同济大学朱慈勉版结构力学课后答案(上)
结构力学 朱慈勉 第3章课后答案全解
结构力学 第3章习题答案3-2 试作图示多跨静定梁的弯矩图和剪力图。
(a)2P F a 2P F a4P F Q34P F 2P F(b)aa aaa2m6m2m4m2m2020Q10/326/310(c)18060(d)3m2m2m3m3m4m3m2m2m2mA2m 2m2m2m7.5514482.524MQ3-3 试作图示刚架的内力图。
(a)242018616MQ18(b)4kN ·m3m3m6m1k N /m2kN A CBD6m10kN3m3m 40kN ·mABC D30303011010QM 210(c)45MQ(d)3m3m6m6m2m 2m444444/32MQN(e)4481``(f)4m4m2m3m4m222220M3-4 试找出下列各弯矩图形的错误之处,并加以改正。
(a)F P(b)(c)(d)(e)(f)F3-5 试按图示梁的BC 跨跨中截面的弯矩与截面B 和C 的弯矩绝对值都相等的条件,确定E 、F 两铰的位置。
lx l lx28ql M2221()222116121618c B C BC C q ql M l x x qx xM M M M ql ql x ql x l=-+===∴=∴=∴=中F D()2ql x -3-6 试作图示刚架的弯矩和剪力图。
(a)9090405M2B 209(4.53)645()0.5209459405,135()453135,0.5209900.520990F F E E CF CD BA R R M R M M M ⨯⨯-=⨯∴=↑=⨯⨯-⨯==↑=⨯==⨯⨯==⨯⨯=对点求矩14.25424213.5 1.50.2525.75A 72425 2.50.5()C 420.524 4.25()3.5(),0.25()5.752.1,24 4.253.752.5E K B B B B A A EF K M M R R H H V H Q Q =⨯-⨯⨯==⨯+⨯=⨯+⨯⨯=⨯→=-↓⨯⨯+⨯=⨯→=→∴=↑=←===⨯-=左对点求矩:对点求矩:2 2.1(c)80/3Q8080380,61603330():(2023304)/2120():61201030420211320()380()3DA ED C C B B A M M H F V A V V V =⨯==⨯==←=⨯⨯+⨯=↑⨯+⨯=⨯+⨯⨯∴=-↓∴=↑对点求矩对点求矩(d)8/34/388414233:41614284()4:441426()38(),03DAB BB BA AMA V VC H HH V=⨯-⨯⨯=⨯⨯+⨯⨯=⨯→=↑⨯-⨯⨯=⨯→=←∴=←=对点求矩对点求矩(e)2FaF2Fa2FaF F F2F----+2Fa2Fa2FaM Q02(),020322222(),2()4(),0C B p E B FB P H P FH P F PD P DM V F M H VM F a a H F a V aH F V FH F V=→=↑=→==→⨯+⨯=⨯+⨯∴=←=↓∴=→=∑∑∑(f)进一步简化BHIH8:4(),4()4(),4(),42810B BI I AH KN V KNH KN V KN M N m=→=↓=-←=-↑=⨯=•可知84 (g)2aqa22221.5()21.50 1.5()0,, 1.5C CA AGF GHHqaqa H a H qaqa a H a H qaH M qa M qa+=⨯→=→⨯+⨯=→=-←===对点求矩:对F点求矩:。
同济大学朱慈勉-结构力学-第10章-结构动..习题答案
同济大学朱慈勉 结构力学 第10章 结构动..习题答案10-1 试说明动力荷载与移动荷载的区别。
移动荷载是否可能产生动力效应10-2 试说明冲击荷载与突加荷载之间的区别。
为何在作厂房动力分析时,吊车水平制动力可视作突加荷载10-3 什么是体系的动力自由度它与几何构造分析中体系的自由度之间有何区别如何确定体系的 动力自由度10-4 将无限自由度的振动问题转化为有限自由度有哪些方法它们分别采用何种坐标 10-5 试确定图示各体系的动力自由度,忽略弹性杆自身的质量。
(a)(b)EI 1=∞EImyϕ分布质量的刚度为无穷大,由广义坐标法可知,体系仅有两个振动自由度y ,ϕ。
(c)](d)在集中质量处施加刚性链杆以限制质量运动体系。
有四个自由度。
10-6 建立单自由度体系的运动方程有哪些主要方法它们的基本原理是什么 10-7 单自由度体系当动力荷载不作用在质量上时,应如何建立运动方程10-8 图示结构横梁具有无限刚性和均布质量m ,B 处有一弹性支座(刚度系数为k ),C 处有一阻尼器(阻尼系数为c ),梁上受三角形分布动力荷载作用,试用不同的方法建立体系的运动方程。
解:1)刚度法该体系仅有一个自由度。
可设A 截面转角a 为坐标顺时针为正,此时作用于分布质量m 上的惯性力呈三角形分布。
其端部集度为..ml a 。
取A 点隔离体,A 结点力矩为:....3121233I M ml a l l mal =⨯⨯⨯= |由动力荷载引起的力矩为:()()2121233t t q l l q l ⋅⋅= 由弹性恢复力所引起的弯矩为:.2133la k l c al ⋅⋅+ 根据A 结点力矩平衡条件0I p s M M M ++=可得:()3 (322)1393t q l ka m al l c al ++=整理得:()...33t q ka c a m a l l l++= 2)力法.cα解:取AC 杆转角为坐标,设在平衡位置附近发生虚位移α。
结构力学-第7章-位移法习题答案
1 2
ql
1 12
ql 2
/ l
7 12
ql
由位移法方程得出:
r11Z1
R1 p
0
Z1
7ql 4 348EI
作出最终 M 图
7-9 试不经计算迅速画出图示结构的弯矩图形。
(a)
B
θA A
(b)
C B
yB
B′
A
C
题 7-9 图 7-10 试计算图示有剪力静定杆的刚架,并绘出 M 图。
13EI l
, r12
r21
3EI l2
r22
18EI l2
R1 p
1 16
ql 2 , R2 p
ql
代入,解得
Z1
66 3600
ql3 EI
,
Z2
211 3600
ql 4 EI
(4)求最终弯矩图
(e)
50kN·m
80kN·m 10kN·m 20kN
A 2EI B EI C
EI
(b)
B
3EI
C
EI
EI
A
D
Δ l
l
解:(1)求 M1, M 2 , M 3, M p 图。
(2)由图可知:
r11
16i, r12
