数列常见题型总结经典
数列常见题型总结经典
高中数学《数列》常见、常考题型总结题型一数列通项公式的求法1.前n 项和法(知n S 求n a )⎩⎨⎧-=-11n n n S S S a )2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 变式:已知数列}{n a 的前n 项和n n S n 122-=,求数列|}{|n a 的前n 项和n T 练习:1234.n S 52.(1(2例1.例2.例3.3.(11-n q .(2例1、在数列}{n a 中111,1-+==n n a n n a a )2(≥n ,求数列的通项公式。
答案:12+=n a n 练习:1、在数列}{n a 中1111,1-+-==n n a n n a a )2(≥n ,求n n S a 与。
答案:)1(2+=n n a n2、求数列)2(1232,111≥+-==-n a n n a a n n 的通项公式。
4.形如sra pa a n n n +=--11型(取倒数法)例1.已知数列{}n a 中,21=a ,)2(1211≥+=--n a a a n n n ,求通项公式n a练习:1、若数列}{n a 中,11=a ,131+=+n n n a a a ,求通项公式n a .答案:231-=n a n2、若数列}{n a 中,11=a ,112--=-n n n n a a a a ,求通项公式n a .答案:121-=n a n5.形如0(,1≠+=+c d ca a n n ,其中a a =1)型(构造新的等比数列)(1)若c=1时,数列{n a }为等差数列;(2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造辅助数列来求. 方法如下:设,利用待定系数法求出A例126.(1)若例题.所以{=∴n b (2)若①若②若令n b 例1.在数列{}n a 中,521-=a ,且)(3211N n a a n n n ∈+-=--.求通项公式n a1、已知数列{}n a 中,211=a ,n n n a a 21(21+=-,求通项公式n a 。
数列知识点总结及题型归纳---含答案
一、等差数列题型一、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示。
用递推公式表示为a n a n 1 d(n 2)或a n 1 a n d(n 1)。
例:等差数列a n 2n 1,a n a n 1__________题型二、等差数列的通项公式:a n & (n 1)d ;说明:等差数列(通常可称为 A P数列)的单调性:d 0为递增数列,d 0为常数列,d 0为递减数列。
例:1.已知等差数列a n中,a7 a9 16,a4 1,则等于( )A. 15 B . 30 C . 31 D . 642. {a n}是首项a1 1,公差d 3的等差数列,如果务2005,则序号n等于(A) 667 ( B) 668 (C) 669 (D) 6703. 等差数列a n 2n 1,b n 2n 1,则a.为______________________________ g为________________ (填“递增数列”或数列“递减数列”)题型三、等差中项的概念:定义:如果a , A, b成等差数列,那么A叫做aa , A, b成等差数列A -_b即:2a n 12例:1•设a n是公差为正数的等差数列,若a1 a2A. 120 B . 105 C.2.设数列{a n}是单调递增的等差数列,前三项的和为A. 1B.2C.4D.8a b与b的等差中项。
其中A2a n a n 2(2a n a n m a n m)a315, qa2a3 80,贝U a11 a12 a13() 90 D . 7512,前三项的积为48,则它的首项是( )题型四、等差数列的性质: (1 ) 在等差数列a n中,在等差数列a n中,在等差数列a n中,在等差数列a n中,每一项是它相邻二项的等差中项;m)d , d n);题型五、等差数列的前n和的求和公式:S n(a1 a n)na1q,则a m a n a p a q ;(S n An2 Bn (A,B为常数) an是等差数列递推公式:S n @1 a n)n2(a m a n (m 1) )n3d2 从第2项起,(2)相隔等距离的项组成的数列是等差数列;(3)(4) 对任意m , n N , a n a m (n 若m , n , p , q例:1.如果等差数列a n中,a3 a4 a5 12,那么a1 a2 a763a n 的前n 项和为S n ,若S 9 72 ,则a 2 a 4比=9.设等差数列 a n 的前n 项和为S n ,若a 6 S 3 12 ,则a n _____________________________10. 已知数列{ b n }是等差数列,b 1=1, b+b 2+…+b °=100.,则b n = ____________________S n11. 设{ a n }为等差数列,$为数列{ a n }的前n 项和,已知 S ?= 7, S 5= 75, T n 为数列{ ——}的前n 项n和,求T n 。
数列求和5种常考题型总结(解析版)--2024高考数学常考题型精华版
数列求和5种常考题型总结【题型目录】题型一:分组求和法题型二:裂项相消法求和题型三:错位相减法求和题型四:先求和,再证不等式题型五:先放缩,再求和【典型例题】【例1】已知数列{}n a 的前n 项和1*44(N )33n n S n +=-∈.(1)求数列{}n a 的通项公式;(2)若2log n n n b a a =+,求数列{}n b 的前n 项和n T .【例2】已知各项均为正数的数列{}n a 中,11a =且满足221122n n n n a a a a ++-=+,数列{}n b 的前n 项和为n S ,满足213n n S b +=.(1)求数列{}n a ,{}n b 的通项公式;(2)若在k b 与1k b +之间依次插入数列{}n a 中的k 项构成新数列{}1122334564:,,,,,,,,,,n c b a b a a b a a a b ,求数列{}n c 中前40项的和40T .【例3】设n S 是各项为正的等比数列{}n a 的前n 项的和,且*2334N S a n ∈=,=,.(1)求数列{}n a 的通项公式;(2)在数列{}n a 的任意k a 与1k a +项之间,都插入()*N k k ∈个相同的数()1kk -,组成数列{}n b ,记数列{}n b 的前n 项的和为n T ,求100T 的值.【题型专练】1.已知数列{}n a 是等差数列,数列{}n b 是等比数列,若111a b ==,22331a b a b -=-=.(1)求数列{}n a 与数列{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和n S .2.已知数列{}n a 的前n 项和为n S ,且11n n n S S a +=++,请在①4713a a +=;②137,,a a a 成等比数列;③1065S =,这三个条件中任选一个补充在上面题干中,并解答下面问题.(1)求数列{}n a 的通项公式;(2)若数列{}n n b a -是公比为2的等比数列,13b =,求数列{}n b 的前n 项和n T .3.(2022·广东广州·一模)已知公差不为0的等差数列{}n a 中,11a =,4a 是2a 和8a 的等比中项.(1)求数列{}n a 的通项公式:(2)保持数列{}n a 中各项先后顺序不变,在k a 与1(1,2,)k a k += 之间插入2k ,使它们和原数列的项构成一个新的数列{}n b ,记{}n b 的前n 项和为n T ,求20T 的值.4.已知等差数列{}n a 满足121,21n n a a a ==+,设2n an b =.(1)求{}n b 的通项公式,并证明数列{}n b 为等比数列;(2)将1b 插入12,a a 中,23,b b 插入23,a a 中,456,,b b b 插入34,a a 中, ,依此规律得到新数列1122334564,,,,,,,,,,a b a b b a b b b a ,求该数列前20项的和.题型二:裂项相消法求和【例1】首项为4的等比数列{}n a 的前n 项和记为n S ,其中546S S S 、、成等差数列.(1)求数列{}n a 的通项公式;100【例2】已知数列{}n a 的首项为正数,其前n 项和n S 满足2343n n n nS a S a =--.(1)求实数λ的值,使得{}2n S λ+是等比数列;(2)设13n n n n b S S +=,求数列{}2n b 的前n 项和.【解析】(1)当1n =时,111823a a a =-,11S a =,解得22118S a ==;当2n ≥时,把1n n n a S S -=-代入题设条件得:22198n n S S -=+,即()221191nn S S -+=+,很显然}{21n S +是首项为8+1=9,公比为9的等比数列,∴1λ=;(2)由(1)知{}21n S +是首项为21190S +=≠,公比9q =的等比数列,所以291nnS =-,()()()()()()1211191919111188919919199111n nnnn n n n n n b ++++---⎛⎫==⨯=- ---⎝---⎭.故数列{}2n b 的前n 项和为:2221122334112111111111111891919191919191918891n n n n b b b ++⎛⎫⎛⎫++⋅⋅⋅+=-+-+-++-=- ⎪ ⎪---------⎝⎭⎝⎭.【例3】数列{}n a 的前n 项和n S ,342n n S a =-.(1)求n a ;(2)令2log 1n n b a =,求数列{}1n n b b +的前n 项和n T .)问的结论以及对数的运算性质,再利用裂项相消法进行求解【例4】(湖北省二十一所重点中学2023届高三上学期第三次联考数学试题)已知等差数列{}n a 的首项10a >,记数列{}n a 的前n 项和为()*N n S n ∈,且数列为等差数列.(1)证明:数列2n S n ⎧⎫⎨⎬⎩⎭为常数列;(2)设数列11n n n a S a a +⎧⎫⎨⎩⎭的前n 项和为()*N n T n ∈,求{}n T 的通项公式.【例5】已知数列{}n a 满足1n a +=11a =.(1)求数列{}n a 的通项公式;(2)1n c a a =+,n S 是数列{}n c 的前n 项和,求n S .【题型专练】1.记n S 为等比数列{}n a 的前n 项和.已知53227S S S -=-,且12,1,a a -成等差数列.(1)求{}n a 的通项公式;2.已知正项数列{}n a 的前n 项和为n S ,且满足22n n n S a a =+.(1)求数列{}n a 的通项公式;(2)设4n b a a =,数列{}n b 的前n 项和为n T ,证明:3n T <.3.已知数列{}n a 是公差不为零的等差数列,2414a a +=,且1a ,2a ,6a 成等比数列.(1)求{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n S .【解析】(1)等差数列{}n a 中,324214a a a =+=,解得37a =,因1a ,2a ,6a 成等比数列,即2216a a a =,设{}n a 的公差为d ,于是得()()()277273d d d -=-+,整理得230d d -=,而0d ≠,解得3d =,所以()3332n a a n d n =+-=-.(2)由(1)知,()()1111()323133231n b n n n n ==--+-+,所以111111[(1)()()]34473231n S n n =-+-+⋅⋅⋅+--+11(1)33131nn n =-=++.4.记n S 为数列{}n a 的前n 项和,已知11a =,且13n n S a +=-.(1)求数列{}n a 的通项公式;(2)已知数列{}n c 满足________,记n T 为数列{}n c 的前n 项和,证明:2n T <.从①211(1)(2)n n n n c a a a +++--=②221log n n n a c a ++=两个条件中任选一个,补充在第(2)问中的横线上并作答.【解析】(1)13n n S a +=- ①,当1n =时,123a a =-,24a ∴=;当2n ≥时,13n n S a -=-②①-②得,即12n n a a +=又2142a a =≠,∴数列{}n a 是从第2项起的等比数列,即当2n ≥时,2222n nn a a -=⋅=.1,1,2, 2.n n n a n =⎧∴=⎨≥⎩.(2)若选择①:()()()()()()2211111122211212212121222121n n n n n n n n n n n n a c a a ++++++++⋅⎛⎫====- ⎪--------⎝⎭,2231111111121212212121212121n n n n T ++⎛⎫⎛⎫∴=-+-++-=-< ⎪ ⎪------⎝⎭⎝⎭.若选择②122n n n c ++=,则23134122222nn n n n T +++=++++ ③,34121341222222n n n n n T ++++=++++ ④,③-④得341212131112311212422224422n n n n n n n T ++-+++⎛⎫⎛⎫=++++-=+-- ⎪ ⎪⎝⎭⎝⎭ ,14222n n n T ++∴=-<.5.已知数列{}n a 前n 项和为n S ,且()21n S n n =+,记221(1)nn n n na b a a +=-+.(1)求数列{}n a 的通项公式;(2)设数列{}n b 的前n 项和为n T ,求2021T .【解析】(1)()112n S n n =+,当1n =时,111212S =⨯⨯=;当2n ≥,n *∈N 时,()1112n S n n -=-,()()1111122n n n a S S n n n n n -=-=+--=.当1n =时也符合,()n a n n N *∴=∈.(2)()()()()()()221212111111111nn n n n n n n n n a n b a a n n n n n n ++++⎛⎫=-=-=-=-+ ⎪++++⎝⎭202111111111 (122)33420212022T ⎛⎫⎛⎫⎛⎫⎛⎫∴=-++-++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111111112023=1 (1223342021202220222022)--++--+--=--=-.题型三:错位相减法求和【例1】已知数列{}n a 满足12a =,且11220n n n n a a a a +++⋅-=,数列{}n b 是各项均为正数的等比数列,n S 为{}n b 的前n 项和,满足14b a =,378S =.(1)求数列{}n a 的通项公式;(2)设nnb C a =,记数列{}n C 的前n 项和为n T ,求n T 的取值范围.【例2】已知各项均不为零的数列{}n a 满足()1212320n n n n n a a a a a ++++-+=,且11a =,23a =,设1n n nb a a +=-.(1)证明:{}n b 为等比数列;(2)求1n n a ⎧⎫⎨⎬+⎩⎭的前n 项和n T .【例3】已知数列{}n a 的首项*112,322,N n n a a a n n -==+≥∈.(1)求n a ;(2)记()3log 1n n n b a a =⋅+,设数列{}n b 的前n 项和为n S ,求n S .【例4】已知各项为正数的数列{}n a 前n 项和为n S ,若()214n n S a =+.(1)求数列{}n a 的通项公式;(2)设3nn na b =,且数列{}n b 前n 项和为n T ,求证:1n T <.【例5】已知数列{}n a 的前n 项和n S 满足()*22N n n S a n =-∈.(1)求数列{}n a 的通项公式;(2)令4n n b a n =-,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .【题型专练】1.若公比为c 的等比数列{}n a 的首项11a =且满足12(3,4,)2n n n a a a n --+==⋅⋅⋅.(1)求c 的值;(2)求数列{}n na 的前n 项和n S .2.已知数列{}n a 的前n 项和为n S ,11a =,121n n S a +=-.(1)求数列{}n a 的通项公式;(2)设(21)n n b n a =-,数列{}n b 的前n 项和为n T ,若存在*n ∈N 且2n ≥,使得2(1)(1)(1)n T n n n λ-≤-+成立,求实数λ的最小值.3.已知数列{}n a 前n 项和为12,n S a =,且满足()*1,N 2n n S a n n +=+∈.(1)求数列{}n a 的通项公式;(2)设()()211n n b n a =--,求数列{}n b 的前n 项和n T .4.已知数列{}n a 的前n 项和为n S ,且26a =,()121n n a S +=+.(1)证明:{}n a 为等比数列,并求{}n a 的通项公式;(2)求数列{}n na 的前n 项和n T .【答案】(1)证明见解析,123n n a -=⨯(*n ∈N )5.已知等差数列{}n a 的前n 项和为n S ,12a =,426S =.正项等比数列{}n b 中,12b =,2312b b +=.(1)求{}n a 与{}n b 的通项公式;(2)求数列{}n n a b 的前n 项和n T .【答案】(1)31n a n =-,2nn b =,(2)()13428n n T n +=-+【解析】【分析】(1)由等差数列的通项公式与求和公式,等比数列的通项公式求解即可;(2)由错位相减法求解即可(1)设等差数列的公差为d ,由已知得,4342262d ⨯⨯+=,解得3d =,所以()()1123131n a a n d n n =+-=+-=-,即{}n a 的通项公式为31n a n =-;设正项等比数列{}n b 的公比为(),0q q >,因为12b =,2312b b +=,所以()2212q q+=,所以260qq +-=,解得2q =或3q =-(负值舍去),所以2nn b =.(2)()312n n n a b n =-,所以()()1231225282342312n nn T n n -=⨯+⨯+⨯+⋅⋅⋅+-+-,所以()()23412225282342312n n n T n n +=⨯+⨯+⨯+⋅⋅⋅+-+-,相减得,()123412232323232312n n n T n +-=⨯+⨯+⨯+⨯+⋅⋅⋅+⋅--()()211132122231212n n n -+⨯⨯-=⨯+---,所以()13428n n T n +=-+.题型四:先求和,再证不等式【例1】设n S 为数列{n a }的前n 项和,已知123n n S a a +=,且10a ≠.(1)证明:{n a }是等比数列;(2)若12341,21,a a a -+成等差数列,记32log 1n n b a =-,证明12231111n n b b b b b b ++++ <12.【答案】(1)证明见解析(2)证明见解析【例2】已知数列{}n a 的前n 项和为n S ,___________,*n ∈N .在下面三个条件中任选一个,补充在上面问题中并作答.