《算法分析与设计》期末复习题

合集下载

《算法分析与设计》期末复习题[1]

《算法分析与设计》期末复习题[1]

一、选择题1.一个.java文件中可以有()个public类。

A.一个B.两个C.多个D.零个2.一个算法应该是()A.程序B.问题求解步骤的描述C.要满足五个基本特性D.A和C3.用计算机无法解决“打印所有素数”的问题,其原因是解决该问题的算法违背了算法特征中的()A.唯一性B.有穷性C.有0个或多个输入D.有输出4.某校有6位学生参加学生会主席竞选,得票数依次为130,20,98,15,67,3。

若采用冒泡排序算法对其进行排序,则完成第二遍时的结果是()A.3,15,130,20,98,67B.3,15,20,130,98,67C.3,15,20,67,130,98 D.3,15,20,67,98,1305.下列关于算法的描述,正确的是()A.一个算法的执行步骤可以是无限的B.一个完整的算法必须有输出C.算法只能用流程图表示D.一个完整的算法至少有一个输入6.Java Application源程序的主类是指包含有()方法的类。

A、main方法B、toString方法C、init方法D、actionPerfromed方法7.找出满足各位数字之和等于5的所有三位数可采用的算法思路是()A.分治法B.减治法C.蛮力法D.变治法8.在编写Java Application程序时,若需要使用到标准输入输出语句,必须在程序的开头写上( )语句。

A、import java.awt.* ;B、import java.applet.Applet ;C、import java.io.* ;D、import java.awt.Graphics ;9.计算某球队平均年龄的部分算法流程图如图所示,其中:c用来记录已输入球员的人数,sum用来计算有效数据之和,d用来存储从键盘输入的球员年龄值,输入0时表示输入结束。

图中空白处理框①和②处应填入的是()A.①sum ←sum + d B.①sum ←sum + c②c ←c + 1②c ←c + 1C.①sum ←sum + d D.①sum ←sum + c②d ←d + 1 ②d ←d + 110.报名参加冬季越野赛跑的某班5位学生的学号是:5,8,11,33,45。

算法设计与分析期末考试B卷

算法设计与分析期末考试B卷

大学期末考试试卷B 卷(算法设计与分析)一、选择题(30分,每题2分)1、下面的算法段针对不同的自然数n 作不同的处理,其中函数odd (n) 当n 是奇数时返回true ,否则返回false ,while ( n > 1) if ( odd (n) ) n = 3 * n + 1;else n = n / 2;请问该算法所需计算时间的下界是 。

A .Ω(2n ) B .Ω(nlog n ) C .Ω(n !) D .Ω(logn )2、某体育馆有一羽毛球场出租,现在总共有10位客户申请租用此羽毛球场,每个客户所租用的时间单元如下同一时刻,该羽毛球场只能租借给一位客户,请问在这10位客户里面,体育馆最多能满足 位客户的需求。

P104 A .3 B .4 C .5 D .63、当一个确定性算法在最坏情况下的计算复杂性与其在平均情况下的计算复杂性有较大差别时,可以使用 来消除或减少问题的好坏实例间的这种差别。

A .数值概率算法 B .舍伍德算法 C .拉斯维加斯算法 D .蒙特卡罗算法4、将一个正整数n 表示成一系列正整数之和, n = n 1 + n 2 + … +n k (其中,n 1≥n 2≥ … ≥n k ≥1,k ≥1)正整数n 的一个这种表示称为正整数n 的一个划分。

正整数n 的不同的划分个数总和称为正整数n 的划分数,记作p (n );另外,在正整数n 的所有不同划分中,将最大加数n1不大于m 的划分个数记作q (n ,m )。

则当n=10时,p (n )= 。

A .q (8,8) B .1 + q (9,9) P12 C .2 + q (10,8) D .A ,B ,C 都正确5、对于含有n 个元素的子集树问题,最坏情况下其解空间的叶结点数目为 。

A .n!B .2nC .2n+1-1D .∑=ni i n 1!/! P1406、在棋盘覆盖问题中,对于2k ×2k 的特殊棋盘(有一个特殊方块),所需的L 型骨牌的个数是 A 。

《算法分析与设计》期末考试复习题纲(完整版)

《算法分析与设计》期末考试复习题纲(完整版)

《算法分析与设计》期末复习题一、选择题1.算法必须具备输入、输出和( D )等4个特性。

A.可行性和安全性 B.确定性和易读性C.有穷性和安全性 D.有穷性和确定性2.算法分析中,记号O表示( B ),记号Ω表示( A )A.渐进下界B.渐进上界C.非紧上界D.紧渐进界3.假设某算法在输入规模为n时的计算时间为T(n)=3*2^n。

在某台计算机上实现并完成概算法的时间为t秒。

现有另一台计算机,其运行速度为第一台的64倍,那么在这台新机器上用同一算法在t秒内能解输入规模为多大的问题?( B )解题方法:3*2^n*64=3*2^xA.n+8 B.n+6C.n+7 D.n+54.设问题规模为N时,某递归算法的时间复杂度记为T(N),已知T(1)=1,T(N)=2T(N/2)+N/2,用O表示的时间复杂度为( C )。

A.O(logN) B.O(N)C.O(NlogN) D.O(N²logN)5.直接或间接调用自身的算法称为( B )。

A.贪心算法 B.递归算法C.迭代算法 D.回溯法6.Fibonacci数列中,第4个和第11个数分别是( D )。

A.5,89 B.3,89C.5,144 D.3,1447.在有8个顶点的凸多边形的三角剖分中,恰有( B )。

A.6条弦和7个三角形 B.5条弦和6个三角形C.6条弦和6个三角形 D.5条弦和5个三角形8.一个问题可用动态规划算法或贪心算法求解的关键特征是问题的( B )。

A.重叠子问题 B.最优子结构性质C.贪心选择性质 D.定义最优解9.下列哪个问题不用贪心法求解( C )。

A.哈夫曼编码问题 B.单源最短路径问题C.最大团问题 D.最小生成树问题10.下列算法中通常以自底向上的方式求解最优解的是( B )。

A.备忘录法 B.动态规划法C.贪心法 D.回溯法11.下列算法中不能解决0/1背包问题的是( A )。

A.贪心法 B.动态规划C.回溯法 D.分支限界法12.下列哪个问题可以用贪心算法求解( D )。

《算法分析与设计》期末测验复习题纲(完整版)

《算法分析与设计》期末测验复习题纲(完整版)

《算法分析与设计》期末测验复习题纲(完整版)————————————————————————————————作者:————————————————————————————————日期:《算法分析与设计》期末复习题一、选择题1.算法必须具备输入、输出和( D )等4个特性。

A.可行性和安全性 B.确定性和易读性C.有穷性和安全性 D.有穷性和确定性2.算法分析中,记号O表示( B ),记号Ω表示( A )A.渐进下界B.渐进上界C.非紧上界D.紧渐进界3.假设某算法在输入规模为n时的计算时间为T(n)=3*2^n。

在某台计算机上实现并完成概算法的时间为t秒。

现有另一台计算机,其运行速度为第一台的64倍,那么在这台新机器上用同一算法在t秒内能解输入规模为多大的问题?( B )解题方法:3*2^n*64=3*2^xA.n+8 B.n+6C.n+7 D.n+54.设问题规模为N时,某递归算法的时间复杂度记为T(N),已知T(1)=1,T(N)=2T(N/2)+N/2,用O表示的时间复杂度为( C )。

A.O(logN) B.O(N)C.O(NlogN) D.O(N²logN)5.直接或间接调用自身的算法称为( B )。

A.贪心算法 B.递归算法C.迭代算法 D.回溯法6.Fibonacci数列中,第4个和第11个数分别是( D )。

A.5,89 B.3,89C.5,144 D.3,1447.在有8个顶点的凸多边形的三角剖分中,恰有( B )。

A.6条弦和7个三角形 B.5条弦和6个三角形C.6条弦和6个三角形 D.5条弦和5个三角形8.一个问题可用动态规划算法或贪心算法求解的关键特征是问题的( B )。