r21
6i, r23
r32
6i l
, r22
16i, r33
24i l
R1 p
0, R2 p
结构力学答案-同济大学朱慈勉
朱慈勉 结构力学 第2章课后答案全解2-2 试求出图示体系的计算自由度,并分析体系的几何构造。
(a )(ⅠⅡ)(ⅠⅢ)舜变体系ⅠⅡⅢ(b)W=5×3 - 4×2 – 6=1>0几何可变(c)有一个多余约束的几何不变体系(d)W=3×3 - 2×2 – 4=1>0可变体系2-3 试分析图示体系的几何构造。
(a)(ⅡⅢ) (b)Ⅲ几何不变2-4 试分析图示体系的几何构造。
(a)几何不变(b)W=4×3 -3×2 -5=1>0几何可变体系(ⅠⅢ)(ⅡⅢ)几何不变(d)Ⅲ(ⅠⅢ)有一个多余约束的几何不变体(e)(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)舜变体系(f)无多余约束内部几何不变(g)(h)二元体W=3×8 - 9×2 – 7= -1, 有1个多余约束2-5 试从两种不同的角度分析图示体系的几何构造。
(a)(ⅠⅢ)ⅠⅡⅢ(ⅠⅡ)(ⅡⅢ)舜变体系(b)Ⅲ(ⅡⅢ)(ⅠⅢ)同济大学朱慈勉 结构力学 第3章习题答案3-2 试作图示多跨静定梁的弯矩图和剪力图。
(a)aa aaa2P F a 2P F a4P F Q34P F 2P F(b)2020Q10/326/310(c)2m6m2m4m2m3m2m2m3m3m4m18060(d)7.5514482.524MQ3-3 试作图示刚架的内力图。
(a)3m2m2m2mA2m 2m2m2m4kN ·m6m1k N /m2kN CB242018616MQ18(b)30303011010QM 210(c)6m10kN3m3m 40kN ·mABC D 3m3m6m45MQ(d)444444/32MQN(e)6m2m 2m4m4m4481``(f)222220M3-4 试找出下列各弯矩图形的错误之处,并加以改正。
(a)2m3m4mF P (b)(c)(d)(e)(f)F3-5 试按图示梁的BC 跨跨中截面的弯矩与截面B 和C 的弯矩绝对值都相等的条件,确定E 、F 两铰的位置。
朱慈勉_结构力学_第4章课后习题(全)
同济大学朱慈勉 结构力学 第4章习题答案(1)4-5 试用静力法作图示结构中指定量值的影响线。
(a)01571(5),77,(02)()2,(25)ARB RB QDB DC Md F d d x xx F F dd x x d M CD d d x d =⨯+⨯=⨯-∴=-=≤≤⎧=⎨≤≤⎩∑知以右侧受拉为正ACC DA2d5/7QDBF DCM(b)A 0F 1()F xa ≤≤=→=-↑∑以为坐标原点,向右为x 轴正方向。
弯矩M 以右侧受拉为正当0x a 时,M 分析以右部分,GCD 为附属部分,可不考虑x/aG E NE M F xxa==-G 31a x a ≤≤=-当时,去掉AF,GCD 附属部分结构,分析中间部分M=(2a-x),F4-x/aG RD NE 4033,F 4a x a x a x xa a a≤≤=-==-=-+∑G E 当3时,由M 知M =x-4a,F1E M 的影响线NE F 的影响线(c)2mN3N3N3N2()08()0F [(10)(1)10]/220420()(1)10200F 524F 01F 20x C x xxx x D xx CD C D x↑≤≤=→=---⨯=-≤≤-⨯=→=-=-≤≤=→-+∑∑∑RA I I y 上承荷载时:x以A 点为坐标原点,向右为x 轴正方向。
F =1-20当点以左时,取1-1截面左侧考虑由M 当12点以右时,由M 在之间的影响线用点及的值。
直线相连。
当0x 8时,取1-1截面左侧分析由F N2N13N22sin 451F 2200F F F cos 4545x x==-=→=-+=-∑x 知由F A B CDEFN3F N2F N1F(d)M01(8)F 8F 18F F 1F 803110F F 0F 8110F F F 04220F 4F20F x d x d dx dx d x d x d d d =→⨯-=⨯→=-+=→=≤≤-=→+=→=≤≤-=→=→=≤≤-=→⨯+⨯=→=-∑∑∑∑上承荷载时当时,取截面右侧分析。
结构力学朱慈勉版课后答案【重要】
朱慈勉 结构力学 第2章课后答案全解(b)解:基本结构为:1M2Mp M M()EIEI 1086623323326611=⨯⨯+⨯⨯+⨯⨯=δ EI=常数6m6m6mEDACB20kN/m X1 X120kN/mX2 X2363361 11 118090 15030150()03323326612=⨯⨯-⨯⨯=EI δ ()EIEI 1086623323326622=⨯⨯+⨯⨯+⨯⨯=δEI EI p 27003231806212362081632323180621121=⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯+⨯⎪⎭⎫ ⎝⎛⨯⨯⨯⨯+⨯⨯⨯⨯=∆EI EI p 5403231806212362081632323180621122=⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯-⨯⎪⎭⎫ ⎝⎛⨯⨯⨯⨯+⨯⨯⨯⨯=∆ ⎩⎨⎧-=-=⇒⎪⎪⎩⎪⎪⎨⎧=+=+5250540108027001082111X X EI X EIEIX EI m KN M CA ⋅=⨯-⨯-=9035253180 m KN M CB ⋅=⨯+⨯-=12035253180 ()m KN M CD ⋅-=-⨯=3056(c)解:基本结构为: ⊕6m 3m5III 10kN ·m10kN ·mEA =∞C ABD 5I12m10kN ·m10kN ·mX110kN ·m 119 339 10kN ·m10kN ·m 10 101N 1M p M()EI I E EI 5558293299233256633263111=⨯⎥⎦⎤⎢⎣⎡⨯⨯+⨯⨯+⨯⨯⨯+⎪⎭⎫ ⎝⎛⨯⨯⨯=δ ()EI I E p 1442103109109231025661-=⨯⎥⎦⎤⎢⎣⎡⨯+⨯+⨯⨯+⨯⨯⨯-=∆ 01111=∆+p X δ29.11=⇒Xm KN M AC ⋅=-⨯=61.11029.19m KN M DA ⋅-=-⨯=13.61029.13 m KN M DC ⋅=⨯=87.329.13M题6-6图6-7 试用力法计算图示组合结构,求出链杆轴力并绘出M 图。
同济大学朱慈勉 结构力学 第4章习题答案(1).
