全等三角形单元测试卷附答案

合集下载

最经典《全等三角形》单元测试题卷(含答案)

最经典《全等三角形》单元测试题卷(含答案)

最经典《全等三角形》单元测试题卷(含答案)全等三角形单元测试题一、选择题(每小题3分,共30分)1.下列说法错误的是()A。

全等三角形的对应边相等B。

全等三角形的对应角相等C。

全等三角形的周长相等D。

全等三角形的高相等2.如图,△ABC≌△CDA,并且BC=DA,那么下列结论错误的是()A。

∠1=∠2B。

AC=CAC。

AB=ADD。

∠B=∠D3.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A。

AB=DEB。

∠B=∠EXXX=BCD。

EF∥BC4.长为3cm、4cm、6cm、8cm的木条各两根,XXX与XXX分别取了3cm和4cm的两根,要使两人所拿的三根木条组成的两个三角形全等,则他俩取的第三根木条应为()A。

一个人取6cm的木条,一个人取8cm的木条B。

两人都取6cm的木条C。

两人都取8cm的木条D。

B、C两种取法都可以5.△ABC中,AB=AC,三条高AD、BE、CF相交于O,那么图中全等的三角形有()A。

5对B。

6对C。

7对D。

8对6.下列说法中,正确的有()①三角对应相等的两个三角形全等;②三边对应相等的两个三角形全等;③两角、一边相等的两个三角形全等;④两边、一角对应相等的两个三角形全等。

A。

1个B。

2个C。

3个D。

4个7.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A。

B。

4C。

D。

58.如图,ABC中,AD是它的角平分线,AB=4,AC=3,那么△ABD与△ADC的面积比是()A。

1:1B。

3:4C。

4:3D。

不能确定二、填空题(每小题3分,共24分)11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=7.12.如图,∠1=∠2,CD=BD,可证△ABD≌△ACD,则依据是SSS。

13.在四边形ABCD中,已知CB=CD,∠XXX∠ADC=90°,∠BAC=35°,求∠BCD的度数。

全等三角形》单元测试题(含答案)

全等三角形》单元测试题(含答案)

全等三角形》单元测试题(含答案)全等三角形》单元测试题姓名。

班级:得分:一、填空题(4×10=40分)1、在△ABC中,AC>BC>AB,且△ABC≌△DEF,则在△DEF中,DE>EF>DF。

2、已知:△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∠C=70°,AB=15cm,则∠C′=70°,A′B′=15cm。

3、如图1,△ABD≌△BAC,若AD=BC,则∠BAD的对应角是∠XXX。

4、如图2,在△ABC和△FED,AD=FC,AB=FE,当添加条件BD=CE时,就可得到△ABC≌△FED。

5、如图3,在△ABC中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角形4对。

6、如图4,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是BD=EC。

7、如图5,△ABC中,∠C=90°,CD⊥XXX于点D,AE是∠BAC的平分线,点E到AB的距离等于3cm,则CF=6cm。

8、如图6,在△ABC中,AD=DE,AB=BE,∠A=80°,则∠CED=50°。

9、P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于C、D,则CD=PD,P点到∠AOB两边距离之和等于AO或BO。

10、AD是△ABC的边BC上的中线,AB=12,AC=8,则中线AD的取值范围是6≤AD≤8.二、选择题:(每小题5分,共30分)11、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等。

其中真命题的个数有2个。

12、如图7,已知点E在△ABC的外部,点D在BC边上,DE交AC于F,若∠1=∠2=∠3,AC=AE,则有△ABD≌△AFDB、△AFE≌△ADC。

13、下列条件中,不能判定△ABC≌△A′B′C′的是∠B=∠B′。

全等三角形单元测试题(含答案)

全等三角形单元测试题(含答案)

全等三角形单元测试题一、填空题(每小题4分,共32分).1.已知:///≌,/ABC A B C∆∆∠=∠,70B B∠=∠,/A A=,则AB cmC∠=︒,15 /∠=_________,//CA B=__________.∆中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角2.如图1,在ABC形_______对.图1 图2 图33.已知△AB C≌△A′B′C′,若△ABC的面积为10 cm2,则△A′B′C′的面积为______ cm2,若△A′B′C′的周长为16 cm,则△AB C的周长为________cm.4.如图2所示,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是________________(只添一个条件即可).5.如图3所示,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还需补充一个条件________,依据是________________.6.三角形两外角平分线和第三个角的内角平分线_____一点,且该点在三角形______部.7.如图4,两平面镜α、β的夹角θ,入射光线AO平行于β,入射到α上,经两次反射后的出射光线CB平行于α,则角θ等于________.图4 图5 图68.如图5,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △ 的面积为______.二、选择题(每小题4分,共24分)9.如图6,AE =AF ,AB =AC ,EC 与B F 交于点O ,∠A =600,∠B =250,则∠EOB 的度数为( )A 、600B 、700C 、750D 、85010.△ABC ≌△DEF ,且△ABC 的周长为100 cm ,A 、B 分别与D 、E 对应,且AB =35 cm ,DF =30 cm ,则EF 的长为( )A .35 cmB .30 cmC .45 cmD .55 cm11.图7是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在________两点上的木条.( )A .A 、FB .C 、E C .C 、AD .E 、F12.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD =•BC ,再定出BF的垂线DE ,使A 、C 、E 在一条直线上,可以证明△EDC ≌△ABC ,•得到ED =AB ,因此测得ED 的长就是AB 的长(如图8),判定△EDC ≌△ABC 的理由是( )A .边角边公理B .角边角公理;C .边边边公理D .斜边直角边公理13.如图9,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC ,则∠BCM :∠BCN 等于( )A .1:2B .1:3C .2:3D .1:414.如图10,P 是∠AOB 平分线上一点,CD ⊥OP 于F ,并分别交OA 、OB 于CD ,则CD _____P 点到∠AOB N A M C B 图7 图8 图9 图10两边距离之和.( )A.小于B.大于C.等于D.不能确定三、解答题(共46分)中,∠ACB=90°,延长BC至B',使15.已知如图11,ABCC B'=BC,连结A B'.求证:△AB B'是等腰三角形.参考答案。

苏科版八年级数学上册试题 第1章 全等三角形 单元测试卷(含详解)

苏科版八年级数学上册试题 第1章 全等三角形 单元测试卷(含详解)

第1章《 全等三角形》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是( )A .两个等边三角形一定全等B .腰对应相等的两个等腰三角形全等C .形状相同的两个三角形全等D .全等三角形的面积一定相等2.已知与全等,A 、B 、C 的对应点分别为D 、E 、F ,且E 点在AE 上,B 、F 、C 、D 四点共线,如图所示若,,则下列叙述何者正确?( )A .,B .,C .,D .,3.如图,在△ABC 中,AB =BC ,点D 为AC 上的点,连接BD ,点E 在△ABC 外,连接AE ,BE ,使得CD =BE ,∠ABE =∠C ,过点B 作BF ⊥AC 交AC 点F ,若∠BAE =21°,∠C =28°,则∠FBD =( )A .49°B .59°C .41°D .51°4.如图,有一块边长为4的正方形塑料模板,将一块足够大的直角三角板的直角顶点落在点,两条直角边分别与交于点F ,与延长线交于点E .则四边形的面积是( )ABC V DEF V .=40A ∠︒=35CED ∠︒=EF EC =AE FC=EF EC AE FC ≠EF EC ≠=AE FC EF EC ≠AE FC≠ABCD A CD CB AECFA .4B .6C .10D .165.如图,在的网格中,每一个小正方形的边长都是1,点,,,都在格点上,连接,相交于,那么的大小是( )A .B .C .D .6.△ABC 中,AB =AC ,∠ABC =72°,以B 为圆心,以任意长为半径画弧,分别交BA 、BC 于M 、N ,再分别以M 、N为圆心,以大于MN 为半径画弧,两弧交于点P ,射线BP 交AC 于点D ,则图中与BC 相等的线段有( )A .BD B .CD C .BD 和AD D .CD 和AD7.如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,射线AP 交边BC 于点D .下列说法错误的是( )33⨯A B C D AC BD P APB ∠80︒60︒45︒30︒1212A .B .若,则点D 到AB 的距离为2C .若,则D .8.如图,长方形中,点为上一点,连接,将长方形沿着直线折叠,点恰好落在的中点上,点为的中点,点为线段上的动点,连接、,若、、,则的最小值是( )A .B .C .D .9.如图,点在线段上,于,于.,且,,点以的速度沿向终点运动,同时点以的速度从开始,在线段上往返运动(即沿运动),当点到达终点时,,同时停止运动.过,分别作的垂线,垂足为,.设运动时间为,当以,,为顶点的三角形与全等时,的值为( )A .1或3B .1或C .1或或 D .1或或510.如图,在中,,和的平分线、相交于点,交于点,交于点,若已知周长为,,,则长为( )CAD BAD ∠=∠2CD =30B ∠=CDA CAB ∠=∠2ABD ACDS S =V V ABCD E AD CE ABCD CE D AB F G CF P CE PF PG AE a =ED b =AF c =PF PG +a c b +-2b c +2a b c ++a b+C BD AB BD ⊥B ED BD ⊥D 90ACE ∠=︒5cm AC =6cm CE =P 2cm/s A C E →→E Q 3cm/s E EC E C E C →→→→⋅⋅⋅P P Q P Q BD M N s t P C M QCN △t 115115235115ABC V 60A ∠=︒ABC ∠ACB ∠BD CE O BD AC D CE AB E ABC V 207BC =:4:3AE AD =AEA. B . C . D .4二、填空题(本大题共8小题,每小题4分,共32分)11.如图,已知正方形中阴影部分的面积为3,则正方形的面积为 .12.数学课上,老师出示如下题目:“已知:.求作:.”如图是小宇用直尺和圆规的作法,其中的道理是作出△,根据全等三角形的性质,得到.△的依据是 .13.如图,已知,,,直线与,分别交于点,,且,,则的度数为 .14.如图,在△ABC 中,点D 是AC 的中点,分别以AB ,BC 为直角边向△ABC 外作等腰直角三角形ABM 和等腰直角三角形BCN ,其中∠ABM =NBC =∠90°,连接MN ,已知MN =4,则BD = .187247267AOB ∠A O B AOB '''∠=∠ΔC O D COD ''≅'A O B AOB '''∠=∠ΔC O D COD ''≅'AB AD =AC AE =BC DE =BC AD DE F G 65DGB ∠=︒120EAB ∠=︒CAD ∠15.如图,为的平分线,为上一点,且于点,,给出下列结论:①;②;③;④;⑤四边形的面积是面积的2倍,其中结论正确的个数有 .16.如图,把两块大小相同的含45°的三角板ACF 和三角板CFB 如图所示摆放,点D 在边AC 上,点E 在边BC 上,且∠CFE =13°,∠CFD =32°,则∠DEC 的度数为 .17.如图,在中,,,,有下列结论:①;②;③连接,;④过点作交于点,连接,则.其中正确的结论有 .18.如图,在Rt △ABC 中,∠C =90°,两锐角的角平分线交于点P ,点E 、F 分别在边BC 、AC 上,且都不与点C 重合,若∠EPF =45°,连接EF ,当AC =6,BC =8,AB =10时,则△CEF的BN MBC ∠P BN PD BC ⊥D 180APC ABC ∠+∠=︒MAP ACB ∠=∠PA PC =2BC AB CD -=BP AC =BAPC PBD △ABC V AD BC ⊥AD BD =BF AC =ADC BDF △≌△BE AC ⊥DE 135AED ∠=︒D DM AB ∥AC M FM BF AM MD =+周长为 .三、解答题(本大题共6小题,共58分)19.(8分)如图,,点E 在BC 上,且,.(1) 求证:;(2) 判断AC 和BD的位置关系,并说明理由.BD BC =BE AC =DE AB =ABC EDB V V ≌20.(8分)如图,在五边形中,,.(1) 请你添加一个条件,使得,并说明理由;(2) 在(1)的条件下,若,,求的度数.21.(10分)在复习课上,老师布置了一道思考题:如图所示,点M ,N 分别在等边的边上,且,,交于点Q .求证:.同学们利用有关知识完成了解答后,老师又提出了下列问题:(1) 若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由.ABCDE AB DE =AC AD =ABC DEA △△≌66CAD ∠=︒110B ∠=︒BAE ∠ABC V ,BC CA BM CN =AM BN 60BQM ∠=︒BM CN =60BQM ∠=︒(2) 若将题中的点M ,N 分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由.22.(10分)如图1,点P 、Q 分别是边长为4cm 的等边三角形ABC 的边AB 、BC 上的动点,点P 从顶点A ,点Q 从顶点B 同时出发,且它们的速度都为1cm/s .(1)连接AQ 、CP 交于点M ,则在P ,Q 运动的过程中,证明≌;(2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P 、Q 运动几秒时,是直角三角形?,BC CA 60BQM ∠=︒ABQ ∆CAP ∆CMQ ∠PBQ ∆(4)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 交点为M ,则变化吗?若变化说明理由,若不变,则求出它的度数。

全等三角形单元测试(含答案)

全等三角形单元测试(含答案)