A.重叠子问题 B.最优子结构性质C.贪心选择性质 D.定义最优解9.下列哪个问题不用贪心法求解( C )。

A.哈夫曼编码问题 B.单源最短路径问题C.最大团问题 D.最小生成树问题10.下列算法中通常以自底向上的方式求解最优解的是( B )。

算法设计与分析期末试卷A卷

算法设计与分析期末试卷A卷

算法设计与分析期末试卷A卷A卷一、选择题1.二分搜索算法是利用(A)实现的算法。

A、分治策略2.回溯法解旅行售货员问题时的解空间树是(A)。

A、子集树3.下列算法中通常以自底向上的方式求解最优解的是(B)。

B、动态规划法4.下面不是分支界限法搜索方式的是(D)。

D、深度优先5.采用贪心算法的最优装载问题的主要计算量在于将集装箱依其重量从小到大排序,故算法的时间复杂度为(。

B。

)。

B、O(nlogn)6.分支限界法解最大团问题时,活结点表的组织形式是(B)。

B、最大堆7、下面问题(B)不能使用贪心法解决。

B N皇后问题8.下列算法中不能解决0/1背包问题的是(A)A贪心法9.背包问题的贪心算法所需的计算时间为(B)A、O (nlogn)B、O(nlogn)10.背包问题的贪心算法所需的计算时间为(B)。

B、O(nlogn)二、填空题1.算法的复杂性有时间复杂性和空间复杂性之分。

2.算法是由若干条指令组成的有穷序列,且要满足输入、输出、确定性和有穷性四条性质。

其中算法的“确定性”指的是组成算法的每条指令是清晰的,无歧义的。

3.解决0/1背包问题可以使用动态规划、回溯法和分支限界法,其中不需要排序的是回溯法,需要排序的是动态规划和分支限界法。

4.动态规划算法的两个基本要素是最优子结构性质和重叠子问题性质。

5.回溯法是一种既带有深度优先搜索又带有回溯的搜索算法;分支限界法是一种既带有广度优先搜索又带有回溯的搜索算法。

6.用回溯法解题的一个显著特征是在搜索过程中动态产生问题的解空间。

在任何时刻,算法只保存从根结点到当前扩展结点的路径。

如果解空间树中从根结点到叶结点的最长路径的长度为h(n),则回溯法所需的计算空间通常为O(h(n))。

7.用回溯法解图的m着色问题时,使用下面的函数OK检查当前扩展结点的每一个儿子所相应的颜色的可用性,则需耗时O(n)。

Bool Color::OK(int k)for(int j=1;j<=n;j++)if((a[k][j] == 1) && (x[j] == x[k])) {return false;return true;8.用回溯法解布线问题时,求最优解的主要程序段如下。

算法设计与分析期末复习题

算法设计与分析期末复习题

算法设计与分析期末考试复习题1.算法有哪些特点?为什么说一个具备了所有特征的算法,不一定就是使用的算法?2.证明下面的关系成立:(参考例题1.5--1.6)(1)logn!=Θ(nlogn) (2)2n=Θ(2n+1)(3)n!=Θ(n n) (4)5n2-6n=Θ(n2)3.考虑下面的算法:输入:n个元素的数组A输出:按递增顺序排序的数组A1. void sort(int A[],int n)2. {3. int i,j,temp;4. for(i=0;i<n-1;i++)5. for(j=i+1;j<n;j++)6. if(A[j]<A[i]) {7. temp=A[i];8. A[i]=A[j];9. A[j]=temp;10. }11. }(1)什么时候算法所执行的元素赋值的次数最少?最少多少次?(2)什么时候算法所执行的元素赋值的次数最多?最多多少次?4.考虑下面的算法:输入:n个元素的数组A输出:按递增顺序排序的数组A1. void bubblesort(int A[],int n)2. {3. int j,i,sorted;4. i=sorted=0;5. while(i<n-1 && !sorted) {6. sorted=1;7. for(j=n-1;j>i;j--) {8. if(A[j]<A[j-1]) {9. temp=A[j];10. A[j]=A[j-1];11. A[j-1]=temp;12. sorted=0;13. }14. }15. i=i+1;16. }17. }(1)算法所执行的元素比较次数最少是多少次?什么时候达到最少?(2)算法所执行的元素比较次数最多是多少次?什么时候达到最多?(3)算法所执行的元素赋值次数最少是多少次?什么时候达到最少?(4)算法所执行的元素赋值次数最多是多少次?什么时候达到最多?(5)用О、和Ω记号表示算法的运行时间。

算法分析与设计复习题及参考答案

算法分析与设计复习题及参考答案

《算法分析与设计》课程复习资料一、名词解释:1.算法2.程序3.递归函数4.子问题的重叠性质5.队列式分支限界法6.多机调度问题7.最小生成树 二、简答题:1.备忘录方法和动态规划算法相比有何异同?简述之。

2.简述回溯法解题的主要步骤。

3.简述动态规划算法求解的基本要素。

4.简述回溯法的基本思想。

5.简要分析在递归算法中消除递归调用,将递归算法转化为非递归算法的方法。

6.简要分析分支限界法与回溯法的异同。

7.简述算法复杂性的概念,算法复杂性度量主要指哪两个方面? 8.贪心算法求解的问题主要具有哪些性质?简述之。

9.分治法的基本思想是什么?合并排序的基本思想是什么?请分别简述之。

10.简述分析贪心算法与动态规划算法的异同。

三、算法编写及算法应用分析题:1.已知有3个物品:(w1,w2,w3)=(12,10,6),(p1,p2,p3)=(15,13,10),背包的容积M=20,根据0-1背包动态规划的递推式求出最优解。

2.按要求完成以下关于排序和查找的问题。

①对数组A={15,29,135,18,32,1,27,25,5},用快速排序方法将其排成递减序。

②请描述递减数组进行二分搜索的基本思想,并给出非递归算法。

③给出上述算法的递归算法。

④使用上述算法对①所得到的结果搜索如下元素,并给出搜索过程:18,31,135。

3.已知1()*()i i k k ij r r A a +=,k =1,2,3,4,5,6,r 1=5,r 2=10,r 3=3,r 4=12,r 5=5,r 6=50,r 7=6,求矩阵链积A 1×A 2×A 3×A 4×A 5×A 6的最佳求积顺序(要求给出计算步骤)。

4.根据分枝限界算法基本过程,求解0-1背包问题。

已知n=3,M=20,(w1,w2,w3)=(12,10,6),(p1,p2,p3)=(15,13,10)。

《算法分析与设计》期末复习题

《算法分析与设计》期末复习题

一、选择题1.一个.java文件中可以有()个public类。

A.一个B.两个C.多个D.零个2.一个算法应该是()A.程序B.问题求解步骤的描述C.要满足五个基本特性D.A和C3.用计算机无法解决“打印所有素数”的问题,其原因是解决该问题的算法违背了算法特征中的()A.唯一性B.有穷性C.有0个或多个输入D.有输出4.某校有6位学生参加学生会主席竞选,得票数依次为130,20,98,15,67,3。

若采用冒泡排序算法对其进行排序,则完成第二遍时的结果是()A.3,15,130,20,98,67B.3,15,20,130,98,67C.3,15,20,67,130,98 D.3,15,20,67,98,1305.下列关于算法的描述,正确的是()A.一个算法的执行步骤可以是无限的B.一个完整的算法必须有输出C.算法只能用流程图表示D.一个完整的算法至少有一个输入6.Java Application源程序的主类是指包含有()方法的类。

A、main方法B、toString方法C、init方法D、actionPerfromed方法7.找出满足各位数字之和等于5的所有三位数可采用的算法思路是()A.分治法B.减治法C.蛮力法D.变治法8.在编写Java Application程序时,若需要使用到标准输入输出语句,必须在程序的开头写上( )语句。

A、import java.awt.* ;B、import java.applet.Applet ;C、import java.io.* ;D、import java.awt.Graphics ;9.计算某球队平均年龄的部分算法流程图如图所示,其中:c用来记录已输入球员的人数,sum用来计算有效数据之和,d用来存储从键盘输入的球员年龄值,输入0时表示输入结束。