同济大学朱慈勉结构力学第 4章习题答案(14-5 试用静力法作图示结构中指定量值的影响线。
(alF P =1M A 、 F Q A 、 M C 、F Q C, 10, 0(( , 1(A QA P C QC P C QC M x F F C M F x a F C M x a a x F x a =-== =≤=--=-=≥坐标原点设在 A处,由静力平衡可知当在点以左时, 当在点以右时, M A 的影响线F Q A 的影响线M C 的影响线的影响线(b1R B 、 M C 、 F Q C/(/,(0(,( ,( ,( cos ,(0 (1,( C QC A x l x l a l x a l a x a M aa x a a x l x a l xx a l F x a x l l αα=-≤≤⎧⨯-≤⎧⎪==⎨⎨⨯>-≥≥⎩⎪⎩⎧-≤≤⎪⎪=⎨⎪-≤≤⎪⎩RB RB RB RA 以为坐标原点,方向如图所示假设 F 向上为正,由静力分析知 F F F F R B 的影响线 M C 的影响线F 2a cos lα(1alα-F Q C 的影响线(cF N CD 、 M E 、 M C 、 F Q C R 3355 041(7 05121232(5,(05532,(5753,(030,(373311,(03 ,(03544371,(37 ,(37 544B NCD NCD NCDENCDCNCDRQCNCDM F x F xF x xMF xx xMxF x x xFF x x x=⨯⨯-⨯-=→=- ⎧⨯⨯--≤≤⎪⎪=⎨⎪⨯⨯≤≤⎪⎩-≤≤⎧=⎨≤≤⎩⎧⎧-≤≤-≤≤⎪⎪⎪⎪==⎨⎨⎪⎪≤≤-≤≤⎪⎪⎩⎩∑由知,3NCDF 的影响线 EM 的影响线CM 的影响线341RQCF 的影响线(d5mM C 、 F Q C 111 , ,848 RB C QC Dx x x F M F---===以点为坐标原点,向右为正1494189 8CM 的影响线 QCF 的影响线(e1,(0 0,(0, 0,(7 1,(70,(05 ,(05 , 1,(57 4,(57LR QAQA QC C x a x a F F a x a a x a x a x a x a F M a x a a a x a -≤≤≤≤⎧⎧==⎨⎨≤≤≤≤⎩⎩≤≤-≤≤⎧⎧==⎨⎨≤≤≤≤⎩⎩2a 4a F Q A 、 F Q A 、 F Q C 、 M CL R(fF R A 、 F Q B 、 M E 、 F Q F1,(02 ,(02 , 220,(25 0,(25,(02 ,(0 423,(2, ,(242220,(25 5,(45 22RA QB E QF x xx a x a F F a aa x a a x a x xx a x a a x xM a a x a F ax a aa x a x a x a a ⎧⎧-≤≤-≤≤⎪⎪==⎨⎨⎪⎪≤≤≤≤⎩⎩⎧⎧≤≤≤≤⎪⎪⎪⎪⎪⎪=-≤≤=-≤≤⎨⎨⎪⎪≤≤⎪⎪-≤≤⎪⎪⎩⎩11RA F 的影响线QB F 的影响线a/21/21/21/2E M 的影响线QF F 的影响线4-6 试用机动法作图示结构中指定量值的影响线。
同济大学朱慈勉结构力学课后习题答案
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
结构力学-第7章-位移法习题答案
EA=∞ E
EA=∞ F
EI
2EI EI
A
B
C
6m
6m
解:(1)确定基本未知量 一个线位移未知量,各种 M 图如下
7- 34
(2)位移法典型方程
r11Z1 R1p 0
(3)确定系数并解方程
r11
4 243
EI , R1p
Fp
4 243
EIZ1
Fp
0
Z1
243 4EI
(4)画 M 图
(d)
E
F
EA
EA
A
B
FP aa
C EI1=∞
2a
D
FP a
解:(1)确定基本未知量 一个线位移未知量,各种 M 图如下
2a
7- 35
(2)位移法典型方程
r11Z1 R1p 0
(3)确定系数并解方程
r11
2 5
EA / a, R1p
6 5
Fp
2 5
EA a
Z1
6 5
Fp
0
Z1
3a EA
(4)求最终弯矩图
7- 41
(d)
l
E q
GB
D
ql F
EI=常数
A
C
l 2
l
l
l
解:(1)确定基本未知量 两个位移未知量,各种 M 图如下
7- 42
(2)位移法典型方程
r11Z1 r12Z2 R1 p 0 r21Z1 r22Z2 R2 p 0
(3)确定系数并解方程
r11
同济大学-朱慈勉版-结构力学-课后答案(上)
2-2 试求出图示体系的计算自由度,并分析体系的几何构造。
(a)(ⅠⅡ)(ⅠⅢ)舜变体系ⅠⅡⅢ(b)【W=5×3 - 4×2 – 6=1>0几何可变(c)】有一个多余约束的几何不变体系(d)|2-3 试分析图示体系的几何构造。
(a)/W=3×3 - 2×2 – 4=1>0可变体系(ⅡⅢ) (b);Ⅲ几何不变2-4 试分析图示体系的几何构造。
(a)几何不变-(b)~(ⅠⅢ)(ⅡⅢ)几何不变~W=4×3 -3×2 -5=1>0几何可变体系(d)Ⅲ(ⅠⅢ)有一个多余约束的几何不变体@(e)(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)舜变体系…(f)?(ⅠⅢ)(ⅡⅢ)无多余约束内部几何不变(g):(h)|二元体W=3×8 - 9×2 – 7= -1, 有1个多余约束2-5 试从两种不同的角度分析图示体系的几何构造。
(a)%(ⅠⅢ)ⅠⅡⅢ(ⅠⅡ)(ⅡⅢ)舜变体系(b)!Ⅲ(ⅡⅢ)(ⅠⅢ)`3-2 试作图示多跨静定梁的弯矩图和剪力图。