全等三角形单元测试(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列作图属于尺规作图的是A.用量角器画出∠AOB,使∠AOB等于已知角αB.用圆规和直尺作线段AB,使AB等于已知线段αC.用刻度尺作出线段AB等于2倍的已知线段mD.用三角板作45°的角2.如图,某同学不小心把一块三角形玻璃打碎成三块,现在要到玻璃店配一块与原来完全相同的玻璃,最省事的方法是A.带①和②去B.只带②去C.只带③去D.都带去3.山脚下有A、B两点,要测出A、B两点间的距离.在地上取一个可以直接到达A、B点的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB,连接DE.可以证△ABC≌△DEC,得DE=AB,因此,测得DE的长就是AB的长,判定△ABC≌△DEC的理由是A.SSS B.ASA C.SAS D.AAS4.下列条件中,能判定△ABC≌△DEF的是A.AB=DE,BC=EF,∠A=∠E B.∠A=∠E,AB=EF,∠B=∠DC.∠A=∠D,∠B=∠E,∠C=∠F D.∠A=∠D,∠B=∠E,AC=DF5.如图,AB=CD,AD=CB,那么下列结论中错误的是A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD6.如图,AD⊥OB,BC⊥OA,垂足分别为D、C,AD与BC相交于点P,若PA=PB,则∠1与∠2的大小是A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.无法确定7.如图,AB∥CD,BC∥AD,AB=CD,AE=CF,其中全等三角形共有对A.5 B.3 C.6 D.48.如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF ≌△CDE;③点D在∠BAC的平分线上.正确的是A.①B.②C.①②D.①②③9.如图,在等边△ABC中,D,E分别是BC,AC上的点,且BD=CE,AD与BE相交于点P,则∠1+∠2的度数是A.45°B.55°C.60°D.75°10.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①DA平分∠CDE;②∠BAC=∠BDE ;③DE 平分∠ADB ;④BE +AC =AB ,其中正确的有A .4个B .3个C .2个D .1个二、填空题(本大题共10小题,每小题3分,共30分)11.若△ABC ≌△A ′B ′C ′,AB =3,∠A ′=30°,则A ′B ′=__________,∠A =__________°.12.如图,OC 为AOB ∠的平分线,CM OB ⊥,3CM =,则点C 到射线OA 的距离为__________.13.已知△ABC ≌△DEF ,且△ABC 的三边长分别为3,4,5,则△DEF 的周长为__________.14.如图,△ABC 的两条高AD ,BE 相交于点F ,请添加一个条件,使得△ADC ≌△BEC (不添加其他字母及辅助线),你添加的条件是__________.15.如图,在Rt △ABC 中,∠ACB =90°,BC =2 cm ,CD ⊥AB ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC 交CD 的延长线于点F .若EF =8 cm ,则AE =__________cm .16.如图,△ABC 中,D 是AB 的中点,DE ⊥AB ,∠ACE +∠BCE =180°,EF ⊥AC 交AC 于F ,AC =12,BC =8,则AF =________.17.如图,Rt △ABC 中,∠C =90°,BD 平分∠ABC 交边AC 于点D ,CD =4,△ABD 的面积为10,则AB 的长是__________.18.如图,AB =AC ,AD =AE ,∠BAC =∠DAE ,点D 在线段BE 上.若∠1=25°,∠2=30°,则∠3=__________.19.如图,五边形ABCDE 中,∠B =∠E =90°,AB =CD =AE =BC +DE =2,则这个五边形ABCDE 的面积是__________.20.如图,Rt △ABC 中,9083C AC BC ∠=︒==,,,AE AC P Q ⊥,,分别是AC AE ,上的动点,且PQ AB =,当AP =__________时,才能使ABC △和PQA △全等.三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤) 21.如图,已知∠1=∠2,∠B =∠D ,求证:CB =CD .22.如图,点E ,F 在AB 上,CE 与DF 交于点G ,AD =BC ,∠A =∠B ,AE =BF .求证:GE =GF .23.如图,12AC AE AB AD =∠=∠=,,.求证:BC DE =.24.如图,在Rt △ABC 中,∠C =90°.作∠BAC 的平分线AP 交边BC 于点D .(保留作图痕迹,不写作法).若∠BAC =28°,求∠ADB 的度数.25.如图,AD 是BAC ∠的平分线,点E 在AB 上,且AE AC =,EF BC ∥交AC 于点F .试说明:EC平分DEF ∠.26.如图,在△BCE 中,AC ⊥BE ,AB =AC ,点A 、点F 分别在BE 、CE 上,BE 、CF 相交于点D ,BD =CE .求证:AD =AE .27.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且AE=AD,∠EAD=∠BA C.(1)求证:∠ABD=∠ACD;(2)若∠ACB=65°,求∠BDC的度数.28.如图,△ABC是边长为5 cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿射线AB,BC运动,且它们的速度都为2 cm/s.设点P的运动时间为t(s).(1)当t为何值时,△ABQ≌△CBP;(2)连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.3.【答案】C【解析】因为CD=CA,CE=CB,ACB DCE∠=∠,所以△ABC≌△DEC(SAS).故选C.4.【答案】D【解析】A.AB=DE,BC=EF,∠A=∠E,SSA不能确定全等;B.∠A=∠E,AB=EF,∠B=∠D,AB和EF不是对应边,不能确定全等;C.∠A=∠D,∠B=∠E,∠C=∠F,AAA不能确定全等;D.∠A=∠D,∠B=∠E,AC=DF,根据AAS,能判断△ABC≌△DEF.故选D.5.【答案】B【解析】∵在△ABD和△CDB中,AB CD AD CB BD BD=⎧⎪=⎨⎪=⎩,∴△ABD≌△CDB,∴∠ADB=∠CBD,∠ABD=∠CDB,∠A=∠C,∴AD∥BC,AB∥CD,∴A、C、D选项正确.故选B.6.【答案】A【解析】∵AD⊥OB,BC⊥OA,垂足分别为D、C,AD与BC相交于点P,PA=PB,∠CPA=∠DPB,∴△CPA≌△∠DPB(AAS),∴PC=PD,∴∠1=∠2,故选A.7.【答案】B【解析】根据AB=CD,AE=CF,∠BAE=∠DCF可得:△ABE≌△CDF;根据CE=AF,∠DAF=∠BCE,∠DFA=∠BEC可得:△ADF≌△CBE;根据∠DAC=∠BCA,∠BAC=∠DCA,AC=CA可得:△ACD≌△CAB,共有3对全等三角形,故选B.8.【答案】D∵△ABE≌△ACF,∴AE=AF,∵△BDF≌△CDE,∴DF=DE,∵在△AFD和△AED中,AF AE AD AD DF DE=⎧⎪=⎨⎪=⎩,∴△AFD≌△AED(SSS),∴∠FAD=∠EAD,∴AD平分∠BAC,即点D在∠BAC的平分线上.综上所述,在本题给出的结论中,正确的是①②③.故选D.9.【答案】C【解析】∵在等边△ABC中,∠ABC=∠C=60°,AB=BC,BD=CE,∴△ABD≌△BCE,∴∠CBE=∠1,而∠CBE+∠2=60°,∴∠1+∠2=60°.故选C.10.【答案】B【解析】根据题中条件,结合图形及角平分线的性质得到:∵AD平分∠BAC,∴∠DAC=∠DAE,∵∠C=90°,DE⊥AB,∴∠C=∠E=90°,∵AD=AD,∴△DAC≌△DAE,∴∠CDA=∠EDA,∴①AD 平分∠CDE正确;无法证明∠BDE=60°,∴③DE平分∠ADB错误;∵BE+AE=AB,AE=AC,∴BE+AC=AB,∴④BE+AC=AB正确;∵∠BDE=90°-∠B,∠BAC=90°-∠B,∴∠BDE=∠BAC,∴②∠BAC=∠BDE正确.故选B.11.【答案】3;30【解析】由对应角相等,对应边相等,A′B′=AB ,∠A =30°.故答案为:3;30. 12.【答案】3【解析】如图,过C 作CF ⊥AO .∵OC 为∠AOB 的平分线,CM ⊥OB ,∴CM =CF .∵CM =3,∴CF =3.故答案为:3.角的余角相等),在△FCE 和△ABC 中,90ECF BEC BC ACB FEC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△ABC ≌△FCE (ASA ),∴AC =EF ,∵AE =AC -CE ,BC =2 cm ,EF =8 cm ,∴AE =8-2=6 cm ,故答案为:6. 16.【答案】10【解析】如图,连接AE ,BE ,过E 作EG ⊥BC 于G ,∵D是AB的中点,DE⊥AB,∴DE垂直平分AB,∴AE=BE,∵∠ACE+∠BCE=180°,∠ECG+∠BCE=180°,∴∠ACE=∠ECG,又∵EF⊥AC,EG⊥BC,∴EF=EG,∠FEC=∠GEC,∵CF⊥EF,CG⊥EG,∴CF=CG,在Rt△AEF和Rt△BEG中,AE BEEF EG=⎧⎨=⎩,∴Rt△AEF≌Rt△BEG(HL),∴AF=BG,设CF=CG=x,则AF=AC-CF=12-x,BG=BC+CG=8+x,∴12-x=8+x,解得x=2,∴AF=12-2=10.故答案为:10.17.【答案】5【解析】如图,过点D作DE⊥AB于点E.∵BD平分∠ABC.又∵DE⊥AB,DC⊥BC,∴DE=DC=4.∵△ABD的面积=12·AB·DE=12×AB×4=10,∴AB=5.故答案为:5.20.【答案】3或8【解析】分为两种情况:①当AP=3时,∵BC=3,∴AP=BC,∵∠C=90°,AE⊥AC,∴∠C=∠QAP=90°,∴在Rt △ABC 和Rt △QAP 中,AB PQ BC AP =⎧⎨=⎩,∴Rt △ABC ≌Rt △PQA (HL ); ②当AP =8时,∵AC =8,∴AP =AC ,∵∠C =90°,AE ⊥AC ,∴∠C =∠QAP =90°,∴在Rt △ABC 和Rt △QAP中,AB PQ AC AP =⎧⎨=⎩,∴Rt △ABC ≌Rt △QAP (HL ),故答案为:3或8.22.【解析】∵AE =BF ,∴AE +EF =BF +EF ,∴AF =BE ,在△ADF 与△BCE 中,=AD BC A B AF BE =⎧⎪⎨⎪=⎩∠∠,∴△ADF ≌△BCE (SAS ),∴∠CEB =∠DFA ,∴GE =GF .23.【解析】∵12∠=∠,∴12BAE BAE ∠+∠=∠+∠,即BAC DAE ∠=∠,在BAC △和DAE △中,AC AE BAC DAE AB AD =⎧⎪∠=∠⎨⎪=⎩,∴BAC △≌DAE △(SAS ),∴BC DE =.24.【解析】(1)如下图所示,AD 为所求的角平分线:(2)∵∠BAC 的平分线AP ,∠BAC =28°, ∴∠CAD =BAD =14°,又∵∠C =90°,∠ADB =∠C +∠CAD ,∴∠ADB =90°+14°=104°.26.【解析】∵AC ⊥BE ,∴∠BAD =∠CAE =90°,在Rt △ABD 和Rt △ACE 中,BD CE AB AC =⎧⎨=⎩, ∴Rt △ABD ≌Rt △ACE (HL ),∴AD =AE .27.【解析】(1)∵∠BAC =∠EAD ,∴∠BAC -∠EAC =∠EAD -∠EAC ,即:∠BAE=∠CAD,在△ABE和△ACD中,AB ACBAE CAD AE AD=⎧⎪∠=∠⎨⎪=⎩,28.【解析】(1)∵△ABQ≌△CBP,∴BQ=BP,∴2t=5-2t,∴t=54,∴t=54s时,△ABQ≌△CBP,(2)结论:∠CMQ=60°不变,理由:∵△ABC是等边三角形,∴∠ABQ=∠CAP,AB=CA,又∵点P,Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,AB CAABQ CAP AP BQ=⎧⎪∠=∠⎨⎪=⎩,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠CMQ=∠BAQ+∠MAC=∠BAC=60°.。