①22n n S a =-;②122222n n a a a n ++⋯⋯+=;③221232n n n a a a a +⋯⋯=注:如果选择多个条件分别解答,按第一个解答计分.(1)求数列{}n a 的通项公式;(2)记(1)(1)n n a b a a =--,n T 是数列{}n b 的前n 项和,若对任意的*n ∈N ,1n kT n>-,求实数k 的取值范围.项和,再将不等式恒成立问题转化求函数的最值问【例3】(2022江西丰城九中高二阶段练习)等差数列{}n a 中,前三项分别为,2,54x x x -,前n 项和为n S ,且2550k S =.(1)求x 和k 的值;(2)求n T =1231111nS S S S ++++ (3)证明:n T 1<【例4】(2022·浙江·高二期末)已知数列{}n a 满足114a =,134n n a a +=-.(1)证明数列{}2n a -为等比数列,并求{}n a 的通项公式;(2)设()()()113131nnn nn a b +-=++,数列{}n b 的前n 项和为n T ,若存在*n ∈N ,使n m T ≥,求m 的取值范围.【题型专练】1.已知数列{}n a 满足:()2222*12323N n a a a n a n n n ++++=+∈ .(1)求数列{}n a 的通项公式;(2)记n S 为数列{}1n n a a +的前n 项和()*N n ∈,求证:24n S ≤<.2.(2022陕西安康市教学研究室高一期末)已知数列{}n a 满足12a =,1(2)2(1)n n n a n a ++=+.(1)求数列{}n a 的通项公式;(2)设n S 为数列{}n a 的前n 项和,证明:6n S <.3.已知数列{}n a 的首项13a =,()*1212,N n n a a n n -=+≥∈,()2log 1n n b a =+.(1)证明:{}1n a +为等比数列;(2)证明:1223111112n n b b b b b b +++⋅⋅⋅+<.【答案】(1)证明见解析4.已知数列{n a }的前n 项和为n S ,342n n S a =-,(1)求数列{n a }的通项公式;(2)设33log 4n n a b =,n T 为数列12n n b b +⎧⎫⎨⎬⎩⎭的前n 项和.证明:12n T ≤<【答案】(1)143n n a -=⨯;(2)证明见解析.【分析】(1)利用,n n a S 关系及等比数列的定义求通项公式;,结合数列单调性即可证结论5.已知数列{}n a 的前n 项和31n n S =-,其中*N n ∈.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足11b =,()132n n n b b a n -=+≥,(i )证明:数列13nn b -⎧⎫⎨⎬⎩⎭为等差数列;(ii )设数列{}n b 的前n 项和为n T ,求380n n T n -⋅<-成立的n 的最小值.【答案】(1)()1*2·3n n a n -=∈N (2)(i )证明见解析;(ii )5【分析】(1)根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩即可求解;(2)11323n n n b b --=+⨯,两边除以13n -即可证明等差数列;利用错位相减法求n T ,解不等式即可求得n 的最小值.(1)31n n S =-,6.(2022·安徽·高三开学考试)已知数列{}n a 满足(12122n n a a a a n -+++-=- 且)*N n ∈,且24a =.(1)求数列{}n a 的通项公式;(2)设数列()()1211n n n a a +⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和为n T ,求证:132<≤n T .【答案】(1)()*2n n a n =∈N (2)证明见解析【分析】(1)将已知条件与1212n n a a a a ++++-=- 两式相减,再结合等比数列的定义即可求解;(2)利用裂项相消求和法求出n T 即可证明.(1)题型五:先放缩,再求和【例1】已知数列{}n a 的前n 项和为12n S a =,,当2n ≥时,()21212n n n S nS n n --=+-.(1)求数列{}n a 的通项公式;(2)求证:2222111123a a a a +++< .【例2】(2022·浙江省义乌中学模拟预测)已知数列{}n a 单调递增且12a >,前n 项和n S 满足2441n n S a n =+-,数列{}n b 满足212n n nb b b ++=,且123a a b +=,233b a +=.(1)求数列{}n a 、{}n b 的通项公式;(2)若1n c a b =,求证:123415n c c c c ++++< .【例3】已知数列{}n a 的前n 项和为n S ,且满足12a =,()1202n n n a S S n -+=≥(1)求n a 和n S (2)求证:22221231124n S S S S n+++⋯+≤-.【例4】已知数列{}n a 的前n 项和为n S ,11a =,22a =,且214n n n S S a ++=+.(1)求n a ;(2)求证:121112111n a a a +++<+++ .【答案】(1)()12n n a n -*=∈N (2)证明见解析【分析】(1)分析可知数列{}21k a -是首项为11a =,公比为4的等比数列,数列{}2k a 是首项为22a =,公比【题型专练】1.已知数列{}n a 满足:12a =,132n n a a +=-,n *∈N .(1)设1n n b a =-,求数列{}n b 的通项公式;(2)设31323log log log n n T a a a =++⋅⋅⋅+,()n *∈N ,求证:()12n n n T ->.【答案】(1)13n n b -=(2)证明见解析2.(2022·全国·高三专题练习)已知数列{}n a 前n 项积为n T ,且*1()n n a T n +=∈N .(1)求证:数列11n a ⎧⎫⎨⎬-⎩⎭为等差数列;(2)设22212n n S T T T =++⋅⋅⋅+,求证:112n n S a +>-.为以3.已知数列{}n a 的前n 项和为n S ,()*322n n a S n n N =+∈.(1)证明:数列{}1n a +为等比数列,并求数列{}n a 的前n 项和为n S ;(2)设()31log 1n n b a +=+,证明:222121111nb b b ++⋅⋅⋅+<.【解析】(1)当1n =时,11322a S =+,即12a =由322n n a S n =+,则()1132212n n a S n n --=+-≥两式相减可得13223n n n a a a -=+-,即132n n a a -=+所以()1131n n a a -+=+,即1131n n a a -+=+数列{}1n a +为等比数列则()112133n n n a -+=+⨯=,所以31n n a =-则()()1231333333132nn n n n n S +--=+++-==--L (2)()1313log 1log 31n n n b a n ++=+==+()()2211111111n b n n n n n =<=+++所以2221211111111111122311n b b b n n n ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+<-+-++-=-< ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭L4.已知数列{}n a 满足11a =,且11n n a a n +-=+,n S 是1n a ⎧⎫⎨⎬⎩⎭的前n 项和.(1)求n S ;(2)若n T 为数列2n S n ⎧⎫⎪⎪⎛⎫⎨⎬ ⎪⎝⎭⎪⎪⎩⎭的前n 项和,求证:232n n T n >>+.。
数列的19种经典题型
数列的19种经典题型一、公差不等于零的等差数列1. 前n项和:求出前n项的和Sn=a1+a2+…+an,Sn=n/2*(a1+an);2. 等比数列的前n项和:求出前n项的和Sn=a1+a2+…+an,若q为等比数列的公比,则Sn = a1(1-q^n)/(1-q);3. 概率的前n项和:求出前n项的和Sn=a1+a2+…+an,若q为概率的公比,则Sn = a1(1-q^n)/(1-q);4. 等差数列的前n项乘积:求出前n项的乘积Pn = a1*a2*…*an,若d为等差数列的公差,则Pn = (a1 + (n-1)*d) * (a1 + (n-2)*d) * … * a1;5. 等比数列的前n项乘积:求出前n项的乘积Pn = a1*a2*…*an,若q为等比数列的公比,则Pn = a1 *q^(n-1) * q^(n-2) * … * a1;6. 概率的前n项乘积:求出前n项的乘积Pn =a1*a2*…*an,若q为概率的公比,则Pn = a1 * q^(n-1) * q^(n-2) * … * a1;7. 等差数列的通项公式:若a1,a2,…,an为等差数列,若d为该数列的公差,则an = a1+(n-1)*d;列,若q为该数列的公比,则an = a1*q^(n-1);9. 概率的通项公式:若a1,a2,…,an为概率的序列,若q为该数列的公比,则an = a1*q^(n-1);10. 等差数列中某项的值:若a1,a2,…,an为等差数列,若d为该数列的公差,若知a1的值,则求出an的值,只需要把an的表达式代入即可。
11. 等比数列中某项的值:若a1,a2,…,an为等比数列,若q为该数列的公比,若知a1的值,则求出an的值,只需要把an的表达式代入即可。
12. 概率的某项的值:若a1,a2,…,an为概率的序列,若q为该数列的公比,若知a1的值,则求出an的值,只需要把an的表达式代入即可。
高中数列题型总结
高中数列题型总结高中数学中,数列是一个重要的概念。
数列题型主要包括等差数列、等比数列、递推数列等。
下面将对这些常见的数列题型进行总结。
一、等差数列1. 等差数列的概念:等差数列是指一个数列,其中相邻两项之间的差值是一个常数d。
数列的通项公式为an=a1+(n-1)d。
2. 等差数列的性质:- 若数列首项为a1,公差为d,则数列的第n项为an=a1+(n-1)d。
- 数列的前n项和Sn可以表示为Sn=(a1+an)n/2。
- 等差数列的性质还包括数列的前n项和与项数n的关系、等差数列的倒数第n项与第n项之和等。
3. 等差数列的题型:- 求等差数列的通项公式;- 求等差数列的前n项和;- 求等差数列中满足某些条件的项数;- 求等差数列中满足某些条件的项的和等。
二、等比数列1. 等比数列的概念:等比数列是指一个数列,其中相邻两项之间的比值是一个常数q。
数列的通项公式为an=a1*q^(n-1)。
2. 等比数列的性质:- 若数列首项为a1,公比为q,则数列的第n项为an=a1*q^(n-1)。
- 数列的前n项和Sn可以表示为Sn=a1*(1-q^n)/(1-q)。
- 等比数列的性质还包括数列的前n项和与项数n的关系、等比数列的倒数第n项与第n项之积等。
3. 等比数列的题型:- 求等比数列的通项公式;- 求等比数列的前n项和;- 求等比数列中满足某些条件的项数;- 求等比数列中满足某些条件的项的和等。
三、递推数列1. 递推数列的概念:递推数列是指一个数列,其中每一项都通过前一项来递推得到。
数列的通项公式一般无法表示。
2. 递推数列的性质:- 若数列的第n项为an,第n-1项为an-1,则数列的通项公式无法表示为an=f(an-1),其中f为一个函数。
- 递推数列的性质通常通过给定的递推规则来描述,如斐波那契数列等。
3. 递推数列的题型:- 求递推数列的前n项;- 求递推数列满足某些条件的项数;- 求递推数列满足某些条件的项等。
数列知识点总结及题型归纳
数列一、数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。
记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。
例:判断下列各组元素能否构成数列 (1)a, -3, -1, 1, b, 5, 7, 9;(2)2010年各省参加高考的考生人数。
(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。
例如:①:1 ,2 ,3 ,4, 5 ,…②:514131211,,,,…数列①的通项公式是n a = n (n ≤7,n N +∈), 数列②的通项公式是n a = 1n(n N +∈)。
说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。
例如,n a = (1)n-=1,21()1,2n k k Z n k -=-⎧∈⎨+=⎩;③不是每个数列都有通项公式。
例如,1,1.4,1.41,1.414,……(3)数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。
从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。
例:画出数列12+=n a n 的图像.(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。
(完整版)数列题型及解题方法归纳总结
(完整版)数列题型及解题方法归纳总结数列是数学中一个重要的概念,也是数学中常见的题型之一。
数列题目通常会给出一定的条件和规律,要求我们找出数列的通项公式、前n项和等相关内容。
下面对数列题型及解题方法进行归纳总结。
一、数列的基本概念1. 数列的定义:数列是按照一定规律排列的一列数,用通项公式a_n表示。
2. 首项和公差:对于等差数列,首项是指数列的第一个数,公差是指相邻两项之间的差值。
通常用a1表示首项,d表示公差。
3. 首项和公比:对于等比数列,首项是指数列的第一个数,公比是指相邻两项之间的比值。
通常用a1表示首项,r表示公比。
二、等差数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公差,求第n项的值。
使用通项公式a_n = a1 + (n-1)d。
(2)已知相邻两项的值,求公差。
根据 a_(n+1) - a_n = d,解方程即可。
(3)已知首项和第n项的值,求公差。
根据 a_n = a1 + (n-1)d,解方程即可。
2. 找前n项和:(1)已知首项、公差和项数,求前n项和。
使用公式S_n= (n/2)(a1 + a_n)。
(2)已知首项、末项和项数,求公差。
由于S_n =(n/2)(a1 + a_n),可以列方程求解。
(3)已知首项、公差和前n项和,求项数。
可以列方程并解出项数。
3. 找满足条件的项数:(1)已知首项、公差和条件,求满足条件的项数。
可以列方程,并解出项数。
三、等比数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公比,求第n项的值。
使用通项公式a_n = a1 * r^(n-1)。
(2)已知相邻两项的值,求公比。
根据 a_n / a_(n-1) = r,解方程即可。
(3)已知首项和第n项的值,求公比。
根据 a_n = a1 * r^(n-1),解方程即可。
2. 找前n项和:(1)已知首项、公比和项数,求前n项和。
使用公式S_n = (a1 * (1 - r^n)) / (1 - r)。
(word完整版)数列全部题型归纳(非常全面,经典),推荐文档
数列百通通项公式求法 (一)转化为等差与等比1、已知数列{}n a 满足11a =,211n n a a -=+(,n N *∈2≤n ≤8),则它的通项公式n a 什么2.已知{}n a 是首项为2的数列,并且112n n n n a a a a ---=,则它的通项公式n a 是什么3.首项为2的数列,并且231n n a a -=,则它的通项公式n a 是什么4、已知数列{}n a 中,10a =,112n na a +=-,*N n ∈.求证:11n a ⎧⎫⎨⎬-⎩⎭是等差数列;并求数列{}n a 的通项公式;5.已知数列{}n a 中,13a =,1222n n a a n +=-+,如果2n n b a n =-,求数列{}n a 的通项公式(二)含有n S 的递推处理方法1)知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.2.)若数列{}n a 的前n 项和n S 满足,2(2)8n n a S +=则,数列n a3)若数列{}n a 的前n 项和n S 满足,111,0,4n n n n a S S a a -=-≠=则,数列na4)12323...(1)(2)n a a a na n n n +++=++求数列n a(三) 累加与累乘(1)如果数列{}n a 中111,2nn n a a a -=-=(2)n ≥求数列n a(2)已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式(3) 12+211,2,=32n n n a a a a a +==-,求此数列的通项公式.(4)若数列{}n a 的前n 项和n S 满足,211,2n n S n a a ==则,数列n a(四)一次函数的递推形式1. 若数列{}n a 满足1111,12n n a a a -==+(2)n ≥,数列n a2 .若数列{}n a 满足1111,22n n n a a a -==+ (2)n ≥,数列n a(五)分类讨论(1)2123(3),1,7n n a a n a a -=+≥==,求数列n a(2)1222,(3)1,3nn a n a a a -=≥==,求数列n a(六)求周期16 (1) 121,41nn na a a a ++==-,求数列2004a(2)如果已知数列11n n n a a a +-=-,122,6a a ==,求2010a拓展1:有关等和与等积(1)数列{n a }满足01=a ,12n n a a ++=,求数列{a n }的通项公式(2)数列{n a }满足01=a ,12n n a a n ++=,求数列{a n }的通项公式(3).已知数列满足}{n a )(,)21(,3*11N n a a a n n n ∈=⋅=+,求此数列{a n }的通项公式.拓展2 综合实例分析1已知数列{a n }的前n 项和为n S ,且对任意自然数n ,总有()1,0,1n n S p a p p =-≠≠(1)求此数列{a n }的通项公式(2)如果数列{}n b 中,11222,,n b n q a b a b =+=<,求实数p 的取值范围2已知整数列{a n }满足31223341 (3)n n n n a a a a a a a a --+++=,求所有可能的n a3已知{}n a 是首项为1的正项数列,并且2211(1)0(1,2,3,)n n n n n a na a a n +++-+==L ,则它的通项公式n a 是什么4已知{}n a 是首项为1的数列,并且134n n n a a a +=+,则它的通项公式n a 是什么5、数列{}n a 和{}n b 中,1,,+n n n a b a 成等差数列,n b ,1+n a ,1+n b 成等比数列,且11=a ,21=b ,设nn n b a c =,求数列{}n c 的通项公式。
数列题型总结(全)
11、设平面内的向量 点 是直线 上的一个动点,求当 取最小值时, 的坐标及 的余弦值。
12、设向量 , , , , , 与 的夹角为 , 与 的夹角为 ,且 ,求 的值。
参考答案
二、1、1、 ∥ ,
2、(1) .
