()]a aa f x dx a f x dx a af a af a a a f a f ξξ--≥---=--⎰⎰因为()f x 单调递减,且1a ξ<<,,所以(1)[()()]0a a f a f ξ-->,即得证.例7(9) 设()f x 在[,]a b 上连续且单调递增,证明()()2bbaaa b xf x dx f x dx +>⎰⎰证明:将要证的不等式移项,并分部积分得()()2bbaa ab xf x dx f x dx +-⎰⎰ 22()()()()()()222a bbb a b a a a b a b a bx f x dx x f x dx x f x dx +++++=-=-+-⎰⎰⎰ 令()()2a b g x x +=-,显然()f x ,()g x 在[,]2a b a +和[,]2a b b +上可积,且()g x 在[,]2a b a +和[,]2a b b +上不变号,由推广的积分中值定理知:即存在11()2a b a ξξ+<<,22()2a bb ξξ+<<,使得221222()()()()()()()()2222a ba bb b a b a b aa ab a b a b a b x f x dx x f x dx f x dx f x dxξξ++++++++-+-=-+-⎰⎰⎰⎰整理得221()[()()]8a b f f ξξ+-,因为()f x 是单调递增函数,122a b a b ξξ+<<<<,所以221()[()()]08a b f f ξξ+->,证毕. 在上述例子中我们可以看到有的题原积分中值定理不适用,而推广的积分中值定理可以将问题解决.在例6中如果运用原积分中值定理,由1a ξ≤≤只能得到“0≥”的结论;而在例7中也只能得到12()()f f ξξ≤的结论.3.3求极限例8(10)证明10lim 01nn x dx x→∞=+⎰ 证明:0ε∀>,如果取1[0,1]2ξε∈-,则有10lim 01nn dx ξξ→∞=+⎰,即N ∃,当n N >时,有12n ξεξ<+,又因为:11120012111n n n x x x dx dx dx x x x εε--=++++⎰⎰⎰对等式右边第一个积分运用中值定理,对第二个积分的被积函数用不等式011n x x <≤+,则有当n N >时有100[2]122n x dx x εε<<-+⎰,所以有10lim 01n n x dx x→∞=+⎰ 证毕.参考文献[1] 杨延龄,邹励农,章栋恩.高等数学微积分700例题[M].中国建材工业出版社.2004年10月.123页.[2] 陈卫星,马全中.关于积分中值定理及推广的积分中值定理的改进[J]. 中国煤碳经济学院学报,1994年,第1期.54,55页.[3] 郝涌,李学志,陶有德.数学分析选讲[M].国防工业出版社.2010年4月.83页,94页.[4] 朱碧,王磊.第二积分中值定理的一些推广及其应用[J]. 考试周刊, 2008年,第30期.49页.[5] 刘玉琏,傅沛仁.数学分析讲义[M].北京.高等教育出版社.2003年.[6] 谢焕田.积分中值定理的推广及其应用[J].高师理科学刊,2009年,第5期.8,9页[7] 华东师范大学数学系. 数学分析[M]. 高等教育出版社.1991年.[8] 许洪范.考研微积分500例[M]. 国防工业出版社.2009年3月.121页.[9] 李海军.积分中值定理的应用[J].赤峰学院学报.2010年,第6期,4页.[10]荆江雁.积分中值定理得推广[J].常州工学院学报.2007年,第1期 ,53页.致谢从选择论文题目到搜集材料再到一遍又一遍的修改仿佛经历了太长的时间,论文比我想象中要难写的多,我明白想写好一篇优秀的论文就必须付出百倍的努力,在论文即将交稿之时,心里多了一些轻松,同时多了一丝伤感.自己的大学生活随着论文的结束而画上了一个句号.回想自己写论文的全过程,自己最要感谢的是论文导师许宏文老师,她为人很随和,治学严谨,对待工作认真,对待学生负责,许老师给人一种很容易接近的感觉,忘不了第一次接许老师电话的情景:她耐心的给我指点着,细心的帮我分析写这篇论文的注意事项……之所以论文会顺利的完成许老师付出了太多,太多.一遍一遍的检查,一遍又一遍的帮我指出错误,在这里我想说声:许老师:您辛苦了!真的谢谢您!最后要感谢我的学校,感谢教予我知识的老师,感谢我四年的大学生活,在这四年里自己学到了很多,也成长了很多.谢谢!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