八年级数学上册《全等三角形》单元测试含答案

八年级数学上册《全等三角形》单元测试含答案

八年级数学上册《全等三角形》单元测试含答案全等三角形单元测试一、单项选择题(共10 题;共 30 分)1.如图,已知AE=CF,∠ AFD=∠ CEB,那么增添以下一个条件后,仍没法判断△ADF≌△ CBE的是()A、∠ A=∠ CB、 AD=CBC、 BE='DF'D、 AD∥ BC2.如图, D 在AB 上, E 在AC 上,且∠B=∠ C,那么增补以下条件后,不可以判断△ABE≌△ ACD的是()A、 AD=AEB、 BE=CDC、∠ AEB=∠ADCD、 AB=AC3.以下图,△ABD≌△ CDB,下边四个结论中,不正确的选项是()A.△ ABD 和△ CDB的面积相等B.△ ABD 和△ CDB的周长相等C.∠ A+∠ ABD=∠ C+∠ CBD∥ BC,且AD=BC4.如图,在以下条件中,不可以证明△ABD≌△ ACD的是()A.BD=DC, AB=ACB.∠ ADB=∠ ADC, BD=DCC.∠ B=∠ C,∠ BAD=∠ CADD.∠ B=∠C, BD=DC5.已知图中的两个三角形全等,则∠ 1 等于()°° C.50 ° D.58 °6.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,此中AD=CD,AB=CB,在研究筝形的性质时,获得以下结论:①△ABD≌△ CBD;② AC⊥ BD;③四边形ABCD的面积=12AC?BD,此中正确的结论有()A.0 个B.1 个C.2 个D.3 个7.如图,已知△ ABE≌△ ACD,∠ 1=∠ 2,∠ B=∠ C,不正确的等式是()A.AB=ACB.∠ BAE=∠ CADC.BE=DCD.AD=DE8.如图,已知MB=ND,∠ MBA=∠ NDC,以下条件中不可以判断△ABM≌△ CDN的是()A.∠ M=∠ NB.AM=CNC.AB=CDD.AM ∥ CN9.已知△ ABC≌△ DEF,∠ A=50°,∠ B=75°,则∠ F 的大小为()°° C.65 ° D.75 °10.如图,在△ ABC和△ DEF中,给出以下六个条件中,以此中三个作为已知条件,不可以判断△ABC和△ DEF 全等的是()①AB=DE ;② BC=EF;③ AC=DF;④∠ A=∠ D;⑤∠B=∠ E;⑥∠ C=∠ F.A、①⑤②B、①②③C、④⑥①D、②③④二、填空题(共8 题;共 27 分)11.如图,△ ABC≌△ ADE,∠ B=100 °,∠ BAC= 30°,那么∠ AED= ________ °.12.以下图,已知△ABC≌△ ADE,∠ C=∠ E,AB=AD,则此外两组对应边为________,此外两组对应角为________.13.如图,△ ACE≌△ DBF,点 A、 B、C、 D 共线,若 AC=5, BC=2,则 CD的长度等于 ________.14.如图, AB=AD,只需增添一个条件________,就能够判断△ABC≌△ ADE.B=∠ C, BC=8厘米,点 D 为AB 的中点.假如点P 在线段BC 上以 2 厘米15.△ ABC中, AB=AC=12厘米,∠/ 秒的速度由 B 点向 C 点运动,同时,点Q 在线段CA 上由 C 点向A 点运动.若点Q 的运动速度为v 厘米 /秒,则当△ BPD 与△ CQP全等时, v 的值为 ________.16.如图,已知△ABC≌△ DCB,∠ BDC=35°,∠ DBC=50°,则∠ ABD=________.17.如图,△ ABC≌△ DEF,点 F 在 BC边上, AB 与 EF订交于点P.若∠ DEF=40°, PB=PF,则∠APF=________ .°18.如图,在△ ABC与△ ADC 中,已知 AD=AB,在不增添任何协助线的前提下,要使△ABC≌△ ADC,只需再增添的一个条件能够是________.三、解答题(共 5 题;共 37 分)19.如图,已知△ABC≌△ BAD, AC 与 BD 订交于点O,求证: OC=OD.20.图中所示的是两个全等的五边形,∠β=115°,d=5,指出它们的对应极点?对应边与对应角,并说出图中标的 a,b ,c, e,α各字母所表示的值.21.如图, AB=CB, BE=BF,∠ 1=∠ 2,证明:△ ABE≌△ CBF.22.已知命题:如图,点A, D, B, E 在同一条直线上,且AD=BE,∠ A=∠ FDE,则△ ABC≌△ DEF.判断这个命题是真命题仍是假命题,假如是真命题,请给出证明;假如是假命题,请增添一个适合条件使它成为真命题,并加以证明.23.如图,已知点 C 是线段 AB 上一点,直线AM⊥ AB,射线 CN⊥ AB, AC=3, CB=2.分别在直线AM 上取一点 D,在射线CN上取一点 E,使得△ ABD 与△ BDE全等,求2的CE值.四、综合题(共 1 题;共 10 分)24.定义:我们把三角形被一边中线分红的两个三角形叫做“朋友三角形”.性质:“朋友三角形”的面积相等.如图 1,在△ ABC中, CD是 AB 边上的中线.那么△ ACD和△ BCD是“朋友三角形”,而且 S△ACD=S△BCD.应用:如图 2,在直角梯形 ABCD中,∠ ABC=90°, AD∥ BC, AB=AD=4, BC=6,点 E 在 BC 上,点 F 在AD 上, BE=AF, AE 与 BF交于点 O.(1)求证:△ AOB 和△ AOF是“朋友三角形”;(2)连结 OD,若△ AOF 和△ DOF是“朋友三角形”,求四边形CDOE的面积.拓展:如图3,在△ ABC中,∠ A=30°, AB=8,点 D 在线段 AB 上,连结 CD,△ ACD和△ BCD是“朋友三角形”,将△ ACD 沿 CD 所在直线翻折,获得△ A′CD,若△ A′CD与△ ABC重合部分的面积等于△ABC 面积的,则△ ABC的面积是 ________(请直接写出答案).答案分析一、单项选择题1、【答案】 B【考点】全等三角形的判断【分析】【剖析】由 AE=CF可得 AF=CE,再有∠ AFD=∠ CEB,依据全等三角形的判断方法挨次剖析各选项即可 .【解答】∵ AE=CF∴AE+EF=CF+EF,即 AF=CE,∵∠ A=∠ C, AF=CE,∠ AFD=∠ CEB,∴△ ADF≌△ CBE( ASA)∵BE=DF,∠ AFD=∠ CEB, AF=CE,∴△ ADF≌△ CBE(SAS)∵AD∥ BC,∴∠ A=∠ C,∵∠ A=∠ C, AF=CE,∠ AFD=∠ CEB,∴△ ADF≌△ CBE( ASA)故 A、 C、D 均能够判断△ ADF≌△ CBE,不切合题意B、 AF=CE, AD=CB,∠ AFD=∠ CEB没法判断△ ADF≌△ CBE,本选项切合题意.【评论】全等三角形的判断和性质是初中数学的要点,贯串于整个初中数学的学习,是中考取比较常有的知识点,一般难度不大,需娴熟掌握.2、【答案】 C【考点】全等三角形的判断【分析】【剖析】 A、依据 AAS(∠ A=∠ A,∠ C=∠B, AD=AE)能推出△ ABE≌△ ACD,正确,故本选项错误;B、依据 AAS(∠ A=∠ A,∠ B=∠ C, BE=CD)能推出△ ABE≌△ ACD,正确,故本选项错误;C、三角对应相等的两三角形不必定全等,错误,故本选项正确;D、依据 ASA(∠ A=∠ A, AB=AC,∠ B=∠ C)能推出△ ABE≌△ ACD,正确,故本选项错误;应选 C.3、【答案】 C【考点】全等三角形的性质【分析】【解答】解: A、∵△ ABD≌△ CDB,∴△ ABD 和△ CDB的面积相等,故本选项错误;B、∵△ ABD≌△ CDB,∴△ ABD 和△ CDB的周长相等,故本选项错误;C、∵△ ABD≌△ CDB,∴∠ A=∠ C,∠ ABD=∠ CDB,∴∠ A+∠ ABD=∠ C+∠ CDB≠∠ C+∠ CBD,故本选项正确;D、∵△ ABD≌△ CDB,∴AD=BC,∠ ADB=∠ CBD,∴AD∥BC,故本选项错误;应选 C.【剖析】依据全等三角形的性质得出对应角相等,对应边相等,推出两三角形面积相等,周长相等,再逐一判断即可.4、【答案】 D【考点】全等三角形的判断【分析】【解答】解: A、∵在△ ABD 和△ ACD中∴△ ABD≌△ ACD( SSS),故本选项错误;B、∵在△ ABD 和△ ACD 中∴△ ABD≌△ ACD( SAS),故本选项错误;C、∵在△ ABD 和△ ACD 中∴△ ABD≌△ ACD( AAS),故本选项错误;D、不切合全等三角形的判断定理,不可以推出△ABD≌△ ACD,故本选项正确;应选 D.【剖析】全等三角形的判断定理有SAS, ASA,AAS, SSS,依据全等三角形的判断定理逐一判断即可.5、【答案】 D【考点】全等三角形的性质【分析】【解答】解:如图,由三角形内角和定理获得:∠2=180°﹣ 50°﹣72°=58°.∵图中的两个三角形全等,∴∠ 1=∠ 2=58°.应选: D.【剖析】依据三角形内角和定理求得∠2=58°;而后由全等三角形是性质获得∠1=∠ 2=58°.6、【答案】 D【考点】全等三角形的判断【分析】【解答】解:在△ABD 与△ CBD中,AD=CDAB=BCDB=DB ,∴△ ABD≌△ CBD( SSS),故①正确;∴∠ ADB=∠ CDB,在△ AOD 与△ COD中,,∴△ AOD≌△ COD( SAS),∴∠ AOD=∠ COD=90°,AO=OC,∴AC⊥ DB,故②正确;四边形 ABCD的面积 =S△ ADB+S△ BDC=12DB×OA+12DB×OC=12AC· BD故③正确;应选 D.【剖析】先证明△ABD 与△ CBD 全等,再证明△AOD 与△ COD 全等即可判断.7、【答案】 D【考点】全等三角形的性质【分析】【解答】解:∵△ABE≌△ ACD,∠ 1=∠ 2,∠B=∠ C,∴ AB=AC,∠ BAE=∠ CAD,BE=DC,AD=AE,故 A、 B、C 正确;AD 的对应边是AE 而非 DE,因此 D 错误.应选 D.【剖析】依据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.8、【答案】 B【考点】全等三角形的判断【分析】【解答】解: A、∠ M= ∠ N,切合 ASA,能判断△ ABM≌△ CDN,故 A 选项不切合题意;B、根据条件 AM=CN, MB=ND,∠ MBA=∠ NDC,不可以判断△ ABM≌△ CDN,故 B 选项切合题意;C、 AB=CD,切合 SAS,能判断△ ABM≌△ CDN,故 C 选项不切合题意;D、 AM∥CN,得出∠ MAB=∠ NCD,切合 AAS,能判断△ ABM≌△ CDN,故 D 选项不切合题意.应选: B.【剖析】依据一般三角形全等的判断定理,有9、【答案】 B【考点】全等三角形的性质【分析】【解答】解:∵∠A=50°,∠ B=75°,∴∠ C=55°,AAS、 SSS、 ASA、 SAS四种.逐条考证.又∵∠ A+∠ B+C=180°,∵△ ABC≌△ DEF,∴∠ F=∠ C,即:∠ F=55°.应选 B.【剖析】由∠A=50°,∠ B=75°,依据三角形的内角和定理求出∠全等三角形的性质获得∠F=∠ C,即可获得答案.C的度数,依据已知△ABC≌△ DEF,利用10、【答案】 D【考点】全等三角形的判断【分析】【解答】解:在△ABC 和△ DEF中,,∴△ ABC≌△ DEF( SAS);∴A 不切合题意;在△ ABC和△ DEF中,,∴△ ABC≌△ DEF( SSS);∴ B 不切合题意;在△ ABC和△ DEF中,,∴△ ABC≌△ DEF( AAS),∴C 不切合题意;在△ ABC和△ DEF中,D②③④不可以判断△ ABC和△ DEF全等,应选 D.【剖析】依据全等三角形的判断方法对组合进行判断即可.二、填空题11、【答案】 50【考点】全等三角形的性质【分析】【解答】由于∠B= 100°,∠ BAC= 30°因此∠ ACB= 50°;又由于△ ABC≌△ ADE,因此∠ ACB=∠AED = 50°;【剖析】第一依据全等三角形性质可得对应角相等,再联合图形找到全等三角形的那两个角对应相等,根据题意达成填空.12、【答案】 BC=DE、 AC=AE;∠ B=∠ ADE、∠ BAC=∠DAE 【考点】全等三角形的性质【分析】【解答】∵△ ABC≌△ ADE,∠ C=∠ E, AB=AD,∴AC=AE, BC=DE;∴∠ BAC=∠ DAE,∠ B=∠ ADE.【剖析】由已知△ ABC≌△ ADE,∠ C=∠ E, AB=AD 得 C 点与点 E,点 B 与点 D 为对应点,而后依据全等三角形的性质可得答案.13、【答案】 3【考点】全等三角形的性质【分析】【解答】解:∵△ACE≌△ DBF,∴AC=BD=5,∴CD=BD﹣BC=5﹣ 2=3.故答案为: 3.【剖析】依据全等三角形对应边相等可得AC=BD,而后依据 CD=BD﹣ BC计算即可得解.14、【答案】∠ B=∠ D【考点】全等三角形的判断【分析】【解答】解:增添条件∠B=∠ D,∵在△ ABC和△ ADE 中,∴△ ABC≌△ ADE( ASA),故答案为:∠B=∠D.【剖析】增添条件∠B=∠ D,再由条件∠A=∠A,AB=AD,可利用ASA定理证明△ ABC≌△ ADE,答案不惟一.15、【答案】 2 或 3【考点】全等三角形的判断【分析】【解答】解:当BD=PC时,△ BPD 与△ CQP全等,∵点 D 为 AB 的中点,∴BD= 12 AB=6cm,∵ BD=PC,∴BP=8﹣ 6=2(cm),∵点 P 在线段 BC上以 2 厘米 / 秒的速度由 B 点向 C 点运动,∴运动时间时1s,∵△ DBP≌△ PCQ,∴BP=CQ=2cm,∴v=2÷1=2;当BD=CQ时,△BDP≌△QCP,∵ BD=6cm,PB=PC,∴QC=6cm,∵BC=8cm,∴ BP=4cm,∴运动时间为 4÷2=2( s),∴ v=6÷2=3( m/s ),故答案为: 2 或 3.【剖析】本题要分两种状况:①当BD=PC时,△ BPD 与△ CQP全等,计算出BP的长,从而可得运动时间,BDP≌△ QCP,计算出BP 的长,从而可得运动时间,而后再求v.而后再求v;②当BD=CQ时,△16、【答案】 45°【考点】全等三角形的性质【分析】【解答】解:∵∠ BDC=35°,∠ DBC=50°,∴∠ BCD=180°﹣∠ BDC﹣∠ DBC=180°﹣35°﹣50°=95°,∵△ ABC≌△ DCB,∴∠ ABC=∠ BCD=95°,∴∠ ABD=∠ ABC﹣∠ DBC=95°﹣50°=45°.故答案为: 45°.【剖析】依据三角形的内角和等于180°求出∠BCD,再依据全等三角形对应角相等可得∠ABC=∠ BCD,然后列式进行计算即可得解.17、【答案】 80【考点】全等三角形的性质【分析】【解答】解:∵△ ABC≌△ DEF,∴∠ B=∠DEF=40°,∵PB=PF,∴∠ PFB=∠ B=40°,∴∠ APF=∠ B+∠PFB=80°,故答案为: 80.【剖析】由全等三角形的性质可求得∠B,再利用等腰三角形和外角的性质可求得∠APF.18、【答案】 DC=BC或∠ DAC=∠BAC【考点】全等三角形的判断【分析】【解答】解:增添条件为DC=BC,在△ ABC和△ ADC中,,∴△ ABC≌△ ADC( SSS);若增添条件为∠DAC=∠ BAC,在△ ABC和△ ADC 中,,∴△ ABC≌△ ADC( SAS).故答案为: DC=BC或∠ DAC=∠BAC【剖析】增添 DC=BC,利用 SSS即可获得两三角形全等;增添∠ DAC=∠ BAC,利用 SAS即可获得两三角形全等.三、解答题19、【答案】证明:∵△ ABC≌△ BAD,∴∠ CAB=∠ DBA, AC=BD,∴OA=OB,∴AC﹣OA=BD﹣OB,即: OC=OD.【考点】全等三角形的性质【分析】【剖析】由△ ABC≌△ BAD,依据全等三角形的性质得出∠CAB=∠ DBA, AC=BD,利用等角平等边获得 OA=OB,那么 AC﹣ OA=BD﹣OB,即: OC=OD.20、【答案】解:对应极点: A 和 G, E 和 F,D 和 J,C 和 I, B 和 H,对应边: AB 和 GH,AE 和 GF, ED 和 FJ, CD 和 JI,BC 和 HI;对应角:∠ A 和∠ G,∠ B 和∠ H,∠ C 和∠ I,∠ D 和∠ J,∠ E和∠ F;∵两个五边形全等,∴a=12,c=8, b=10, e=11,α=90°.【考点】全等图形【分析】【剖析】依据能够完整重合的两个图形叫做全等形,重合的极点叫做对应极点;重合的边叫做对应边;重合的角叫做对应角可得对应极点,对应边与对应角,从而可得a,b,c,e,α各字母所表示的值.21、【答案】证明:∵∠ 1=∠ 2,∴∠ 1+∠ FBE=∠ 2+∠ FBE,即∠ ABE=∠ CBF,在△ ABE与△ CBF中,AB=CB∠ ABE=∠ CBFBE=BF,∴△ ABE≌△ CBF( SAS).【考点】全等三角形的判断【分析】【剖析】利用∠1=∠ 2,即可得出∠ABE=∠ CBF,再利用全等三角形的判断SAS得出即可.22、【答案】解:是假命题.以下任一方法均可:①增添条件:AC=DF.证明:∵ AD=BE,∴AD+BD=BE+BD,即 AB=DE.在△ ABC和△ DEF中,AB=DE,∠A=∠ FDE,AC=DF,∴△ ABC≌△ DEF( SAS);②增添条件:∠CBA=∠ E.证明:∵ AD=BE,∴AD+BD=BE+BD,即 AB=DE.在△ABC和△DEF中,∠ A=∠ FDE,AB=DE,∠CBA=∠ E,∴△ ABC≌△ DEF( ASA);③增添条件:∠C=∠ F.证明:∵ AD=BE,∴AD+BD=BE+BD,即 AB=DE.在△ ABC和△ DEF中,∠ A=∠ FDE,∠ C=∠F,AB=DE,∴△ ABC≌△ DEF( AAS)【考点】全等三角形的判断【分析】【剖析】本题中要证△ABC≌△ DEF,已知的条件有一组对应边AB=DE( AD=BE),一组对应角∠ASA),或许是一组A=∠FDE.要想证得全等,依据全等三角形的判断,缺乏的条件是一组对应角( AAS或对应边AC=EF( SAS).只需有这两种状况就能证得三角形全等.23、【答案】解:如图,当△ ABD≌△ EBD时,BE=AB=5,∴CE2=BE2﹣ BC2=25﹣ 4=21.【考点】全等三角形的判断【分析】【剖析】由题意可知只好是△ABD≌△ EBD,则可求得BE,再利用勾股定理可求得CE2四、综合题24、【答案】( 1)证明:∵ AD∥ BC,∴∠ OAF=∠ OEB,在△ AOF 和△ EOB 中,,∴△ AOF≌△ EOB( AAS),∴OF=OB,则 AO 是△ ABF 的中线.∴△ AOB 和△ AOF是“朋友三角形”(2) 8 或 8【考点】全等三角形的判断【分析】【解答】( 2)解:∵△ AOF 和△ DOF 是“朋友三角形”,∴S△AOF=S△DOF,∵△ AOF≌△ EOB,∴S△AOB=S△EOB,∵△ AOB 和△ AOF是“朋友三角形”∴S△AOB=S△AOF,=S =S =S, =× 4× 2=4,∴ S△AOF△DOF△AOB△EOB∴四边形CDOE 的面积 =S 梯形ABCD﹣ 2S△ABE=×(4+6)×4﹣2× 4=12;拓展:解:分为两种状况:①如图 1 所示:∵S△ACD=S△BCD.∴AD=BD= AB=4,∵沿 CD 折叠 A 和 A′重合,∴AD=A′D= AB= ×8=4,∵△ A′CD与△ ABC重合部分的面积等于△ABC面积的,=S =S =S =S,∴ S△DOC△ ABC△ BDC△ ADC△ A′DC∴ DO=OB, A′O=CO,∴四边形 A′DCB是平行四边形,∴ BC=A′D=4,过 B 作 BM⊥ AC 于 M,∵ AB=8,∠ BAC=30°,∴ BM=AB=4=BC,即 C 和 M 重合,∴∠ ACB=90°,由勾股定理得:AC==4,∴△ ABC的面积 =×BC×AC= ×4×4=8;②如图 2 所示:∵S△ACD=S△BCD.∴AD=BD= AB,∵沿 CD 折叠 A 和 A′重合,∴AD=A′D= AB= ×8=4,∵△ A′CD与△ ABC重合部分的面积等于△ABC 面积的,∴ S△DOC=△△△△ ′S ABC=S BDC=S ADC=S A DC,∴DO=OA′, BO=CO,∴四边形 A′BDC是平行四边形,∴A′C=BD=4,过 C 作 CQ⊥ A′D于 Q,∵A′C=4,∠ DA′C=∠BAC=30°,∴ CQ= A′C=2,=2S=2S=2×× A′ D× CQ=2× 4 × 2=8;∴ S△ABC△ADC△ A′DC即△ ABC的面积是8 或 8;故答案为:8 或 8.【剖析】应用:(1)由 AAS 证明△ AOF≌△ EOB,得出 OF=OB, AO 是△ ABF的中线,即可得出结论;( 2)△ AOE和△ DOE 是“友善三角形”,即可获得 E 是 AD 的中点,则能够求得△ ABE和梯形 ABCD的面积的面积,依据 S 四边形CDOF=S矩形ABCD﹣ 2S△ABF即可求解.拓展:画出切合条件的两种状况:①求出四边形A′DCB是平行四边形,求出BC和 A′D推出∠ ACB=90°,依据三角形面积公式求出即可;②求出高CQ,求出△ A′DC的面积.即可求出△ABC的面积。

2023-2024学年八年级数学上册《第十二章 全等三角形》单元测试卷题含答案(人教版)

2023-2024学年八年级数学上册《第十二章 全等三角形》单元测试卷题含答案(人教版)

2023-2024学年八年级数学上册《第十二章全等三角形》单元测试卷题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,已知AB=AC,AD=AE,∠BAC=∠DAE.下列结论不正确的有( )A.∠BAD=∠CAEB.△ABD≌△ACEC.AB=BCD.BD=CE2.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SASB.ASAC.AASD.SSS3.如图,下面4个正方形的边长都相等,其中阴影部分的面积相等的图形有( )A.0个B.2个C.3个D.4个4.如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在C'处,折痕为EF.若AB=1,BC=2,则△ABE和△BC'F的周长之和为( )A.3B.4C.6D.85.如图,在Rt△ABC的斜边BC上截取CD=CA,过点D作DE⊥BC交AB于点E,则有( )A.DE=DBB.DE=AEC.AE=BED.AE=BD6.如图,已知点P到AE、AD、BC的距离相等,下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P在∠BAC,∠CBE,∠BCD的平分线的交点上.其中正确的是( )A.①②③④B.①②③C.④D.②③7.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于( )A.180°B.210°C.360°D.270°8.如图,在△ABC中,AB=AC,点E,F是中线AD上两点,则图中可证明为全等三角形的有( )A.3对B.4对C.5对D.6对9.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS.下面三个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP.其中正确的是( )A.①③B.②③C.①②D.①②③10.如图,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是( )A.1B.2C.3D.411.如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有( ) 个.A.1B.2C.3D.412.如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE=( )A. 6B. 3C. 2D. 1.5二、填空题13.已知△DEF≌△ABC,AB=AC,且△ABC的周长为22cm,BC=4cm,则DE= cm.14.小明将一块三角形的玻璃棒摔碎成如图所示的四块(即图中标有1,2,3,4的四块),若只带一块配成原来一样大小的三角形,则应该带第_______块.15.下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l和直线l外一点P.求作:直线l的平行直线,使它经过点P.作法:如图2.(1)过点P作直线m与直线l交于点O;(2)在直线m上取一点A(OA<OP),以点O为圆心,OA长为半径画弧,与直线l交于点B;(3)以点P为圆心,OA长为半径画弧,交直线m于点C,以点C为圆心,AB长为半径画弧,两弧交于点D;(4)作直线PD.所以直线PD就是所求作的平行线.请回答:该作图的依据是.16.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出个.17.如图,旗杆AC与旗杆BD相距12 m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆AC的高为3 m,该人的运动速度为1 m/s,则这个人运动到点M所用时间是 s.18.如图,DE⊥AB于E,DF⊥A于F,若BD=CD,BE=CF.则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AB+AC=2AE中正确的是 .三、解答题19.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20m有一树C,继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.20.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.21.如图,点O是线段AB的中点,OD∥BC且OD=BC.(1)求证:△AOD≌△OBC;(2)若∠ADO=35°,求∠DOC的度数.22.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC.(1)证明:BC=DE;(2)若AC=12,CE经过点D,求四边形ABCD的面积.23.如图,在等腰Rt△ACB中,∠ACB是直角,AC=BC,把一个45°角的顶点放在C处,两边分别与AB交于E,F两点.(1)将所得△ACE以C为中心,按逆时针方向旋转到△BCG,试求证:△EFC≌△GFC;(2)若AB=10,AE∶BF=3∶4,求EF的长.24.如图,在△ABC中,∠ABC=60゜,AD、CE分别平分∠BAC、∠ACB,AD、CE交于O.(1)求∠AOC的度数;(2)求证:AC=AE+CD.25.已知点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M,N分别是射线AE,AF 上的点,且PM=PN.(1)如图1,当点M在线段AB上,点N在线段AC的延长线上时,求证:BM=CN;(2)在(1)的条件下,直接写出线段AM,AN与AC之间的数量关系________;(3)如图2,当点M在线段AB的延长线上,点N在线段AC上时,若AC:PC=2:1,且PC=4,求四边形ANPM的面积.答案1.C2.D3.C4.C5.B6.A7.B8.D.9.C.10.D11.C12.D.13.答案为:9.14.答案为:2.15.答案为:三边分别相等的两个三角形全等;全等三角形的对应角相等;同位角相等,两直线平行.16.答案为:4.17.答案为:3.18.答案为:①②④;19.解:(1)河的宽度是5m;(2)证明:由作法知,BC=DC,∠ABC=∠EDC=90°在Rt△ABC和Rt△EDC中∴Rt△ABC≌Rt△EDC(ASA)∴AB=ED即他们的做法是正确的.20.证明:(1)∵CF∥AB∴∠B=∠FCD,∠BED=∠F∵AD是BC边上的中线∴BD=CD∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF∴BE=CF=2∴AB=AE+BE=1+2=3∵AD⊥BC,BD=CD∴AC=AB=3.21.证明:(1)∵点O是线段AB的中点∴AO=BO∵OD∥BC∴∠AOD=∠OBC在△AOD与△OBC中∴△AOD≌△OBC(SAS);(2)解:∵△AOD≌△OBC∴∠ADO=∠OCB=35°∵OD∥BC∴∠DOC=∠OCB=35°.22.解:(1)∵∠BAD=∠CAE=90°∴∠BAC+∠CAD=∠EAD+∠CAD∴∠BAC=∠EAD.在△ABC和△ADE中∴△ABC≌△ADE(SAS).∴BC=DE(2)∵△ABC≌△ADE∴S△ABC =S△ADE∴S 四边形ABCD =S △ABC +S △ACD =S △ADE +S △ACD =S △ACE =12×122=72.23.解:(1)由旋转知:△BCG ≌△ACE.∴CG =CE ,∠BCG =∠ACE.∵∠ACE +∠BCF =45°∴∠BCG +∠BCF =45°即∠GCF =∠ECF =45°而CF 为公共边∴△EFC ≌△GFC(SAS);(2)连接FG.由△BCG ≌△ACE 知:∠CBG =∠A =45°∴∠GBF =∠CBG +∠CBF =90°由△EFC ≌△GFC 知:EF =GF.设BG =AE =3x ,BF =4x则在Rt △GBF 中,GF =5x∴EF =GF =5x∴AB =3x +5x +4x =10∴AB =56∴EF =5x =256. 24.解:如图,在AC 上截取AF =AE ,连接OF∵AD 平分∠BAC∴∠BAD =∠CAD在△AOE和△AOF中∴△AOE≌△AOF(SAS)∴∠AOE=∠AOF∵∠ABC=60°,AD、CE分别平分∠BAC,∠ACB∴∠AOC=120°;(2)∵∠AOC=120°∴∠AOE=60°∴∠AOF=∠COD=60°=∠COF在△COF和△COD中∴△COF≌△COD(ASA)∴CF=CD∴AC=AF+CF=AE+CD.25.解:(1)如图1∵点P为∠EAF平分线上一点,PB⊥AE,PC⊥AF∴PB=PC,∠PBM=∠PCN=90°∵在Rt△PBM和Rt△PCN中,PBM=∠PCN=90°,PM=PN,PB=PC∴Rt△PBM≌Rt△PCN(HL)∴BM=CN(2)AM+AN=2AC(3)解:如图2,∵点P为∠EAF平分线上一点,PB⊥AE,PC⊥AF ∴PB=PC,∠PBM=∠PCN=90°∵在Rt △PBM 和Rt △PCN 中,PBM=∠PCN=90°,PM=PN,PB=PC ∴Rt △PBM ≌Rt △PCN (HL )∴BM=CN∴S △PBM =S △PCN∵AC :PC=2:1,PC=4∴AC=8∴由(2)可得,AB=AC=8,PB=PC=4∴S 四边形ANPM =S △APN +S △APB +S △PBM =S △APN +S △APB +S △PCN =S △APC +S △APB = 0.5AC •PC+ 0.5AB •PB= 0.5×8×4+ 0.5×8×4=32。