(a)%aa *a a2P F a 2P F a4P F Q34P F 2P F(b)"2020Q10/326/310(c){2m6m`4m2m3m2m2m3m3m4m18060(d)]7.5514482.524MQ3-3 试作图示刚架的内力图。
(a)3m2m2m2m2m2m 2m2m4kNm%6m1k N /m2kNCB{242018616MQ18(b),30303011010QM 2106m10kN>3m3m40kNmAB CD:45MQ(d)…444444/32MQN3m3m6m)2m2m(e))4481``(f)#222220M…4m2m3m4m/3-4试找出下列各弯矩图形的错误之处,并加以改正。
(a)F P(b)(c)—(d)(e)(f)F3-5 试按图示梁的BC 跨跨中截面的弯矩与截面B 和C 的弯矩绝对值都相等的条件,确定E 、F 两铰的位置。
结构力学答案-同济大学朱慈勉
朱慈勉 结构力学 第2章课后答案全解2-2 试求出图示体系的计算自由度,并分析体系的几何构造。
(a )(ⅠⅡ)(ⅠⅢ)舜变体系ⅠⅡⅢ(b)W=5×3 - 4×2 – 6=1>0几何可变(c)有一个多余约束的几何不变体系(d)W=3×3 - 2×2 – 4=1>0可变体系2-3 试分析图示体系的几何构造。
(a)(ⅡⅢ) (b)Ⅲ几何不变2-4 试分析图示体系的几何构造。
(a)几何不变(b)W=4×3 -3×2 -5=1>0几何可变体系(ⅠⅢ)(ⅡⅢ)几何不变(d)Ⅲ(ⅠⅢ)有一个多余约束的几何不变体(e)(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)舜变体系(f)无多余约束内部几何不变(g)(h)二元体W=3×8 - 9×2 – 7= -1, 有1个多余约束2-5 试从两种不同的角度分析图示体系的几何构造。
(a)(ⅠⅢ)ⅠⅡⅢ(ⅠⅡ)(ⅡⅢ)舜变体系(b)Ⅲ(ⅡⅢ)(ⅠⅢ)同济大学朱慈勉 结构力学 第3章习题答案3-2 试作图示多跨静定梁的弯矩图和剪力图。
(a)aa aaa2P F a 2P F a4P F Q34P F 2P F(b)2020Q10/326/310(c)2m6m2m4m2m3m2m2m3m3m4m18060(d)7.5514482.524MQ3-3 试作图示刚架的内力图。
(a)3m2m2m2mA2m 2m2m2m4kN ·m6m1k N /m2kN CB242018616MQ18(b)30303011010QM 210(c)6m10kN3m3m 40kN ·mABC D 3m3m6m45MQ(d)444444/32MQN(e)6m2m 2m4m4m4481``(f)222220M3-4 试找出下列各弯矩图形的错误之处,并加以改正。
(a)2m3m4mF P (b)(c)(d)(e)(f)F3-5 试按图示梁的BC 跨跨中截面的弯矩与截面B 和C 的弯矩绝对值都相等的条件,确定E 、F 两铰的位置。
同济大学朱慈勉版结构力学课后答案(上)
2-2 试求出图示体系的计算自由度,并分析体系的几何构造。
(a )(ⅠⅡ)(ⅠⅢ)舜变体系ⅠⅡⅢ(b)W=5×3 - 4×2 – 6=1>0几何可变(c)有一个多余约束的几何不变体系(d)W=3×3 - 2×2 – 4=1>0可变体系2-3 试分析图示体系的几何构造。
(a)(ⅡⅢ)Ⅲ几何不变2-4 试分析图示体系的几何构造。
(a)几何不变(b)W=4×3 -3×2 -5=1>0几何可变体系(ⅠⅢ)(ⅡⅢ)几何不变(d)Ⅲ(ⅠⅢ)有一个多余约束的几何不变体(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)舜变体系(f)(ⅠⅢ)(ⅡⅢ)无多余约束内部几何不变(h)二元体W=3×8 - 9×2 – 7= -1, 有1个多余约束2-5 试从两种不同的角度分析图示体系的几何构造。
(a)(ⅠⅢ)ⅠⅡⅢ(ⅠⅡ)(ⅡⅢ)舜变体系(b)Ⅲ(ⅡⅢ)(ⅠⅢ)3-2 试作图示多跨静定梁的弯矩图和剪力图。
(a)2P F a 2P F a4P F Q34P F 2P F(b)2020Q10/326/310aa aaa2m6m2m4m2m(c)18060(d)7.5514482.524M Q 3m2m2m3m 3m 4m3m2m 2m 2mA2m 2m 2m 2m3-3 试作图示刚架的内力图。
(a)242018616MQ18(b)30303011010QM 2104kN ·m3m3m6m1k N /m2kN A CBD6m10kN3m3m 40kN ·mABC D.(c)45MQ(d)444444/32MQN(e)3m3m6m6m2m 2m4481``(f)222220M3-4 试找出下列各弯矩图形的错误之处,并加以改正。
2m3m4mF P (b)(c)(d)(e)(f)F3-5 试按图示梁的BC 跨跨中截面的弯矩与截面B 和C 的弯矩绝对值都相等的条件,确定E 、F 两铰的位置。
结构力学朱慈勉习题答案
结构力学朱慈勉习题答案结构力学朱慈勉习题答案结构力学是工程学中非常重要的一门学科,它研究物体在外力作用下的变形和破坏行为。
学习结构力学,需要通过大量的习题来加深对理论的理解和应用能力的培养。
本文将为大家提供一些结构力学朱慈勉习题的答案,希望能够对大家的学习有所帮助。
1. 问题描述:一根长为L,截面积为A的均匀杆件,两端分别固定在两个支座上。
当杆件受到均匀分布的荷载q时,求支座反力。
解答:根据结构力学的基本原理,杆件在平衡状态下,支座反力的合力等于荷载的合力。
因此,我们可以通过计算荷载的合力来求得支座反力。
荷载的合力可以通过荷载的大小乘以荷载的作用长度得到。
在这个问题中,荷载的大小为q,作用长度为L。