= =
∵ ,∴ ,∴ .
∴ max= .
(2)由已知 ,得 .
一:定义法:
例:(1)设 是等差数列,证明:数列 (c>0, 是等比数列。(2)设 是正项等比数列,证明
(c>0, 是等差数列。
变式一:数列 的前n项和记为 ,已知 (n=2,3,4…),证明:数列 是等比数列。
变式二:已知定义在R上的函数f(x)和数列 满足下列条件: , ,其中a为常数,k为非零实数。令 是等比数列。
数列题型归纳(全)
题型一:求等差数列的公差或取值范围
例一:等差数列 的前n项和 ,若 =4, =20,则该数列的公差d等于
变式一:等差数列 中, ,则该数列的 的公差为
变式二:已知等差数列的首项为31,若从第16项开始小于1,则此数列的公差d的取值范围是
题型二:求等比数列的公比
例一:在等比数列 中, ,则公比q的值为
=
= .
3、(1)
由 得 又
(2)由 ,得
又 =
所以, = 。
三、1—6 B D A D A A
7、. 8、 9、只要满足 即可10、(5,2)或(-5,-2)
11、设 点 在直线 上, 与 共线,而
即 有 .
故当且仅当 时, 取得最小值 ,此时
于是
12、
变式一:设数列 , 都是等差数列,若
变式二:在等差数列 中,已知 ,则该数列前11项和等于
数列经典常考题型归纳
1 / 22.6.3复习:数列常考题型归纳学习目标通过典型例题总结归纳数列的常考题型 重点难点重点:等差、等比数列的性质 难点:等差等比综合运用学习过程 一.课前准备n 项和公式及其性质.二.新课导学题型一:等差数列的基本量运算例1(1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为( )A .2B .10 C.52 D.54(2)(2013·课标全国Ⅰ)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m 等于( )A .3B .4C .5D .6例2(1)设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5等于( ) A.152 B.314 C.334 D.172(2)在等比数列{a n }中,若a 4-a 2=6,a 5-a 1=15,则a 3=________.题型二 等差、等比数列的性质及应用 例3(1)设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36 D .27(2)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为( )A .13B .12C .11D .10(3)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 014,S 2 0142 014-S 2 0082 008=6,则S 2 016=________.例4(1)在等比数列{a n }中,各项均为正值,且a 6a 10+a 3a 5=41,a 4a 8=5,则a 4+a 8=________. (2)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________.题型三 等差、等比数列的判定与证明 例5已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列;例6已知数列{a n }的前n 项和为S n ,且a n +S n =n . (1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{a n }的通项公式.2 / 2题型四 等差数列、等比数列的综合问题 例7 设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列. (1)求数列{a n }的通项;(2)令b n =ln a 3n +1,n =1,2,…,求数列{b n }的前n 项和T n .题型五 数列的通项与求和例2 已知数列{a n }的前n 项和为S n ,且a 1=12,a n +1=n +12n a n .(1)证明:数列{a nn }是等比数列;(2)求通项a n 与前n 项的和S n .当堂检测1.若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7等于( )A .12B .13C .14D .152.记等差数列{a n }的前n 项和为S n ,若a 1=12,S 4=20,则S 6等于( ) A .16 B .24 C .36 D .483.已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是( ) A.12B .1C .2D .3 4.已知正项数列{a n }为等比数列,且5a 2是a 4与3a 3的等差中项,若a 2=2,则该数列的前5项的和为( )A.3312 B .31 C.314 D .以上都不正确 5.(2014·天津)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.6.设等比数列{a n }的前n 项和为S n ,若S 6∶S 3=1∶2,则S 9∶S 3=________.7.在等比数列{a n }中,若a 1a 2a 3a 4=1,a 13a 14a 15a 16=8,则a 41a 42a 43a 44=________.8.设数列{a n }、{b n }都是正项等比数列,S n 、T n 分别为数列{lg a n }与{lg b n }的前n 项和,且S n T n =n2n +1,则log b 5a 5=________. 9.在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( ) A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n10.设数列{a n }的前n 项和为S n ,已知a 1=1,S n+1=4a n +2.(1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式.已知等差数列{a n }的前n 项和为S n ,n ∈N *,a 3=5,S 10=100.(1)求数列{a n }的通项公式;(2)设b n =22n an +,求数列{b n }的前n 项和T n .自我评价你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差。
数列通项公式的多种妙解方式(十六大经典题型)(解析版)
数列通项公式的多种妙解方式经典题型一:观察法经典题型二:叠加法经典题型三:叠乘法经典题型四:待定系数法经典题型五:同除以指数经典题型六:取倒数法经典题型七:取对数法经典题型八:已知通项公式a n 与前n 项的和S n 关系求通项问题经典题型九:周期数列经典题型十:前n 项积型经典题型十一:“和”型求通项经典题型十二:正负相间讨论、奇偶讨论型经典题型十三:因式分解型求通项经典题型十四:其他几类特殊数列求通项经典题型十五:双数列问题经典题型十六:通过递推关系求通项(2022·全国·高考真题)记S n 为数列a n 的前n 项和,已知a 1=1,S n a n 是公差为13的等差数列.(1)求a n 的通项公式;(2)证明:1a 1+1a 2+⋯+1a n<2.【解析】(1)∵a 1=1,∴S 1=a 1=1,∴S 1a 1=1,又∵S n a n 是公差为13的等差数列,∴S n a n =1+13n -1 =n +23,∴S n =n +2 a n 3,∴当n ≥2时,S n -1=n +1 a n -13,∴a n =S n -S n -1=n +2 a n 3-n +1 a n -13,整理得:n -1 a n =n +1 a n -1,即a n a n -1=n +1n -1,∴a n =a 1×a 2a 1×a 3a 2×⋯×a n -1a n -2×a n a n -1=1×31×42×⋯×n n -2×n +1n -1=n n +1 2,显然对于n =1也成立,∴a n 的通项公式a n =n n +1 2;(2)1a n =2n n +1 =21n -1n +1 , ∴1a 1+1a 2+⋯+1a n=21-12 +12-13 +⋯1n -1n +1 =21-1n+1<2(2022·全国·高考真题(理))记S n为数列a n的前n项和.已知2S nn+n=2a n+1.(1)证明:a n是等差数列;(2)若a4,a7,a9成等比数列,求S n的最小值.【解析】(1)因为2S nn+n=2a n+1,即2S n+n2=2na n+n①,当n≥2时,2S n-1+n-12=2n-1a n-1+n-1②,①-②得,2S n+n2-2S n-1-n-12=2na n+n-2n-1a n-1-n-1,即2a n+2n-1= 2na n-2n-1a n-1+1,即2n-1a n-2n-1a n-1=2n-1,所以a n-a n-1=1,n≥2且n∈N*,所以a n是以1为公差的等差数列.(2)由(1)可得a4=a1+3,a7=a1+6,a9=a1+8,又a4,a7,a9成等比数列,所以a72=a4⋅a9,即a1+62=a1+3⋅a1+8,解得a1=-12,所以a n=n-13,所以S n=-12n+nn-12=12n2-252n=12n-2522-6258,所以,当n=12或n=13时S n min=-78.类型Ⅰ观察法:已知数列前若干项,求该数列的通项时,一般对所给的项观察分析,寻找规律,从而根据规律写出此数列的一个通项.类型Ⅱ公式法:若已知数列的前项和与a n的关系,求数列a n的通项a n可用公式a n=S1,(n=1)S n-S n-1,(n≥2)构造两式作差求解.用此公式时要注意结论有两种可能,一种是“一分为二”,即分段式;另一种是“合二为一”,即a1和a n合为一个表达,(要先分n=1和n≥2两种情况分别进行运算,然后验证能否统一).类型Ⅲ累加法:形如a n+1=a n+f(n)型的递推数列(其中f(n)是关于n的函数)可构造:a n-a n-1=f(n-1)a n-1-a n-2=f(n-2)...a2-a1=f(1)将上述m2个式子两边分别相加,可得:a n=f(n-1)+f(n-2)+...f(2)+f(1)+a1,(n≥2)①若f(n)是关于n的一次函数,累加后可转化为等差数列求和;②若f(n)是关于n的指数函数,累加后可转化为等比数列求和;③若f(n)是关于n的二次函数,累加后可分组求和;④若f(n)是关于n的分式函数,累加后可裂项求和.类型Ⅳ累乘法:形如a n +1=a n ⋅f (n )a n +1a n=f (n )型的递推数列(其中f (n )是关于n 的函数)可构造:a n a n -1=f (n -1)a n -1a n -2=f (n -2)...a 2a 1=f (1)将上述m 2个式子两边分别相乘,可得:a n =f (n -1)⋅f (n -2)⋅...⋅f (2)f (1)a 1,(n ≥2)有时若不能直接用,可变形成这种形式,然后用这种方法求解.类型Ⅴ构造数列法:(一)形如a n +1=pa n +q (其中p ,q 均为常数且p ≠0)型的递推式:(1)若p =1时,数列{a n }为等差数列;(2)若q =0时,数列{a n }为等比数列;(3)若p ≠1且q ≠0时,数列{a n }为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法有如下两种: 法一:设a n +1+λ=p (a n +λ),展开移项整理得a n +1=pa n +(p -1)λ,与题设a n +1=pa n +q 比较系数(待定系数法)得λ=q p -1,(p ≠0)⇒a n +1+q p -1=p a n +q p -1 ⇒a n +q p -1=p a n -1+qp -1 ,即a n +q p -1 构成以a 1+qp -1为首项,以p 为公比的等比数列.再利用等比数列的通项公式求出a n +qp -1 的通项整理可得a n .法二:由a n +1=pa n +q 得a n =pa n -1+q (n ≥2)两式相减并整理得a n +1-a na n -a n -1=p ,即a n +1-a n 构成以a 2-a 1为首项,以p 为公比的等比数列.求出a n +1-a n 的通项再转化为类型Ⅲ(累加法)便可求出a n .(二)形如a n +1=pa n +f (n )(p ≠1)型的递推式:(1)当f (n )为一次函数类型(即等差数列)时:法一:设a n +An +B =p a n -1+A (n -1)+B ,通过待定系数法确定A 、B 的值,转化成以a 1+A +B 为首项,以A m n =n !n -m !为公比的等比数列a n +An +B ,再利用等比数列的通项公式求出a n +An +B 的通项整理可得a n .法二:当f (n )的公差为d 时,由递推式得:a n +1=pa n +f (n ),a n =pa n -1+f (n -1)两式相减得:a n +1-a n =p (a n -a n -1)+d ,令b n =a n +1-a n 得:b n =pb n -1+d 转化为类型Ⅴ㈠求出 b n ,再用类型Ⅲ(累加法)便可求出a n .(2)当f (n )为指数函数类型(即等比数列)时:法一:设a n +λf (n )=p a n -1+λf (n -1) ,通过待定系数法确定λ的值,转化成以a 1+λf (1)为首项,以A m n =n !n -m !为公比的等比数列a n +λf (n ) ,再利用等比数列的通项公式求出a n +λf (n ) 的通项整理可得a n .法二:当f (n )的公比为q 时,由递推式得:a n +1=pa n +f (n )--①,a n =pa n -1+f (n -1),两边同时乘以q 得a n q =pqa n -1+qf (n -1)--②,由①②两式相减得a n +1-a n q =p (a n -qa n -1),即a n +1-qa na n -qa n -1=p ,在转化为类型Ⅴ㈠便可求出a n .法三:递推公式为a n +1=pa n +q n (其中p ,q 均为常数)或a n +1=pa n +rq n (其中p ,q , r 均为常数)时,要先在原递推公式两边同时除以q n +1,得:a n +1q n +1=p q ⋅a n q n +1q ,引入辅助数列b n (其中b n=a n q n),得:b n +1=p q b n +1q 再应用类型Ⅴ㈠的方法解决.(3)当f (n )为任意数列时,可用通法:在a n +1=pa n +f (n )两边同时除以p n +1可得到a n +1p n +1=a n p n +f (n )p n +1,令an p n =b n ,则b n +1=b n +f (n )pn +1,在转化为类型Ⅲ(累加法),求出b n 之后得a n =p n b n .类型Ⅵ对数变换法:形如a n +1=pa q (p >0,a n >0)型的递推式:在原递推式a n +1=pa q 两边取对数得lg a n +1=q lg a n +lg p ,令b n =lg a n 得:b n +1=qb n +lg p ,化归为a n +1=pa n +q 型,求出b n 之后得a n =10b n.(注意:底数不一定要取10,可根据题意选择).类型Ⅶ倒数变换法:形如a n -1-a n =pa n -1a n (p 为常数且p ≠0)的递推式:两边同除于a n -1a n ,转化为1a n =1a n -1+p 形式,化归为a n +1=pa n +q 型求出1a n的表达式,再求a n ;还有形如a n +1=ma n pa n +q 的递推式,也可采用取倒数方法转化成1a n +1=m q 1a n +mp形式,化归为a n +1=pa n +q 型求出1a n的表达式,再求a n .