推广的积分中值定理及其应用摘要:定积分是微积分的重要组成部分,而积分中值定理是定积分的重要性质之一,所以积分中值定理在微积分中占了很重要的地位,本文系统的叙述了推广的积分中值定理包括:ξ必可以在开区间中取得,导函数的积分中值定理等多个方面,我们所学知识中积分中值定理与微分中值定理的中间点的存在区间是不统一的,但推广后的积分中值定理能够与微分中值定理的存在区间从形式上统一起来,使与其相关的理论得以联系和应用.同时,在本篇论文中以实例的形式列举了推广的积分中值定理在确定零点分布、证明积分不等式、求极限等方面的应用,显然,推广的积分中值定理的优点就在于此,它可以解决原积分中值定理无法解决的问题,这表明了积分中值定理在推广后更具有应用性.关键词:积分中值定理;导函数;微分中值定理Promotion of Integral Mean ValueTheorem and Its ApplicationAbstract:Definite integral is an important component of calculus, the mean value theorem is one of the important properties of the definite integral, so integral mean value theorem in calculus plays a very important position .This paper describes the system topromote the integral mean value theorem, including: ξwill be achieved in the open interval ,of the derivatives and other integral mean value theorem, we have the knowledge of the differential mean value theorem and the Intermediate Value Theorem Existence interval is not uniform, but after the promotion of integral mean value theorem and the Mean Value Theorem to the presence of range from the formal unity, so that contact can be associated with the theory and application. Meanwhile, in this paper an example to cite a form of integral mean value theorem in determining the zeros to prove inequality, such as the application of limit, obviously, to promote the advantages of integral mean value theorem in this, it Can solve the original integral mean value theorem can not solve the problem, suggesting that the integral mean value theorem in the promotion of a more applied after.Keywords: Integral mean value theorem, derivative, mean value theorem1预备知识在本部分中具体叙述了这篇论文中所需要的相关知识,包括导函数介值性定理、拉格朗日中值定理以及变上限积分函数的定义和性质等,这些理论知识为第二部分的定理推导以及证明做了铺垫,所以起了重要的作用.1.1设()g x 在[,]a b 上非负可积,且()0abg x dx >⎰则存在[,](,)c d a b ⊂使得()0dcg x d x >⎰1.2 设()f x 在[,]a b 上连续,0x ,1x ,2x [,]a b ∈若10()()f x f x >,20()()f x f x <,则存在(,)a b ξ∈,使得0()()f f x ξ=1.3若函数()f x 在[,]a b 上可导,且''()()f a f b +-≠,k 为介于'()f a +,'()f