所以荷载的合力为F = qL。
由于杆件在平衡状态下,支座反力的合力等于荷载的合力,所以支座反力的大小为F = qL。
2. 问题描述:一根长为L,截面积为A的均匀杆件,两端分别固定在两个支座上。
当杆件受到一点荷载P时,求支座反力。
解答:与上一个问题类似,我们可以通过计算荷载的合力来求得支座反力。
由于荷载是作用在一点上的,所以荷载的合力等于荷载的大小P。
因此,支座反力的大小为F = P。
3. 问题描述:一根长为L,截面积为A的均匀杆件,两端分别固定在两个支座上。
当杆件受到均匀分布的荷载q时,求杆件的弯矩分布。
解答:在这个问题中,我们需要求解杆件的弯矩分布。
弯矩是指杆件在外力作用下产生的曲率效应。
根据结构力学的基本原理,杆件的弯矩可以通过荷载和杆件的几何形状来计算。
在这个问题中,杆件受到均匀分布的荷载q,所以杆件上的任意一点的荷载大小为q。
杆件的截面积为A,所以杆件上的任意一点的弯矩大小为M = qL/2。
由此可见,在这个问题中,杆件的弯矩分布是线性的,即弯矩随着位置的增加而线性增加。
4. 问题描述:一根长为L,截面积为A的均匀杆件,两端分别固定在两个支座上。
当杆件受到均匀分布的荷载q时,求杆件的挠度分布。
同济大学朱慈勉版结构力学课后(上)
2-2 试求出图示体系的计算自由度,并分析体系的几何构造。
(a )(ⅠⅡ)(ⅠⅢ)舜变体系ⅠⅡⅢ(b)W=5×3 - 4×2 – 6=1>0几何可变(c)有一个多余约束的几何不变体系(d)W=3×3 - 2×2 – 4=1>0可变体系2-3 试分析图示体系的几何构造。
(a)(ⅡⅢ)Ⅲ几何不变2-4 试分析图示体系的几何构造。
(a)几何不变(b)W=4×3 -3×2 -5=1>0几何可变体系(ⅠⅢ)(ⅡⅢ)几何不变(d)Ⅲ(ⅠⅢ)有一个多余约束的几何不变体(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)舜变体系(f)(ⅠⅢ)(ⅡⅢ)无多余约束内部几何不变(h)二元体W=3×8 - 9×2 – 7= -1, 有1个多余约束2-5 试从两种不同的角度分析图示体系的几何构造。
(a)(ⅠⅢ)ⅠⅡⅢ(ⅠⅡ)(ⅡⅢ)舜变体系(b)Ⅲ(ⅡⅢ)(ⅠⅢ)3-2 试作图示多跨静定梁的弯矩图和剪力图。
(a)2P F a 2P F a4P F Q34P F 2P F(b)2020Q10/326/310aa aaa2m6m2m4m2m(c)18060(d)7.5514482.524M Q 3m2m2m3m 3m 4m3m2m 2m 2mA2m 2m 2m 2m3-3 试作图示刚架的内力图。
(a)242018616MQ18(b)30303011010QM 2104kN ·m3m3m6m1k N /m2kN A CBD6m10kN3m3m 40kN ·mABC D(c)45MQ(d)444444/32MQN(e)3m3m6m6m2m 2m4m4m4481``(f)222220M3-4 试找出下列各弯矩图形的错误之处,并加以改正。
2m3m4mF P (b)(c)(d)(e)(f)F3-5 试按图示梁的BC 跨跨中截面的弯矩与截面B 和C 的弯矩绝对值都相等的条件,确定E 、F 两铰的位置。
结构力学朱慈勉版课后答案【重要】
朱慈勉 结构力学 第2章课后答案全解2-2 试求出图示体系的计算自由度,并分析体系的几何构造。
(a )(ⅠⅡ)(ⅠⅢ)舜变体系ⅠⅡⅢ(b)W=5×3 - 4×2 – 6=1>0几何可变(c)有一个多余约束的几何不变体系(d)W=3×3 - 2×2 – 4=1>0可变体系2-3 试分析图示体系的几何构造。
(a)(ⅡⅢ)Ⅲ几何不变2-4 试分析图示体系的几何构造。
(a)几何不变(b)W=4×3 -3×2 -5=1>0几何可变体系(ⅠⅢ)(ⅡⅢ)几何不变(d)Ⅲ(ⅠⅢ)有一个多余约束的几何不变体(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)舜变体系(f)(ⅠⅢ)(ⅡⅢ)无多余约束内部几何不变(h)二元体W=3×8 - 9×2 – 7= -1, 有1个多余约束2-5 试从两种不同的角度分析图示体系的几何构造。
(a)(ⅠⅢ)ⅠⅡⅢ(ⅠⅡ)(ⅡⅢ)舜变体系(b)Ⅲ(ⅡⅢ)(ⅠⅢ)同济大学朱慈勉 结构力学 第3章习题答案3-2 试作图示多跨静定梁的弯矩图和剪力图。
(a)2P F a 2P F a4P F Q34P F 2P F(b)aaaa a2m6m2m4m2m2020Q10/326/310(c)18060(d)3m2m2m3m3m4m3m2m2m2mA2m 2m2m2m7.5514482.524MQ3-3 试作图示刚架的内力图。
(a)242018616MQ18(b)4kN ·m 3m3m6m1k N /m2kN A CBD6m10kN3m3m 40kN ·mABC D30303011010QM 210(c)45MQ(d)3m3m 6m6m2m 2m444444/32MQN(e)4481``(f)4m4m2m3m4m222220M3-4 试找出下列各弯矩图形的错误之处,并加以改正。
(a)F P(b)(c)(d)(e)(f)F3-5 试按图示梁的BC 跨跨中截面的弯矩与截面B 和C 的弯矩绝对值都相等的条件,确定E 、F 两铰的位置。
《结构力学》 朱慈勉