图中空白处理框①和②处应填入的是()A.①sum ←sum + d B.①sum ←sum + c②c ←c + 1②c ←c + 1C.①sum ←sum + d D.①sum ←sum + c②d ←d + 1 ②d ←d + 110.报名参加冬季越野赛跑的某班5位学生的学号是:5,8,11,33,45。

《算法分析与设计》期末考试复习题-学生版

《算法分析与设计》期末考试复习题-学生版

《算法分析与设计》期末复习题一、选择题1。

应用Johnson 法则的流水作业调度采用的算法是(D )A. 贪心算法 B 。

分支限界法 C.分治法 D 。

动态规划算法2。

Hanoi 塔问题如下图所示。

现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置.移动圆盘时遵守Hanoi 塔问题的移动规则。

由此设计出解Hanoi 塔问题的递归算法正确的为:(B )Hanoi 塔A. void hanoi(int n, int A, int C, int B) { if (n > 0) {hanoi(n-1,A,C, B); move(n,a,b);hanoi(n-1, C, B, A); } B. void hanoi(int n, int A, int B, int C) {if (n > 0) {hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A); }C. void hanoi(int n, int C, int B, int A) {if (n > 0) {hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A); }3。

动态规划算法的基本要素为(C)A。

最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用4。

算法分析中,记号O表示(B),记号Ω表示(A),记号Θ表示(D)。

A.渐进下界B。

渐进上界C.非紧上界D.紧渐进界E。

非紧下界5. 以下关于渐进记号的性质是正确的有:(A)A。

f(n)(g(n)),g(n)(h(n))f(n)(h(n))=Θ=Θ⇒=ΘB。

f(n)O(g(n)),g(n)O(h(n))h(n)O(f(n))==⇒=C. O(f(n))+O(g(n))= O(min{f(n),g(n)})D. f(n)O(g(n))g(n)O(f(n))=⇔=6。

算法分析期末考试集答案(套)

算法分析期末考试集答案(套)
调用第二层次 6,2 9,3 5,1 8,7 分成四个子问题
调用第三层次 6 2 9 3 5 1 8 7 分成八个子问题
调用第四层次 只有一个元素返回上一层
第三层归并 2 ,6 3, 9 1,5 7,8 返回上一层
第二层归并 2 ,3,6, 9 1,5,7,8 返回上一层
第一层归并 1, 2 ,3, 5 ,6, 7, 8,9 排序结束,返回主函数
为了使上述右子树测试尽早生效,应提早更新bestw。又知算法最终找到的最优值是所求问题的子集树中所有可行结点相应重量的最大值。而结点所相应得重量仅在搜索进入左子树是增加,因此,可以在算法每一次进入左子树时更新bestw的值。
7. 最长公共子序列问题:给定2个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y的最长公共子序列。
解:voidbacktrack(int i)
{//搜索第i层结点
if(i > n) //到达叶结点
更新最优解bestx,bestw;return;
r -= w[i];
if(cw + w[i] <= c) {//搜索左子树
x[i] = 1;
cw += w[i];
backtrack(i + 1);
cw -= w[i]; }
12,48 3,61 5,19 7,32
3, 12, 48, 61 5, 7, 19,32
3,5, 7,12,19,32,48,61
5、写出图着色问题的回溯算法的判断X[k]是否合理的过程。
解:i←0
whilei<k do
if G[k,i]=1 and X[k]= X[i] then
return false