人教版八年级数学第十二章《全等三角形》单元测试题(含答案)

人教版八年级数学第十二章《全等三角形》单元测试题(含答案)

人教版八年级数学第十二章《全等三角形》单元测试题(含答案)时间:120分钟满分:120分一、选择题(共10小题,满分30分,每小题3分)1.(3分)如图,△ABD和△ACD中,AB=AC,BD=CD,若∠B=20°,则∠C等于()A.10°B.20°C.30°D.40°2.(3分)如图所示,某同学把一块三角形的模具不小心打碎成了三块,现在要去商店配一块与原来一样的三角形模具,那么最省事的是带哪一块去()A.①B.②C.③D.①和②3.(3分)如图,已知△ABD≌△ACE,AD=3,AB=7,BD=9,则AC的长为()A.3B.7C.9D.无法确定4.(3分)如图,AC与BD相交于点O,OA=OD,OB=OC,不添加辅助线,判定△ABO ≌△DCO的依据是()A.SSS B.SAS C.AAS D.HL5.(3分)如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC∥DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是()A.BC=DE B.AE=DB C.∠A=∠DEF D.∠ABC=∠D 6.(3分)如图,点E、F、C、B在同一直线上,AB=DE,∠A=∠D,添加下列一个条件,不能判定△ABC≌△DEF的条件是()A.∠ACB=∠DFE B.AC=DF C.∠B=∠E D.BC=EF7.(3分)如图,∠AOB=150°,OP平分∠AOB,PD⊥OB于点D,PE⊥OA于点E,PC ∥OB交OA于点C,若PD=3,则OC的长为()A.6B.5C.4D.38.(3分)如图,AB,CD相交于O,△OCA≌△OBD,AO=6,BO=4,则CD的长为()A.9B.10C.11D.129.(3分)下列结论正确的是()A.两个等边三角形全等B.有一个锐角相等的两个直角三角形全等C.有两边及一个角对应相等的两个三角形全等D.斜边和一个锐角对应相等的两个直角三角形全等10.(3分)根据语句“直线a与直线b相交,点P在直线a上,直线b不经过点P.”画出的图形是()A.B.C.D.二、填空题(共5小题,满分15分,每小题3分)11.(3分)如图,P是∠AOB的平分线OC上一点,PD⊥OB,PE⊥OA,垂足分别为D,E,若PD=3,则PE的长是.12.(3分)已知△ABC的三边长为x,3,6,△DEF的三边长为5,6,y.若△ABC与△DEF全等,则x+y的值为.13.(3分)如图,AD是△ABC的角平分线,DF⊥AB于点F,点E,G分别是边AB,AC 上的点,且DE=DG,则∠AED+∠AGD=度.14.(3分)如图,OP平分∠MON,P A⊥ON于点A,若P A=3,则点P到射线OM的距离是.15.(3分)如图,BO平分∠ABC,OD⊥BC于点D,点E为射线BA上一动点,若OD=5,则OE的最小值为.三、解答题(共8小题,满分75分)16.(9分)如图,已知AD平分∠BAC,AB=AC.求证:△ABD≌△ACD.17.(9分)如图,已知△ABC和△ADC有公共边AC,且AB=AD,请你添加一个条件(不再添加其他线段,不再标注或使用其他字母),使∠B=∠D,并说明理由.18.(9分)如图,AB=AD,∠C=∠E,∠BAE=∠DAC.求证:AC=AE.19.(9分)如图,已知AB=AD,AE=AC,∠DAB=∠EAC.求证:△ACD≌△AEB.20.(9分)已知:如图,点E、F在BC上,AF与DE交于点G,AB=DC,GE=GF,∠B =∠C.求证:AG=DG.21.(10分)已知:如图,AC=BD,AD=BC,AD,BC相交于点O,过点O作OE⊥AB,垂足为E.求证:(1)△ABC≌△BAD.(2)AE=BE.22.(10分)如图,已知AD∥BC,AD=CB,AE=FC.(1)求证:∠D=∠B;(2)若∠A=20°,∠D=110°,求∠BEC的度数.23.(10分)如图,△ABC中,D是BC延长线上一点,满足CD=AB,过点C作CE∥AB 且CE=BC,连接DE并延长,分别交AC、AB于点F、G.(1)求证:△ABC≌△DCE;(2)若∠B=50°,∠D=22°,求∠AFG的度数.参考答案一、选择题(共10小题,满分30分,每小题3分)1.B;2.C;3.B;4.B;5.B;6.D;7.A;8.B;9.D;10.D;二、填空题(共5小题,满分15分,每小题3分)11.312.813.18014.315.5三、解答题(共8小题,满分75分)16.证明:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).17.解:添加条件:CB=CD,理由:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠B=∠D.(答案不唯一)18.证明:∵∠BAE=∠DAC,∴∠BAE+∠EAC=∠DAC+∠EAC,即∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(AAS),∴AC=AE.19.证明:∵∠DAB=∠EAC,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE,在△ACD和△AEB中,,∴△ACD≌△AEB(SAS).20.证明:∵GE=GF,∴△GEF为等腰三角形,∴∠GEF=∠GFE,∵在△ABF和△DCE中,∠B=∠C,∴∠A=∠D,在△ABF和△DCE中,,∴△ABF≌△DCE(ASA),∴AF=DE,又∵GF=GE,∴AF﹣GF=DE﹣GE,即AG=DG.21.证明(1)在ABC和△BAD中,,∴△ABC≌△BAD(SSS);(2)∵△ABC≌△BAD,∴∠CBA=∠DAB,∴OA=OB,∵OE⊥AB,∴AE=BE.22.(1)证明:∵AD∥BC,∴∠A=∠C,∵AE=FC,∴AF=CE,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴∠D=∠B;(2)解:∵∠A=20°,∠D=110°,∴∠AFD=50°,∵△ADF≌△CBE,∴∠BEC=∠AFD=50°.23.(1)证明:∵CE∥AB,∴∠B=∠DCE,在△ABC与△DCE中,,∴△ABC≌△DCE(SAS);(2)解:∵△ABC≌△DCE,∠B=50°,∠D=22°,∴∠ECD=∠B=50°,∠A=∠D=22°,∵CE∥AB,∴∠ACE=∠A=22°,∵∠CED=180°﹣∠D﹣∠ECD=180°﹣22°﹣50°=108°,∴∠AFG=∠DFC=∠CED﹣∠ACE=108°﹣22°=86°。

第十二章 全等三角形单元测试卷(含解析)

第十二章 全等三角形单元测试卷(含解析)