混凝土结构理论作业(受弯部分)混凝土结构设计原理(第四版)第一部分简答题P69 思考题——3.2 3.4 3.6 第二部分计算题P70 习题——3.1,3.2,3.4 在3.1 题目的基础上,增加如下4 问,题目间互相独立(1)其他条件不变,若a). 将f c 提高10%,重新计算所需的A s1 ; b). 将f y 提高10%,重新计算所需的A s2 ; c). 将b 提高10%,重新计算所需的A s3 ; d). 将h 提高10%,重新计算所需的A s4 ; 对比A s1 、A s2 、A s3 、A s4 与A s (原计算面积)的关系,说明哪个因素影响最大,为什么?(2)其他条件不变,若在此梁的拉区配置3φ18,请问此梁的极限受弯承载力M 为多少?(3)若已知压区配置了2φ16 的钢筋,重新计算所需要的钢筋面积A s5 ,并与A s (原计算面积)进行对比。
(4)若此题截面变成如下图情况,重新计算所需要的钢筋面积A s6 ,并与原计算面积A s 进行对比。
550 1 0 0 5 0 0 第三部分证明题或公式推导题(后两题选作,建议学有余力的同学完成,可增加对课本知识的理解)(1)推导ξ b 与ρ b 或称ρ max 之间的关系(即推导书本中P49 的公式3-19),并计算C25 及C30 混凝土情况下HPB235、HRB335、HRB400 钢筋的ρ max 数值。
(2)推导超筋梁的钢筋应力σ s 与相对受压区高度ξ 之间的关系。
(假设平截面假定仍然成立,用几何关系和物理关系,利用σ s =E s ε s 及ε s 与ε cu ,x,h 0 之间的关系进行推导)(3)A、B 二梁其他参数完全相同,唯有配筋量不同,其中A 梁为超筋梁,B 梁为适筋梁。
证明:A 梁的极限抗弯承载力M uA 大于B 梁的极限抗弯承载力M uB 。
结构力学章答案
朱慈勉 结构力学 第2章课后答案全解2-2 试求出图示体系的计算自由度,并分析体系的几何构造。
(a )ⅠⅡⅢ(ⅠⅡ)(ⅠⅢ)(Ⅱ Ⅲ)舜变体系`ⅠⅡⅢ(b) (c) (d)2-3 试分析图示体系的几何构造。
(a) (b)2-4 试分析图示体系的几何构造。
(a) (b) (c) (d) (e) (f) (g) (h)2-5 试从两种不同的角度分析图示体系的几何构造。
(a) (b)同济大学朱慈勉 结构力学 第3章习题答案3-2 试作图示多跨静定梁的弯矩图和剪力图。
(a) (b) (c) (d) 3-3 试作图示刚架的内力图。
(a) (b) AB C a aa a a F P aD E F F P2m 6m 2m 4m 2m A B C D 10kN 2kN/m 3m 2m 2m A B C E F 15kN 3m 3m 4m 20kN/mD 3m 2m 2m 2m2m 2m 2m AB C D E F G H 6kN·m 4kN ·m 4kN 2m4kN ·m2kNC B(c)(d)(e) (f) 3-4 试找出下列各弯矩图形的错误之处,并加以改正。
(a) (b) (c) (d)(e) (f)3-5 试按图示梁的BC 跨跨中截面的弯矩与截面B 和C 的弯矩绝对值都相等的条件,确定E 、F 两铰的位置。
3-6 试作图示刚架的弯矩和剪力图。
(a) (b)5.75111MQ4.25424213.5 1.50.2525.75A 72425 2.50.5()C 420.524 4.25()3.5(),0.25()5.752.1,24 4.253.752.5E K B B B B A A EF K M M R R H H V H Q Q =⨯-⨯⨯==⨯+⨯=⨯+⨯⨯=⨯→=-↓⨯⨯+⨯=⨯→=→∴=↑=←===⨯-=左对点求矩:对点求矩:2 2.93.754.252.1(c)6m 10kN3m3m40kN ·m A B CD 3m 3m 2kN/m6kN 6m 4kN A B C D 2kN 6m2m2m 2kN 4kN ·m A C B DE 4m4mA B C4m 1k N /mD4m4kNA B C2m 3m 4m2kN/m lBC EFx DAq llx8016016016010060401680/38030MQ8080380,61603330():(2023304)/2120():61201030420211320()380()3DA ED C C B B A M M H F V A V V V =⨯==⨯==←=⨯⨯+⨯=↑⨯+⨯=⨯+⨯⨯∴=-↓∴=↑对点求矩对点求矩(d)8/316/38/34/343543520354/3MQ88414233:41614284()4:441426()38(),03DA B B B B A A M A V V C H H H V =⨯-⨯⨯=⨯⨯+⨯⨯=⨯→=↑⨯-⨯⨯=⨯→=←∴=←=对点求矩对点求矩(e)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2-2 试求出图示体系的计算自由度,并分析体系的几何构造。
(a )(ⅠⅡ)(ⅠⅢ)舜变体系ⅠⅡⅢ(b)W=5×3 - 4×2 – 6=1>0几何可变(c)有一个多余约束的几何不变体系(d)W=3×3 - 2×2 – 4=1>0可变体系2-3 试分析图示体系的几何构造。
(a)(ⅡⅢ)Ⅲ几何不变2-4 试分析图示体系的几何构造。
(a)几何不变(b)W=4×3 -3×2 -5=1>0几何可变体系(ⅠⅢ)(ⅡⅢ)几何不变(d)Ⅲ(ⅠⅢ)有一个多余约束的几何不变体(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)舜变体系(f)(ⅠⅢ)(ⅡⅢ)无多余约束内部几何不变(h)二元体W=3×8 - 9×2 – 7= -1, 有1个多余约束2-5 试从两种不同的角度分析图示体系的几何构造。
(a)(ⅠⅢ)ⅠⅡⅢ(ⅠⅡ)(ⅡⅢ)舜变体系(b)Ⅲ(ⅡⅢ)(ⅠⅢ)3-2 试作图示多跨静定梁的弯矩图和剪力图。