算法设计与分析考试题目及答案

算法设计与分析考试题目及答案

算法设计与分析考试题目及答案Revised at 16:25 am on June 10, 2021I hope tomorrow will definitely be better算法分析与设计期末复习题一、 选择题1.应用Johnson 法则的流水作业调度采用的算法是DA. 贪心算法B. 分支限界法C.分治法D. 动态规划算法塔问题如下图所示;现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置;移动圆盘时遵守Hanoi 塔问题的移动规则;由此设计出解Hanoi 塔问题的递归算法正确的为:B3. 动态规划算法的基本要素为C A. 最优子结构性质与贪心选择性质 B .重叠子问题性质与贪心选择性质 C .最优子结构性质与重叠子问题性质 D. 预排序与递归调用4. 算法分析中,记号O 表示B , 记号Ω表示A , 记号Θ表示D ; A.渐进下界 B.渐进上界 C.非紧上界 D.紧渐进界 E.非紧下界5. 以下关于渐进记号的性质是正确的有:A A.f (n)(g(n)),g(n)(h(n))f (n)(h(n))=Θ=Θ⇒=Θ B. f (n)O(g(n)),g(n)O(h(n))h(n)O(f (n))==⇒= C. Ofn+Ogn = Omin{fn,gn} D. f (n)O(g(n))g(n)O(f (n))=⇔=Hanoi 塔A. void hanoiint n, int A, int C, int B { if n > 0 {hanoin-1,A,C, B; moven,a,b;hanoin-1, C, B, A; } B. void hanoiint n, int A, int B, int C { if n > 0 {hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; }C. void hanoiint n, int C, int B, int A { if n > 0 { hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; }D. void hanoiint n, int C, int A, int B { if n > 0 {hanoin-1, A, C, B; moven,a,b;hanoin-1, C, B, A; }6.能采用贪心算法求最优解的问题,一般具有的重要性质为:AA. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用7. 回溯法在问题的解空间树中,按D策略,从根结点出发搜索解空间树;广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先8. 分支限界法在问题的解空间树中,按A策略,从根结点出发搜索解空间树;A.广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先9. 程序块A是回溯法中遍历排列树的算法框架程序;A.B.C.D.10.xk的个数;11. 常见的两种分支限界法为DA. 广度优先分支限界法与深度优先分支限界法;B. 队列式FIFO分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式FIFO分支限界法与优先队列式分支限界法;12. k带图灵机的空间复杂性Sn是指BA.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最大方格数;B.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的方格数的总和;C.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的平均方格数;D.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最小方格数;13. N P类语言在图灵机下的定义为DA.NP={L|L是一个能在非多项式时间内被一台NDTM所接受的语言};B.NP={L|L是一个能在多项式时间内被一台NDTM所接受的语言};C.NP={L|L是一个能在多项式时间内被一台DTM所接受的语言};D.NP={L|L是一个能在多项式时间内被一台NDTM所接受的语言};14. 记号O的定义正确的是A;A.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ fn ≤cgn };B.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ cgn ≤fn };>0使得对所有n≥n0C.Ogn = { fn | 对于任何正常数c>0,存在正数和n有:0 ≤fn<cgn };>0使得对所有n≥n0D.Ogn = { fn | 对于任何正常数c>0,存在正数和n有:0 ≤cgn < fn };15. 记号Ω的定义正确的是B;A.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ fn ≤cgn };B.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ cgn ≤fn };>0使得对所有n≥n0有:C.gn = { fn | 对于任何正常数c>0,存在正数和n0 ≤fn<cgn };D.gn = { fn | 对于任何正常数c>0,存在正数和n0 >0使得对所有n≥n0有:0 ≤cgn < fn };二、 填空题1. 下面程序段的所需要的计算时间为 2O(n ) ;2.3.4. 5.6. 用回溯法解题的一个显着特征是在搜索过程中动态产生问题的解空间;在任何时刻,算法只保存从根结点到当前扩展结点的路径;如果解空间树 中从根结点到叶结点的最长路径的长度为hn,则回溯法所需的计算空间通常为Ohn ;7. 回溯法的算法框架按照问题的解空间一般分为子集树算法框架与排列树算法框架;8. 用回溯法解0/1背包问题时,该问题的解空间结构为子集树结构; 9.用回溯法解批处理作业调度问题时,该问题的解空间结构为排列树结构; 10.用回溯法解0/1背包问题时,计算结点的上界的函数如下所示,请在空格中填入合适的内容:11. n m12. 用回溯法解图的m着色问题时,使用下面的函数OK检查当前扩展结点的每一个儿子所相应的颜色的可用性,则需耗时渐进时间上限Omn;13.;设分分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用fn个单位时间;用Tn表示该分治法解规模为|P|=n的问题所需的计算时间,则有:(1)1 ()(/)()1O nT nkT n m f n n=⎧=⎨+>⎩通过迭代法求得Tn的显式表达式为:log1log()(/)nmk j jmjT n n k f n m-==+∑试证明Tn的显式表达式的正确性;2. 举反例证明0/1背包问题若使用的算法是按照p i/w i的非递减次序考虑选择的物品,即只要正在被考虑的物品装得进就装入背包,则此方法不一定能得到最优解此题说明0/1背包问题与背包问题的不同;证明:举例如:p={7,4,4},w={3,2,2},c=4时,由于7/3最大,若按题目要求的方法,只能取第一个,收益是7;而此实例的最大的收益应该是8,取第2,3 个;3. 求证:Ofn+Ogn = Omax{fn,gn} ;证明:对于任意f1n∈ Ofn ,存在正常数c1和自然数n1,使得对所有n≥n1,有f1n≤ c1fn ;类似地,对于任意g1n ∈ Ogn ,存在正常数c2和自然数n2,使得对所有n≥n2,有g1n ≤c2gn ;令c3=max{c1, c2}, n3 =max{n1, n2},hn= max{fn,gn} ;则对所有的 n ≥ n3,有f1n +g1n ≤ c1fn + c2gn≤c3fn + c3gn= c3fn + gn≤ c32 max{fn,gn} = 2c3hn = Omax{fn,gn} .4. 求证最优装载问题具有贪心选择性质;最优装载问题:有一批集装箱要装上一艘载重量为c 的轮船;其中集装箱i 的重量为Wi;最优装载问题要求确定在装载体积不受限制的情况下,将尽可能多的集装箱装上轮船; 设集装箱已依其重量从小到大排序,x 1,x 2,…,x n 是最优装载问题的一个最优解;又设1min{|1}i i nk i x ≤≤== ;如果给定的最优装载问题有解,则有1k n ≤≤;证明: 四、 解答题1. 机器调度问题;问题描述:现在有n 件任务和无限多台的机器,任务可以在机器上得到处理;每件任务的开始时间为s i ,完成时间为f i ,s i <f i ;s i ,f i 为处理任务i 的时间范围;两个任务i,j 重叠指两个任务的时间范围区间有重叠,而并非指i,j 的起点或终点重合;例如:区间1,4与区间2,4重叠,而与4,7不重叠;一个可行的任务分配是指在分配中没有两件重叠的任务分配给同一台机器;因此,在可行的分配中每台机器在任何时刻最多只处理一个任务;最优分配是指使用的机器最少的可行分配方案;问题实例:若任务占用的时间范围是{1,4,2,5,4,5,2,6,4,7},则按时完成所有任务最少需要几台机器提示:使用贪心算法画出工作在对应的机器上的分配情况;2. 已知非齐次递归方程:f (n)bf (n 1)g(n)f (0)c =-+⎧⎨=⎩ ,其中,b 、c 是常数,gn 是n 的某一个函数;则fn 的非递归表达式为:nnn i i 1f (n)cb b g(i)-==+∑;现有Hanoi 塔问题的递归方程为:h(n)2h(n 1)1h(1)1=-+⎧⎨=⎩ ,求hn 的非递归表达式;解:利用给出的关系式,此时有:b=2, c=1, gn=1, 从n 递推到1,有: 3. 单源最短路径的求解;问题的描述:给定带权有向图如下图所示G =V,E,其中每条边的权是非负实数;另外,还给定V 中的一个顶点,称为源;现在要计算从源到所有其它各顶点的最短路长度;这里路的长度是指路上各边权之和;这个问题通常称为单源最短路径问题;解法:现采用Dijkstra 算法计算从源顶点1到其它顶点间最短路径;请将此过程填入下表中;4. 请写出用回溯法解装载问题的函数; 装载问题:有一批共n 个集装箱要装上2艘载重量分别为c1和c2的轮船,其中集装箱i 的重量为wi,且121ni i w c c =≤+∑;装载问题要求确定是否有一个合理的装载方案可将这n 个集装箱装上这2艘轮船;如果有,找出一种装载方案;解:void backtrack int i{用分支限界法解装载问题时,对算法进行了一些改进,下面的程序段给出了改进部分;试说明斜线部分完成什么功能,以及这样做的原因,即采用这样的方式,算法在执行上有什么不同;初始时将;也就是说,重量仅在搜索进入左子树是增加,因此,可以在算法每一次进入左子树时更新bestw 的值;43 2 110030maxint10 - {1} 初始 dist5 dist4 dist3 dist2 u S 迭代7. 最长公共子序列问题:给定2个序列X={x 1,x2,…,xm }和Y={y 1,y2,…,yn },找出X 和Y 的最长公共子序列;由最长公共子序列问题的最优子结构性质建立子问题最优值的递归关系;用cij 记录序列Xi 和Yj 的最长公共子序列的长度;其中, Xi={x1,x2,…,xi};Y j={y1,y2,…,yj};当i=0或j=0时,空序列是Xi 和Yj 的最长公共子序列;故此时Cij=0;其它情况下,由最优子结构性质可建立递归关系如下:00,0[][][1][1]1,0;max{[][1],[1][]},0;i j i ji j c i j c i j i j x y c i j c i j i j x y ⎧==⎪=--+>=⎨⎪-->≠⎩在程序中,bij 记录Cij 的值是由哪一个子问题的解得到的;8.1.2.3.4.5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________;6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解;7.