类型Ⅷ形如a n +2=pa n +1+qa n 型的递推式:用待定系数法,化为特殊数列{a n -a n -1}的形式求解.方法为:设a n +2-ka n +1=h (a n +1-ka n ),比较系数得h +k =p ,-hk =q ,可解得h 、k ,于是{a n +1-ka n }是公比为h 的等比数列,这样就化归为a n +1=pa n +q 型.总之,求数列通项公式可根据数列特点采用以上不同方法求解,对不能转化为以上方法求解的数列,可用归纳、猜想、证明方法求出数列通项公式a n .(1)若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =S 1,n =1S n -S n -1,n ≥2,n ∈N ∗注意:根据S n 求a n 时,不要忽视对n =1的验证.(2)在数列{a n }中,若a n 最大,则a n ≥a n -1a n ≥a n +1 ,若a n 最小,则a n≤a n -1a n ≤a n +1 .经典题型一:观察法1.(2022·全国·高三专题练习)数列a n 的前4项为:12,15,18,111,则它的一个通项公式是( )A.12n -1B.12n +1C.13n -1D.13n +1【答案】C【解析】将12,15,18,111可以写成13×1-1,13×2-1,13×3-1,13×4-1,所以a n 的通项公式为13n -1;故选:C2.(2022·全国·高三专题练习(文))如图所示是一个类似杨辉三角的递推式,则第n 行的首尾两个数均为( )A.2nB.2n -1C.2n +2D.2n +1【答案】B【解析】依题意,每一行第一个数依次排成一列为:1,3,5,7,9,⋯,它们成等差数列,通项为2n -1,所以第n 行的首尾两个数均为2n -1.故选:B3.(2022·全国·高三专题练习)“一朵雪花”是2022年北京冬奥会开幕式贯穿始终的一个设计理念,每片“雪花”均以中国结为基础造型构造而成,每一朵雪花都闪耀着奥运精神,理论上,一片雪花的周长可以无限长,围成雪花的曲线称作“雪花曲线”,又称“科赫曲线”,是瑞典数学家科赫在1901年研究的一种分形曲线,如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分划向外作正三角形,再去掉底边,反复进行这一过程.若第一个正三角形(图①)的边长为1,则第5个图形的周长为___________.【答案】25627【解析】由题意知下一个图形的边长是上一个图形边长的13,边数是上一个图形的4倍,则周长之间的关系为b n =13⋅4⋅b n -1=43b n -1,所以{b n }是公比为q =43的等比数列,而首项b 1=3,所以b n =3⋅43n -1,当n =5时,“雪花”状多边形的周长为b 5=25627.故答案为:25627经典题型二:叠加法4.(2022·全国·高三专题练习)在数列{a n }中,已知a 1=1p ,a n +1=a n na n +1,p >0,n ∈N *.若p =1,求数列{a n }的通项公式.【解析】由题意,a n +1=a n na n +1 ,得:1a n +1-1a n=n ,运用累加法:1a 2-1a 1+1a 3-1a 2+⋯+1a n -1a n -1=1+2+⋯+n -1=n n -1 2,n ≥2∴1a n -1a 1=n n -1 2,即1a n =n n -1 2+p ,n ≥2 ,当p =1时,a n =2n 2-n +2,n ≥2 ,当n =1时,a n =1成立,所以a n =2n 2-n +25.(2022·全国·高三专题练习)已知数列a n 满足a n +1n +1-a n n =1n n +1n ∈N *,且a 1=1,求数列a n 的通项公式;【解析】因为a n +1n +1-a n n =1n n +1=1n -1n +1,所以a n n -a n -1n -1=1n -1-1n n ≥2 ,a n -1n -1-a n -2n -2=1n -2-1n -1,⋯a 22-a 11=1-12,所以累加可得a n n -a 1=1-1nn ≥2 .又a 1=1,所以a n n =2n -1n,所以a n =2n -1n ≥2 .经检验,a 1=1,也符合上式,所以a n =2n -1.6.(2022·全国·高三专题练习)已知数列a n 中,a 1=1中,a n +1=a n +n (n ∈N *)中,则a 4=________,a n =________.【答案】 7n 2-n +22【解析】依题意,n ∈N *,n ≥2,a n -a n -1=n -1,而a 1=1,则a n =a 1+(a 2-a 1)+(a 3-a 2)+⋯+(a n -a n -1)=1+1+2+⋯+(n -1)=1+1+n -12⋅n -1 =n 2-n +22,而a 1=1满足上式,所以a n =n 2-n +22,a 4=42-4+22=7.故答案为:7;n 2-n +22经典题型三:叠乘法7.(2022·全国·高三专题练习)在数列a n 中,a n +1=nn +2a n (n ∈N *),且a 1=4,则数列a n 的通项公式a n =________.【答案】8n n +1【解析】由a n +1=n n +2a n ,得a n +1a n =nn +2,则a 2a 1=13,a 3a 2=24,a 4a 3=35,⋮a n a n -1=n -1n +1n ≥2 ,累乘得a n a 1=13×24×35×⋯×n -3n -1×n -2n ×n -1n +1=2n n +1,所以a n =8n n +1.故答案为:8n n +1 .8.(2022·全国·高三专题练习)设a n 是首项为1的正项数列,且(n +2)a n +12-na n 2+2a n +1a n =0(n ∈N *),求通项公式a n =___________【答案】2n (n +1)【解析】由(n +2)a n +12-na n 2+2a n +1a n =0(n ∈N *),得[(n +2)a n +1-na n ](a n +1+a n )=0,∵a n >0,∴a n +1+a n >0,∴(n +2)a n +1-na n =0 ,∴a n +1a n =nn +2,∴a n =a 1⋅a 2a 1⋅a 3a 2⋅a 4a 3⋅⋅⋅⋅⋅a n a n -1=1×13×24×35×⋅⋅⋅×n -2n ×n -1n +1=2n (n +1)(n ≥2),又a 1=1满足上式,∴a n =2n (n +1).故答案为:2n (n +1).9.(2022·全国·高三专题练习)数列a n 满足:a 1=23,2n +2-1 a n +1=2n +1-2 a n n ∈N * ,则a n 的通项公式为_____________.【答案】a n =2n2n -1 2n +1-1【解析】由2n +2-1 a n +1=2n +1-2 a n 得,a n +1a n =2n +1-22n +2-1=2⋅2n -12n +2-1,则a n a n -1⋅a n -1a n -2⋅a n -2a n -3⋅⋅⋅a 2a 1=2⋅2n -1-12n +1-1⋅2⋅2n -2-12n -1⋅2⋅2n -3-12n -1-1⋅⋅⋅2⋅21-123-1=2n -1⋅32n +1-1 2n -1,即a n a 1=3⋅2n -12n -1 2n +1-1 ,又a 1=23,所以a n =2n 2n -1 2n +1-1.故答案为:a n =2n2n -1 2n +1-1.经典题型四:待定系数法10.(多选题)(2022·广东惠州·高三阶段练习)数列a n 的首项为1,且a n +1=2a n +1,S n 是数列a n 的前n 项和,则下列结论正确的是( )A.a 3=7 B.数列a n +1 是等比数列C.a n =2n -1 D.S n =2n +1-n -1【答案】AB【解析】∵a n +1=2a n +1,可得a n +1+1=2a n +1 ,又a 1+1=2∴数列a n +1 是以2为首项,2为公比的等比数列,故B 正确;则a n +1=2n ,∴a n =2n -1,故C 错误;则a 3=7,故A 正确;∴S n =21-2n1-2-n =2n +1-n -2,故D 错误.故选:AB .11.(2022·河南安阳·三模(文))已知数列a n 满足a n +1=2a n +12,且前8项和为506,则a 1=___________.【答案】32【解析】由题意得:∵a n +1=2a n +12∴a n +1+12=2a n +12 ,即a n +1+12a n +12=2∴数列a n +12 是以a 1+12为首项,2为公比的等比数列,记数列a n +12 的前n 项和为T n T 8=a 1+12 (1-28)1-2=a 1+12+a 2+12+a 3+12+⋯+a 8+12=(a 1+a 2+a 3+⋯a 8)+12×8=506+4=510解得:a 1=32故答案为:3212.(2022·河北衡水·高三阶段练习)已知数列a n 的前n 项和为S n ,且满足2S n +n =3a n ,n ∈N *.(1)求数列a n 的通项公式;(2)若b n =a 2n ,求数列b n 的前10项和T 10.【解析】(1)当n =1时,2S 1+1=3a 1,即2a 1+1=3a 1,解得a 1=1;当n ≥2时,∵2S n +n =3a n ,∴2S n -1+n -1=3a n -1,两式作差得2a n +1=3a n -3a n -1,即a n =3a n -1+1,a n +12=3a n -1+12,∴a n +12a n -1+12=3,又a 1+12=32,∴数列a n +12 是以32为首项,3为公比的等比数列,∴a n +12=32×3n -1=3n 2,a n =3n 2-12=123n -1 .(2)∵b n =a 2n ,则T 10=b 1+b 2+b 3+⋯+b 10=a 2+a 4+⋯+a 20=1232-1 +34-1 +⋯+320-1=1232+34+⋯+320 -10=12321-910 1-9-10 =911-8916.13.(2022·全国·高三专题练习)设数列a n 满足a 1=2,a n -2a n -1=2-n n ∈N * .(1)求证:a n -n 为等比数列,并求a n 的通项公式;(2)若b n =a n -n ⋅n ,求数列b n 的前n 项和T n .【解析】(1)因为a 1=2,a n -2a n -1=2-n n ∈N * ,所以a n =2a n -1+2-n ,即a n -n =2a n -1-n -1又a 1-1=2-1=1,所以a n -n 是以1为首项,2为公比的等比数列,所以a n -n =1×2n -1,所以a n =2n -1+n (2)由(1)可得b n =a n -n ⋅n =n ×2n -1,所以T n =1×20+2×21+3×22+⋯+n ×2n -1①,所以2T n =1×21+2×22+3×23+⋯+n ×2n ②,①-②得-T n =1+1×21+1×22+1×23+⋯+1×2n -1-n ×2n即-T n =1-2n1-2-n ×2n ,所以T n =n -1 ×2n +1;14.(2022·全国·高三专题练习)在数列a n 中,a 1=5,且a n +1=2a n -1n ∈N * .(1)证明:a n -1 为等比数列,并求a n 的通项公式;(2)令b n =(-1)n ⋅a n ,求数列b n 的前n 项和S n .【解析】(1)因为a n +1=2a n -1,所以a n +1-1=2a n -1 ,又a 1-1=4,所以a n +1-1a n -1=2,所以a n -1 是以4为首项,2为公比的等比数列.故a n -1=4×2n -1,即a n =2n +1+1.(2)由(1)得b n =(-1)n⋅2n +1+1 ,则b n =2n +1+1,n =2k ,k ∈N *-2n +1+1 ,n =2k -1,k ∈N* ,①当n =2k ,k ∈N *时,S n =-22-1 +23+1 -24+1 +⋯+-2n -1 +2n +1+1 =-22+23-24+25+⋯-2n +2n +1=22+24+⋯+2n =432n -1 ;②当n =2k -1,k ∈N *时,S n =S n +1-b n +1=432n +1-1 -2n +2+1 =-2n +2+73,综上所述,S n =432n -1 ,n =2k ,k ∈N*-2n +2+73,n =2k -1,k ∈N *经典题型五:同除以指数15.(2022·广东·模拟预测)已知数列a n 中,a 1=5且a n =2a n -1+2n -1n ≥2,n ∈N ∗ ,b n =a n -1n +1(1)求证:数列b n 是等比数列;(2)从条件①n +b n ,②n ⋅b n 中任选一个,补充到下面的问题中并给出解答.求数列______的前n 项和T n .注:如果选择多个条件分别解答,按第一个解答计分.【解析】(1)因为a 1=5且a n =2a n -1+2n -1n ≥2,n ∈N ∗ ,所以当n ≥2时,a n -1=2a n -1-1 +2n ,所以a n -12n =a n -1-12n -1+1,即a n -12n -a n -1-12n -1=1所以a n -12n 是以a 1-12=2为首项,1为公差的等差数列,所以a n -12n =2+n -1 ×1=n +1,所以a n =n +1 2n+1,b n =a n -1n +1=n +1 2n+1-1n +1=2n因为b 1=a 1-11+1=2,n ≥2时,b n b n -1=2n 2n -1=2所以数列b n 是以2为首项,2为公比的等比数列.(2)选①:因为b n =2n ,所以n +b n =n +2n ,则T n =(1+2)+2+22 +3+23 +⋅⋅⋅+n +2n=1+2+3+⋅⋅⋅+n +2+22+23+⋅⋅⋅+2n=12n n +1 +21-2n 1-2=n 22+n2+2n +1-2选②:因为b n =2n ,所以nb n =n ⋅2n,则T n =1×21+2×22+⋅⋅⋅+n ×2n (i )2T n =1×22+2×23+⋅⋅⋅+n ×2n +1(ii )(i )-(ii )得-T n =1×21+22+23+⋅⋅⋅+2n -n ×2n +1T n =n ×2n +1-21-2n 1-2=n ×2n +1-2n +1+2=n -1 2n +1+216.(2022·全国·高三专题练习)已知数列a n 满足a 1=1,a n +1=2a n +3n ,求数列a n 的通项公式.【解析】由a n +1=2a n +3n 两边同除以3n +1得a n +13n +1=23⋅a n 3n +13,令b n =a n 3n ,则b n +1=23b n +13,设b n +1+λ=23(b n +λ),解得λ=-1,b n +1-1=23(b n -1),而b 1-1=-23,∴数列{b n -1}是以-23为首项,23为公比的等比数列,b n -1=-23 n ,得a n =3n -2n17.(2022·全国·高三专题练习)在数列a n 中,a 1=1,S n +1=4a n +2,则a 2019的值为( )A.757×22020B.757×22019C.757×22018D.无法确定【答案】A【解析】∵a 1=1,S n +1=4a n +2,∴S 2=a 1+a 2=4a 1+2,解得a 2=5.