第十二章全等三角形单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.在△ABC和△DEF中,∠A=50°,∠B=70°,AB=3cm,∠D=50°,∠E=70°,EF=3cm.则△ABC与△DEF()A.一定全等B.不一定全等C.一定不全等D.不确定2.下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是()A.①②B.②③C.①③D.①②③3.某同学不小心把一块玻璃打碎了,变成了如图所示的三块,现在要到玻璃店配一块完全一样的玻璃,那么应带哪块去才能配好()A.①B.②C.③D.任意一块4.如图,在四边形ABCD中,AD∥BC,若∠DAB的角平分线AE交CD于E,连接BE,且BE边平分∠ABC,则以下命题不正确的个数是①BC+AD=AB;②E为CD中点;③∠AEB=90°;④S△ABE=S四边形ABCD;⑤BC=CE.()A.0个B.1个C.2个D.3个5.下列画图的语句中,正确的为()A.画直线AB=10cm B.画射线OB=10cmC.延长射线BA到C,使BA=BC D.画线段CD=2cm6.长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为()A.B.C.D.7.AD与BE是△ABC的角平分线,D,E分别在BC,AC上,若AD=AB,BE=BC,则∠C=()A.69°B.°C.°D.不能确定8.已知△A1B1C1,△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2,对于上述的两个判断,下列说法正确的是()A.①正确,②错误 B.①错误,②正确 C.①,②都错误D.①,②都正确9.已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为()A.1 B.2 C.5 D.无法确定10.如图,将一个等腰Rt△ABC对折,使∠A与∠B重合,展开后得折痕CD,再将∠A 折叠,使C落在AB上的点F处,展开后,折痕AE交CD于点P,连接PF、EF,下列结论:①tan∠CAE=﹣1;②图中共有4对全等三角形;③若将△PEF沿PF翻折,则点E一定落在AB上;④PC=EC;⑤S四边形DFEP =S△APF.正确的个数是()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)11.如图:已知DE=AB,∠D=∠A,请你补充一个条件,使△ABC≌△DEF,并说明你判断的理由:或.12.如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,△ABD、△BCE均为等边三角形,DE、AB交于点F,AF=3,则△ACE的面积为.13.在△ABC中,∠BAC=120°,AB=AC,∠ACB的平分线交AB于D,AE平分∠BAC交BC 于E,连接DE,DF⊥BC于F,则∠EDC=°.14.如图:△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△ABD≌△CEB.15.如图,线段AC、BD相交于点0,OA=OC,OB=OD,那么AB、CD的位置关系是.16.如图,将一张直角三角形纸片对折,使点B、C重合,折痕为DE,连接DC,若AC=6cm,∠ACB=90°,∠B=30°,则△ADC的周长是cm.三.解答题(共8小题,满分72分)17.(8分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.18.(8分)如图,△ABC是等边三角形,AN=BM,BN,MC相交于O,CH⊥BN于点H,求证:2OH=OC.19.(8分)已知:如图,在△ABC中,AB=AC,∠BAC=90°,D是BC上一点,EC⊥BC,EC=BD,DF=FE.求证:(1)△ABD≌△ACE;(2)AF⊥DE.20.(8分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.21.(8分)如图所示,已知△ABC中,D为BC上一点,E为△ABC外部一点,DE交AC 于一点O,AC=AE,AD=AB,∠BAC=∠DAE.(1)求证:△ABC≌△ADE;(2)若∠BAD=20°,求∠CDE的度数.22.(10分)已知:如图,在△ABC中,∠B=60°,D、E分别为AB、BC上的点,且AE、CD交于点F.若AE、CD为△ABC的角平分线.(1)求证:∠AFC=120°;(2)若AD=6,CE=4,求AC的长?23.(10分)有一座锥形小山,如图,要测量锥形小山两端A、B的距离,先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,量出DE的长为50m,你能求出锥形小山两端A、B的距离吗?24.(12分)探究问题1 已知:如图1,三角形ABC中,点D是AB边的中点,AE⊥BC,BF⊥AC,垂足分别为点E,F,AE,BF交于点M,连接DE,DF.若DE=kDF,则k的值为.拓展问题2 已知:如图2,三角形ABC中,CB=CA,点D是AB边的中点,点M在三角形ABC的内部,且∠MAC=∠MBC,过点M分别作ME⊥BC,MF⊥AC,垂足分别为点E,F,连接DE,DF.求证:DE=DF.推广问题3 如图3,若将上面问题2中的条件“CB=CA”变为“CB≠CA”,其他条件不变,试探究DE与DF之间的数量关系,并证明你的结论.参考答案与试题解析1.解:∵在△ABC和△DEF中,∠A=50°,∠B=70°,∠D=50°,∠E=70°,EF=3cm,AB=3cm 若是AB=DE,则可以推出两三角形全等此处是EF与AB相等,设DE=3,则DE=EF,则∠D=∠E显然与已知相违背,所以此假设不成立所以两三角形一定不全等.故选C.2.解:①正确.可以用AAS或者ASA判定两个三角形全等;②正确.可以用“倍长中线法”,用SAS定理,判断两个三角形全等;如图,分别延长AD,A′D′到E,E′,使得AD=DE,A′D′=D′E′,∴△ADC≌△EDB,∴BE=AC,同理:B′E′=A′C′,∴BE=B′E′,AE=A′E′,∴△ABE≌△A′B′E′,∴∠BAE=∠B′A′E′,∠E=∠E′,∴∠CAD=∠C′A′D′,∴∠BAC=∠B′A′C′,∴△BAC≌△B′A′C′.③不正确.因为这个高可能在三角形的内部,也有可能在三角形的外部,也就是说,这两个三角形可能一个是锐角三角形,一个是钝角三角形,所以就不全等了.故选:A.3.解:只有①中包含两角及夹边,符合ASA.故选A.4.解:∵AD∥BC,∴∠ABC+∠BAD=180°,∵AE 、BE 分别是∠BAD 与∠ABC 的平分线, ∴∠BAE=∠BAD ,∠ABE=∠ABC , ∴∠BAE +∠ABE=(∠BAD +∠ABC )=90°, ∴∠AEB=180°﹣(∠BAE +∠ABE )=180°﹣90°=90°, 故③小题正确;延长AE 交BC 延长线于F , ∵∠AEB=90°, ∴BE ⊥AF , ∵BE 平分∠ABC , ∴∠ABE=∠FBE , 在△ABE 与△FBE 中,,∴△ABE ≌△FBE (ASA ), ∴AB=BF ,AE=FE , ∵AD ∥BC , ∴∠EAD=∠F ,在△ADE 与△FCE 中,,∴△ADE ≌△FCE (ASA ), ∴AD=CF ,∴AB=BC +CF=BC +AD ,故①小题正确; ∵△ADE ≌△FCE ,∴CE=DE ,即点E 为CD 的中点,故②小题正确; ∵△ADE ≌△FCE , ∴S △ADE =S △FCE , ∴S 四边形ABCD =S △ABF , ∵S △ABE =S △ABF ,∴S △ABE =S 四边形ABCD ,故④小题正确;若AD=BC ,则CE 是Rt △BEF 斜边上的中线,则BC=CE ,∵AD与BC不一定相等,∴BC与CE不一定相等,故⑤小题错误.综上所述,不正确的有⑤共1个.故选:B.5.解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选:D.6.解:∵围成两个全等的三角形可得两个三角形的周长相等∴x+y+z=,∵y+z>x∴可得x<,又因为x为最长边大于∴x≥综上可得≤x<故选:A.7.解:∵AD=AB,∴∠ADB=(180°﹣∠BAC)=90°﹣∠BAC,∴∠C=∠ADB﹣∠DAC=(180°﹣∠BAC)=90°﹣∠BAC﹣∠BAC=90°﹣∠BAC;∵BE=BC,∴∠C=∠BEC=∠BAC+∠ABE=∠BAC+(180°﹣∠BAC)=∠BAC+45°﹣∠BAC=45°+∠BAC,∴90°﹣∠BAC=45°+∠BAC,解得∠BAC=,∴∠C=90°﹣=.故选:C.8.解:∵△A1B1C1,△A2B2C2的周长相等,A1B1=A2B2,A1C1=A2C2,∴B1C1=B2C2,∴△A1B1C1≌△A2B2C2(SSS),∴①正确;∵∠A1=∠A2、∠B1=∠B2,∴△A1B1C1∽△A2B2C2,设相似比为k,即===k,∴=k,∵△A1B1C1,△A2B2C2的周长相等,∴k=1,即A1B1=A2B2,B1C1=B2C2,A1C1=A2C2,∴△A1B1C1≌△A2B2C2,∴②正确;故选:D.9.解:过D作BC的垂线交BC于G,过E作AD的垂线交AD的延长线于F,∵∠EDF+∠FDC=90°,∠GDC+∠FDC=90°,∴∠EDF=∠GDC,于是在Rt△EDF和Rt△CDG中,,∴△DEF≌△DCG,∴EF=CG=BC﹣BG=BC﹣AD=3﹣2=1,=(AD×EF)÷2=(2×1)÷2=1.所以,S△ADE故选:A.10.解:①正确.作EM ∥AB 交AC 于M . ∵CA=CB ,∠ACB=90°, ∴∠CAB=∠CBA=45°,∵∠CAE=∠BAE=∠CAB=22.5°, ∴∠MEA=∠EAB=22.5°,∴∠CME=45°=∠CEM ,设CM=CE=a ,则ME=AM=a ,∴tan ∠CAE===﹣1,故①正确,②正确.△CDA ≌△CDB ,△AEC ≌△AEF ,△APC ≌△APF ,△PEC ≌△PEF ,故②正确, ③正确.∵△PEC ≌△PEF , ∴∠PCE=∠PFE=45°, ∵∠EFA=∠ACE=90°, ∴∠PFA=∠PFE=45°,∴若将△PEF 沿PF 翻折,则点E 一定落在AB 上,故③正确. ④正确.∵∠CPE=∠CAE +∠ACP=67.5°,∠CEP=90°﹣∠CAE=67.5°, ∴∠CPE=∠CEP , ∴CP=CE ,故④正确, ⑤错误.∵△APC ≌△APF , ∴S △APC =S △APF ,假设S △APF =S 四边形DFPE ,则S △APC =S 四边形DFPE , ∴S △ACD =S △AEF ,∵S △ACD =S △ABC ,S △AEF =S △AEC ≠S △ABC , ∴矛盾,假设不成立. 故选:D .11.解:∵已知DE=AB,∠D=∠A,∴根据ASA判断全等添加∠B=∠E;根据AAS判断全等添加∠ACB=∠DFE;根据SAS判断全等添加AF=CD.故填空答案:∠B=∠E或∠ACB=∠DFE或AF=CD.12.解:如图所示,过D作DG⊥AB于G,EK⊥AC交AC的延长线于K.∵△ABD是等边三角形,DG⊥AB,∴AG=BG=AB,由勾股定理得:DG=AG,∵∠BAC=30°,∴AC=AB,∴AG=AC=AB,∵由勾股定理得:BC=AC,∴DG=BC=BE,∵∠EBA=60°+30°=90°,∴EB⊥AB.∴DG∥EB.∴∠BEF=∠GDF,∠DGB=∠EBF=90°,在△DGF与△EBF中,∵,∴△ADF≌△GEF(AAS),∴DF=EF,GF=BF,∵AG=BG,AF=3,∴FG=,AG=2,∴AB=4AC=2,EC=BC=AC=6,在Rt△CEK中,EK=EC=3,∴S=•AC•EK=•2•3=6.△ACE故答案为6.13.解:过D作DM⊥AC交CA的延长线于M,DN⊥AE,∵CD平分∠ACB,∴DF=DM,∵∠BAC=120°,∴∠DAM=60°,∵AE平分∠BAC,∴∠BAE=60°,∴∠DAM=∠BAE,∴DM=DN,∵DF⊥BC,∴DE平分∠AEB,∵AB=AC,AE平分∠BAC交BC于E,∴AE⊥BC,∴∠AEB=90°,∴∠DEF=45°,∵∠B=∠C=30°,∴∠DCF=15°,∴∠EDC=30°,故答案为:30.14.解:已知∠B=∠B,∠BDA=∠BEC=90°,则再添加一个边相等即可,所以可添加BD=BE或AD=CE或BA=BC,从而利用AAS或ASA来判定△ABD≌△CEB,故答案为:BD=BE或AD=CE或BA=BC.15.解:在△AOB和△COD中,,∴△AOB≌△COD(SAS),∴∠A=∠C,∴AB∥CD.故答案为:AB∥CD.16.解:根据折叠前后角相等可知,∠B=∠DCB=30°,∠ADC=∠ACD=60°,∴AC=AD=DC=6,∴ADC的周长是18cm.17.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.18.证明:∵△ABC为等边三角形,∴AB=BC=AC,∠A=∠ABC=∠ACB=60°,在△BAN和△CBM中,,∴△BAN≌△CBM(SAS),∴∠ABN=∠BCM,∵∠ABN+∠OBC=60°,∴∠BCM+∠OBC=60°,∵∠NOC为△OBC的外角,∴∠NOC=∠BCM+∠OBC=60°,在Rt△OHC,∠HCO=30°,则2OH=OC.19.证明:(1)∵AB=AC,∠BAC=90°,∴∠B=∠BCA=45°,∵EC⊥BC,∴∠ACE=90°﹣45°=45°,∴∠B=∠ACE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)由(1)知,△ABD≌△ACE,∴AD=AE,等腰△ADE中,∵DF=FE,∴AF⊥DE.20.解:(1)由于AB′是AB的折叠后形成的,∠AB′E=∠B=∠D=90°,∴B′E∥DC;(2)∵折叠,∴△ABE≌△AB′E,∴∠AEB′=∠AEB,即∠AEB=∠BEB′,∵B′E∥DC,∴∠BEB′=∠C=130°,∴∠AEB=∠BEB′=65°.21.证明:(1)在△ABC和△ADE中,,∴△ABC≌△ADE(SAS);(2)∵△ABC≌△ADE,∴∠BAC=∠DAE,∠E=∠C,∵∠BAC=∠BAD+∠DAC,∠DAE=∠DAC+∠CAE,∠BAD=20°,∴∠CAE=∠BAD=20°,∵∠E=∠C,∠AOE=∠DOC,∴∠CAE=∠CDE,∴∠CDE=20°.22.解:(1)∵AE、CD分别为△ABC的角平分线,∴∠FAC=,∠FCA=,∵∠B=60°∴∠BAC+∠BCA=120°,∴∠AFC=180﹣∠FAC﹣∠FCA=180°﹣×120°=120°.(2)在AC上截取AG=AD=6,连接FG.∵AE、CD分别为△ABC的角平分线∴∠FAC=∠FAD,∠FCA=∠FCE,∵∠AFC=120°,∴∠AFD=∠CFE=60°,在△ADF和△AGF中,∴△ADF≌△AGF(SAS)∴∠AFD=∠AFG=60°,∴∠GFC=∠CFE=60°,在△CGF和△CEF中,∴△CGF≌△CEF(ASA),∴CG=CE=4,∴AC=10.23.解:在△ABC和△EDC中,∴△ABC≌△EDC,∴AB=DE=50.答:锥形小山两端A、B的距离为50m.24.解:(1)∵AE⊥BC,BF⊥AC∴△AEB和△AFB都是直角三角形∵D是AB的中点∴DE和DF分别为Rt△AEB和Rt△AFB的斜边中线∴DE=AB,DF=AB(直角三角形斜边中线等于斜边的一半)∴DE=DF∵DE=kDF∴k=1(2)∵CB=CA∴∠CBA=∠CAB∵∠MAC=∠MB∴∠CBA﹣∠MBC=∠CAB﹣∠MAC即∠ABM=∠BAM∴AM=BM∵ME⊥BC,MF⊥AC∴∠MEB=∠MFA=90又∵∠MBE=∠MAF∴△MEB≌△MFA(AAS)∴BE=AF∵D是AB的中点,即BD=AD又∵∠DBE=∠DAF∴△DBE≌△DAF(SAS)∴DE=DF(3)DE=DF如图1,作AM的中点G,BM的中点H,∵点D是边AB的中点∴DG∥BM,DG=BM同理可得:DH∥AM,DH=AM∵ME⊥BC于E,H 是BM的中点∴在Rt△BEM中,HE=BM=BH∴∠HBE=∠HEB∠MHE=∠HBE+∠HEB=2∠MBC又∵DG=BM,HE=BM∴DG=HE同理可得:DH=FG,∠MGF=2∠MAC∵DG∥BM,DH∥GM∴四边形DHMG是平行四边形∴∠DGM=∠DHM∵∠MGF=2∠MAC,∠MHE=2∠MBC 又∵∠MBC=∠MAC∴∠MGF=∠MHE∴∠DGM+∠MGF=∠DHM+∠MHE∴∠DGF=∠DHE在△DHE与△FGD中,∴△DHE≌△FGD(SAS),∴DE=DF21世纪教育网–中小学教育资源及组卷应用平台21世纪教育网。

2023-2024学年人教版八年级数学上册第十二章单元测试卷附答案解析

2023-2024学年人教版八年级数学上册第十二章单元测试卷附答案解析

2023-2024学年八年级数学上册第十二章单元测试卷全等三角形(满分100分)一、选择题(本大题共有10个小题,每小题3分,共30分)1.如图,BC BE =,CD ED =,则BCD BED ≌△△,其依据是()A.SAS B.AAS C.SSS D.ASA2.如图,用BDA CDA ∠=∠,12∠=∠,直接判定ABD ACD △≌△的理由是()A.AAS B.SSS C.ASA D.SAS3.如图,某同学把一块三角形的玻璃打碎成3块,现要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是______,这么做的依据是______.()A.带①去,SAS B.带②去,SASC.带③去,ASA D.①②③都带去,SSS4.如图,已知△ABC 三条边、三个角,则甲、乙两个三角形中,与△ABC 全等的图形是()A.甲B.乙C.甲和乙D.都不是5.如图,已知B C ∠=∠,AE AF =,则ABE ACF ∆≅∆的根据是()A.SAS B.AAS C.ASA D.SSS6.如图,要测池塘两端A ,B 的距离,小明先在地上取一个可以直接到达A 和B 的点C ,连接AC 并延长到D ,使CD CA =;连接BC 并延长到E ,使CE CB =,连接DE 并测量出它的长度,DE 的长度就是A ,B 间的距离.那么判定ABC 和DEC 全等的依据是()A.SSS B.SAS C.ASA D.AAS7.在测量一个小口圆柱形容器的内径时,小明用“X 型转动钳”按如图所示的方法进行测量,其中OA OD =,OB OC =,则可判定AOB DOC △≌△的依据是()A.SAS B.AAS C.ASA D.SSS8.如图,BE CF =,AB DE ∥,添加下列哪个条件不能推证ABC DEF ≌△△()A.AC DF =B.AC DF ∥C.AB DE =D.A D∠=∠9.如图,已知∠AOB ,用直尺和圆规按照以下步骤作图:①以点O 为圆心,任意长为半径画弧,分别交OA 、OB 于点C 、D ;②画射线O ′A ',以点O '为圆心,OC 长为半径画弧,交O ′A '于点C ';③以点C ′为圆心,CD 长为半径画弧,与第②步中所画的弧相交于点D ';④过点D ′画射线O ′B ';根据以上操作,可以判定△OCD ≌△O 'C 'D ',其判定的依据是()A.SSS B.SAS C.ASA D.HL10.如图,在ABC 中,P 在BC 上,PR AB ⊥于R PS AC ⊥,于S ,CAP APQ ∠=∠,PR PS =,下面的结论:①AS AR =;②QP AR ∥;③BRP CSP ∆≅∆.其中正确的是()A.①②B.②③C.①③D.①②③二、填空题(本大题共有6个小题,每小题3分,共18分)1.如图,在ABD △与ACD 中,已知CAD BAD ∠=∠,在不添加任何辅助线的前提下,依据“AAS ”证明ABD ACD △≌△,需再添加一个条件是_____.12.如图,要测量河岸相对的A ,B 两点之间的距离,先在BC 的延长线上取一点D ,使CD BC =,再过点D 作垂线DE ,使A ,C ,E 在一条直线上,则EDC ABC ≅ 的依据是.13.如图,BC =EC ,∠1=∠2,要使△ABC ≌△DEC ,则应添加的一个条件为(只需填一个)14.如图,AC 与BD 相交于O,∠1=∠4,∠2=∠3,△ABC 的周长为25cm,△AOD 的周长为17cm,则AB =_______15.如图,已知CD AB ⊥于点D ,现有四个条件:①AD ED =;②A BED ∠=∠;③C B ∠=∠;④CD BD =,那么不能得出ADC EDB ≌△△的条件是_______16.如图,在Rt ABC △中,90BAC ∠=︒,AB AC =,分别过点B 、C 作经过点A 的直线的垂线段BD 、CE ,若5BD =厘米,8CE =厘米,则DE 的长为.三、解答题(本大题共有6个小题,共52分)17.如图,已知点A、E、F、C 在同一直线上,∠1=∠2,AE=CF,AD=CB.请你判断BE 和DF 的关系...并证明你的结论18.如图,已知在四边形ABCD 中,E 是AC 上一点,∠1=∠2,∠3=∠4,求证:∠5=∠6.19.如图,已知//AB CD ,AB CD =,BF CE =.求证:AE DF =且//AE DF .20.已知△ABN 和△ACM 位置如图所示,AB =AC ,AD =AE ,∠1=∠2.(1)求证:BD =CE ;(2)求证:∠M=∠N.21.如图:在△ABC 中,AC=BC,D 是AB 上的一点,AE⊥CD 于点E,BF⊥CD 于点F,若CE=BF,AE=EF+BF.试判断AC 与BC的位置关系,并说明理由.22.已知AB=AC ,D ,E 是BC 边上的点,将△ABD 绕点A 旋转,得到△ACD',连接D'E(1)如图1,当∠BAC=120°,∠DAE=60°时,求证DE=D'E,(2)如图2,当DE=D'E 时,∠DAE 与∠BAC 有怎样的数量关系?请写出,并说明理由.解答一、1.C2.C.3.C4.C5.B.6.B.7.A8.A9.A.10.A三、填空题(本大题共有6个小题,每小题3分,共18分)11.为:B C ∠=∠.12.ASA13.AC =DC (答案不唯一)14.8cm15.②③16.13厘米三、解答题(本大题共有6个小题,共52分)17.解:BE //DF.理由:∵AE=CF,∴AF=CE,在△ADF 与△CBE 中,12AF CEAD CB=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△CBE(SAS),∴∠DFA=∠BEC,BE=DF∴BE //DF(内错角相等,两直线平行).18.证明:∵12{34AC CA ∠=∠=∠=∠,∴△ADC≌△ABC(ASA).∴DC=BC.又∵{34DC BCEC CE=∠=∠=,∴△CED≌△CEB(SAS).∴∠5=∠6.19.证明:BF CE = ,BF EF CE EF ∴+=+,即BE CF =,//AB CD Q ,B C ∴∠=∠,在ABE 与CDF 中,AB CDB C BE CF=⎧⎪∠=∠⎨⎪=⎩,()ABE CDF SAS ∴△≌△,AEB DFC ∴∠=∠,AE DF=//AE DF ∴.20.解:(1)证明:在△ABD 和△ACE 中,12AB ACAD AE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴BD =CE ;(2)证明:∵∠1=∠2,∴∠1+∠DAE =∠2+∠DAE ,即∠BAN =∠CAM ,由(1)知:△ABD ≌△ACE ,∴∠B =∠C ,在△ACM 和△ABN 中,C BAC AB CAM BAN∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACM ≌△ABN (ASA ),∴∠M =∠N .21.解:AC⊥BC;理由:∵AE⊥CD,BF⊥CD,∴∠AEC=∠BFC=90°,∴∠CAE+∠ACE=90°,∵CF=CE+EF,CE=BF,∴CF=EF+BF,∵AE=EF+BF,∴AE=CF,在Rt△ACE 和Rt△CBF 中,AC CBAE CF CE BF =⎧⎪=⎨⎪=⎩∴Rt△ACE≌Rt△CBF,∴∠BCF=∠CAE,∴∠ACB=∠BCF+∠ACE=∠CAE+∠ACE=90°,∴AC⊥BC.22.解:(1)证明:如图,∵△ABD 旋转得到△ACD',∴∠DAD'=∠BAC=120°,AD=AD'.∵∠DAE=60°,∴∠EAD'=∠DAD'-∠DAE=120°-60°=60°.∴∠DAE=∠D'AE ,又∵AE=AE ,AD=AD',∴△DAE ≌△D'AE (SAS).∴DE=D'E.(2)解:∠DAE=12∠BAC.理由:如图,∵△ABD 旋转得到△ACD',∴∠DAD'=∠BAC ,AD=AD'.∵DE=D'E ,AE=AE ,∴△DAE ≌△D'AE (SSS).∴∠DAE=D'AE=12∠DAD'.∴∠DAE=12∠BAC.。

《第十二章 全等三角形》单元测试卷及答案(共六套)