以深度优先方式系统搜索问题解的算法称为_____________;背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________;9.动态规划算法的两个基本要素是___________和___________;10.二分搜索算法是利用_______________实现的算法;二、综合题50分1.写出设计动态规划算法的主要步骤;2.流水作业调度问题的johnson算法的思想;3.若n=4,在机器M1和M2上加工作业i所需的时间分别为ai 和bi,且a 1,a2,a3,a4=4,5,12,10,b1,b2,b3,b4=8,2,15,9求4个作业的最优调度方案,并计算最优值;4.使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间从根出发,左1右0,并画出其解空间树,计算其最优值及最优解;5.设S={X1,X2,···,Xn}是严格递增的有序集,利用二叉树的结点来存储S中的元素,在表示S的二叉搜索树中搜索一个元素X,返回的结果有两种情形,1在二叉搜索树的内结点中找到X=Xi ,其概率为bi;2在二叉搜索树的叶结点中确定X∈Xi ,Xi+1,其概率为ai;在表示S的二叉搜索树T中,设存储元素Xi的结点深度为C i ;叶结点Xi,Xi+1的结点深度为di,则二叉搜索树T的平均路长p为多少假设二叉搜索树Tij={Xi ,Xi+1,···,Xj}最优值为mij,Wij= ai-1+bi+···+bj+aj,则mij1<=i<=j<=n递归关系表达式为什么6.描述0-1背包问题;三、简答题30分1.流水作业调度中,已知有n个作业,机器M1和M2上加工作业i所需的时间分别为ai 和bi,请写出流水作业调度问题的johnson法则中对ai和bi的排序算法;函数名可写为sorts,n2.最优二叉搜索树问题的动态规划算法设函数名binarysearchtree答案:一、填空1.确定性有穷性可行性 0个或多个输入一个或多个输出2.时间复杂性空间复杂性时间复杂度高低3. 该问题具有最优子结构性质4.{BABCD}或{CABCD}或{CADCD}5.一个最优解6.子问题子问题子问题7.回溯法8. on2n omin{nc,2n}9.最优子结构重叠子问题10.动态规划法二、综合题1.①问题具有最优子结构性质;②构造最优值的递归关系表达式;③最优值的算法描述;④构造最优解;2. ①令N1={i|ai<bi},N2={i|ai>=bi};②将N1中作业按ai的非减序排序得到N1’,将N2中作业按bi的非增序排序得到N2’;③N1’中作业接N2’中作业就构成了满足Johnson法则的最优调度;3.步骤为:N1={1,3},N2={2,4};N 1’={1,3}, N2’={4,2};最优值为:384.解空间为{0,0,0,0,1,0,0,0,1,1,0,0,0,1,1,1,0,1, 1,1,0,1,1,1}; 解空间树为:该问题的最优值为:16 最优解为:1,1,0 5.二叉树T 的平均路长P=∑=+ni 1Ci)(1*bi +∑=nj 0dj *aj{mij=0 i>j6.已知一个背包的容量为C,有n 件物品,物品i 的重量为W i ,价值为V i ,求应如何选择装入背包中的物品,使得装入背包中物品的总价值最大; 三、简答题 1.void sortflowjope s,int n {int i,k,j,l;fori=1;i<=n-1;i++ag=0 k++; ifk>n break;ag==0ifsk.a>sj.a k=j; swapsi.index,sk.index; swapsi.tag,sk.tag;} }l=i;<sj.b k=j;swapsi.index,sk.index; ag,sk.tag; }mij=Wij+min{mik+mk+1j} 1<=i<=j<=n,mii-1=0}2.void binarysearchtreeint a,int b,int n,int m,int s,int w{int i,j,k,t,l;fori=1;i<=n+1;i++{wii-1=ai-1;mii-1=0;}forl=0;l<=n-1;l++Init-single-sourceG,s2. S=Φ3. Q=VGQ<> Φdo u=minQS=S∪{u}for each vertex 3do 4四、算法理解题本题10分根据优先队列式分支限界法,求下图中从v1点到v9点的单源最短路径,请画出求得最优解的解空间树;要求中间被舍弃的结点用×标记,获得中间解的结点用单圆圈○框起,最优解用双圆圈◎框起;五、算法理解题本题5分设有n=2k个运动员要进行循环赛,现设计一个满足以下要求的比赛日程表:①每个选手必须与其他n-1名选手比赛各一次;②每个选手一天至多只能赛一次;③循环赛要在最短时间内完成;1如果n=2k,循环赛最少需要进行几天;2当n=23=8时,请画出循环赛日程表;六、算法设计题本题15分分别用贪心算法、动态规划法、回溯法设计0-1背包问题;要求:说明所使用的算法策略;写出算法实现的主要步骤;分析算法的时间;七、算法设计题本题10分通过键盘输入一个高精度的正整数nn的有效位数≤240,去掉其中任意s个数字后,剩下的数字按原左右次序将组成一个新的正整数;编程对给定的n 和s,寻找一种方案,使得剩下的数字组成的新数最小;样例输入178543S=4样例输出13一、填空题本题15分,每小题1分1.规则一系列运算2. 随机存取机RAMRandom Access Machine;随机存取存储程序机RASPRandom Access Stored Program Machine;图灵机Turing Machine3. 算法效率4. 时间、空间、时间复杂度、空间复杂度5.2n6.最好局部最优选择7. 贪心选择最优子结构二、简答题本题25分,每小题5分1、分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同;对这k个子问题分别求解;如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止;将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解;2、“最优化原理”用数学化的语言来描述:假设为了解决某一优化问题,需要依次作出n个决策D1,D2,…,Dn,如若这个决策序列是最优的,对于任何一个整数k,1 < k < n,不论前面k个决策是怎样的,以后的最优决策只取决于由前面决策所确定的当前状态,即以后的决策Dk+1,Dk+2,…,Dn也是最优的;3、某个问题的最优解包含着其子问题的最优解;这种性质称为最优子结构性质;4、回溯法的基本思想是在一棵含有问题全部可能解的状态空间树上进行深度优先搜索,解为叶子结点;搜索过程中,每到达一个结点时,则判断该结点为根的子树是否含有问题的解,如果可以确定该子树中不含有问题的解,则放弃对该子树的搜索,退回到上层父结点,继续下一步深度优先搜索过程;在回溯法中,并不是先构造出整棵状态空间树,再进行搜索,而是在搜索过程,逐步构造出状态空间树,即边搜索,边构造;5、PPolynomial问题:也即是多项式复杂程度的问题;NP就是Non-deterministicPolynomial的问题,也即是多项式复杂程度的非确定性问题;NPCNP Complete问题,这种问题只有把解域里面的所有可能都穷举了之后才能得出答案,这样的问题是NP里面最难的问题,这种问题就是NPC问题;三、算法填空本题20分,每小题5分1、n后问题回溯算法1 Mj&&Li+j&&Ri-j+N2 Mj=Li+j=Ri-j+N=1;3 tryi+1,M,L,R,A4 Aij=05 Mj=Li+j=Ri-j+N=0 2、数塔问题; 1c<=r2trc+=tr+1c 3trc+=tr+1c+1 3、Hanoi 算法 1movea,c2Hanoin-1, a, c , b 3Movea,c 4、1pv=NIL 2pv=u3 v ∈adju 4Relaxu,v,w四、算法理解题本题10分五、18天2分;2当n=23=8时,循环赛日程表3分;六、算法设计题本题15分 1贪心算法 Onlogn ➢ 首先计算每种物品单位重量的价值Vi/Wi,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包;若将这种物品全部装入背包后,背包内的物品总重量未超过C,则选择单位重量价值次高的物品并尽可能多地装入背包;依此策略一直地进行下去,直到背包装满为止; ➢ 具体算法可描述如下:void Knapsackint n,float M,float v,float w,float x {Sortn,v,w; int i;for i=1;i<=n;i++ xi=0; float c=M;for i=1;i<=n;i++ {if wi>c break; xi=1; c-=wi; }if i<=n xi=c/wi; }2动态规划法 Oncmi,j 是背包容量为j,可选择物品为i,i+1,…,n 时0-1背包问题的最优值;由0-1背包问题的最优子结构性质,可以建立计算mi,j 的递归式如下;void KnapSackint v,int w,int c,int n,int m11 {int jMax=minwn-1,c;for j=0;j<=jMax;j++ /mn,j=0 0=<j<wn/ mnj=0;1 2 3 4 5 6 7 82 1 43 6 5 8 73 4 1 2 7 8 5 64 3 2 1 8 7 6 55 6 7 8 1 2 3 4 6 5 8 7 2 1 4 37 8 5 6 3 4 1 28 7 6 5 4 3 2 1for j=wn;j<=c;j++ /mn,j=vn j>=wn/mnj=vn;for i=n-1;i>1;i--{ int jMax=minwi-1,c;for j=0;j<=jMax;j++ /mi,j=mi+1,j 0=<j<wi/mij=mi+1j;for j=wi;j<=c;j++/mn,j=vn j>=wn/mij=maxmi+1j,mi+1j-wi+vi;}m1c=m2c;ifc>=w1m1c=maxm1c,m2c-w1+v1;}3回溯法 O2ncw:当前重量 cp:当前价值 bestp:当前最优值voidbacktrack int i//回溯法 i初值1{ifi>n //到达叶结点{ bestp=cp; return; }ifcw+wi<=c //搜索左子树{cw+=wi;cp+=pi;backtracki+1;cw-=wi;cp-=pi;}ifBoundi+1>bestp//搜索右子树backtracki+1;}七、算法设计题本题10分为了尽可能地逼近目标,我们选取的贪心策略为:每一步总是选择一个使剩下的数最小的数字删去,即按高位到低位的顺序搜索,若各位数字递增,则删除最后一个数字,否则删除第一个递减区间的首字符;然后回到串首,按上述规则再删除下一个数字;重复以上过程s次,剩下的数字串便是问题的解了;具体算法如下:输入s, n;while s > 0{ i=1; //从串首开始找while i < lengthn && ni<ni+1{i++;}deleten,i,1; //删除字符串n的第i个字符s--;}while lengthn>1&& n1=‘0’deleten,1,1; //删去串首可能产生的无用零输出n;。