b -之间的任意数,则在(,)a b 内至少存在一点ξ,使得'()f k ξ=1.4若'()f x 为[,]a b 上的非负导函数,且存在0[,]x a b ∈,使'0()0f x >,则必有'()0baf x dx >⎰1.5(拉格朗日中值定理)若函数()f x 满足如下条件: (1)()f x 在闭区间[,]a b 上连续; (2)()f x 在开区间(,)a b 内可导;则在(,)a b 内至少存在一点ξ使得'()()()f b f a f b aξ-=-1.6变上限积分函数:设()f x 在[,]a b 上可积,x 为[,]a b 内任意一点,则称函数()()xax f t dt φ=⎰为变上限积分函数1.7变上限积分函数有以下若干性质 (1)有界性命题1 设函数()f x 在[,]a b 上可积,则()x φ在[,]a b 上有界(2)连续性命题2 设函数()f x 在[,]a b 上可积,则()x φ在[,]a b 上连续 (3)可积性命题3 设函数()f x 在[,]a b 上可积,则()x φ在[,]a b 上可积 (4)可微性(原函数存在定理)()f x 在[,]a b 上连续,则()x φ在[,]a b 上处处可导.且'()()()xad x f t dt f x dx φ==⎰ [,]x a b ∈2 推广的积分中值定理积分第一中值定理在数学分析教材中为:若()f x 在[,]a b 上连续,则至少存在一点[,]a b ξ∈,使得()()()baf x dx f b a ξ=-⎰推广的积分第一中值定理在数学分析教材中为:()f x ,()g x 都在[,]a b 上连续,且()g x 在[,]a b 上不变号,则至少存在一点[,]a b ξ∈,使得()()()()bbaaf xg x dx f g x dx ξ=⎰⎰我们知道积分中值定理可用于确定数列及函数列的极限,确定零点分布,判别函数的敛散性,证明积分不等式等.但观察上述式子我们发现ξ的取值有时会在两个端点处取得,有的习题用原有的积分中值定理不能够解答出来.例如在证明积分不等式时,运用原有的积分中值定理我们只可以证明≤或≥的情况,所以带有一定的局限性.下面我们对原有的积分中值定理做一下加强,使“ξ”的范围由闭区间缩小到开区间,即得到了下面所叙述的推广的积分中值定理.2.1积分第一中值定理的推广定理 2.1(1)若()f x 在闭区间[,]a b 上连续,则在开区间(,)a b 内至少存在一点ξ使得:()()()baf x dx f b a ξ=-⎰成立证明: 作辅助函数()()x aF x f t dt =⎰ [,]x a b ∈则()F x 是[,]a b 的可微函数,且'()()F x f x =.由微积分学中值定理,至少存在一点(,)a b ξ∈,使得:'()()()()F b F a F b a ξ-=-注意到()()ba Fb f x dx =⎰,()0F a =,即有()()()baf x dx f b a ξ=-⎰(,)a b ξ∈2.2推广的第一积分中值定理的加强引理1 设()g x 在[,]a b 上非负可积,且()0ba g x dx >⎰,则存在[,](,)c d ab ⊂使得()0dcg x dx >⎰证明:用反证法作辅助函数()()b x a xG x g t dt -+=⎰[0,]2b a x -∈,则()G x 是[0,]2b a-上的非负连续函数.若命题不成立,则对任意的(0,)2b ax -∈有()G x ≡0,令x o →+,得(0)()0b a G g t dt ==⎰,产生矛盾.引理2 ()f x 在[,]a b 上连续,0x ,1x ,2x [,]a b ∈,若10()()f x f x >,20()()f x f x <,则存在(,)a b ξ∈,使得0()()f f x ξ=证明:作辅助函数0()()()H x f x f x =-,我们不妨设12x x <,因为()f x 在[,]a b 上连续,故()H x 也连续,从而在12[,]x x 上连续.1()0H x >,2()0H x <由连续函数的零点定理知存在12(,)x x ξ∈使得()0H ξ=即当然0()()f f x ξ=其中(,)a b ξ∈.引理3 若()g x 在[,]a b 上连续且不恒为零,则积分()0ba g x dx >⎰证明:倘若有某0[,]x a b ∈,使0()0g x >,由连续函数的局部保号性知存在0x 的某邻域00(,)x x δδ-+,使在其中0()()02g x g x ≥>,则 00000000()()()()()00()02bx x b x aax x x g x g x dx g x dx g x dx g x dx dx g x δδδδδδδ-++-+-=++≥++=>⎰⎰⎰⎰⎰证毕.