(a)2P F a 2P F a4P F Q34P F 2P F(b)2020Q10/326/310aa aaa2m6m2m4m2m(c)18060(d)7.5514482.524M Q 3m2m2m3m 3m 4m3m2m 2m 2mA2m 2m 2m 2m3-3 试作图示刚架的内力图。
(a)242018616MQ18(b)30303011010QM 2104kN ·m3m3m6m1k N /m2kN A CBD6m10kN3m3m 40kN ·mABC D.(c)45MQ(d)444444/32MQN(e)3m3m6m6m2m 2m4481``(f)222220M3-4 试找出下列各弯矩图形的错误之处,并加以改正。
2m3m4mF P (b)(c)(d)(e)(f)F3-5 试按图示梁的BC 跨跨中截面的弯矩与截面B 和C 的弯矩绝对值都相等的条件,确定E 、F 两铰的位置。
28ql M2221()222116121618c B C BC C q ql M l x x qx xM M M M ql ql x ql x l=-+===∴=∴=∴=中F D()2ql x -lxl lx3-6 试作图示刚架的弯矩和剪力图。
(a)9090405M2B 209(4.53)645()0.5209459405,135()453135,0.5209900.520990F F E E CF CD BA R R M R M M M ⨯⨯-=⨯∴=↑=⨯⨯-⨯==↑=⨯==⨯⨯==⨯⨯=对点求矩(b)14.25424213.5 1.50.2525.75A 72425 2.50.5()C 420.524 4.25()3.5(),0.25()5.752.1,24 4.253.752.5E K B B B B A A EF K M M R R H H V H Q Q =⨯-⨯⨯==⨯+⨯=⨯+⨯⨯=⨯→=-↓⨯⨯+⨯=⨯→=→∴=↑=←===⨯-=左对点求矩:对点求矩:2 2.180/3Q8080380,61603330():(2023304)/2120():61201030420211320()380()3DA ED C C B B A M M H F V A V V V =⨯==⨯==←=⨯⨯+⨯=↑⨯+⨯=⨯+⨯⨯∴=-↓∴=↑对点求矩对点求矩(d)8/34/388414233:41614284()4:441426()38(),03DA B B B B A A M A V V C H H H V =⨯-⨯⨯=⨯⨯+⨯⨯=⨯→=↑⨯-⨯⨯=⨯→=←∴=←=对点求矩对点求矩2FaF2Fa2Fa F F F2F----+2Fa2Fa2FaMQ02(),020322222(),2()4(),0C B p E B F BP H P F H P F P D P D M V F M H V MF a a H F a V aH F V F H F V =→=↑=→==→⨯+⨯=⨯+⨯∴=←=↓∴=→=∑∑∑(f)进一步简化BH IH 8:4(),4()4(),4(),42810B B I I A H KN V KN H KN V KN M N m=→=↓=-←=-↑=⨯=•可知842aqa22221.5()21.50 1.5(), 1.5C CA AGF GHHqaqa H a H qaqa a H a H qaqa M qa+=⨯→=→⨯+⨯=→=-←==对点求矩:对F点求矩:3-11试指出图示桁架中的零杆。
、3-12试求图示桁架各指定杆件的内力。
(b)3×3m3m4382307.5ACACBFF KN⨯+⨯+⨯=→=-对点求矩332.5303056BCy BC ACF KNF F F FF KN→=-=→+⨯++=→=21,,7.5(),3,4()BDA B DF KN F KN F KN=--==--然后再依次隔离点不难求得(a)2aa42112123430240,23,33xA BC NB N Nx N NNNNM F PMF PM F a F aF F a aaF FDF P=→==→=-⎧=⨯=⨯⎪⎪⎨⎪=+=⎪⎩==∑∑∑∑取虚线所示的两个隔离体有:联立方程解得:杆的内力可以通过节点求得(c)112,42N PPPN N PA BFFF F=在点用节点法可求得又易求得杆再利用节点法可得,3-13 试选用两种途径求图示桁架各指定杆件的内力。
(a)方法方法一:利用对称性和反对称性原结构可等价为(已经去除零力杆)P F P F P F PF 对A点进行分析AF P F 可求得对B 点进行分析BD P F =可求得对D点进行分析14DE PF F =可求得对E点进行分析,PP 12综上,F FE F GEF G 1N F NF 112,,21,8P N N x N PP P N PF F F F F F F F ==→==-=→=∑BG GD 由点平衡知又再分别分析B 节点和G 节点,不难求得F F(b) 方法一:ⅠⅡF1F2F4P取1-1234123212141425678:,33405555524245343455,665,822550.5,,,0.588,0.P P P N P PN PP P P PF F F F F F F F F F F F B F a a F aF F F F CF F F F F F F F F F E =-=---+=∴=-==-⨯+⨯=⨯∴=-==--=-=-===-N3由平衡条件知又,即再对点取矩,再分析节点不难得到用同样的方法分析截面右半部分可求得最后用节点法分析节点得F 5P F 取2-2截面右半部分讨论0.75F F5F6F8PP方法二:可将结构的荷载分解为正对称和反对称再加以考虑。
3-14 试选定求解图示桁架各指定杆件内力的合适步骤。