《第十二章 全等三角形》单元测试卷及答案(共六套)

《第十二章 全等三角形》单元测试卷(一)答题时间:120 满分:150分一、选择题 (每题3分,共30分。

每题只有一个正确答案,请将正确答案的代号填在下面的表格中)题号 1 2 3 4 5 6 7 8 9 10 答案1.下列判断中错误..的是( ) A .有两角和一边对应相等的两个三角形全等 B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等2.如图,和均是等边三角形,分别与交于点,有如下结论:①;②;③. 其中,正确结论的个数是( ) A .3个B .2个C .1个D .0个3.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是( ) A .带①去 B .带②去 C .带③去 D .带①②③去4.△ABC ≌△DEF ,AB=2,AC =4,若△DEF 的周长为偶数, 则EF 的取值为( )A .3B .4C .5D .3或4或55.如图,已知,△ABC 的三个元素,则甲、乙、丙三个三角形中,和△ABC 全等的图形是( ) A .甲和乙 B .乙和丙DAC △EBC △AE BD ,CD CE ,M N ,ACE DCB △≌△CM CN =AC DN =(第3题)BECD ANM (第2题)(第5题)C .只有乙D .只有丙6.三角形ABC 的三条内角平分线为AE 、BF 、CG 、下面的说法中正确的个数有( ) ①△ABC 的内角平分线上的点到三边距离相等 ②三角形的三条内角平分线交于一点 ③三角形的内角平分线位于三角形的内部④三角形的任一内角平分线将三角形分成面积相等的两部分 A .1个 B .2个 C .3个 D .4个7.如图,长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,∠BAF =600,那么∠DAE 等于( ) A .150 B .300 C .450 D .6008.如图所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为( ) A .80° B .100° C .60° D .45°9.在△ABC 和△A B C '''中,已知A A '∠=∠,AB A B ''=,在下面判断中错误的是( )A.若添加条件AC A C ''=,则△ABC ≌△A B C '''B.若添加条件BC B C ''=,则△ABC ≌△A B C '''C.若添加条件B B '∠=∠,则△ABC ≌△A B C '''D.若添加条件C C '∠=∠,则△ABC ≌△A B C '''10.如图,在△ABC 中,∠C =90,AD 平分∠BAC ,DE ⊥AB 于E , 则下列结论:①AD 平分∠CDE ;②∠BAC =∠BDE ; ③DE 平分∠ADB ;④BE +AC =AB .其中正确的有( ) A.1个 B.2个C.3个D.4个二、填空题(每题3分,共30)11.如图,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是______________________________.(第7题)(第8题) 第10题12.如图,AC ,BD 相交于点O ,AC =BD ,AB =CD ,写出图中两对相等的角______. 13.如图,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是______.14.如图,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则 的面积为______.15.在△ABC 中,∠C =90°,BC =4CM ,∠BAC 的平分线交BC 于D ,且BD :DC =5:3,则D 到AB 的距离为_____________.16.如图,△ABC 是不等边三角形,DE =BC ,以D ,E 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出_____个.17.如图,分别是锐角三角形和锐角三角形中边上的高,且.若使,请你补充条件___________.(填写一个你认为适当的条件即可)18.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________.ACE △AD A D '',ABC A B C ''',BC B C ''AB A B AD A D ''''==,ABC A B C '''△≌△(第11题)AD OC B (第12题)ADOC B(第13题)ADCBAD CBE(第14题)(第16题)BDEABC D'A 'B'D'C (第17、18题) (第19题)19.如图,已知在中,平分,于,若,则的周长为 .20.在数学活动课上,小明提出这样一个问题:∠B =∠C =90,E 是BC 的中点,DE 平分∠ADC ,∠CED =35,如图16,则∠EAB 是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______.三、解答题(每题9分,共36分)21.如图,O 为码头,A ,B 两个灯塔与码头的距离相等,OA ,OB 为海岸线,一轮船从码头开出,计划沿∠AOB 的平分线航行,航行途中,测得轮船与灯塔A ,B 的距离相等,此时轮船有没有偏离航线?画出图形并说明你的理由.22.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .23.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N . 求证:∠OAB =∠OBAABC ∆90,,A AB AC CD ∠=︒=ACB ∠DE BC ⊥E 15cm BC =DEB △cm 00 ABO24.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .四、解答题(每题10分,共30分)25.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B26.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.27.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .PEDCBA DCBA(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):五、(每题12分,共24分)28.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F . 求证:BD =2CE .29.已知:在△ABC 中,∠BAC =90,AB =AC ,AE 是过点A 的一条直线,且BD ⊥AE 于D ,CE ⊥AE 于E .(1)当直线AE 处于如图①的位置时,有BD =DE +CE ,请说明理由;(2)当直线AE 处于如图②的位置时,则BD 、DE 、CE 的关系如何?请说明理由; (3)归纳(1)、(2),请用简洁的语言表达BD 、DE 、CE 之间的关系.OEDCBAFE D CBA参考答案一、选择题1.B 2.B 3.C 4.B 5.B 6.B 7.A 8.A 9.B 10. C二、填空题11.∠A=∠C或∠ADO=∠CBO等(答案不唯一) 1 2.∠A=∠D或∠ABC=∠DCB 等(答案不唯一) 13.5 14.8 1 5.1.5cm 16.4 17.BD=B’D’或∠B=∠B’等(答案不唯一) 18.互补或相等 19.15 20.35三、解答题21.此时轮船没有偏离航线.画图及说理略22.证明:延长AD至H交BC于H;BD=DC;所以:∠DBC=∠角DCB;∠1=∠2;∠DBC+∠1=∠角DCB+∠2;∠ABC=∠ACB;所以:AB=AC;三角形ABD全等于三角形ACD;∠BAD=∠CAD;AD是等腰三角形的顶角平分线所以:AD垂直BC23.证明:因为AOM与MOB都为直角三角形、共用OM,且∠MOA=∠MOB所以MA=MB所以∠MAB=∠MBA因为∠OAM=∠OBM=90度所以∠OAB=90-∠MAB ∠OBA=90-∠MBA所以∠OAB=∠OBA24.证明:做BE的延长线,与AP相交于F点,∵PA//BC∴∠PAB+∠CBA=180°,又∵,AE,BE均为∠PAB和∠CBA的角平分线∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形在三角形ABF中,AE⊥BF,且AE为∠FAB的角平分线∴三角形FAB为等腰三角形,AB=AF,BE=EF在三角形DEF与三角形BEC中,∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB,∴三角形DEF与三角形BEC为全等三角形,∴DF=BC∴AB=AF=AD+DF=AD+BC四、25.证明:延长AC至E,使CE=CD,连接ED∵AB=AC+CD∴AE=AB∵AD平分∠CAB∴∠EAD=∠BAD∴AE=AB∠EAD=∠BADAD=AD∴△ADE≌△ADB∴∠E=∠B且∠ACD=∠E+∠CDE,CE=CD∴∠ACD=∠E+∠CDE=2∠E=2∠B即∠C=2∠B26.分析:通过证明两个直角三角形全等,即Rt△DEC≌Rt△BFA以及垂线的性质得出四边形BEDF是平行四边形.再根据平行四边形的性质得出结论.解答:解:(1)连接BE,DF.∵DE⊥AC于E,BF⊥AC于F,,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA,∴DE=BF.∴四边形BEDF是平行四边形.∴MB=MD,ME=MF;(2)连接BE,DF.∵DE⊥AC于E,BF⊥AC于F,,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA,∴DE=BF.∴四边形BEDF是平行四边形.∴MB=MD,ME=MF.(2)成立27.(1)证明:∵DC=1/2 AB,E为AB的中点,∴CD=BE=AE.又∵DC∥AB,∴四边形ADCE是平行四边形.∴CE=AD,CE∥AD.∴∠BEC=∠BAD.∴△BEC≌△EAD(2)△AEC,△CDA,△CDE五、 28.证明:因为∠CEB=∠CAB=90°所以:ABCE四点共元又因为:∠AB E=∠CB E所以:AE=CE所以:∠ECA=∠EAC取线段BD的中点G,连接AG,则:AG=BG=DG所以:∠GAB=∠ABG而:∠ECA=∠GBA (同弧上的圆周角相等)所以:∠ECA=∠EAC=∠GBA=∠GAB而:AC=AB所以:△AEC≌△AGB所以:EC=BG=DG所以:BD=2CE29解:(1)在△ABC中,∠BAC=90°,∴∠BAD=90°-∠EAC。

全等三角形 单元测试卷 (含答案)

全等三角形 单元测试卷 (含答案)

第十二章全等三角形单元测试一.选择题(共12小题).1.如图(1),已知△ABC的六个元素,则图(2)、图(3)、图(4)中的三角形和△ABC 全等的有()A.图(2)和图(3)B.图(3)和图(4)C.只有图(3)D.只有图(4)2.下列各组图形中,一定全等的是()A.两个等边三角形B.腰长相等的两个等腰三角形C.两边和一角对应相等的两个三角形D.两边对应相等的两个直角三角形3.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB=15,则CD 4.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD 的长为()A.3 B.4 C.5 D.65.如图,△ABC中,∠BAC=108°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是()A.20°B.24°C.30°D.36°6.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3的度数为()A.90°B.105°C.120°D.135°7.如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需()A.AB=DC B.OB=OC C.∠C=∠D D.∠AOB=∠DOC 8.如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BACC.BD=AC,∠BAD=∠ABC D.AD=BC,BD=AC9.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()A.AB﹣AD>CB﹣CDB.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CDD.AB﹣AD与CB﹣CD的大小关系不确定10.用直尺和圆规作一个角等于已知角的示意图如下,则要说明∠D′O′C′=∠DOC,需要证明△D′O′C′≌△DOC,则这两个三角形全等的依据是()A.SAS B.SSS C.ASA D.AAS11.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ 的最小值为()A.1 B.2 C.3 D.412.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3,则点D到AB的距离是()A.5 B.4 C.3 D.2二.填空题13.已知图中的两个三角形全等,则∠α的度数是.14.如图,△ABC中,点D、E在BC边上,∠BAD=∠CAE请你添加一对相等的线段或一对相等的角的条件,使△ABD≌△ACE.你所添加的条件是.15.已知△ABC三边长分别为3,5,7,△DEF三边长分别为3,3x﹣2,2x﹣1,若这两个三角形全等,则x为.16.如图,在△ABC中,BD是边AC上的高,CE平分∠ACB,交BD于点E,DE=2,BC=5,则△BCE的面积为.三.解答题17.如图,在△ABC中,AB=AC=8,BC=12,点D从B出发以每秒2个单位的速度在线段BC上从点B向点C运动,点E同时从C出发以每秒2个单位的速度在线段CA上向点A 运动,连接AD、DE,设D、E两点运动时间为t秒(0<t<4)(1)运动秒时,AE=DC;(2)运动多少秒时,△ABD≌△DCE能成立,并说明理由;(3)若△ABD≌△DCE,∠BAC=α,则∠ADE=(用含α的式子表示).18.如图1,在△ABC中,∠BAC的平分线AD与∠BCA的平分线CE交于点O.(1)求证:∠AOC=90°+∠ABC;(2)当∠ABC=90°时,且AO=3OD(如图2),判断线段AE,CD,AC之间的数量关系,并加以证明.19.如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,∠1=∠2.(1)求证:△ABE≌△CBD;(2)证明:∠1=∠3.20.如图,在平面直角坐标系中,A、B坐标为(6,0)、(0,6),P为线段AB上的一点.(1)如图1,若P为AB的中点,点M、N分别是OA、OB边上的动点,且保持AM=ON,则在点M、N运动的过程中,探究线段PM、PN之间的位置关系与数量关系,并说明理由.(2)如图2,若P为线段AB上异于A、B的任意一点,过B点作BD⊥OP,交OP、OA分别于F、D两点,E为OA上一点,且∠PEA=∠BDO,试判断线段OD与AE的数量关系,并说明理由.参考答案一.选择题1.解:如图(1)、(2)根据一边、一角不能判定量三角形全等,故图(2)中的三角形和△ABC不全等;如图(1)、(3)两角为58°、50°,对应相等,但是对应边不相等,不能判定它们全等,故图(3)中的三角形和△ABC不全等;如图(1)、(4)根据全等三角形的判定定理ASA可以证得它们全等,故图(4)中的三角形和△ABC全等.综上所述,只有图(4)中的三角形和△ABC全等.故选:D.2.解:各组图形中,一定全等的是两边对应相等的两个直角三角形,故选:D.3.解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加∠ACB=∠DEB,可根据ASA判定△ABC≌△DBE,故正确.故选:B.4.解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,=AB•DE=×10•DE=15,∴S△ABD解得DE=3,∴CD=3.故选:A.5.解:如图,在DC上取DE=DB,连接AE.在Rt△ABD和Rt△AED中,,∴Rt△ABD≌Rt△AED(HL).∴AB=AE,∠B=∠AED.又∵AB+BD=DC,∴EC=DC﹣DE=DC﹣BD=(AB+BD)﹣BD=AB=AE,即EC=AE,∴∠C=∠CAE,∴∠B=∠AED=2∠C,又∵∠B+∠C=180°﹣∠BAC=72°,∴3∠C=72°,∴∠C=24°,故选:B.6.解:观察图形可知,∠1所在的三角形与∠3所在的三角形全等,∴∠1+∠3=90°,又∠2=45°,∴∠1+∠2+∠3=135°,故选:D.7.解:A、AB=DC,不能根据SAS证两三角形全等,故本选项错误;B、∵在△AOB和△DOC中,∴△AOB≌△DOC(SAS),故本选项正确;C、两三角形相等的条件只有OA=OD和∠AOB=∠DOC,不能证两三角形全等,故本选项错误;D、根据∠AOB=∠DOC和OA=OD,不能证两三角形全等,故本选项错误;故选:B.8.解:A、符合AAS,能判断△ABD≌△BAC;B、符合ASA,能判断△ABD≌△BAC;C、不能判断△ABD≌△BAC;D、符合SSS,能判断△ABD≌△BAC.故选:C.9.解:如图,在AB上截取AE=AD,连接CE.∵AC平分∠BAD,∴∠BAC=∠DAC,又AC是公共边,∴△AEC≌△ADC(SAS),∴AE=AD,CE=CD,∴AB﹣AD=AB﹣AE=BE,BC﹣CD=BC﹣CE,∵在△BCE中,BE>BC﹣CE,∴AB﹣AD>CB﹣CD.故选:A.10.解:在△D′O′C′和△DOC中,,∴△D′O′C′≌△DOC(SSS),∴∠D′O′C′=∠DOC.则全等的依据为SSS.故选:B.11.解:∵垂线段最短,∴当PQ⊥OM时,PQ有最小值,又∵OP平分∠MON,PA⊥ON,∴PQ=PA=2,故选:B.12.解:如图,过点D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,∴DE=CD=3,即点D到直线AB的距离是3.故选:C.二.填空题(共4小题)13.解:∵两个三角形全等,∴α=50°.故答案为:50°.14.解:添加AB=AC,∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,∴△ABD≌△ACE(ASA),故答案为:AB=AC.15.解:∵△ABC三边长分别为3,5,7,△DEF三边长分别为3,3x﹣2,2x﹣1,这两个三角形全等,∴3+5+7=3+3x﹣2+2x﹣1,解得:x=3.故答案为:3.16.解:作EF⊥BC于F,∵CE平分∠ACB,BD⊥AC,EF⊥BC,∴EF=DE=2,=BC•EF=×5×2=5.∴S△BCE故答案为:5.三.解答题(共4小题)17.解:(1)由题可得,BD=CE=2t,∴CD=12﹣2t,AE=8﹣2t,∴当AE=DC,时,8﹣2t=(12﹣2t),解得t=3,故答案为:3;(2)当△ABD≌△DCE成立时,AB=CD=8,∴12﹣2t=8,解得t=2,∴运动2秒时,△ABD≌△DCE能成立;(3)当△ABD≌△DCE时,∠CDE=∠BAD,又∵∠ADE=180°﹣∠CDE﹣∠ADB,∠B=∠180°﹣∠BAD﹣∠ADB,∴∠ADE=∠B,又∵∠BAC=α,AB=AC,∴∠ADE=∠B=(180°﹣α)=90°﹣α.故答案为:90°﹣α.18.(1)证明:∵∠ABC+∠ACB+∠BAC=180°,∴∠BAC+∠BCA=180°﹣∠ABC,∵∠BAC的平分线AD与∠BCA的平分线CE交于点O.∴∠OAC=∠BAC,∠OCA=∠BCA,∴∠OAC+∠OCA=(∠BAC+∠BCA)=(180°﹣∠ABC)=90°﹣∠ABC,∴∠AOC=180°﹣(∠OAC+∠OCA)=180°﹣(90°﹣∠ABC),即∠AOC=90°+∠ABC.(2)AE+CD=AC,证明:∵∠AOC=90°+∠ABC=135°,∴∠EOA=45°,在AC上分别截取AM、CN,使AM=AE,CN=CD,连接OM,ON,则在△AEO和△AMO中∴△AEO≌△AMO,同理△DCO≌△NCO,∴∠EOA=∠MOA,∠CON=∠COD,OD=ON,∴∠EOA=∠MOA=∠CON=∠COD=45°,∴∠MON=∠MOA=45°,过M作MK⊥AD于K,ML⊥ON于L,∴MK=ML,S△AOM =AO×MK,S△MON=ON×ML,∴=,∵=,∴=,∵AO=3OD,∴=,∴==,∴AN=AM=AE,∵AN+NC=AC,∴AE+CD=AC.19.证明:(1)∵∠1=∠2,∴∠1+∠CBE=∠2+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);(2)∵△ABE≌△CBD,∴∠A=∠C,∵∠AFB=∠CFE,∴∠1=∠3.20.解:(1)结论:PM=PN,PM⊥PN.理由如下:如图2中,连接OP.∵A、B坐标为(6,0)、(0,6),∴OB=OA=6,∠AOB=90°,∵P为AB的中点,∴OP=AB=PB=PA,OP⊥AB,∠PON=∠PAM=45°,∴∠OPA=90°,在△PON和△PAM中,,∴△PON≌△PAM(SAS),∴PN=PM,∠OPN=∠APM,∴∠NPM=∠OPA=90°,∴PM⊥PN,PM=PN.(2)结论:OD=AE.理由如下:如图3中,作AG⊥x轴交OP的延长线于G.∵BD⊥OP,∴∠OAG=∠BOD=∠OFD=90°,∴∠ODF+∠AOG=90°,∠ODF+∠OBD=90°,∴∠AOG=∠DBO,∵OB=OA,∴△DBO≌△GOA,∴OD=AG,∠BDO=∠G,∵∠BDO=∠PEA,∴∠G=∠AEP,在△PAE和△PAG中,,∴△PAE≌△PAG(AAS),∴AE=AG,∴OD=AE.。