算法设计与分析期末考试复习题

算法设计与分析期末考试复习题

三、算法设计题1.背包问题的贪心算法V oid Knapsack(int n,float M,float v[],float w[],float x[]) {Sort(n,v,w);int i;for (i=1;i<=n;i++) x[i]=0;float c=M;for (i=1;i<=n;i++){If (w[i]>c) break;x[i]=1;c-=w[i];}If(i<=n)x[i]=c/w[i];}2.循环赛日程表安排问题V oid Table(int k,int* *a){int n=1;for(int i=1;i<=k;i++)n*=2;for(int i=1;i<=n;i++)a[1][i]=i;for m=1;for(int s=1;i<=k;s++){n/=2;for(int t=1;t<=n;t++)for(int i=m+1;i<=2*m;i++)for(int j=m+1;j<=2*m;j++){a[i][j+(t-1)*m*2]=a[i-m][j+(t-1)*m*2-m];a[i][j+(t-1)*m*2-m]=a[i-m][j+(t-1)*m*2];m*=2;}}3.贪心算法求装载问题Template<class Type>void Loading(int x[],Type w[],Type c,int n){int *t=new int[n+1];Sort(w,t,n);for(int i=1;i<=n;i++)x[i]=0;for(int i=1;i<=n & & w[t[i]]<=c;i++){x[t[i]]=1;c-=w[t[i]];} }4.贪心算法求活动安排问题Template<class Type>void GreedySelector(int n,Type s[],Type f[],bool A[]){A[1]=true;int j=1;for(int i=2;i<=n;i++){If(s[i]>=f[j]){A[i]=true;j=1;}else A[i]=false;}}5.快速排序Template<class Type>V oid QuickSort(Type a[],int p,int r){if(p<r){int q=Partition(a,p,r);QuickSort(a,p,q-1);//对左半段排序QuickSort(a,q+1,r);//对右半段排序}}6.排列问题Template <class Type>void perm(Type list[], int k, int m ){ //产生[list[k:m]的所有排列if(k==m){ //只剩下一个元素for (int i=0;i<=m;i++) cout<<list[i];cout<<endl;}else //还有多个元素待排列,递归产生排列for (int i=k; i<=m; i++){swap(list[k],list[i]);perm(list,k+1;m);swap(list[k],list[i]);}}7.0-1背包问题8.旅行售货员问题template<class Type>class Traveling{friend void main(void);Public;Type BBTSP(int v[]);Private;int n;//图G的顶点数Type * *a,//图G的邻接矩阵NoEdge,//图G的无边标志cc,//当前费用bestc;//当前最小费用};四、算法分析题1.分治法的基本思想分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。

《算法分析与设计》期末考试复习题-学生版

《算法分析与设计》期末考试复习题-学生版

《算法分析与设计》期末复习题一、选择题1.应用Johnson法则的流水作业调度采用的算法是(D)A. 贪心算法B. 分支限界法C.分治法D. 动态规划算法2.Hanoi塔问题如下图所示。

现要求将塔座A上的的所有圆盘移到塔座B上,并仍按同样顺序叠置。

移动圆盘时遵守Hanoi塔问题的移动规则。

由此设计出解Hanoi塔问题的递归算法正确的为:(B)Hanoi塔3. 动态规划算法的基本要素为(C)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用4. 算法分析中,记号O表示(B),记号Ω表示(A),记号Θ表示(D)。

A.渐进下界B.渐进上界C.非紧上界D.紧渐进界E.非紧下界5. 以下关于渐进记号的性质是正确的有:(A)A.f(n)(g(n)),g(n)(h(n))f(n)(h(n))=Θ=Θ⇒=ΘB. f(n)O(g(n)),g(n)O(h(n))h(n)O(f(n))==⇒=C. O(f(n))+O(g(n)) = O(min{f(n),g(n)})D. f(n)O(g(n))g(n)O(f(n))=⇔=6.能采用贪心算法求最优解的问题,一般具有的重要性质为:(A)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用7. 回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。

A.广度优先B. 活结点优先 C.扩展结点优先 D. 深度优先8. 分支限界法在问题的解空间树中,按(A)策略,从根结点出发搜索解空间树。

A.广度优先B. 活结点优先 C.扩展结点优先 D. 深度优先9. 程序块(A)是回溯法中遍历排列树的算法框架程序。

A.B.C.D.10. 回溯法的效率不依赖于以下哪一个因素?(C )A.产生x[k]的时间;B.满足显约束的x[k]值的个数;C.问题的解空间的形式;D.计算上界函数bound的时间;E.满足约束函数和上界函数约束的所有x[k]的个数。

《算法设计与分析》考试题目及答案

《算法设计与分析》考试题目及答案

《算法分析与设计》期末复习题一、选择题1.应用Johnson 法则的流水作业调度采用的算法是(D )A. 贪心算法B. 分支限界法C.分治法D. 动态规划算法2.Hanoi 塔问题如下图所示。

现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置。

移动圆盘时遵守Hanoi 塔问题的移动规则。

由此设计出解Hanoi 塔问题的递归算法正确的为:(B )Hanoi 塔A. void hanoi(int n, int A, int C, int B) { if (n > 0) {hanoi(n-1,A,C, B); move(n,a,b);hanoi(n-1, C, B, A); } B. void hanoi(int n, int A, int B, int C) {if (n > 0) {hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A); }C. void hanoi(int n, int C, int B, int A) {if (n > 0) {hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A); }3. 动态规划算法的基本要素为(C)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用4. 算法分析中,记号O表示(B),记号Ω表示(A),记号Θ表示(D)。

A.渐进下界B.渐进上界C.非紧上界D.紧渐进界E.非紧下界5. 以下关于渐进记号的性质是正确的有:(A)A.f(n)(g(n)),g(n)(h(n))f(n)(h(n))=Θ=Θ⇒=ΘB. f(n)O(g(n)),g(n)O(h(n))h(n)O(f(n))==⇒=C. O(f(n))+O(g(n)) = O(min{f(n),g(n)})D. f(n)O(g(n))g(n)O(f(n))=⇔=6.能采用贪心算法求最优解的问题,一般具有的重要性质为:(A)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用7. 回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。

《算法分析与设计》期末试题及参考答案

《算法分析与设计》期末试题及参考答案

《算法分析与设计》期末试题及参考答案一、简要回答下列问题:1.算法重要特性是什么?1. 确定性、可行性、输入、输出、有穷性2.2.算法分析的目的是什么?2. 分析算法占用计算机资源的情况,对算法做出比较和评价,设计出额更好的算法。

3.3.算法的时间复杂性与问题的什么因素相关?3. 算法的时间复杂性与问题的规模相关,是问题大小n的函数。

4.算法的渐进时间复杂性的含义?4.当问题的规模n趋向无穷大时,影响算法效率的重要因素是T(n)的数量级,而其他因素仅是使时间复杂度相差常数倍,因此可以用T(n)的数量级(阶)评价算法。

时间复杂度T(n)的数量级(阶)称为渐进时间复杂性。

5.最坏情况下的时间复杂性和平均时间复杂性有什么不同?5. 最坏情况下的时间复杂性和平均时间复杂性考察的是n固定时,不同输入实例下的算法所耗时间。

最坏情况下的时间复杂性取的输入实例中最大的时间复杂度:W(n) = max{ T(n,I) } , I∈Dn平均时间复杂性是所有输入实例的处理时间与各自概率的乘积和:A(n) =∑P(I)T(n,I) I∈Dn6.简述二分检索(折半查找)算法的基本过程。

6. 设输入是一个按非降次序排列的元素表A[i:j] 和x,选取A[(i+j)/2]与x比较,如果A[(i+j)/2]=x,则返回(i+j)/2,如果A[(i+j)/2]<x,则A[i:(i+j)/2-1]找x,否则在A[ (i+j)/2+1:j] 找x。

上述过程被反复递归调用。

7.背包问题的目标函数和贪心算法最优化量度相同吗?7. 不相同。

目标函数:获得最大利润。

最优量度:最大利润/重量比。

8.采用回溯法求解的问题,其解如何表示?有什么规定?8. 问题的解可以表示为n元组:(x1,x2,……x n),x i∈S i, S i为有穷集合,x i∈S i, (x1,x2,……x n)具备完备性,即(x1,x2,……x n)是合理的,则(x1,x2,……x i)(i<n)一定合理。

《算法设计与分析》考试题目及答案(2)

《算法设计与分析》考试题目及答案(2)