一. 按的顺序,依次使用节点法可求得3N P F =二. 再求出然后可求出1N P F =三. B M 0,0.75C PF F ==∑由可求得四. 分析截面右半部分X2D122M 0,4PP P N x F x F F F ==-→==∑由可求得由节点法,对C 分析可求得3-15 试求图示桁架各指定杆件的内力。
(a)F P 2 F P 2AC AB 由对称性AC AB AC AB P F F F F =→==11120,02,11,42P x AB PCE P CD P PB F F F F F F FCD F F F F ==→=====∑再分析节点由由对称性有再由节点法分析两节点容易求出(b)C13F5310,03y P PF F F F=+=→=∑取截面左侧分析由65F24242442,0.510,02,0,203,2,x P P PC PP PF F F F F F FM F d F d F dF F F F=-=+-=→=-+=⨯+⨯+⨯=∴==-=∑∑1P1PDE P3P1再由节点法分析A,B节点马上可以求得F=F F F3取截面右侧由再由节点法分析D,E节点马上可以求得F=2F F3-15试求图示桁架各指定杆件的内力。
(c)F21112321,,336A P PP CD P PF F F F F=-=BC再用节点法依次对B,C,D节点进行分析,容易求出F=-3-16 试作图示组合结构刚架杆件的弯矩图,并求链杆的轴力。
(a)qDE取1-1截面左边210,2222C DE DE M qa F a qa a F qa=+⨯=⨯→=∑由再分析节点EDEF F F D不难求得21,2,2DA DF FA F F qa M qa ==-=所以弯矩图为212qa 212qa(b)1,02DE AB BC BF N N qa N N ====2121()2PP F F +121()2P P F F +P1QFAF QFBF 21,2QFA QFB P F F F ==由对称性分析AF 区段122P 20A HG P GIM F F ===∑由求得2121221,2,22(2)12EG P QEC QEDP P C QEC P P D HQFA P I F F F F F F M F a F F a M M F a F a M ===+∴=⨯=+==⨯==由节点法易得22P F a F a+12P F a +M 图考虑DB杆30,204FG FG qaa F a F ⨯+=→=,2GC GD G F F qa =-GE 节点,易得F3350,2444x GD GC F F qa F qa qa qa=→=∴=-=-∑由234qa4-5 试用静力法作图示结构中指定量值的影响线。
(a)lF P =1aACBM A 、F Q A 、M C 、F Q C,10,0()(),1()A QA P C QC P C QC M x F F C M F x a F C M x a a x F x a =-===≤=--=-=≥坐标原点设在A 处,由静力平衡可知当在点以左时,当在点以右时,M A 的影响线F Q A 的影响线M C 的影响线的影响线(b)1R B 、M C 、F Q C/(/),(0)(),(),(),()cos ,(0)(1,()C QC A x l x l a l x a l a x a M aa x a a x l x a l xxa lF x a x l l αα=-≤≤⎧⨯-≤⎧⎪==⎨⎨⨯>-≥≥⎩⎪⎩⎧-≤≤⎪⎪=⎨⎪-≤≤⎪⎩RB RB RB RA 以为坐标原点,方向如图所示假设F 向上为正,由静力分析知F F F F R B 的影响线M C 的影响线F 2cos alα(1)cos alα-F Q C 的影响线3m 2m2mF N CD、M E、M C、F Q C R3355 041(7)05121232(5),(05)532,(57)53,(03)0,(37)3311,(03),(03)544371,(37),(37)544B NCD NCDNCDENCDCNCDRQCNCDM F x F xF x xMF xx xMxF x x xFF x x x=⨯⨯-⨯-=→=-⎧⨯⨯--≤≤⎪⎪=⎨⎪⨯⨯≤≤⎪⎩-≤≤⎧=⎨≤≤⎩⎧⎧-≤≤-≤≤⎪⎪⎪⎪==⎨⎨⎪⎪≤≤-≤≤⎪⎪⎩⎩∑由知,3NCDF的影响线EM的影响线CM的影响线341RQCF的影响线(d)5m5m2m4m 2mM C、F Q C111,,848RB C QCDx x xF M F---===以点为坐标原点,向右为正14941898 CM的影响线QCF的影响线1,(0)0,(0),0,(7)1,(7)0,(05),(05),1,(57)4,(57)LR QAQA QC C x a x a F F a x a a x a x a x a x a F M a x a a a x a -≤≤≤≤⎧⎧==⎨⎨≤≤≤≤⎩⎩≤≤-≤≤⎧⎧==⎨⎨≤≤≤≤⎩⎩a2a 4a F Q A 、F Q A 、F Q C 、M CL R(f)a a aaaF R A 、F Q B 、M E 、F Q F1,(02),(02),220,(25)0,(25),(02),(0)423,(2),,(24)2220,(25)5,(45)22RA QB E QF x xx a x a F F a aa x a a x a x xx a x a a x xM a a x a Fa x a aa x a x a x a a ⎧⎧-≤≤-≤≤⎪⎪==⎨⎨⎪⎪≤≤≤≤⎩⎩⎧⎧≤≤≤≤⎪⎪⎪⎪⎪⎪=-≤≤=-≤≤⎨⎨⎪⎪≤≤⎪⎪-≤≤⎪⎪⎩⎩11RA F 的影响线QB F 的影响线a/21/21/21/2E M 的影响线QF F 的影响线4-6 试用机动法作图示结构中指定量值的影响线。