定理 2.2 设()f x 在[,]a b 上连续,()g x 在[,]a b 上可积不变号,则至少存在一点(,)a b ξ∈使得()()()()bbaaf xg x dx f g x dx ξ=⎰⎰证法1(2)证明:1︒()0bag x dx =⎰时,此时,由推广的积分中值定理知,存在[,]a b ξ∈使得()()()()bbaaf xg x dx f g x dx ξ=⎰⎰=0于是对任意的0(,)x a b ∈有0()()()()bbaaf xg x dx f x g x dx =⎰⎰命题成立2︒当()0g x ≥,且()0bag x dx >⎰时,若命题不成立,即不存在(,)a b ξ∈,使得()()()()bbaaf xg x dx f g x dx ξ=⎰⎰则由推广的积分中值定理知,只能有()()()()b baaf xg x dx f a g x dx =⎰⎰ (1)或者 ()()()()b baaf xg x dx f b g x dx =⎰⎰ 成立 (2)若是命题不成立而(1)成立,则在(,)a b 内()()f x f a ≠ 由引理2在(,)a b 内恒有()()f x f a >或者()()f x f a <,不妨设()()f x f a >,而对()g x 运用引理2存在[,](,)c d a b ⊂,使得()0dc g x dx >⎰于是()()()()()()()()()()bbcdbaaacdf ag x dx f x g x dx f x g x dx f x g x dx f x g x dx ==++⎰⎰⎰⎰⎰=123()()()()()()c d bacdf g x dx f g x dx f g x dx ξξξ++⎰⎰⎰其中1[,]a c ξ∈,2[,]c d ξ∈,3[,]d b ξ∈,这是根据推广的积分中值定理得出的,由于1()()f f a ξ≥,()0cag x dx ≥⎰,2()()f f a ξ>,()0dcg x dx >⎰,3()f ξ中的3b ξ≠时3()()f f a ξ>.当3b ξ=时,对()()f x f a >,0x b →-,由()f x 在[,]a b 上的连续性可知,()()f b f a ≥而()0dd g x dx ≥⎰,综上可得到()()()()()()()()()()b c d b baacdaf ag x dx f a g x dx f a g x dx f a g x dx f a g x dx >++>⎰⎰⎰⎰⎰这是一个矛盾,因此命题成立.若是命题不成立而(2)成立,同样可得出矛盾,因此定理得以证明3︒ 当()0g x ≤,且()0ba g x dx <⎰时此时()0g x -≥,且[()]0bag x dx ->⎰,由情形2的讨论知,存在(,)a b ξ∈,使得()[()]()[()]bb aaf xg x dx f g x dxξ-=-⎰⎰ 即有()()()()bbaaf xg x dx f g x dx ξ=⎰⎰ (,)a b ξ∈总之,定理2.2完全得以证明证法2(3)证明:令()()xaF x f t dt =⎰,由拉格朗日中值定理知,(,)a b ξ∃∈,使得'()()()F b F a F b aξ-=-,即()()()baf x dx f b a ξ=-⎰不妨设()0g x ≥,[,]x a b ∈,若()g x 在[,]a b 上恒为零,则结论显然成立.若()g x 在[,]a b 上连续且不恒为零,则积分()0ba g x dx >⎰令()()()x aF x f t g t dt =⎰,()()xaG x g t dt =⎰,在[,]a b 上应用柯西中值定理,(,)a b ξ∃∈,使''()()()()()()()()()()()()()babaf tg t dtF b F a F f g fG b G a G g g t dtξξξξξξ-=⇒==-⎰⎰即()()()()bbaaf xg x dx f g x dx ξ=⎰⎰2.3积分第二中值定理的推广在数学分析教材中积分第二中值定理是这样叙述的,设函数()f x 在[,]a b 上可积 (1)若函数()g x 在[,]a b 上减,且()0g x ≥,则存在[,]a b ξ∈,使得()()()()baaf xg x dx g a f x dx ξ=⎰⎰(2)若函数()g x 在[,]a