《算法设计与分析》考试题⽬及答案(2)《算法分析与设计》期末复习题⼀、选择题1.应⽤Johnson 法则的流⽔作业调度采⽤的算法是(D ) A. 贪⼼算法 B. 分⽀限界法 C.分治法 D. 动态规划算法塔问题如下图所⽰。

现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置。

移动圆盘时遵守Hanoi 塔问题的移动规则。

由此设计出解Hanoi 塔问题的递归算法正确的为:(B )HanoiA. void hanoi(int n, int A, int C, int B) {if (n > 0) { hanoi(n-1,A,C, B); move(n,a,b);hanoi(n-1, C, B, A); B. void hanoi(int n, int A, int B, int C) {if (n > 0) {hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A);C. void hanoi(int n, int C, int B, int A) {if (n > 0) {hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A);3. 动态规划算法的基本要素为(C ) A. 最优⼦结构性质与贪⼼选择性质 B .重叠⼦问题性质与贪⼼选择性质 C .最优⼦结构性质与重叠⼦问题性质 D. 预排序与递归调⽤4. 算法分析中,记号O 表⽰(B ),记号Ω表⽰(A ),记号Θ表⽰(D )。

A.渐进下界 B.渐进上界 C.⾮紧上界 D.紧渐进界E.⾮紧下界5. 以下关于渐进记号的性质是正确的有:(A ) A.f (n)(g(n)),g(n)(h(n))f (n)(h(n))=Θ=Θ?=Θ B. f (n)O(g(n)),g(n)O(h(n))h(n)O(f (n))==?= C. O(f(n))+O(g(n)) = O(min{f(n),g(n)}) D. f (n)O(g(n))g(n)O(f (n))=?=6. 能采⽤贪⼼算法求最优解的问题,⼀般具有的重要性质为:(A )A. 最优⼦结构性质与贪⼼选择性质 B .重叠⼦问题性质与贪⼼选择性质D. void hanoi(int n, int C, int A, int B){if (n > 0) {hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A);C .最优⼦结构性质与重叠⼦问题性质 D. 预排序与递归调⽤7. 回溯法在问题的解空间树中,按(D )策略,从根结点出发搜索解空间树。

《算法设计与分析》期末复习题

《算法设计与分析》期末复习题

填空1.直接或间接地调用自身的算法称为 递归算法 。

2.算法的复杂性是 算法效率 的度量,是评价算法优劣的重要依据。

3.以广度优先或以最小耗费方式搜索问题解的算法称为 分支限界法 。

4.回溯法解题的显著特点是在搜索过程中动态产生问题的解空间。

在任何时刻,算法只保存从根结点到当前扩展结点的路径。

如果解空间树中从根结点到叶结点的最长路径的长度为h(n),则回溯法所需的计算空间通常为 O (h(n)) 。

5.人们通常将问题的解决方案分为两大类:一类是可以通过执行若干个步骤就能得出问题结论的,叫做 算法 方案;另一类是不能通过若干个步骤直截了当地得出结论,而是需要反复验证才能解决的,叫做 启发式 方案。

6.算法就是一组有穷的 规则 ,它们规定了解决某一特定类型问题的 一系列运算 。

7.在进行问题的计算复杂性分析之前,首先必须建立求解问题所用的计算模型。

3个基本计算模型是 随机存取机RAM 、 随机存取存储程序机RASP 、 图灵机 。

8.快速排序算法的性能取决于 划分的对称性 。

9.计算机的资源最重要的是 时间资源 和 空间 资源。

因而, 算法的复杂性有 时间复杂度 和 空间复杂度 之分。

10.贪心算法总是做出在当前看来 最优 的选择。

也就是说贪心算法并不从整体最优考虑,它所做出的选择只是在某种意义上的 局部最优 。

11.许多可以用贪心算法求解的问题一般具有2个重要的性质: 贪心选择 性质和 最优子结构 性质。

12.常见的两种分支限界法为 队列式(FIFO )分支限界 和 优先队列式分支限界 。

13.解决0/1背包问题可以使用动态规划、回溯法和分支限界法,其中需要排序的是 回溯法、分支限界法 ,不需要排序的是 动态规划 。

14.f ( n ) = 6 × 2n + n 2,f(n)的渐进性态f ( n ) = O ( 2n )。

15.对于含有n 个元素的排列树问题,最好情况下计算时间复杂性为 ,最坏情况下计算时间复杂性为 n! 。

《算法设计与分析》期末必考复习及答案题整理

《算法设计与分析》期末必考复习及答案题整理

《算法设计与分析》期末必考复习及答案题整理1、分治法的基本思想:是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题互相独立且与原问题相同。

递归地解这些子问题,然后将各子问题的解合并得到原问题的解。

2、贪心选择性质:指所求问题的整体最优解可以通过一系列局部最优的选择,3、 Prim算法:设G=(V,E)是连通带权图,V={1,2,…,n}。

构造G的最小生成树的Prim算法的基本思想是:首先置S={1},然后,只要S是V的真子集,就作如下的贪心选择:选取满足条件i?S,j?V-S,且c[j]最小的边,将顶点j添加到S 中。

这个过程一直进行到S=V时为止。

4、什么是剪枝函数:回溯法搜索解空间树时,通常采用两种策略避免无效搜索,提高回溯法的搜索效率。

其一是用约束函数在扩展结点处剪去不满足约束的子树;其二是用限界函数剪去得不到最优解的子树。

这两类函数统称为剪枝函数。

6、分支限界法的基本思想:(1)分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。

(2)在分支限界法中,每一个活结点只有一次机会成为扩展结点。

活结点一旦成为扩展结点,就一次性产生其所有儿子结点。

在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。

(3)此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程,这个过程一直持续到找到所需的解或活结点表这空时为止。

5、什么是算法的复杂性:是该算法所需要的计算机资源的多少,它包括时间和空间资源。

6、最优子结构性质:该问题的最优解包含着其子问题的最优解。

7、回溯法:是一个既带有系统性又带有跳跃性的搜索算法。

这在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。

算法搜索至解空间树的任一结点时,先判断该结点是否包含问题的解。

如果肯定不包含,则跳过对以该结点为根的子树的搜索,逐层向其祖先结点回溯;否则,进入该子树,继续按深度优先策略搜索。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.一个.java文件中可以有()个public类。

A.一个B.两个C.多个D.零个2.一个算法应该是()A.程序B.问题求解步骤的描述C.要满足五个基本特性D.A和C3.用计算机无法解决“打印所有素数”的问题,其原因是解决该问题的算法违背了算法特征中的()A.唯一性B.有穷性C.有0个或多个输入D.有输出4.某校有6位学生参加学生会主席竞选,得票数依次为130,20,98,15,67,3。

若采用冒泡排序算法对其进行排序,则完成第二遍时的结果是()A.3,15,130,20,98,67B.3,15,20,130,98,67C.3,15,20,67,130,98 D.3,15,20,67,98,1305.下列关于算法的描述,正确的是()A.一个算法的执行步骤可以是无限的B.一个完整的算法必须有输出C.算法只能用流程图表示D.一个完整的算法至少有一个输入6.Java Application源程序的主类是指包含有()方法的类。

A、main方法B、toString方法C、init方法D、actionPerfromed方法7.找出满足各位数字之和等于5的所有三位数可采用的算法思路是()A.分治法B.减治法C.蛮力法D.变治法8.在编写Java Application程序时,若需要使用到标准输入输出语句,必须在程序的开头写上( )语句。

A、import java.awt.* ;B、import java.applet.Applet ;C、import java.io.* ;D、import java.awt.Graphics ;9.计算某球队平均年龄的部分算法流程图如图所示,其中:c用来记录已输入球员的人数,sum用来计算有效数据之和,d用来存储从键盘输入的球员年龄值,输入0时表示输入结束。

图中空白处理框①和②处应填入的是()A.①sum ←sum + d B.①sum ←sum + c②c ←c + 1②c ←c + 1C.①sum ←sum + d D.①sum ←sum + c②d ←d + 1 ②d ←d + 110.报名参加冬季越野赛跑的某班5位学生的学号是:5,8,11,33,45。