∵S n +1=4a n +2,∴S n +2=4a n +1+2,两式相减得,a n +2=4a n +1-4a n ,∴a n +2-2a n +1=2a n +1-2a n ,∴a n +1-2a n 是以a 2-2a 1=3为首项,2为公比的等比数列,∴a n +1-2a n =3×2n -1,两边同除以2n +1,则a n +12n +1-a n 2n=34,∴a n 2n 是以34为公差,a 121=12为首项的等差数列,∴a n 2n =12+n -1 ×34=3n -14,∴a n =3n -14×2n =3n -1 ×2n -2,∴a 2019=3×2019-1 ×22017=757×22020.故选:A .经典题型六:取倒数法18.(2022·全国·高三竞赛)数列a n 满足a 1=p ,a n +1=a 2n +2a n .则通项a n =______.【答案】p +1 2n -1-1【解析】∵a n =a 2n -1+2a n -1,∴a n +1=a n -1+1 2=a n -2+1 22=⋯=a 1+1 2n -1=p +1 2n -1.即a n =p +1 2n -1-1.故答案为p +1 2n -1-119.(2022·全国·高三专题练习)已知数列a n 满足a 1=12,且a n +1=a n 3a n +1,则数列a n =__________【答案】13n -1【解析】由a n +1=a n 3a n +1两边取倒数可得1a n +1=1a n +3,即1a n +1-1a n=3所以数列1a n 是等差数列,且首项为2,公差为3,所以1a n=3n -1,所以a n =13n -1;故答案为:13n -120.(2022·全国·高三专题练习)数列a n 满足a n +1=a n 1+2a nn ∈N ∗,a 1=1,则下列结论错误的是( )A.2a 10=1a 3+1a 17B.21an是等比数列C.2n -1 a n =1D.3a 5a 17=a 49【答案】D 【解析】由a n +1=a n 1+2a n ,且a 1=1,则a 2=a 12a 1+1>0,a 3=a 21+2a 2>0,⋯,以此类推可知,对任意的n ∈N ∗,a n >0,所以,1a n +1=1+2a n a n =1a n +2,所以1a n +1-1a n =2,且1a 1=1,所以,数列1a n 是等差数列,且该数列的首项为1,公差为2,所以,1a n =1+2n -1 =2n -1,则2n -1 a n =1,其中n ∈N ∗,C 对;21a n +121a n=21an +1-1a n=22=4,所以,数列21an是等比数列,B 对;由等差中项的性质可得2a 10=1a 3+1a 17,A 对;由上可知a n =12n -1,则3a 5a 17=3×12×5-1×12×17-1=199,a 49=12×49-1=197,所以,3a 5a 17≠a 49,D 错.故选:D .21.(2022·全国·高三专题练习)已知数列a n 满足a 1=1,a n +1=a n 4a n +1,(n ∈N *),则满足a n >137的n 的最大取值为( )A.7 B.8C.9D.10【答案】C【解析】因为a n +1=a n 4a n +1,所以1a n +1=4+1a n ,所以1a n +1-1a n =4,又1a 1=1,数列1a n是以1为首项,4为公差的等差数列.所以1a n =1+4(n -1)=4n -3,所以a n =14n -3,由a n >137,即14n -3>137,即0<4n -3<37,解得34<n <10,因为n 为正整数,所以n 的最大值为9;故选:C 经典题型七:取对数法22.(2022·湖南·长郡中学高三阶段练习)若在数列的每相邻两项之间插入此两项的积,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.现对数列1,2进行构造,第一次得到数列1,2,2;第二次得到数列1,2,2,4,2;依次构造,第n n ∈N * 次得到的数列的所有项的积记为a n ,令b n =log 2a n ,则b 3=___________,b n =___________.【答案】 143n +12【解析】设第n 次构造后得到的数列为1,x 1,x 2,⋯,x k ,2.则a n =2x 1x 2⋯x k ,则第n +1次构造后得到的数列为1,x 1,x 1,x 1x 2,x 2,⋯,x k -1x k ,x k ,2x k ,2.则a n +1=4x 1x 2⋯x k 3=4×a n 2 3=12a 3n ,∴b n +1=log 2a n +1=log 212a 3n=-1+3b n ,∴b n +1-12=3b n -12 ,又∵b 1=log 222=2,∴数列b n -12 是以32为首项,3为公比的等比数列,∴b n -12=32×3n -1=3n 2,b n =3n +12,b 3=14.故答案为:14;3n +1223.(2022·全国·高三专题练习(文))英国著名物理学家牛顿用“作切线”的方法求函数零点时,给出的“牛顿数列”在航空航天中应用广泛,若数列x n 满足x n +1=x n -f x nf x n,则称数列x n 为牛顿数列.如果函数f x =2x 2-8,数列x n 为牛顿数列,设a n =ln x n +2x n -2,且a 1=1,x n >2.数列a n 的前n 项和为S n ,则S n =______.【答案】2n -1【解析】∵f x =2x 2-8,∴f x =4x ,又∵x n +1=x n -f x n f x n=x n -2x n 2-84x n =x n 2+42x n ,∴x n +1+2=x n +2 22x n ,x n +1-2=x n -222x n,∴x n +1-2x n +1-2=x n +2x n -2 2,又x n >2∴ln x n +1+2x n +1-2=ln x n +2x n -2 2=2ln x n +2x n -2 ,又a n =ln x n +2x n -2,且a 1=1,所以a n +1=2a n ,∴数列a n 是首项为1,公比为2的等比数列,∴a n 的前n 项和为S n ,则S n =1×1-2n1-2=2n -1.故答案为:2n -1.经典题型八:已知通项公式a n 与前n 项的和S n 关系求通项问题24.(2022·江苏南通·高三开学考试)从条件①2S n =n +1 a n ,②a 2n +a n =2S n ,a n >0,③S n +S n -1=a n n ≥2 ,中任选一个,补充到下面问题中,并给出解答.已知数列a n 的前n 项和为S n ,a 1=1,___________.(1)求a n 的通项公式;(2)设b n =a n +1+12n +1,记数列b n 的前n 项和为T n ,是否存在正整数n 使得T n >83.【解析】(1)若选择①,因为2S n =n +1 a n ,n ∈N *,所以2S n -1=na n -1,n ≥2,两式相减得2a n =n +1 a n -na n -1,整理得n -1 a n =na n -1,n ≥2,即a n n =a n -1n -1,n ≥2,所以a n n 为常数列,而a n n =a 11=1,所以a n =n ;若选择②,因为a 2n +a n =2S n n ∈N *,所以a 2n -1+a n -1=2S n -1n ≥2 ,两式相减a 2n -a 2n -1+a n -a n -1=2S n -2S n -1=2a n n ≥2 ,得a n -a n -1 a n +a n -1 =a n +a n -1n ≥2 ,因为a n >0,∴a n +a n -1>0,∴a n -a n -1=1n ≥2 ,所以a n 是等差数列,所以a n =1+n -1 ×1=n ;若选择③,由S n +S n -1=a n n ≥2 变形得,S n +S n -1=S n -S n -1,所以S n +S n -1=S n +S n -1 S n -S n -1 ,由题意知S n >0,所以S n -S n -1=1,所以S n 为等差数列,又S 1=a 1=1,所以S n =n ,S n =n 2,∴a n =S n -S n -1=2n -1n ≥2 ,又n =1时,a 1=1也满足上式,所以a n =2n -1;(2)若选择①或②,b n =n +1+12n +1=n +22n +1,所以T n =3×12 2+4×12 3+5×12 4+⋯+n +2 ×12n +1,所以12T n =3×12 3+4×12 4+5×12 5+⋯+n +2 ×12n +2,两式相减得12T n =3×12 2+12 3+12 4+⋯+12 n +1-n +2 ×12n +2=34+181-12n -1 1-12-n +2 ×12 n +2=1-n +42n +2,则T n =2-n +42n +1,故要使得T n >83,即2-n +42n +1>83,整理得,n +42n +1<-23,当n ∈N *时,n +42n +1>0,所以不存在n ∈N *,使得T n >83.若选择③,依题意,b n =a n +1+12n +1=n +12n,所以T n =2×12+3×12 2+4×12 3+⋯+n +1 ×12n,故12T n =2×12 2+3×12 3+4×12 4+⋯+n +1 ×12 n +1,两式相减得:12T n =1+12 2+12 3+⋯+12 n -n +1 ×12 n +1=1+141-12n -1 1-12-n +1 ×12 n +1=32-n +32n +1,则T n =3-n +32n ,令T n =3-n +32n >83,则n +32n <13,即2n -3n -9>0,令c n =2n -3n -9,则c 1=-10<0,当n ≥2时,c n +1-c n =2n +1-3n +1 -9-2n -3n -9 =2n -3>0,又c 4<0,c 5>0,故c 2<c 3<c 4<0<c 5<c 6⋯,综上,使得T n >83成立的最小正整数n 的值为5.25.(2022·河南省上蔡第一高级中学高三阶段练习(文))记各项均为正数的等比数列a n 的前n 项和是S n ,已S n =a n +43a n +1-4n ∈N * .(1)求a n 的通项公式;(2)求数列na n 的前n 项和T n .【解析】(1)设等比数列a n 的公比为q .因为S n =a n +43a n +1-4n ∈N * ,所以当n =1时,a 1=a 1+43a 2-4,解得a 2=3;当n =2时,a 1+a 2=a 2+43a 3-4,则a 1=43a 3-4.因为a n 是等比数列,所以a 1a 3=a 22,即43a 3-4 a 3=9,整理得4a 23-12a 3-27=0,解得a 3=-32(舍去)或a 3=92.所以q =a 3a 2=32,a 1=a 2q=2,所以a n =2×32n -1.(2)由(1)得na n =2n ×32 n -1,所以T n =2×1+2×32+3×32 2+⋯+n -1 × 32 n -2+n ×32 n -1①则32T n =2×1×32+2×32 2+3×32 3+⋯+ n -1 ×32 n -1+n ×32 n ②①-②得-T n 2=2×1+32+32 2+323+⋯+ 32 n -1 -2n ×32 n=2×1-32 n1-32-2n ×32 n =-4+4-2n ×32 n ,所以T n =4n -8 ×32n+8.26.(2022·全国·高三专题练习)设数列{a n }的前n 项和为S n ,a n +1=-S n S n +1n ∈N * ,a 1=1. 求证:数列1S n是等差数列.【解析】∵-S n S n +1=a n +1=S n +1-S n ,S 1=1≠0,则S n ≠0,所以-1=S n +1-S nS n S n +1,有1S n +1-1S n=1,所以数列1S n 是以1为首项,1为公差的等差数列.经典题型九:周期数列27.(2022·上海中学高二期末)数列{x n }满足x n +1=x n -x n -1,n ≥2,n ∈N *,x 1=a ,x 2=b ,则x 2019=_________.【答案】b -a .【解析】由题干中递推公式,可得:x 1=a ,x 2=b ,x 3=x 2-x 1=b -a ,x 4=x 3-x 2=b -a -b =-a ,x 5=x 4-x 3=-a -(b -a )=-b ,x 6=x 5-x 4=-b -(-a )=a -b ,x 7=x 6-x 5=a -b -(-b )=a ,x 8=x 7-x 6=a -(a -b )=b ,x 9=x 8-x 7=b -a ,⋯∴数列{x n }是以6为最小正周期的周期数列.∵2019÷6=336⋯3,∴x 2019=x 3=b -a .故答案为b -a .28.(2022·全国·高三专题练习)数列{a n }满足a 1=2,a 2=11-a 1,若对于大于2的正整数n ,a n =11-a n -1,则a 102=__________.【答案】12【解析】由题意知:a 2=11-2=-1,a 3=11--1 =12,a 4=11-12=2,a 5=11-2=-1,故{a n }是周期为3的周期数列,则a 102=a 3×34=a 3=12.故答案为:12.29.(2022·河南·模拟预测(文))设数列a n 满足a n +1=1+a n 1-a n ,且a 1=12,则a 2022=( )A.-2 B.-13C.12D.3【答案】D【解析】由题意可得:a 2=1+a 11-a 1=1+121-12=3,a 3=1+a 21-a 2=1+31-3=-2,a 4=1+a 31-a 3=1+-2 1--2 =-13,a 5=1+a 41-a 4=1-131+13=12=a 1,据此可得数列a n 是周期为4的周期数列,则a 2022=a 505×4+2=a 2=3.故选:D30.(2022·全国·高三专题练习)设数列a n 的通项公式为a n =-1 n 2n -1 ⋅cos n π2+1n ∈N * ,其前n 项和为S n ,则S 120=( )A.-60 B.-120C.180D.240【答案】D【解析】当n =4k -3,k ∈N *时,cos n π2=0,a 4k -3=1;当n =4k -2,k ∈N *时,cosn π2=-1,a 4k -2=2×4k -2 -1 ×-1 +1=-8k +6;当n =4k -1,k ∈N *时,cos n π2=0,a 4k -1=1;当n =4k ,k ∈N *时,cos n π2=1,a 4k =2×4k -1+1=8k .∴a 4k -3+a 4k -2+a 4k -1+a 4k =1+-8k +6 +1+8k =8,∴S 120=1204×8=240.故选:D 经典题型十:前n 项积型31.(2022·全国·高三专题练习)设数列a n 的前n 项积为T n ,且T n =2-2a n n ∈N * .(1)求证数列1T n 是等差数列;(2)设b n =1-a n 1-a n +1 ,求数列b n 的前n 项和S n .【解析】(1)因为数列a n 的前n 项积为T n ,且T n =2-2a n n ∈N * ,∴当n =1时,T 1=a 1=2-2a 1,则a 1=23,1T 1=32.当n ≥2时,T n =2-2T n T n -1⇒1=2T n -2T n -1,∴1T n -1T n -1=12,所以1T n 是以1T 1=32为首项,12为公差的等差数列;(2)由(1)知数列1T n =n +22,则由T n =2-2a n 得a n =n +1n +2,所以b n =1n +2 n +3=1n +2-1n +3,所以S n =13-14 +14-15 +⋯+1n +2-1n +3 =13-1n +3=n 3n +9.32.