全等三角形单元测试附答案

全等三角形单元测试附答案

全等三角形单元测试一、填空题(每小题2分,共20分)1.如图,△ABC ≌△DEB ,AB =DE ,∠E =∠ABC ,则∠C 的对应角为 ,BD 的对应边为 .2.如图,AD =AE ,∠1=∠2,BD =CE ,则有△ABD ≌△ ,理由是 ,△ABE ≌(第1题) (第2题) (第4题)3.已知△ABC ≌△DEF ,BC =EF =6cm ,△ABC的面积为18平方厘米,则EF 边上的高是 cm.4.如图,AD 、A ´D ´分别是锐角△ABC 和△A ´B ´C ´中BC 与B ´C ´边上的高,且AB = A ´B ´,AD = A ´D ´,若使△ABC ≌△A ´B ´C ´,请你补充条件 (只需填写一个你认为适当的条件)5. 若两个图形全等,则其中一个图形可通过平移、 或 与另一个三角形完全重合.6. 如图,有两个长度相同的滑梯(即BC =EF),左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则∠ABC +∠DFE =___________度(第6题) (第7题) (第8题)7.已知:如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,则DN +MN 的最小值为__________.8.如图,在△ABC 中,∠B =90o ,D 是斜边AC 的垂直平分线与BC 的交点,连结AD ,若∠DAC :∠DAB =2:5,则∠DAC =___________.9.等腰直角三角形ABC 中,∠BAC =90o ,BD 平分∠ABC 交AC 于点D ,若AB +AD =8cm ,则底边BC 上的高为___________.M N D C B A E DCB AH E D C B A B ′C ′D ′O ′A ′O D C B A (第14题)10.锐角三角形ABC 中,高AD 和BE 交于点H ,且BH =AC ,则∠ABC =__________度.(第9题) (第10题)题)二、选择题(每小题3分,共30分)11.已知在△ABC 中,AB =AC ,∠A =56°,则高BD 与BC 的夹角为( )A .28°B .34°C .68°D .62°12.在△ABC 中,AB =3,AC =4,延长BC 至D ,使CD =BC ,连接AD ,则AD 的长的取值范围为( )A .1<AD <7B .2<AD <14C .2.5<AD <5.5 D .5<AD <1113.如图,在△ABC 中,∠C =90°,CA =CB ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于点E ,且AB =6,则△DEB 的周长为( )A .4B .6C .8D .1014.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A ′O ′B ′=∠AOB 的依据是A .(S .S .S .)B .(S .A .S .)C .(A .S .A .)D .(A .A .S . 15. 对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )A.∠α=60º,∠α的补角∠β=120º,∠β>∠αB.∠α=90º,∠α的补角∠β=900º,∠β=∠αC.∠α=100º,∠α的补角∠β=80º,∠β<∠αD.两个角互为邻补角16. △ABC 与△A ´B ´C ´中,条件①AB = A ´B ´,②BC = B ´C ´,③AC =A ´C ´,④∠A=∠A ´,⑤∠B =∠B ´,⑥∠C =∠C ´,则下列各组条件中不能保证△ABC ≌△A ´B ´C ´的是( )A. ①②③B. ①②⑤C. ①③⑤D. ②⑤⑥17.如图,在△ABC 中,AB =AC ,高BD ,CE 交于点O ,AO 交BC 于点F ,则图中共有全等三角形( )A .7对B .6对C .5对D .4对D C B A18.如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,若△DEB 的周长为10cm ,则斜边AB 的长为( )A .8 cmB .10 cmC .12 cmD . 20 cm19.如图,△ABC 与△BDE 均为等边三角形,AB <BD ,若△ABC 不动,将△BDE 绕点B 旋转,则在旋转过程中,AE 与CD 的大小关系为( )A .AE =CDB .AE >CDC .AE <CD D .无法确定20.已知∠P =80°,过不在∠P 上一点Q 作QM ,QN 分别垂直于∠P 的两边,垂足为M ,N ,则∠Q 的度数等于( )A .10°B .80°C .100°D .80°或100°三、解答题(每小题5分,共30分)21.如图,点E 在AB 上,AC =AD ,请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为 ,你得到的一对全等三角形是∆ ∆≅ .22.如图,EG ∥AF ,请你从下面三个条件中再选两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况),并给予证明.①AB =AC ,②DE =DF ,③BE =CF , 已知:EG ∥AF , = , = ,求证: 证明:23. 如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,下面有四个条件,请你在其中选择3个作为题设,余下的1个作为结论,写一个真命题,并加以证明. ①AB =DE ,②AC =DF ,③∠ABC =∠DEF ,④BE =CFE C D B AE A B DF C 24. 如图,四边形ABCD 中,点E 在边CD 上.连结AE 、BF ,给出下列五个关系式:①AD ∥BC ;②DE =CE ③. ∠1=∠2 ④. ∠3=∠4 . ⑤AD +BC =AB 将其中的三个关系式作为假设,另外两个作为结论,构成一个命题.(1)用序号写出一个真命题,书写形式如:如果……,那么……,并给出证明;(2)用序号再写出三个真命题(不要求证明);(3)真命题不止以上四个,想一想就能够多写出几个真命题EDAC 4321F B25.已知,如图,D 是△ABC 的边AB 上一点,DF 交AC 于点E , DE =FE , AB ∥FC . 问线段AD 、CF 的长度关系如何?请予以证明.26.如图,已知ΔABC 是等腰直角三角形,∠C =90°.(1)操作并观察,如图,将三角板的45°角的顶点与点C 重合,使这个角落在∠ACB 的内部,两边分别与斜边AB 交于E 、F 两点,然后将这个角绕着点C 在∠ACB 的内部旋转,观察在点E 、F 的位置发生变化时,AE 、EF 、FB 中最长线段是否始终是EF ?写出观察结果.(2)探索:AE 、EF 、FB 这三条线段能否组成以EF 为斜边的直角三角形?如果能,试加以证明.图a 图b参考答案一、1.∠DBE , CA 2.△ACE , SAS , △ACD , ASA (或SAS )3. 64.CD =C ´D ´(或AC =A ´C ´,或∠C =∠C ´或∠CAD =∠C ´A ´D ´)5.平移,翻折6. 907. 10 8. 20º 9.248- 10. 45二、11. A 12. D 13. B 14.A 15.C 16.C 17.A 18.B 19.A 20.D三、21.可选择BD BC DAB CAB DE CE =∠=∠=、、等条件中的一个.可得到△ACE ≌△ADE 或△ACB ≌△ADB 等.22.结合图形,已知条件以及所供选择的3个论断,认真分析它们之间的内在联系 可选①AB =AC ,②DE =DF ,作为已知条件,③BE =CF 作为结论;推理过程为:∵EG ∥AF ,∴∠GED =∠CFD ,∠BGE =∠BCA ,∵AB =AC ,∴∠B =∠BCA , ∴∠B =∠BGE ∴BE =EG ,在△DEG 和△DFC 中,∠GED =∠CFD ,DE =DF ,∠EDG =∠FDC ,∴△DEG ≌△DFC ,∴EG =CF ,而EG =BE ,∴BE =CF ;若选①AB =AC ,③BE =CF 为条件,同样可以推得②DE =DF ,23.结合图形,认真分析所供选择的4个论断之间的内在联系由④BE =CF 还可推得BC =EF ,根据三角形全等的判定方法,可选论断:①AB =DE ,②AC =DF ,④BE =CF 为条件,根据三边对应相等的两个三角形全等可以得到:△ABC ≌△DEF ,进而推得论断③∠ABC =∠DEF ,同样可选①AB =DE ,③∠ABC =∠DEF ,④BE =CF 为条件,根据两边夹角对应相等的两个三角形全等可以得到:△ABC ≌△DEF ,进而推得论断②AC =DF .24. (1)如果①②③,那么④⑤证明:如图,延长AE 交BC 的延长线于F 因为AD ∥BC 所以 ∠1=∠F又因为∠AED =∠CEF ,DE =EC 所以△ADE ≌△FCE ,所以AD =CF ,AE =EF因为∠1=∠F ,∠1=∠2 所以∠2=∠F 所以AB =BF .所以∠3=∠4所以AD +BC =CF +BC =BF =AB(2)如果①②④,那么③⑤;如果①③④,那么②⑤;如果①③⑤,那么②④.(3) 如果①②⑤,那么③④;如果②④⑤,那么①③;如果③④⑤,那么①②.25. (1)观察结果是:当45°角的顶点与点C 重合,并将这个角绕着点C 在重合,并将这个角绕着点C 在∠ACB 内部旋转时,AE 、EF 、FB 中最长的线段始终是EF .(2)AE 、EF 、FB 三条线段能构成以EF 为斜边的直角三角形,证明如下:在∠ECF 的内部作∠ECG =∠ACE ,使CG =AC ,连结EG ,FG ,∴ΔACE ≌ΔGCE ,∴∠A =∠1,同理∠B =∠2,∵∠A +∠B =90°,∴∠1+∠2=90°,∴∠EGF =90°,EF 为斜边.四、27.(1)FE 与FD 之间的数量关系为FE =FD(2)答:(1)中的结论FE=FD 仍然成立图① 图②证法一:如图1,在AC 上截取AG =AE ,连接FG∵ ∠1=∠2,AF =AF ,AE =AG ∴ △AEF ≌△AGF∴ ∠AFE =∠AFG ,FG =FE ∵ ∠B=60°,且AD 、CE 分别是∠BAC 、∠BCA 的平分线 ∴ ∠2+∠3=60°,∠AFE =∠CFD =∠AFG =60°∴ ∠CFG =60° ∵ ∠4=∠3,CF =CF ,∴ △CFG ≌△CFD ∴ FG =FD ∴ FE =FD 证法二:如图2,过点F 分别作FG ⊥AB 于点G ,FH ⊥BC 于点H∵ ∠B =60°,且AD 、CE 分别是∠BAC 、∠BCA 的平分线∴ ∠2+∠3=60° ∴ ∠GEF =60°+∠1,FG =FH∵ ∠HDF =∠B +∠1 ∴ ∠GEF =∠HDF ∴ △EGF ≌△DHF ∴ FE =FD28. (1)AF =BE .证明:在△AFC 和△BEC 中, ∵△ABC 和△CEF 是等边三角形,∴AC =BC ,CF =CE ,∠ACF =∠BCE =60.∴△AFC ≌△BEC . ∴AF =BE .(2)成立. 理由:在△AFC 和△BEC 中, ∵△ABC 和△CEF 是等边三角形,图⑤∴AC=BC,CF=CE,∠ACB=∠FCE=60°. ∴∠ACB-∠FCB=∠FCE-∠FCB.即∠ACF=∠BCE. ∴△AFC≌△BEC. ∴AF=BE.(3)此处图形不惟一,仅举几例.如图,(1)中的结论仍成立.(4)根据以上证明、说明、画图,归纳如下:如图a,大小不等的等边三角形ABC和等边三角形CEF有且仅有一个公共顶点C,则以点C为旋转中心,任意旋转其中一个三角形,都有AF=BE.。

八年级数学上册《全等三角形》单元测试卷(有答案)

八年级数学上册《全等三角形》单元测试卷(有答案)