利用折半查找,查找学号为33号学生的过程中,依次被访问到的学号是()A.5,11,33 B.8,33 C.11,45,33 D.11,3311.表达式(short)8/9.2*5的值的类型为A.short B.int C.double D.float12.设x为int型变量,则执行一下语句段后,x的值为x=10;x+=x-=x-x;A.10 B.20 C.40 D.3013.下列代码的执行结果是public class StringTest{public static void main(String args[]){int a=4,b=6,c=8;String s=”abc”;System.out.println(a+b+s+c);System.out.printin(); }}A.ababcc B.464688 C.46abc8 D.10abc814.下列程序段执行后t3的结果是int t1 = 2, t2 = 3, t3;t3=t1<t2? t1:t2+t1A.2 B.4 C.5 D.615.要计算当0〈x〈10时,y=x,应当使用的语句是A.if(0<x<10)y=x; B.if(0<x|x<10)y=x; C.if(0<x&x<10)y=x; D.if(0<x^x<10)y=x;16.对一组数据(2,12,16,88,5,10)进行排序,若前三趟排序结果如下,第一趟:2,12,16,88,5,10第二趟:2,5,16,88,12,10第三趟:2,5,10,88,12,16则采用的排序方法是()A.冒泡排序B.合并排序C.快速排序D.选择排序17.类与对象的关系是()A.建筑图纸和建筑物的关系B.汽车与发动机的关系C.人与黑人的关系D.没有关系18.JA V A语言二维数组定义中,第二维的长度( )A.可以不相等B.必须相等C.高维数组长度与低维数组长度相同D.固定长度19.算法必须具备()这三个特性。

A.可执行性、可移植性、可扩充性B.可执行性、确定性、有穷性C.确定性、有穷性、稳定性D.易读性、稳定性、安全性20.如下图所示,该流程图所表示的算法违背了算法的有穷性特征,下列修改方法中,可以改正该错误的是()A.将①处改为i ←0 B.将②处改为s ≥0 ?C.将③处改为i ←i-2 D.将④处改为s ←s-i二、填空题1.一个显而易见的事实是:大部分算法的执行时间随着输入量的增加而增大。

2.算法是求解某一问题所使用的一系列清晰的指令。

3.算法分析时间效率模型的基本数学公式是:T(n) ≈C op C(n)。

4.算法设计技术是用算法解题的一般性方法,用于解决不同计算领域的多种问题。

5.三个渐进符号:O 、Ω和Ө。

6.效率分析框架主要关心一个算法的基本操作次数的增长次数,并把它作为算法效率的主要指标。

7.Java源程序的文件名和程序中定义的主类名应保持一致,包括字母大小写的匹配。

8.算法中常见的问题类型包括:排序、查找、字符串处理和组合问题等。

9.类中的构造方法是一个特殊的方法,其名称与类名相同。

10.面向对象程序设计语言中的3个重要特性分别是封装、继承和多态。

11.Java源程序文件的扩展名为java ,编译生成的字节码文件的扩展名为class 。

12.大多数算法的效率可以分为常数、对数、线性、平方、立方和指数等。

三、简答题1.什么是算法?算法的五个重要特征是什么?答:算法是求解某一问题所使用的一系列清晰的指令。

答:(1)输入:有零个或多个由外部提供的量作为算法的输入.(2)输出:算法产生至少一个量作为输出.(3)确定性:组成算法的每条指令是清晰的,无歧义的.(4)有限性:在执行了有穷步骤后运算终止.(5)可行性:运算都是基本运算,原理上能在有限时间内完成.2.请简述蛮力算法的优点?答:蛮力算法是一种简单直接地解决问题的方法。

蛮力法具有如下优点:(1)应用范围广;(2)不受实例规模的限制;(3)当要解决的问题实例不多,设计更高效算法的代价太大时可选用;(4)对解决一些小规模的问题实例仍然有效;(5)可作为衡量其他算法的参照物。

3.算法设计与分析过程的典型步骤都包括哪些?答:(1)了解问题的内容(2)了解计算设备的性能(3)在精确解法和近似解法之间选择(4)确定适当的数据结构(5)算法设计技术(6)详细表述算法的方法(7)证明算法的正确性(8)分析算法(9)为算法写代码4.请简述分治法的基本思路?答:将规模为N的问题分解为k个规模较小的子问题,使这些子问题相互独立可分别求解,再将k个子问题的解合并成原问题的解。

如子问题的规模仍很大,则反复分解直到问题小到可直接求解为止。

在分治法中,子问题的解法通常与原问题相同,自然导致递归过程。

5.请简述减治法的基本思路?答:减治技术利用了一个问题给定实例的解和同样问题较小实例的解之间的某种关系。

一旦建立了这种关系,既可以从顶至底(递归地),也可以从底至顶(非递归地)来运用该关系。

减治法有三种主要的变种:⏹减常数(如1)::每此迭代规模减小n→n-1⏹减因子(如1/2):每此迭代规模减半n→n/2⏹减可变规模:每此迭代减小的规模不同6.请简述递归算法设计的基本思路?答:递归的执行过程由分解过程和求值过程两部分构成。

实际上, 递归思路是把一个不能或不好直接求解的“大问题”转化成一个或几个“小问题”来解决,再把这些“小问题”进一步分解成更小的“小问题”来解决,如此分解,直至每个“小问题”都可以直接解决(此时分解到递归出口)。

但递归分解不是随意的分解,递归分解要保证“大问题”与“小问题”相似,即求解过程与环境都相似。

并且有一个分解的终点。

从而使问题可解。

7.请简述变治法的基本思路?答:变治法的技术基于变换思想。

变治法分为两个阶段的工作:首先在“变”的阶段,出于这样或那样的原因,将问题的实例变得更容易求解;然后是“治”的阶段,对问题的实例进行求解。

根据对问题实例的变换方式不同,变治法有三种主要的类型:(1)实例化简——变换为同样问题的一个更简单或者更方便的实例;(2)改变表现——变换为同样实力的不同表现;(3)问题化简——变换为另一个问题的实例,这种问题的算法是已知的。

8.请简述时空权衡法的基本思路?答:时空权衡法的基本思路是对问题的部分或全部输入做预处理,然后对得到的额外信息使用额外的存储空间来存储。

通过实现更快或更方便的数据存取,以加速后面问题的求解来提高算法的效率。

四、算法实现题1.对于任意非负整数n,计算阶乘函数F(n) = n!的值。

因为当n ≥1时,n!= 1×2×3×……×(n-1)×n = (n-1)!×n。

并且根据定义,0!= 1,所以可以使用下面的递归算法计算n!:F(n) = F(n-1) ×n。

请编写Java应用程序,由键盘输入n的值,在屏幕上输出计算的n!的结果。

import java.io.*;public class FN{static long f(int n){long r = 1;if(n != 0)r = n * f(n-1);return r;}public static void main(String args[]) throws IOException{//输入N的值byte[] buf = new byte[10];System.out.println("请输入一个整数:");System.in.read(buf);String str=new String(buf);int n=Integer.parseInt(str.trim());//计算N!的值long result = f(n);//输出结果System.out.println(n + "!=" + result);}}2.斐波那契数列:0,1,1,2,3,5,8,13,21,34,……这个数列可以用一个简单的递推式和两个初始条件来定义:当n > 1时,F(n) = F(n-1) + F(n-2)F(0) = 0,F(1) = 1请编写Java应用程序,由键盘输入n的值代表要生成斐波那契数列的项数,在屏幕上输出n项斐波那契数列。

import java.io.*;public class Fb{/*斐波那契数列算法*/int f(int n){int r;if(n <= 1)r = n;elser = f(n-1) + f(n-2);return r;}public static void main(String args[]) throws IOException{System.out.println("请输入所求斐波那契数列的项数:");byte buf[] = new byte[20];System.in.read(buf);String t1 = new String(buf);int n = Integer.parseInt(t1.trim());Fb f1 = new Fb();int b;System.out.println("输出包含" + n + "项的斐波那契数列:");for(int i = 0; i <= n; i++){b = f1.f(i);System.out.print(b + " ");}System.out.println();}}3.编写基于Java语言的选择排序算法。

相关文档
最新文档