(2022·全国·高三专题练习)记T n 为数列a n 的前n 项积,已知1T n +3a n=3,则T 10=( )A.163B.154C.133D.114【答案】C 【解析】n =1,T 1=43,T n =a 1a 2a 3⋯a n ,则a n =T n T n -1(n ≥2),代入1T n +3a n =3,化简得:T n -T n -1=13,则T n =n +33,T 10=133.故选:C .33.(2022·全国·高三专题练习)记S n 为数列a n 的前n 项和,b n 为数列S n 的前n 项积,已知2S n +b n =2,则a 9=___________.【答案】1110【解析】因为b n =S 1∙S 2∙⋯S n ,所以b 1=S 1=a 1,b n -1=S 1∙S 2∙⋯S n -1(n ≥2),S n =b nb n -1(n ≥2), 又因为2S n +b n =2,当n =1时,得 a 1=23,所以b 1=S 1=a 1=23, 当n ≥2时, 2×b nb n -1+b n =2,即2b n =2b n -1+1,所以2b n 是等差数列,首项为2b 1=3,公差d =1, 所以2b n=3+(n -1)×1=n +2,所以b n =2n +2,满足 b 1=23,故b n =2n +2,即S 1∙S 2∙⋯S n =2n +2,所以S 1∙S 2∙⋯S n -1=2n +1(n ≥2),两式相除得:S n =n +1n +2,所以S n -1=nn +1(n ≥2),所以a n =S n -S n -1=n +1n +2-n n +1=1(n +1)(n +2),所以a 9=111×10=1110.故答案为:1110.经典题型十一:“和”型求通项34.(2022·山西·太原市外国语学校高三开学考试)在数列a n 中,a 1=1,且n ≥2,a 1+12a 2+13a 3+⋯+1n -1a n -1=a n .(1)求a n 的通项公式;(2)若b n =1a n a n +1,且数列b n 的前项n 和为S n ,证明:S n <3.【解析】(1)因为n ≥2,a 1+12a 2+13a 3+⋯+1n -1a n -1=a n ,所以当n ≥3,a 1+12a 2+13a 3+⋯+1n -2a n -2=a n -1,两式相减,得1n -1a n -1=a n -a n -1,即nn -1a n -1=a n ,当n =2时,a 2=a 1=1,所以当n ≥3时,a n a n -1=nn -1,所以当n ≥3时,a n =a n a n -1×a n -1a n -2×⋯×a 3a 2×a 2=n n -1×n -1n -2×⋯×32×1=n2,当n =2时,上式成立;当n =1时,上式不成立,所以a n =1,n =1n2,n ≥2.(2)证明:由(1)知b n =1,n =14n (n +1),n ≥2当n ≥2时,b n =4n (n +1)=41n -1n +1 ,所以当n =1,S 1=1<3;当n ≥2时,S n =1+412-13 +413-14 +⋯+41n -1n +1=1+412-13+13-14+⋯+1n -1n +1 =1+412-1n +1 =3-4n +1<3.综上,S n <3.35.(2022·全国·高三专题练习)数列a n 满足a 1∈Z ,a n +1+a n =2n +3,且其前n 项和为S n .若S 13=a m ,则正整数m =( )A.99 B.103C.107D.198【答案】B【解析】由a n +1+a n =2n +3得a n +1-(n +1)-1=-a n -n -1 ,∴a n-n-1为等比数列,∴a n-n-1=(-1)n-1a1-2,∴a n=(-1)n-1a1-2+n+1,a m=(-1)m-1a1-2+m+1,∴S13=a1+a2+a3+⋯+a12+a13=a1+2×(2+4+⋯+12)+3×6=a1+102,①m为奇数时,a1-2+m+1=a1+102,m=103;②m为偶数时,-a1-2+m+1=a1+102,m=2a1+99,∵a1∈Z,m=2a1+99只能为奇数,∴m为偶数时,无解,综上所述,m=103.故选:B.36.(2022·黑龙江·哈师大附中高三阶段练习(理))已知数列a n的前n项和为S n,若S n+1+S n=2n2n∈N*,且a1≠0,a10=28,则a1的值为A.-8B.6C.-5D.4【答案】C【解析】对于S n+1+S n=2n2,当n=1时有S2+S1=2,即a2-2=-2a1∵S n+1+S n=2n2,∴S n+S n-1=2(n-1)2,(n≥2)两式相减得:a n+1+a n=4n-2a n+1-2n=-a n-2(n-1),(n≥2)由a1≠0可得a2-2=-2a1≠0,∴a n+1-2na n-2(n-1)=-1(n≥2)即a n-2(n-1)从第二项起是等比数列,所以a n-2(n-1)=a2-2(-1)n-2,即a n=a2-2(-1)n-2+2(n-1),则a10=a2-2+18=28,故a2=12,由a2-2=-2a1可得a1=-5,故选C.经典题型十二:正负相间讨论、奇偶讨论型37.(2022·河南·高二阶段练习(文))数列a n满足a1=1,a n+a n+1=3n n∈N*,则a2018=__________ _.【答案】3026【解析】∵a n+a n+1=3n,∴a n+1+a n+2=3n+1,得a n+2-a n=3,∵a1=1,a n+a n+1=3n n∈N*,∴a1+ a2=3⇒a2=2,所以a n的偶数项构成等差数列,首项为2,公差为3,∴a2018=a2+1008×3=2+3024= 3026.故答案为:302638.(2022·全国·高三专题练习)已知数列a n中,a1=1,a2=2,a n+2=-1n+1a n+2,则a18a19=( )A.3B.113C.213D.219【答案】D【解析】当n为奇数时,a n+2-a n=2,即数列a n中的奇数项依次构成首项为1,公差为2的等差数列,所以,a19=1+10-1×2=19,当n为偶数时,a n+2+a n=2,则a n+4+a n+2=2,两式相减得a n+4-a n=0,所以,a18=a4×4+2=a2=2,故a18a19=219,故选:D.39.(2022·广东·高三开学考试)已知数列a n满足a1=3,a2=2,a n+2=a n-1,n=2k-1 3a n,n=2k .(1)求数列a n的通项公式;(2)求数列a n的前2n项的和S2n.【解析】(1)当n为奇数时,a n+2-a n=-1,所以所有奇数项构成以a1=3为首项,公差为-1的等差数列,所以a n=3+(n-1)⋅-12=7-n2,当n为偶数时,a n+2=3a n,所以所有偶数项构成以a2=2为首项,公比为3的等比数列,所以a n=2×(3)n-2=2×3n-22,所以a n=7-n2,n=2k-1 2×3n-22,n=2k ;(2)S2n=a1+a2+⋯+a2n=a1+a3+a5+⋯+a2n-1+a2+a4+⋯+a2n=3n+(-1)⋅n(n-1)2+21-3n1-3=(7-n)n2+3n-1=-12n2+72n+3n-1.40.数列{a n}满足a n+2+(-1)n+1a n=3n-1,前16项和为540,则a2= .【解析】解:因为数列{a n}满足a n+2+(-1)n+1a n=3n-1,当n为奇数时,a n+2+a n=3n-1,所以a3+a1=2,a7+a5=14,a11+a9=26,a15+a13=38,则a1+a3+a5+a7+a9+a11+a13+a15=80,当n为偶数时,a n+2-a n=3n-1,所以a4-a2=5,a6-a4=11,a8-a6=17,a10-a8=23,a12-a10=29,a14-a12=35,a16-a14=41,故a4=5+a2,a6=16+a2,a8=33+a2,a10=56+a2,a12=85+a2,a14=120+a2,a16=161+a2,因为前16项和为540,所以a2+a4+a6+a8+a10+a12+a14+a16=540-80=460,所以8a2+476=460,解得a2=-2.故答案为:-2.41.(2022•夏津县校级开学)数列{a n}满足a n+2+(-1)n a n=3n-1,前16项和为508,则a1= .【解析】解:由a n+2+(-1)n a n=3n-1,当n为奇数时,有a n+2-a n=3n-1,可得a n-a n-2=3(n-2)-1,⋯a3-a1=3⋅1-1,累加可得a n-a1=3[1+3+⋯+(n-2)]-n-12=(n-1)(3n-5)4;当n为偶数时,a n+2+a n=3n-1,可得a4+a2=5,a8+a6=17,a12+a10=29,a16+a14=41.可得a2+a4+⋯+a16=92.∴a 1+a 3+⋯+a 15=416.∴8a 1+14(0+8+40+96+176+280+408+560)=416,∴8a 1=24,即a 1=3.故答案为:3.经典题型十三:因式分解型求通项42.(2022秋•安徽月考)已知正项数列{a n }满足:a 1=a ,a 2n +1-4a 2n +a n +1-2a n =0,n ∈N *.(Ⅰ)判断数列{a n }是否是等比数列,并说明理由;(Ⅱ)若a =2,设a n =b n -n .n ∈N *,求数列{b n }的前n 项和S n .【解析】解:(Ⅰ)∵a 2n +1-4a 2n +a n +1-2a n =0,∴(a n +1-2a n )(a n +1+2a n +1)=0,又∵数列{a n }为正项数列,∴a n +1=2a n ,∴①当a =0时,数列{a n }不是等比数列;②当a ≠0时,an +1a n=2,此时数列{a n }是首项为a ,公比为2的等比数列.(Ⅱ)由(Ⅰ)可知:a n =2n ,∴b n =2n +n ,∴S n =(21+22+⋯+2n)+(1+2+⋯+n )=2(1-2n )1-2+n (1+n )2=2n +1-2+n (n +1)2.43.(2022•怀化模拟)已知正项数列{a n }满足a 1=1,2a 2n -a n -1a n -6a 2n -1=0(n ≥2,n ∈N *)设b n =log 2a n .(1)求b 1,b 2b 3;(2)判断数列{b n }是否为等差数列,并说明理由;(3){b n }的通项公式,并求其前n 项和为S n .【解析】解:(1)a 1=1,2a 2n -a n -1a n -6a 2n -1=0,a n >0,可得(2a n +3a n -1)(a n -2a n -1)=0,则a n =2a n -1,数列{a n }为首项为1,公比为2的等比数列,可得a n =2n -1;b n =log 2a n =n -1,b 1=0,b 2b 3=1×2=2;(2)数列{b n }为等差数列,理由:b n +1-b n =n -(n -1)=1,则数列{b n }为首项为0,公差为1的等差数列;(3)b n =log 2a n =log 22n -1=n -1,前n 项和为S n =12n (0+n -1)=n 2-n2.44.(2022秋•仓山区校级月考)已知正项数列{a n }满足a 1=2且(n +1)a 2n +a n a n +1-na 2n +1=0(n ∈N *)(Ⅰ)证明数列{a n }为等差数列;(Ⅱ)若记b n =4a n a n +1,求数列{b n }的前n 项和S n .【解析】(I )证明:由(n +1)a 2n +a n a n +1-na 2n +1=0(n ∈N *),变形得:(a n +a n +1)[(n +1)a n -na n +1]=0,由于{a n }为正项数列,∴a n +1a n =n +1n,利用累乘法得:a n =2n (n ∈N *)从而得知:数列{a n }是以2为首项,以2为公差的等差数列.(Ⅱ)解:由(Ⅰ)知:b n=42n∙2(n+1)=1n(n+1)=1n-1n+1,从而S n=b1+b2+⋯+b n=1-1 2+12-13+13-15+⋯+1n-1-1n+1=1-1n+1=n n+1.经典题型十四:其他几类特殊数列求通项45.(2022·全国·高三专题练习)在数列{a n}中,已知各项都为正数的数列{a n}满足5a n+2+4a n+1-a n=0.(1)证明数列{a n+a n+1}为等比数列;(2)若a1=15,a2=125,求{a n}的通项公式.【解析】(1)各项都为正数的数列{a n}满足5a n+2+4a n+1-a n=0,得a n+1+a n+2=15(a n+1+a n),即a n+1+a n+2 a n+a n+1=15所以数列{a n+a n+1}是公比为15的等比数列;(2)因为a1=15,a2=125,所以a1+a2=625,由(1)知数列{a n+a n+1}是首项为625,公比为15的等比数列,所以a n+a n+1=625×15n-1,于是a n+1-15n+1=-an-15 n=(-1)n a1-15,又因为a1-15=0,所以a n-15 n=0,即a n=15 n.46.(2022·湖北·天门市教育科学研究院模拟预测)已知数列a n满足a1=1,a2=6,且a n+1=4a n-4a n-1, n≥2,n∈N*.(1)证明数列a n+1-2a n是等比数列,并求数列a n的通项公式;(2)求数列a n的前n项和S n.【解析】(1)因为a n+1=4a n-4a n-1,n≥2,n∈N*所以a n+1-2a n=2a n-4a n-1=2(a n-2a n-1)又因为a2-2a1=4所以a n+1-2a n是以4为首项,2为公比的等比数列.所以a n+1-2a n=4×2n-1=2n+1变形得a n+12n+1-a n2n=1所以a n2n是以a12=12为首项,1为公差的等差数列所以a n2n=12+n-1=n-12,所以a n=(2n-1)2n-1(2)因为T n=1×20+3×21+5×22+⋅⋅⋅+(2n-1)2n-1⋯①所以2T n=1×21+3×22+5×23+⋅⋅⋅+(2n-1)2n⋯②①-②得:-T n=1+22+23+⋅⋅⋅+2n-1-(2n-1)2n=1+22(1-2n-1)1-2-(2n-1)2n所以T n=(2n-1)2n-2n+1+3=(2n-3)2n+347.(2022·内蒙古·赤峰红旗中学松山分校模拟预测(理))设数列{a n}的前n项和为S n,满足2S n=a2n+1a n n∈N*,则下列说法正确的是( )A.a2021⋅a2022<1B.a2021⋅a2022>1C.a2022<-22022D.a2022>22022【答案】A【解析】因为数列{a n}的前n项和为S n,满足2S n=a2n+1a n n∈N*,。
数列题型总结