b 上增,且()0g x ≥,则存在[,]a b η∈,使得()()()()bbaf xg x dx g b f x dx η=⎰⎰其推论为:设函数()f x 在[,]a b 上可积,若()g x 为单调函数,则存在[,]a b ξ∈,使得()()()()()()bbaaf xg x dx g a f x dx g b f x dx ξξ=+⎰⎰⎰现在研究一下推论的情形:在第一积分中值定理中,我们把ξ的取值区间由闭区间缩小到开区间,但对于积分第二中值定理是否可以做这样的加强呢,看一下下面的例子:在闭区间[,]a b 上()1f x =,1[,)()2x a b g x x b ∈⎧=⎨=⎩若在(,)a b 上存在ξ使得()()()()()()bbaaf xg x dx g a f x dx g b f x dx ξξ=+⎰⎰⎰即 ()()()()2()2b a g a a g b b a b b a ξξξξξ-=-+-=-+-=--所以b ξ=,即ξ在[,]a b 的端点.这个例子告诉我们积分第一中值定理的加强结果对于积分第二中值定理不一定成立,但是这里的有限区间[,]a b 却可以换成[,)a +∞或(,]b -∞或(,)-∞+∞.此处只讨论第一种情况定理 2.3(4)设()g x 在[,)a +∞上单调有界,()f x 在[,)a +∞上可积,且()f x 没有+∞以外的瑕点,则存在[,)a ξ∈+∞使得()()()()()()aaf xg x dx g a f x dx g f x dx ξξ+∞+∞=++∞⎰⎰⎰这里()lim ()x g g x →+∞+∞=证明:不妨设()g x 在[,)a +∞上单调下降,由于()g x 有界,所以()g x 在+∞处有有限的极限,记为()g +∞,于是可记()()()G x g x g =-+∞,则()0G x ≥,而对于任意的有穷区间[,]a A ,由第二积分中值定理可知,总有[,]a A η∈使得:()()()()Aaaf x G x dx G a f x dx η=⎰⎰而()()A aF A f x dx =⎰是[,)a +∞上的关于A 的连续函数,又()f x 在[,)a +∞上可积,则()F A 在[,)a +∞上有有穷的下确界和上确界,不妨记[,)inf ()A a m F A ∈+∞=,[,)sup ()A a M F A ∈+∞=,则有()m F A M ≤≤又因为()()()()Aaaf x G x dx G a f x dx η=⎰⎰所以有()()()()AamG a G x f x dx MG a ≤≤⎰再令A →+∞,则有()()()()amG a G x f x dx MG a +∞≤≤⎰令 ()()()aG a G x f x dx μ+∞=⎰, (3)则有()()()mG a G a MG a μ≤≤如果()0G a ≠则m M μ≤≤,因为()()AaF A f x dx =⎰是[,)a +∞上的关于A 的连续函数,所以()F A 可以达到其上确界M 和下确界m 及上确界和下确界之间的任意值,即存在[,)a ξ∈+∞使得()af x dx ξμ=⎰将其带入(3)式就有()()()()aaG a f x dx G x f x dx ξ+∞=⎰⎰即(()())()(()())()aag a g f x dx g x g f x dx ξ+∞-+∞=-+∞⎰⎰所以()()()()()()aaf xg x dx g a f x dx g f x dx ξξ+∞+∞=++∞⎰⎰⎰如果()0G a =,因为()g x 在[,)a +∞上单调下降,所以()G x 在[,)a +∞上单调下降,又因为()0G x ≥即()0G x =所以()()g x g =+∞,即()g x =常数,那么对任意的[,)a ξ∈+∞,都有()()()()()()aaf xg x dx g a f x dx g f x dx ξξ+∞+∞=++∞⎰⎰⎰证毕.这个定理告诉我们:第二积分中值定理虽然在有限开区间上不一定成立,但在无穷区间上却是成立的.通过以上的推导过程我们会发现在积分中值定理的前提下,ξ必可以在开区间中取得.在微积分学中积分中值定理和微分中值定理两者在一定意义上是互逆的、对立的,这种辩证的对立统一使微积分的内容更加丰富多彩,但两者中间点ξ的存在区间是不统一的,给其相关理论和应用带来了不便,但改动之后,推广的积分中值定理与微分中值定理的取值区间得以统一,从而更能体现积分中值定理的中值性,以及两个定理之间的联系.一方面可由微分中值定理推出积分中值定理根据牛顿—莱布尼茨公式:()()()ba f x dx Fb F a =-⎰其中()F x 是()f x 在[,]a b 上的原函数即'()()F x f x =,[,]x a b ∈,显然()F x 在[,]a b 上满足拉格朗日中值定理的条件,于是至少存在一点(,)a b ξ∈使得'()()()()F b F a F b a ξ-=-()()f b a ξ=- (,)a b ξ∈即()()()baf x dx f b a ξ=-⎰(,)a b ξ∈另一方面,推广的积分中值定理推出微分中值定理:若()f x 在[,]a b 上有连续的导函数,直接计算得:'()()()baf x dx f b f a =-⎰ (4)而由推广的积分中值定理至少存在一点(,)a b ξ∈,使得''()()()baf x dx f b a ξ=-⎰(5)由(4)和(5)有'()()()()f b f a f b a ξ-=-,这正是微分中值定理.2.4 导函数的积分中值定理及其应用在微积分学中,积分中值定理与微分中值定理都有着很重要的地位,下面我们将积分中值定理条件下的连续函数推广到导函数,并用Darboux 定理给出了详尽的证明,由此我们得出了导函数积分中值定理.引理1(5)(Darboux ) 若函数()f x 在[,]a b 上可导,且''()()f a f b +-≠,k 为介于'()f a +,'()f b -之间的任意数,则在(,)a b 内至少存在一点ξ,使得'()f k ξ=引理2 若'()f x 为[,]a b 上的非负导函数,且存在0[,]x a b ∈,使'0()0f x >,则必有'()0baf x dx >⎰定理 2.4(6)若'()f x 为[,]a b 上的导函数,()g x 为[,]a b 上的连续函数,且()g x 在[,]a b 上不变号,则至少存在一点ξ[,]a b ∈,使得''()()()()bbaaf xg x dx f g x dx ξ=⎰⎰证明:不妨设()0g x ≥,'()f x 在[,]a b 上的最大值和最小值为别为M 与m ,其中M 可以取+∞,m 可以取-∞,在a 点取'()f a +,在b 点取'()f b -,令()0ba I g x dx =≥⎰,又'()()()()mg x f x g x Mg x ≤≤,([,])x a b ∈,则有'()()()()bbbaaam g x dx f x g x dx M g x dx ≤≤⎰⎰⎰当0I =或m M =时,任意取(,)a b ξ∈均可当0I >或m M <时,令'1()()b a u f x g x dx I=⎰ ()m u M ≤≤ 当m u M ≤≤时,由Darboux 定理知,至少存在一点(,)a b ξ∈,使得'()f u ξ= 当m u M =<时,利用反证法证明存在(,)a b ξ∈,使得'()f u ξ=若对一切的(,)x a b ∈,有'()0f x u ->且()0baI g x dx =>⎰,则()g x 在[,]a b 上不恒为零,即存在0[,]x a b ∈,使得0()0g x >,由连续函数的保号性知存在0x 的邻域00(,)x x σσ-+(当0x a =或0x b =时,则为右邻域或左邻域)使得对于任意的00(,)x x x σσ∈-+,有0()()02g x g x ≥>,则 0000'''0()(())()(())()(())2bx x ax x g x f x u g x dx f x u g x dx f x u dx σσσσ++--->-≥-⎰⎰⎰ 由引理2可得00'(())0x x f x u dx σσ+-->⎰,从而有'(())()0b af x ug x dx ->⎰另一方面:''0(())()()()()0bbbaaaf x ug x dx f x g x dx u g x dx uI uI <-=-=-=⎰⎰⎰出现矛盾,故原命题成立,即当m u M =<时,存在(,)a b ξ∈,使得'()f u ξ=当m u M <=时,同理可证必存在(,)a b ξ∈,使得'()f u ξ=成立同理可证二阶导函数,n 阶导函数对上述的导函数的积分中值定理成立,只要我们把它们看成一阶连续导函数和n-1阶连续导函数的导函数,便可用同样的方法得证.定理2.4的应用说明例1 设函数()f x 在[,]a b 上二次可微,证明存在一点(,)a b ξ∈,使得''324().