题型1 已知数列前几项求通项公式1. 数列的通项 .2. 数列的通项 .3. 数列的通项 .4.写出下面数列的一个通项公式,使它的前4项分别是下列各数:5.观察下面数列的特点, 写出每个数列的一个通项公式:6. 写出下面数列的一个通项公式:7. 根据下列5个图形及相应点的个数的变化规律, 猜测第个图中有__n2-n+1_个点.(1) (2) (3) (4) (5)相关的高考试题有:(2004年全国卷)已知数列{an}, 满足a1=1, an=a1+2a2+3a3+…+(n -1)an -1(n ≥2), 则{an}的通项分析:由已知, .由1321)1(32--+++=n n a n a a a a 生成23211)2(32---+++=n n a n a a a a两式相减得: , 即为商型的, 用累乘法可得(2006年广东卷)在德国不来梅举行的第48届世乒赛期间, 某商店橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品, 其中第1堆只有1层, 就一个球;第堆最底层(第一层)分别按图4所示方式固定摆放, 从第二层开始, 每层的小球自然垒放在下一层之上, 第堆第层就放一个乒乓球, 以表示第堆的乒乓球总数, 则;(答案用表示).2222221314151(1),,,(;234151)1n n a n +----=+-1111(2),,,.122334411)()5(1n n a n n --⨯⨯⨯⨯=-+((1)(65)1)1,7,13,19,;n n a n =----(2)7,77,777,7777,7777(101)977,;n n a =-(3)5,0,5,0,5,0,5,0,.5sin 2n n a π--=31313(1)1,,,,,1(1),24562;3n n a n-+-=-⋅-31537(2),,,,,.5211717232n n a n +=+题型2 由a n与S n的关系求通项公式= =.一般已知条件中含an与Sn的关系的数列题均可考虑用上述公式.1. 已知数列的前项和, 则n .2.已知数列的前项和, 则.3:(04年浙江)设数列{an}的前项的和Sn=(an-1)(n).(Ⅰ)求a1;a2;(Ⅱ)求证数列{an}为等比数列.4. 数列{an}的前n项.Sn=3·2n-3,求数列的通项公式.5: 设数列{an}的前n项和为Sn=2n2+3n+2,求通项an的表达式,并指出此数列是否为等差数列..6:已知数列{an}的前n项和为Sn, a1=2, 且nan+1=Sn+n(n+1), 求an.7. (2004全国卷)已知数列{an}的前n项和Sn满足:Sn=2a.+(-1)n,n≥1.(Ⅰ)写出求数列{a n}的前3项a1,a2,a3;(Ⅱ)求数列{a n}的通项公式;(Ⅲ)证明: 对任意的整数m>4, 有.8..(2006年湖北卷)已知二次函数的图像经过坐标原点, 其导函数为, 数列的前n项和为, 点均在函数的图像上.a的通项公式;(Ⅰ)求数列{}n(Ⅱ)设, 是数列的前n项和, 求使得对所有都成立的最小正整数m.点评: 本小题考查二次函数、等差数列、数列求和、不等式等基础知识和基本的运算技能, 考查分析问题的能力和推理能力.9.(2006年安徽卷)数列的前项和为,已知.(Ⅰ)写出与的递推关系式, 并求关于的表达式;(Ⅱ)设, 求数列的前项和.题型3 已知数列递推公式求通项公式1. 已知数列的首项, 且, 则3n-2 .2. 已知数列的首项, 且, 则.3. 已知数列的, 且, 则 1 .4. 已知数列的, 且,则n .一、由等差, 等比演化而来的“差型”, “商型”递推关系析: ①等差数列:生成:, , …,累加: =由此推广成差型递推关系:累加:= , 于是只要可以求和就行.题组一:数列中, , 求的通项公式 .变式1: 数列中, , 求的通项公式 . 析: ②等比数列:生成:, , …,累乘: =由此推广成商型递推关系:累乘:题组二、已知数列的首项, 且, 则 .变式1: 已知数列的首项, 且, 则 .变式2:数列中, , 求的通项公式.例1、 变式3: 数列是首项为1的正项数列,例2、 且, 求的通项公式.若数列满足: .求证: ①; ②是偶数 .例2.已知数列,且. . 其中k=1,2,3,…….(I )求;(II )求.an}的通项公式.二.由差型, 商型类比出来的和型, 积型:即)(),(11n g a a n f a a n n n n =⋅=+++和例如: 数列中相邻两项, 是方程的两根, 已知, 求的值.分析: 由题意: + ①生成: + ②②—①: .所以该数列的所有的奇数项成等差, 所有的偶数项也成等差.其基本思路是, 生成, 相减;与“差型”的生成, 相加的思路刚好相呼应. 到这里本题的解决就不在话下了.特别的, 若+, 则.即该数列的所有的奇数项均相等, 所有的偶数项也相等.若 n n n a a 21=⋅+ ①则 1212+++=⋅n n n a a ②②÷①: .所以该数列的所有的奇数项成等比, 所有的偶数项也成等比.其基本思路是, 生成, 相除;与“商型”的生成, 相乘的思路刚好相呼应.特别地, 若, 则.即该数列的所有的奇数项均相等, 所有的偶数项也相等.三. 可以一次变形后转化为差型, 商型的1.)(1n f pa a n n +=-分变式2: 数列中, , 求的通项公式 .例如: 设是常数, 且, ().证明: .分析: 这道题目是证明型的, 最简单的方法当然要数数学归纳法, 现在我们考虑用推导的方法来处理的三种方法:方法(1):构造公比为—2的等比数列, 用待定系数法可知.方法(2):构造差型数列, 即两边同时除以 得:, 从而可以用累加的方法处理. 方法(3): 直接用迭代的方法处理:12221221133)2()2(3)32(232--------+-+-=++--=+-=n n n n n n n n n a a a a12233233)2()32()2(----+-++--=n n n n a=+-+-+-=----12323333)2(3)2()2(n n n n a1232231201033)2(3)2(3)2(3)2(3)2()2(------+-+-+-+-+-+-=n n n n n n n a 52)1(3)2(10nn n na ⋅-++-=-. 说明: ①当时, 上述三种方法都可以用;②当时, 若用方法1, 构造的等比数列应该是 而用其他两种方法做则都比较难. ③用迭代法关键是找出规律, 除含外的其它式子, 常常是一个等比数列的求和问题.2.q n n a p a )(1-=型例如: 已知, 首项为, 求. (2003年江苏卷22题改编)方法1: 两端取常用对数, 得,令, 则, 转化如上面类型的.特别的, a=1, 则转化为一个等比数列.方法2: 直接用迭代法:==⋅=⋅=+--222122221)1()1(11a a a a a a a a n n n 21112222111()()n n n a a a a a---+++==. 四. 型的利用转化为型, 或型即混合型的转化为纯粹型的.例如: 已知数列的前n 项和Sn 满足(Ⅰ)写出数列{}n a 的前3项;,,321a a a(Ⅱ)求数列的通项公式.分析: -①由,12111-==a S a 得.11=a-② 由得, , 得 -③由得, , 得 -④用1-n 代n 得 111)1(2----+=n n n a S -⑤①—⑤: 即n n n a a )1(221--=---⑥ []n n n n n n n n n a a a a )1(2)1(22)1(2)1(222)1(221222121----=----=--=-----n n n n a )1(2)1(2)1(2222111------==--- []12)1(232---+=n n -⑦ 又如: 数列的前n 项和记为, 已知证明: 数列是等比数列方法1∵,2,111n n n n n S nn a S S a +=-=+++∴ ),()2(1n n n S S n S n -=++ 整理得 ,)1(21n n S n nS +=+所以 .211n S n S n n =++ 故}{nS n 是以2为公比的等比数列. 方法2: 事实上, 我们也可以转化为, 为一个商型的递推关系,由=.成与迭代是递推关系的最重要特征. 递推关系一般说来, 是对任意自然数或大于等于2的自然数总成立的一个等式, 自然数n 可以取1, 2, 3…n, n+1等等, 这样就可以衍生出很多的等式. 这就是所谓的生成性. 对于生成出来的等式, 我们往往选一些有用的进行处理. 比如相加, 相减, 相乘, 相除等, 但用的最多的还是由后往前一次又一次的代入, 直到已知项. 这种方法就叫迭代. 上面的很多例题都可以体现这一点. 这种很朴素的思想, 对于相关的其他数列问题也是非常有效的.例题练习1.(2004年全国卷)已知数列{an}, 满足a1=1, an=a1+2a2+3a3+…+(n -1)an -1(n ≥2), 则{an}的通项2.已知数列中, 是其前项和, 并且,(Ⅰ)设数列, 求证: 数列是等比数列;(Ⅱ)设数列, 求证: 数列是等差数列;(Ⅲ)求数列的通项公式及前项和.3.(04年重庆)设a1=1,a2=,an+2=an+1-an (n=1,2,---),令bn=an+1-an (n=1,2---). (Ⅰ)求数列{b n }的通项公式;(Ⅱ)求数列{nan}的前n 项的和.4.(04年全国)已知数列{an}中, a1=1, a2k=a2k-1+(-1)K,a2k+1=a2k+3k,其中k=1,2,3, ….(I )求a 3,a 5;(II )求{AN }的通项公式.5.(2004年全国)已知数列, 且a2k=a2k -1+(-1)K, a2k+1=a2k+3k, 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ AN }的通项公式.6.(2004年天津理)已知定义在R 上的函数和数列满足下列条件:1211),...,4,3,2)((,a a n a f a a a n n ≠===-,, 其中a 为常数, k 为非零常数.(I )令, 证明数列是等比数列;(Ⅱ)求数列}{n a 的通项公式;(Ⅲ)当时, 求.7.(2006年重庆卷)在数列{an }中, 若a1=1,an+1=2an+3 (n ≥1),则该数列的通项an=_________.8.(2006年福建卷)已知数列{a n }满足a 1=1,a 1+n =2a n +1(n ∈N *)(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若数列{b n }满足4k1-14k2-1…4k -1=(a n +1)km (n ∈N *),证明:{b n }是等差数列; 当然, 还有一些转化的方法和技巧, 如基本的式的变换, 象因式分解, 取倒数等还是(Ⅲ)证明:(n∈N*).。
数列题型总结
数列题型总结数列是数学中常见的一种数学对象,它是按照一定规律排列的一组数字或对象的有序集合。
数列题型是数学考试中常见的题目类型,要求学生根据给定的规律或条件推导出数列的某些性质,或根据数列的性质进行计算和分析。
下面将对数列题型进行总结,主要包括等差数列、等比数列以及特殊数列等内容。
一、等差数列等差数列是指数列中相邻的两项之差都相等的数列。
设等差数列的通项公式为an=a1+(n-1)d(其中,a1为首项,d为公差,n为项数)。
1. 求首项、公差和项数:根据已知的指定条件求解首项、公差和项数。
常用的方法有根据已知的前几项求解首项与公差,根据已知的前几项求解项数,以及根据已知的前几项和项数求解首项与公差等。
2. 求和问题:求等差数列的前n项和或满足某个条件的部分和。
常用的方法有计算法、差分法和辅助数列法等。
3. 推导公式问题:根据已知的等差数列的性质,推导出其他关于公式的性质。
例如,根据等差数列的性质,可以推导出等差数列的奇数项和与偶数项和之间的关系。
二、等比数列等比数列是指数列中相邻的两项之比都相等的数列。
设等比数列的通项公式为an=a1q^(n-1)(其中,a1为首项,q为公比,n为项数)。
1. 求首项、公比和项数:根据已知的指定条件求解首项、公比和项数。
常用的方法有根据已知的前几项求解首项与公比,根据已知的前几项求解项数,以及根据已知的前几项和项数求解首项与公比等。
2. 求和问题:求等比数列的前n项和或满足某个条件的部分和。
常用的方法有计算法、差分法和辅助数列法等。
3. 递归问题:根据已知等比数列中的递推关系式,求解特定项的值。
常用的方法是使用递归关系式和逐步代入的方式求解。
三、特殊数列1. 斐波那契数列:斐波那契数列是指从1,1开始,每一项都是前两项之和的数列。
该数列的通项公式为an=an-1+an-2,其中,a1=1,a2=1。
斐波那契数列在自然界和人文领域中有着广泛的应用。
2. 等差递增数列:等差递增数列是指数列中相邻的两项之差递增的数列。
(完整版)数列题型全归纳(附知识点)
数列一、数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。
记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。
例:判断下列各组元素能否构成数列 (1)a, -3, -1, 1, b, 5, 7, 9;(2)2010年各省参加高考的考生人数。
(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。
例如:①:1 ,2 ,3 ,4, 5 ,…②:514131211,,,,…数列①的通项公式是n a = n (n ≤7,n N +∈), 数列②的通项公式是n a = 1n(n N +∈)。
说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。
例如,n a = (1)n-=1,21()1,2n k k Z n k-=-⎧∈⎨+=⎩;③不是每个数列都有通项公式。
例如,1,1.4,1.41,1.414,……(3)数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。
从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。
例:画出数列12+=n a n 的图像.(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。
数列常见题型总结计划经典超级经典
一、数列的定义与性质1.数列的定义:数列是由一系列按照一定顺序排列的数构成的序列。
2.数列的性质:(1)有限数列:数列中的项数是有限的。
(2)无限数列:数列中的项数是无限的。
(3)严格递增数列:数列中的每一项都小于它后面的项。
(4)严格递减数列:数列中的每一项都大于它后面的项。
(5)等差数列:数列中相邻两项的差是常数。
(6)等比数列:数列中相邻两项的比是常数。
二、数列的通项公式与求和公式1.数列的通项公式:数列的第n项与序号n之间的关系式。
2.数列的求和公式:数列前n项的和与序号n之间的关系式。
(1)等差数列的求和公式:$S_n=\frac{n}{2}[2a+(n-1)d]$ (2)等比数列的求和公式:$S_n=\frac{a_1(1q^n)}{1q}$三、数列的常见题型及解题方法1.求数列的通项公式(1)等差数列:已知前几项或公差,求通项公式。
(2)等比数列:已知前几项或公比,求通项公式。
(3)其他数列:根据题意,找出数列的规律,求通项公式。
2.求数列的前n项和(1)等差数列:利用求和公式求解。
(2)等比数列:利用求和公式求解。
(3)其他数列:根据题意,找出数列的规律,求和。
3.数列的单调性(1)判断数列的单调递增或单调递减。
(2)证明数列的单调性。
4.数列的周期性(1)判断数列的周期性。
(2)求数列的周期。
5.数列的极限(1)求数列的极限。
(2)判断数列的收敛性。
6.数列的错位相减法(1)应用错位相减法求数列的和。
(2)证明错位相减法的正确性。
四、经典题目解析1.题目:已知数列$\{a_n\}$是等差数列,且$a_1=2,a_6=10$,求数列的通项公式。
解析:根据等差数列的性质,可知$a_6=a_1+5d$,代入已知条件,解得$d=2$,进而求得通项公式$a_n=2n$。
2.题目:已知数列$\{b_n\}$是等比数列,且$b_1=2,b_3=8$,求数列的通项公式。
解析:根据等比数列的性质,可知$b_3=b_1\cdotq^2$,代入已知条件,解得$q=2$,进而求得通项公式$b_n=2^n$。
数列的19种经典题型及答案
数列的19种经典题型及答案
1.求n项和:Sn=n*(a1+an)/2
2.求公差为d的等差数列前n项和:Sn=n*(2a1+(n-1)*d)/2
3.求公比为q的等比数列的前n项和:Sn=a1*(1-q^n)/(1-q)
4.求公比为q的等比数列的通项公式:an=a1*q^(n-1)
5.求等比数列前n项和与n项均值的关系:Sn=n*a1*q^(n-1)/(1-q).(当q>1时Sn>n*a1/2,当q<1时Sn<n*a1/2)