[()()]()2b aa bf f x f dx b a ξ+=--⎰ 证明:记02a bx +=,将被积函数在0x x =处按泰勒公式展开,得 2'''0000()()()()()()2x x f x f x x x f x f η--=-+其中η在x 与0x 之间,因为'00()()0bax x f x dx -=⎰,即2''00()(()())()2bbaax x f x f x dx f dx η--=⎰⎰由定理知存在(,)a b ξ∈使32''''2''00()()()()()()12bba ab a x x f dx f x x dx f ηξξ--=-=⎰⎰从而''324().[()()]()2b a a bf f x f dx b a ξ+=--⎰例2 已知导函数'()f x 在[1,2]上有界,求证2'1lim ()0nx n f x e dx -→∞=⎰证明:导函数'()f x 在[1,2]上有界,所以存在正数M ,对[1,2]ξ∈,有'()f M ξ<,由定理1知,存在1(1,2)ξ∈,2(1,2)ξ∈, 使得222'''1111()()()n nnx x f x edx f edx f eξξξ---==⎰⎰从而有2'1lim ()0nx n f x e dx -→∞=⎰3 推广的积分中值定理的应用3.1用于确定零点分布例3 (7)证明:若()f x 在[,]a b 上连续,且()()0b ba af x dx xf x dx ==⎰⎰,则在(,)a b 内至少存在两点1x ,2x 使得12()()f x f x =证明:设()()xa F x f t dt =⎰那么我们有()()()0baf x dx F b F a =-=⎰,所以()()F b F a ==0又因为()()()()bbbba aaaxf x dx xdF x xF x F x dx ==-=⎰⎰⎰ ()()()()bF b aF a F b a ξ---所以可得; ()()()()b a F b F b a ξ-=-,所以()()()F b F F a ξ===0 证毕例4(8) 证明:若()f x 在[0,]π上连续,且0()()cos 0f x dx f x xdx ππ==⎰⎰,证明:存在两点1ξ,2ξ (0,)π∈,使得 12()()0f f ξξ==证明:令0()()xF x f t dt =⎰ 即'()()F x f x =,()(0)0F F π==00()cos cos ()cos ()()cos f x xdx xdF x xF x F x d xππππ==-⎰⎰⎰()sin ()sin .0F x xdx F πξξπ===⎰所以()0F ξ= (0,)ξπ∈,对()F x 在(0,)ξ,(,)ξπ上使用罗尔定理,即存在1(0,)x ξ∈,2(,)x ξπ∈满足'1()0F x =,'2()0F x =,即12()()0f x f x ==证毕 例5(3)假如()f x 在[0,]π上连续,且0()sin ()cos 0f x xdx f x xdx ππ==⎰⎰,则()f x 在(0,)π内至少有两个零点.证明:由已知条件,并运用推广的积分中值定理得0()sin ()sin 2()()0f x xdx f xdx f f ππξξξ===⇒=⎰⎰,(0,)ξπ∈即()f x 在(0,)π有一个零点,假如仅有一个零点x ξ=,则()f x 在[,]a ξ与[,]b ξ上均不变号,且异号,那么()sin()f x x dx ξ-在[0,]π上保持同号,连续且不恒为零,必有()sin()0f x x dx πξ->⎰(或0<)与已知0()sin()cos ()sin sin ()cos 0f x x dx f x xdx f x xdx πππξξξ-=-=⎰⎰⎰矛盾.3.2 证明积分不等式在证明积分不等式时,常常考虑积分中值定理以便去掉积分符号,如果被积函数是两个函数之积时,可考虑用积分第一或第二中值定理,对于某些不等式的证明运用原积分中值定理只能得到“≥”的结论,或者不等式根被就不能得以证明,而运用了推广的积分中值定理后,则可以得到“>”的结论,或者成功的解决.例6(9) 假设()f x 在[0,1]上连续并且单调递减,证明对任何的(0,1)a ∈有1()()af x dx a f x dx >⎰⎰证明:将要证的不等式移项11()()()()()aa a af x dx a f x dx f x dx a f x dx a f x dx -=--⎰⎰⎰⎰⎰1(1)()()aaa f x dx a f x dx =--⎰⎰因为()f x 单调递减,所以在区间[0,]a 上()()f x f a ≥,即0()()af x dx af a ≥⎰,再对上式右边第二项运用推广的积分中值定理,即存在ξ其中1a ξ<<,使上式变成1(1)()()(1)()()(1)(1)[()()]a aa f x dx a f x dx a af a af a a a f a f ξξ--≥---=--⎰⎰因为()f x 单调递减,且1a ξ<<,,所以(1)[()()]0a a f a f ξ-->,即得证.例7(9) 设()f x 在[,]a b 上连续且单调递增,证明()()2bbaaa b xf x dx f x dx +>⎰⎰证明:将要证的不等式移项,并分部积分得()()2bbaa ab xf x dx f x dx +-⎰⎰ 22()()()()()()222a bbb a b a a a b a b a bx f x dx x f x dx x f x dx +++++=-=-+-⎰⎰⎰ 令()()2a b g x x +=-,显然()f x ,()g x 在[,]2a b a +和[,]2a b b +上可积,且()g x 在[,]2a b a +和[,]2a b b +上不变号,由推广的积分中值定理知:即存在11()2a b a ξξ+<<,22()2a bb ξξ+<<,使得221222()()()()()()()()2222a ba bb b a b a b aa ab a b a b a b x f x dx x f x dx f x dx f x dxξξ++++++++-+-=-+-⎰⎰⎰⎰整理得221()[()()]8a b f f ξξ+-,因为()f x 是单调递增函数,122a b a b ξξ+<<<<,所以221()[()()]08a b f f ξξ+->,证毕. 在上述例子中我们可以看到有的题原积分中值定理不适用,而推广的积分中值定理可以将问题解决.在例6中如果运用原积分中值定理,由1a ξ≤≤只能得到“0≥”的结论;而在例7中也只能得到12()()f f ξξ≤的结论.3.3求极限例8(10)证明10lim 01nn x dx x→∞=+⎰ 证明:0ε∀>,如果取1[0,1]2ξε∈-,则有10lim 01nn dx ξξ→∞=+⎰,即N ∃,当n N >时,有12n ξεξ<+,又因为:11120012111n n n x x x dx dx dx x x x εε--=++++⎰⎰⎰对等式右边第一个积分运用中值定理,对第二个积分的被积函数用不等式011n x x <≤+,则有当n N >时有100[2]122n x dx x εε<<-+⎰,所以有10lim 01n n x dx x→∞=+⎰ 证毕.参考文献[1] 杨延龄,邹励农,章栋恩.高等数学微积分700例题[M].中国建材工业出版社.2004年10月.123页.[2] 陈卫星,马全中.关于积分中值定理及推广的积分中值定理的改进[J]. 中国煤碳经济学院学报,1994年,第1期.54,55页.[3] 郝涌,李学志,陶有德.数学分析选讲[M].国防工业出版社.2010年4月.83页,94页.[4] 朱碧,王磊.第二积分中值定理的一些推广及其应用[J]. 考试周刊, 2008年,第30期.49页.[5] 刘玉琏,傅沛仁.数学分析讲义[M].北京.高等教育出版社.2003年.[6] 谢焕田.积分中值定理的推广及其应用[J].高师理科学刊,2009年,第5期.8,9页[7] 华东师范大学数学系. 数学分析[M]. 高等教育出版社.1991年.[8] 许洪范.考研微积分500例[M]. 国防工业出版社.2009年3月.121页.[9] 李海军.积分中值定理的应用[J].赤峰学院学报.2010年,第6期,4页.[10]荆江雁.积分中值定理得推广[J].常州工学院学报.2007年,第1期 ,53页.致谢从选择论文题目到搜集材料再到一遍又一遍的修改仿佛经历了太长的时间,论文比我想象中要难写的多,我明白想写好一篇优秀的论文就必须付出百倍的努力,在论文即将交稿之时,心里多了一些轻松,同时多了一丝伤感.自己的大学生活随着论文的结束而画上了一个句号.回想自己写论文的全过程,自己最要感谢的是论文导师许宏文老师,她为人很随和,治学严谨,对待工作认真,对待学生负责,许老师给人一种很容易接近的感觉,忘不了第一次接许老师电话的情景:她耐心的给我指点着,细心的帮我分析写这篇论文的注意事项……之所以论文会顺利的完成许老师付出了太多,太多.一遍一遍的检查,一遍又一遍的帮我指出错误,在这里我想说声:许老师:您辛苦了!真的谢谢您!最后要感谢我的学校,感谢教予我知识的老师,感谢我四年的大学生活,在这四年里自己学到了很多,也成长了很多.谢谢!。

相关文档
最新文档