6.求等差数列前n项和与n项均值的关系:Sn=n*(a1+an)/2(Sn>n*a1/2)
7.求等差数列的通项公式:an=a1+(n-1)*d
8.求等比数列的前n项积:Pn=a1*q^(1+2+...+(n-1))=a1*q^(n(n-1)/2)
9.求等差数列的前n项积:Pn=(a1a2)*[(an-d)-(a1-d)]/d^2
10.求公差为d的等差数列的通项公式:an=a1+(n-1)*d
11.求等差数列的第n项:an=a1+(n-1)*d
12.求n项均值:a1+an/2
13.求前n项均值:3a1+3an/4
14.求连续项和:Sn=n/2*(2a1+(n-1)*d)
15.求联立等比数列之积:Pn=a1*q^n
16.求互差等比数列之积:Pn=a1a2...an=a1q^(2+4+...+(2n-2))
17.求满足条件的等差数列最小项:a1=a+l*d
18.求满足条件的等比数列最小项:a1=a*q^k
19.求满足条件的等比数列最大项:an=a*q^(n-1-k)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学《数列》常见、常考题型总结题型一数列通项公式的求法1.前n 项和法(知n S 求n a )⎩⎨⎧-=-11n n n S S S a )2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 变式:已知数列}{n a 的前n 项和n n S n 122-=,求数列|}{|n a 的前n 项和n T 练习:1、若数列}{n a 的前n 项和nn S 2=,求该数列的通项公式。
答案:⎩⎨⎧=-122n n a )2()1(≥=n n2、若数列}{n a 的前n 项和323-=n n a S ,求该数列的通项公式。
答案:n n a 32⨯=3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=,求数列}{n a 的通项公式。
4.n S 为{n a }的前n 项和,n S =3(n a -1),求n a (n ∈N +)5、设数列{}n a 满足2*12333()3n n a a a a n N +++=∈n-1…+3,求数列{}n a 的通项公式(作差法)2.形如)(1n f a a n n =-+型(累加法)(1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法.例1.已知数列{a n }满足)2(3,1111≥+==--n a a a n n n ,证明213-=n n a例2.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 例3.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.3.形如)(1n f a a nn =+型(累乘法) (1)当f(n)为常数,即:q a ann =+1(其中q 是不为0的常数),此数列为等比且n a =11-⋅n q a .(2)当f(n)为n 的函数时,用累乘法.例1、在数列}{n a 中111,1-+==n n a n n a a )2(≥n ,求数列的通项公式。
答案:12+=n a n 练习:1、在数列}{n a 中1111,1-+-==n n a n n a a )2(≥n ,求n n S a 与。
答案:)1(2+=n n a n2、求数列)2(1232,111≥+-==-n a n n a a n n 的通项公式。
4.形如sra pa a n n n +=--11型(取倒数法)例1.已知数列{}n a 中,21=a ,)2(1211≥+=--n a a a n n n ,求通项公式n a练习:1、若数列}{n a 中,11=a ,131+=+n n n a a a ,求通项公式n a .答案:231-=n a n2、若数列}{n a 中,11=a ,112--=-n n n n a a a a ,求通项公式n a .答案:121-=n a n5.形如0(,1≠+=+c d ca a n n ,其中a a =1)型(构造新的等比数列)(1)若c=1时,数列{n a }为等差数列;(2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造辅助数列来求.方法如下:设)(1A a c A a n n +=++,利用待定系数法求出A例1.已知数列}{n a 中,,2121,211+==+n n a a a 求通项n a .练习:1、若数列}{n a 中,21=a ,121-=+n n a a ,求通项公式n a 。
答案:121+=-n n a2、若数列}{n a 中,11=a ,1321+=+n n a a ,求通项公式n a 。
答案:1)32(23-⨯-=n n a6.形如)(1n f pa a n n +=+型(构造新的等比数列)(1)若b kn n f +=)(一次函数(k,b 是常数,且0≠k ),则后面待定系数法也用一次函数。
例题.在数列{}n a 中,231=a ,3621-+=-n a a n n ,求通项n a .解:原递推式可化为b n k a b kn a n n +-+=++-)1()(21 比较系数可得:k=-6,b=9,上式即为12-=n n b b所以{}n b 是一个等比数列,首项299611=+-=n a b ,公比为21. 1)21(29-=∴n n b 即:n n n a )21(996⋅=+-,故96)21(9-+⋅=n a n n .练习:1、已知数列{}n a 中,31=a ,2431-+=+n a a n n ,求通项公式n a(2)若n q n f =)((其中q 是常数,且n ≠0,1) ①若p=1时,即:n n n q a a +=+1,累加即可②若1≠p 时,即:n n n q a p a +⋅=+1,后面的待定系数法也用指数形式。
两边同除以1+n q .即:q q a q p qa n n n n 111+⋅=++, 令nn n qa b =,则可化为q b q p b n n 11+⋅=+.然后转化为类型5来解, 例1.在数列{}n a 中,521-=a ,且)(3211N n a a n n n ∈+-=--.求通项公式n a1、已知数列{}n a 中,211=a ,n n n a a )21(21+=-,求通项公式n a 。
答案:121++=n n n a2、已知数列{}n a 中,11=a ,n n n a a 2331⋅+=+,求通项公式n a 。
答案:n n n a 23371⋅-⋅=- 题型二根据数列的性质求解(整体思想)1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ;2、设n S 、n T 分别是等差数列{}n a 、{}n a 的前n 项和,327++=n n T S n n ,则=55b a . 3、设n S 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则() 5、在正项等比数列{}n a 中,153537225a a a a a a ++=,则35a a +=_______。
6、已知n S 为等比数列{}n a 前n 项和,54=n S ,602=n S ,则=n S 3. 7、在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为() 8、在等比数列中,已知910(0)a a a a +=≠,1920a ab +=,则99100a a +=. 题型三:证明数列是等差或等比数列 A)证明数列等差例1、已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2),a 1=21.求证:{nS 1}是等差数列; B )证明数列等比例1、已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈ ⑴证明:数列{}1n n a a +-是等比数列;⑵求数列{}n a 的通项公式; 题型四:求数列的前n 项和 基本方法:A )公式法,B )分组求和法1、求数列n {223}n +-的前n 项和n S .2.)12()1(7531--+⋯++-+-=n S nn3.若数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…+a 10=( ) A .15B .12C .-12D .-154.求数列1,2+21,3+41,4+81,…,121-+n n 5.已知数列{a n }是3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前n 项和Sn .C )裂项相消法,数列的常见拆项有:1111()()n n k k n n k =-++;n n n n -+=++111;例1、求和:S =1+n++++++++++ΛΛ32113211211 例2、求和:nn +++++++++11341231121Λ.D )倒序相加法,例、设221)(xx x f +=,求:).2010()2009()2()()()()(21312009120101f f f f f f f ++++++++ΛΛ E )错位相减法,1、若数列{}n a 的通项n n n a 3)12(⋅-=,求此数列的前n 项和n S .2.21123(0)n n S x x nx x -=++++≠L (将分为1=x 和1≠x 两种情况考虑)题型五:数列单调性最值问题例1、数列{}n a 中,492-=n a n ,当数列{}n a 的前n 项和n S 取得最小值时,=n .例2、已知n S 为等差数列{}n a 的前n 项和,.16,2541==a a 当n 为何值时,n S 取得最大值; 例3、设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N .(Ⅰ)设3n n n b S =-,求数列{}n b 的通项公式;(Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围.题型六:总结规律题 1.已知数列{}n a 满足),2(525*11N n n a a a n n n ∈≥--=--,且{}n a 前2014项的和为403,则数列{}1+⋅n n a a 的前2014项的和为?2.数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为? 常见练习1.方程2640x x -+=的两根的等比中项是()A .3B .2±C ..22、已知等比数列{}n a 的前三项依次为1a -,1a +,4a +,则n a =A .342n⎛⎫⋅ ⎪⎝⎭B .243n⎛⎫⋅ ⎪⎝⎭C .1342n -⎛⎫⋅ ⎪⎝⎭D .1243n -⎛⎫⋅ ⎪⎝⎭3.一个有限项的等差数列,前4项之和为40,最后4项之和是80,所有项之和是210,则此数列的项数为() A .12B .14C .16D .184.{a n }是等差数列,10110,0S S ><,则使0n a <的最小的n 值是()A .5B .6C .7D .85.若数列22331,2cos ,2cos ,2cos ,,θθθL L 前100项之和为0,则θ的值为()()3k k Z ππ±∈2()3k k Z ππ±∈22()3k k Z ππ±∈以上的答案均不对6.设2a =3,2b =6,2c =12,则数列a,b,c 成A.等差B.等比C.非等差也非等比D.既等差也等比7.如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++=() (A )14(B )21(C )28(D )358.设数列{}n a 的前n 项和3S n n =,则4a 的值为() (A )15(B)37(C)27(D )649.设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =() A .2B .4C .215 D .217 10.设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q =()(A )3(B )4(C )5(D )611.已知}{n a 是等比数列,22a =,514a =,则12231n n a a a a a a ++++=L () A .32(12)3n -- B .16(14)n --C .16(12)n --D .32(14)3n --12.若数列}{n a 的通项公式是(1)(32)n n a n =--,则1220a a a ++⋅⋅⋅+=()(A )30(B )29(C )-30(D )-2913.已知等比数列{}n a 满足0,1,2,n a n >=L ,且25252(3)n n a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++=L ()(21)n n -2(1)n +2n 2(1)n -巳知函数()cos ,(0,2)f x x x π=∈有两个不同的零点12,x x ,且方程()f x m =有两个不同的实根34,x x .若把这四个数按从小到大排列构成等差数列,则实数m 的值为()A .B .C .D .15.已知等比数列{a n }的前n 项和S n =t ·5n -2-,则实数t 的值为( ).A .4B .516.已知等差数列{a n }的前n 项和为S n ,a 4+a 7+a 10=9,S 14﹣S 3=77,则使S n 取得最小值时n 的值为( )A . 4B . 5C . 6D . 717.若{a n }是等差数列,首项a 1>0,公差d<0,且a 2013(a 2012+a 2013)<0,则使数列{a n }的前n 项和S n >0成立的最大自然数n 是( )A .4027B .4026C .4025D .402418.已知数列满足:a 1=1,a n +1=,(n ∈N *),若b n +1=(n -λ),b 1=-λ,且数列{b n }是单调递增数列,则实数λ的取值范围为( )A .λ>2B .λ>3C .λ<2D .λ<319、由正数构成的等比数列{a n },若132423249a a a a a a ++=,则23a a +=.20.已知数列{}n a 的前n 项和为2,n S n =某三角形三边之比为234::a a a ,则该三角形最大角为.21、给定(1)log (2)n n a n +=+(n ∈N*),定义乘积12k a a a ⋅⋅⋅L 为整数的k (k ∈N*)叫做“理想数”,则区间[1,2008]内的所有理想数的和为.22.设1,a d 为实数,首项为1a ,公差为d 的等差数列{}n a 的前项和为n S ,满足34150S S +=,则d 的取值范围为.23.设正整数数列{}n a 满足:24a =,且对于任何*n ∈N ,有11111122111n n n na a a a n n ++++<<+-+,则10a =24.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=________.25.设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k =______. 26、已知函数()f x 是一次函数,且(8)15,f =(2),(5),(14)f f f 成等比数列,设()n a f n =,(n N *∈)(1)求1ni i a =∑;(2)设2n n b =,求数列{}n n a b 的前n 项和n S 。