八年级数学上册《全等三角形》单元测试卷(有答案)一.选择题1.下列各组图形中不是全等形的是()A.B.C.D.2.两个全等图形中可以不同的是()A.位置B.长度C.角度D.面积3.下列图形是全等图形的是()A.B.C.D.4.如图线段AB、DC相交于点O,已知OC=OB,添加一个条件使△OCA≌△OBD,下列添加条件中,不正确的是()A.AC=DB B.∠C=∠B C.OA=OD D.∠A=∠D5.如图所示,H是△ABC的高AD,BE的交点,且DH=DC,则下列结论:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正确的有()A.1个B.2个C.3个D.4个6.在△ABC和△ADC中,有下列三个论断:(1)AB=AD,(2)∠BAC=∠DAC,(3)BC=DC.将两个论断作为条件,另一个论断作为结论构成三个命题:(1)若AB=AD,∠BAC=∠DAC,则BC=DC;(2)若AB=AD,BC=DC,则∠BAC=∠DAC;(3)若∠BAC=∠DAC,BC=DC,则AB=AD.其中,正确命题的个数为()A.1个B.2个C.3个D.0个7.△ABC中,AB=AC=12厘米,∠B=∠C,BC=9厘米,点D为AB的中点.如果点P在线段BC上以v厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为3厘米/秒,则当△BPD与△CQP全等时,v的值为()A.2.5 B.3 C.2.25或3 D.1或58.如图,AC与BD相交于点O,∠D=∠C.添加下列哪个条件后,仍不能使△ADO≌△BCO的是()A.AD=BC B.AC=BD C.OD=OC D.∠ABD=∠BAC9.一块三角形玻璃,被摔成如图所示的四块,小敏想去店里买一块形状、大小与原来一样的玻璃,借助“全等三角形”的相关知识,小敏只带了一块去,则这块玻璃的编号是()A.①B.②C.③D.④10.下列画图语句中,正确的是()A.画射线OP=3cm B.画出A、B两点的距离C.延长射线OA D.连接A、B两点二.填空题11.如图,已知∠CAE=∠DAB,AC=AD.给出下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件为.(注:把你认为正确的答案序号都填上)12.如图,在正方形网格中,∠1+∠2+∠3=.13.要测量河岸相对两点A,B的距离,已知AB垂直于河岸BF,先在BF上取两点C,D,使CD=CB,再过点D作BF的垂线段DE,使点A,C,E在一条直线上,如图,测出DE=20米,则AB的长是米.14.下列说法:其中正确的是.(填序号)①用圆规在已知直线上截取一条线段等于已知线段属于尺规作图;②射线AB与射线BA表示同一条射线;③若AC=BC,则点C是线段AB的中点;④钟表在8:30时,时针与分针的夹角是60°.15.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=.16.如图所示,尺规作图作∠AOB的平分线,方法如下:以O为圆心,任意长为半径画弧交OA,OB于C、D,再分别以点C、D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP,由作法得到△OCP≌△ODP的根据是.17.如图,△ABC与△ADC中,∠B=∠D=90°,要使△ABC≌△ADC,还需添加的一个条件是(写一个即可).18.在△ABC中,AB=6,AC=2,AD是BC边上的中线,则AD的取值范围是.19.如图,图中由实线围成的图形与①是全等形的有.(填序号)20.如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为.三.解答题21.已知:如图,点A、E、F、C在同一条直线上,AD∥CB,∠1=∠2,AE=CF.求证:△ADF ≌△CBE.22.如图,AB=DE,AC=DF,BE=CF,求证:△ABC≌△DEF.23.如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.24.如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,求∠ADC的度数.25.我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,∠B=∠B′,∠C=∠C′,现在只需补充一个条件,就可得四边形ABCD≌四边形A′B′C′D′.下列四个条件:①∠A=∠A′;②∠D=∠D′;③AD=A′D′;④CD=C′D′(1)其中,符合要求的条件是.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD≌四边形A′B′C′D′.26.如图,AB=AC,∠BAC=90°,BD⊥AE于D,CE⊥AE于E,且BD>CE.求证:BD=EC+ED.参考答案与解析一.选择题1.解:观察发现,A、C、D选项的两个图形都可以完全重合,∴是全等图形,B选项中圆与椭圆不可能完全重合,∴不是全等形.故选:B.2.解:两个全等图形中对应边的长度,对应角的角度,图形的面积相等,可以不同的是位置.故选:A.3.解:A、两个图形相似,错误;B、两个图形全等,正确;C、两个图形相似,错误;D、两个图形不全等,错误;故选:B.4.解:根据题意,已知OC=OB,∠AOC=∠COB,∴只需添加对顶角的邻边,即OA=OD,或任意一组对应角,即∠C=∠B,∠A=∠D;所以,选项A错误;故选:A.5.解:①∵BE⊥AC,AD⊥BC∴∠AEH=∠ADB=90°∵∠HBD+∠BHD=90°,∠EAH+∠AHE=90°,∠BHD=∠AHE∴∠HBD=∠EAH∵DH=DC∴△BDH≌△ADC(AAS)∴BD=AD,BH=AC②:∵BC=AC∴∠BAC=∠ABC∵由①知,在Rt△ABD中,BD=AD∴∠ABC=45°∴∠BAC=45°∴∠ACB=90°∵∠ACB+∠DAC=90°,∠ACB<90°∴结论②为错误结论.③:由①证明知,△BDH≌△ADC∴BH=AC④:∵CE=CD∵∠ACB=∠ACB;∠ADC=∠BEC=90°∴△BEC≌△ADC由于缺乏条件,无法证得△BEC≌△ADC∴结论④为错误结论综上所述,结论①,③为正确结论,结论②,④为错误结论,根据题意故选B.故选:B.6.解:∵AB=AD,∠BAC=∠DAC,AC=AC,∴△ABC≌△ADC,∴BC=DC,故(1)正确;∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC,∴∠BAC=∠DAC,故(2)正确;由CB=CD,∠BAC=∠DAC,AC=AC,不能证明△ABC≌△ADC,故(3)不正确.故选:B.7.解:∵△ABC中,AB=AC=12厘米,点D为AB的中点,∴BD=6厘米,若△BPD≌△CPQ,则需BD=CQ=6厘米,BP=CP=BC=×9=4.5(厘米),∵点Q的运动速度为3厘米/秒,∴点Q的运动时间为:6÷3=2(s),∴v=4.5÷2=2.25(厘米/秒);若△BPD≌△CQP,则需CP=BD=6厘米,BP=CQ,∴,解得:v=3;∴v的值为:2.25或3,故选:C.8.解:添加AD=CB,根据AAS判定△ADO≌△BCO,添加OD=OC,根据ASA判定△ADO≌△BCO,添加∠ABD=∠CAB得OA=OB,可根据AAS判定△ADO≌△BCO,故选:B.9.解:因为第③块中有完整的两个角以及他们的夹边,利用ASA易证三角形全等,故应带第3块.故选:C.10.解:A、射线OP无限长,所以A选项不符合题意;B、量出A、B点的距离,所以B选项不符合题意;C、射线OA不需要延长,只能反向延长射线OA,所以C选项不符合题意;D、用直尺可以连接A、B两点,所以D选项符合题意.故选:D.二.填空题11.解:∵∠CAE=∠DAB,∴∠CAE+∠EAB=∠DAB+∠EAB,即∠CAB=∠DAE;又AC=AD;所以要判定△ABC≌△AED,需添加的条件为:①AB=AE(SAS);③∠C=∠D(ASA);④∠B=∠E(AAS).故填①、③、④.12.解:∵在△ABC和△ADE中,∴△ABC≌△ADE(SAS),∴∠4=∠3,∵∠1+∠4=90°,∴∠3+∠1=90°,∵∠2=45°,∴∠1+∠2+∠3=135°,故答案为:135°.13.解:∵AB⊥BD,ED⊥AB,∴∠ABC=∠EDC=90°,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴AB=ED=20.故答案为:20.14.解:①用圆规在已知直线上截取一条线段等于已知线段属于尺规作图,所以本说法正确;②射线AB与射线BA表示同一条射线,射线有方向,所以本说法错误;③若AC=BC,则点C是线段AB的中点,A,B,C不一定在一条直线上,所以本说法错误;④钟表在8:30时,时针与分针的夹角是75°,所以本说法错误.故答案为:①.15.解:∵在△ABC和△DBE中,∴△ABC≌△DBE(SAS),∴∠3=∠ACB,∵∠ACB+∠1=90°,∴∠1+∠3=90°,∴∠1+∠2+∠3=90°+45°=135°,故答案为:135°.16.解:∵OC=OD,PC=PD(同圆或等圆的半径相等),OP=OP(公共边),∴△OCP≌△ODP(SSS).故填SSS.17.解:已知∠B=∠D,AC是公共边,故添加CB=CD、AB=AD、∠1=∠2、∠3=∠4后可分别根据HL,AAS,AAS能判定△ABC≌△ADC.18.解:延长AD至E,使DE=AD,连接CE.在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB.在△ACE中,CE﹣AC<AE<CE+AC,即4<2AD<8,2<AD<4.故答案为:2<AD<4.19.解:由图可知,图上由实线围成的图形与①是全等形的有②,③,故答案为:②③.20.解:∵△ABC≌△DCB,∴DB=AC=7,∴DE=BD﹣BE=7﹣5=2,故答案为:2.三.解答题21.证明:∵AD∥CB,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ADF和△CBE中,∴△ADF≌△CBE(ASA).22.解:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,∵,∴△ABC≌△DEF(SSS).23.证明:∵△ABC≌△DEC,∴∠B=∠DEC,BC=EC,∴∠B=∠BEC,∴∠BEC=∠DEC,∴CE平分∠BED.24.解:∵△ABD≌△CBD,∴∠C=∠A=80°,∴∠ADC=360°﹣∠A﹣∠ABC﹣∠C=360°﹣80°﹣80°﹣70°=130°.25.解:(1)符合要求的条件是①②④,故答案为:①②④;(2)选④,证明:连接AC、A′C′,在△ABC与△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),∴AC=A′C′,∠ACB=∠A′C′B′,∵∠BCD=∠B′C′D′,∴∠BCD﹣∠ACB=∠B′C′D′﹣∠A′C′B′,∴∠ACD=∠A′C′D′,在△ACD和△A′C′D中,,∴△ACD≌△A′C′D′(SAS),∴∠D=∠D,∠DAC=∠D′A′C′,DA=D′A′,∴∠BAC+∠DAC=∠B′A′C′+∠D′A′C′,即∠BAD=∠B′A′D′,∴四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,AD=A′D′,DC=D′C′,∠B=∠B′,∠BCD=∠B′C′D′,∠D=∠D′,∠BAD=∠B′A′D′,∴四边形ABCD≌四边形A′B′C′D′.26.证明:∵∠BAC=90°,CE⊥AE,BD⊥AE,∴∠ABD+∠BAD=90°,∠BAD+∠DAC=90°,∠ADB=∠AEC=90°.∴∠ABD=∠DAC.∵在△ABD和△CAE中,∴△ABD≌△CAE(AAS).∴BD=AE,EC=AD.∵AE=AD+DE,∴BD=EC+ED.。

全等三角形单元测试(含答案)

全等三角形单元测试(含答案)

全等三角形单元测试 ︒30,则∠BCF= . ,则图中共有 对全等三角形. . 9.若△ABC ≌△A′B′C′,AD 和A′D′分别是对应边BC 和B′C′的高,则△ABD ≌△A′B′D′,理由是_______________.10.在Rt △ABC 中,∠C =90°,∠A.∠B 的平分线相交于O ,则∠AOB=_________. 二.选择题:(每题3分,共24分) 11.如图9,△ABC ≌△BAD ,A 和B.C 和D 分别是对应顶点,若AB =6cm ,AC =4cm ,BC =5cm ,则AD 的长为 ( )A.4cmB.5cmC.6cmD.以上都不对12.下列说法正确的是 ( )A.周长相等的两个三角形全等B.有两边和其中一边的对角对应相等的两个三角形全等C.面积相等的两个三角形全等D.有两角和其中一角的对边对应相等的两个三角形全等13.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是 ( )A.∠AB.∠BC.∠CD.∠B 或∠C14.下列条件中,能判定△ABC ≌△DEF 的是( )A.AB =DE ,BC =ED ,∠A =∠DB.∠A =∠D ,∠C =∠F ,AC =EFA EB O FC 图8 A B CD 图9C.∠B =∠E ,∠A =∠D ,AC =EFD.∠B =∠E ,∠A =∠D ,AB =DE15.AD 是△ABC 中BC 边上的中线,若AB =4,AC =6,则AD 的取值范围是( )A.AD >1B.AD <5C.1<AD <5D.2<AD <1016.下列命题正确的是 ( )A.两条直角边对应相等的两个直角三角形全等;B.一条边和一个锐角对应相等的两个直角三角形全等C.有两边和其中一边的对角(此角为钝角)对应相等的两个三角形全等D.有两条边对应相等的两个直角三角形全等17.如图10.△ABC 中,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 和CE 交于点O ,AO 的延长线交BC 于F ,则图中全等直角三角形的对数为( )A.3对B.4对C.5对D.6对18.如图11,在CD 上求一点P ,使它到OA ,OB 的距离相等,则A. 线段CD 的中点B. OA 与OBC. OA 与CD 的中垂线的交点D. CD 与∠AOB 的平分线的交点三.解答题(共46分)19. (8分)如图,△ABN ≌△ACM,∠B 和∠C 是对应角,AB 与AC 是对应边,写出其他对应边和对应角.20. (7分)如图, ∠AOB 是一个任意角,在边OA,OB 上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N 重合,过角尺顶点C 的射线OC 便是∠AOB 的平分线,为什么?21. (7分)如图,已知AB =DC ,AC =DB ,BE =CE,求证:AE =DE.22. (8分)如图,已知AC CE 与DE 的大小与位置关系,并证明你的结论.23. (8分)已知如图,E.F 与BD 互相平分.24. (8分)如图,∠ABC 的垂线,垂足分别为E.F,求证:EF =CF -AE. 1.△ADC 2. ∠B=∠C 8.72° 9.HL 10.135° 11.B 12.D 13.A 14.D 15.C 对应角:∠BAN=∠CAM, ∠ANB=∠AMC 20. △∠DCB,再证△ABE ≌△CED 22.垂直 23. 先证△ABE ≌△DFC 得∠B=∠D,再证△ABO ≌△COD 24.证△ABF ≌△BCF 图10 图 11B D O C A。

人教版数学《全等三角形》单元测试题(含答案)

人教版数学《全等三角形》单元测试题(含答案)

《全等三角形》单元测试题一、选择题1. 如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE相交于点M,则△DCE等于()A.△B B.△A C.△EMF D.△AFB2. 如图,在△ABC中,D,E分别是边AC,BC上的点.若△ADB△△EDB△△EDC,则△C的度数为()A.15° B.20° C.25° D.30°3. 如图,小强画了一个与已知△ABC全等的△DEF,他画图的步骤是:(1)画DE =AB;(2)在DE的同旁画△HDE=△A,△GED=△B,DH,EG相交于点F,小强画图的依据是()A.ASA B.SASC.SSS D.AAS4. 如图,点P是△AOB平分线OC上一点,PD△OB,垂足为D.若PD=2,则点P到边OA的距离是()A. 1B. 2C. 3D. 45. 如图,AO是△BAC的平分线,OM△AC于点M,ON△AB于点N.若ON=8 cm,则OM的长为()A.4 cm B.5 cm C.8 cm D.20 cm6. 如图,P是△AOB的平分线OC上一点,PD△OA,垂足为D.若PD=2,则点P到边OB的距离是()A.4 B. 3 C.2 D.17. 如图,AB=AC,AD=AE,BE=CD,△2=110°,△BAE=60°,则下列结论错误的是()A.△ABE△△ACD B.△ABD△△ACEC.△C=30° D.△1=70°8. 如图,△ACB△△A'CB',△ACA'=30°,则△BCB'的度数为()A.20°B.30°C.35°D.40°9. 如图,AB△CD,且AB=CD.E,F是AD上两点,CE△AD,BF△AD.若CE =a,BF=b,EF=c,则AD的长为()A.a+c B.b+cC.a-b+c D.a+b-c10. 现已知线段a,b(a<b),△MON=90°,求作Rt△ABO,使得△O=90°,OA=a,AB=b.小惠和小雷的作法分别如下:小惠:△以点O为圆心、线段a的长为半径画弧,交射线ON于点A;△以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:△以点O为圆心、线段a的长为半径画弧,交射线ON于点A;△以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是()A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误二、填空题11. 如图,已知AB=BD,△A=△D,若要应用“SAS”判定△ABC△△DBE,则需要添加的一个条件是____________.12. 如图,小明和小丽为了测量池塘两端A,B两点之间的距离,先取一个可以直接到达点A和点B的点C,沿AC方向走到点D处,使CD=AC;再用同样的方法确定点E,使CE=BC.若量得DE的长为60米,则池塘两端A,B两点之间的距离是______米.13. 在平面直角坐标系xOy中,已知点A,B的坐标分别为(2,0),(2,4),若以A,B,P为顶点的三角形与△ABO全等,则点P的坐标为___________________.14. 如图,在△ABC中,D,E分别是边AB,AC上的点,过点C作平行于AB 的直线交DE的延长线于点F.若DE=FE,AB=5,CF=3,则BD的长是________.15. 如图,若AB=AC,BD=CD,△A=80°,△BDC=120°,则△B=________°.16. 如图,在△ABC中,E为AC交BC于点D,AB︰AC=2︰3,AD与BE相交于点O.若△OAE的面积比△BOD的面积大1,则△ABC的面积是.三、解答题17. 如图,AB△CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.18. 如图,在△ABC中,AC=BC,△C=90°,D是AB的中点,DE△DF,点E,F分别在AC,BC上,求证:DE=DF.19. 如图,已知AP△BC,△P AB的平分线与△CBA的平分线相交于点E,过点E 的直线分别交AP,BC于点D,C.求证:AD+BC=AB.20. 操作探究如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2 cm,BC=5 cm,如图K-10-17,量得第四根木条DC=5 cm,判断此时△B与△D是否相等,并说明理由.(2)若固定一根木条AB不动,AB=2 cm,量得木条CD=5 cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A,C,D能构成周长为30 cm的三角形,求出木条AD,BC的长度.21. 如图所示,△BAC=△BCA,AD为△ABC中BC边上的中线,延长BC至点E,使CE=AB,连接AE.求证:△CAD=△CAE.全等三角形-答案一、选择题1. 【答案】A2. 【答案】D3. 【答案】A4. 【答案】B5. 【答案】C6. 【答案】C △P 是△AOB 的平分线OC 上一点,PD△OA ,PE△OB ,△PE =PD =2.7. 【答案】C △BE -DE =CD -DE ,即BD =CE. 在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,BD =CE ,AD =AE ,△△ABD△△ACE.由题意易证:△ABE△△ACD ,故A ,B 正确. 由△ABE△△ACD 可得△B =△C. △△2=△BAE +△B ,△△B =△2-△BAE =110°-60°=50°.△△C =△B =50°. 故C 错误.△△ABE△△ACD(已证),△△1=△AED =180°-△2=70°. 故D 正确.故选C.8. 【答案】B △A'CB'-△A'CB.所以△BCB'=△ACA'=30°.9. 【答案】D 10. 【答案】A 二、填空题11. 【答案】AC =DE12. 【答案】60⎩⎨⎧AC =DC ,△ACB =△DCE ,BC =EC ,△△ACB△△DCE(SAS).△DE =AB. △DE =60米,△AB =60米.13. 【答案】(4,0)或(4,4)或(0,4)14. 【答案】2在△ADE 和△CFE 中,⎩⎨⎧△A =△FCE ,△AED =△CEF ,DE =FE ,△△ADE△△CFE(AAS). △AD =CF =3.△BD =AB -AD =5-3=2.15. 【答案】20 在△BAD 和△CAD 中,⎩⎨⎧AB =AC ,AD =AD ,BD =CD ,△△BAD△△CAD(SSS). △△BAD =△CAD ,△B =△C.△△BDF =△B +△BAD ,△CDF =△C +△CAD , △△BDF +△CDF =△B +△BAD +△C +△CAD , 即△BDC =△B +△C +△BAC. △△BAC =80°,△BDC =120°, △△B =△C =20°.16. 【答案】10∵AD 平分△BAC ,DM △AC ,DN △AB , ∵DM=DN.∵S △ABD ︰S △ADC =BD ︰DC ,且S △ABD =12·AB ·DN ,S △ADC =12·AC ·DM , ∵BD∵DC=AB∵AC=2∵3. 设△ABC 的面积为S ,则S △ADC =35S. ∵E 为AC 的中点, ∵S △BEC =12S.∵△OAE 的面积比△BOD 的面积大1, ∵△ADC 的面积比△BEC 的面积大1. ∵35S -12S=1.∵S=10. 故答案为10.三、解答题 17. 【答案】证明:△AB△CD , △△B =△DEF ,(1分) 在△AFB 和△DFE 中,⎩⎨⎧△B =△DEFBF =EF△BFA =△EFD,(3分) △△AFB△△DFE(ASA ),(5分) △AF =DF.(6分)18. 【答案】证明:连接CD ,如解图,(1分)△ △ABC 是直角三角形,AC =BC ,D 是AB 的中点, △ CD =BD ,△CDB =90°,△△CDE +△CDF =90°,△CDF +△BDF =90°, △△CDE =△BDF ,(7分) 在△CDE 和△BDF 中,⎩⎨⎧△ECD =△BCD =BD△CDE =△BDF, △ △CDE△△BDF(ASA ),(9分) △ DE =DF.(10分)19. 【答案】证明:如图,在AB 上截取AF =AD ,连接EF.△AE 平分△PAB , △△DAE =△FAE. 在△DAE 和△FAE 中,⎩⎨⎧AD =AF ,△DAE =△FAE ,AE =AE ,△△DAE△△FAE(SAS). △△AFE =△ADE. △AD△BC , △△ADE +△C =180°. 又△△AFE +△EFB =180°, △△EFB =△C. △BE 平分△ABC , △△EBF =△EBC.在△BEF 和△BEC 中,⎩⎨⎧△EFB =△C ,△EBF =△EBC ,BE =BE ,△△BEF△△BEC(AAS). △BF =BC.△AD +BC =AF +BF =AB. 20. 【答案】 解:(1)相等.理由:如图,连接AC.在△ACD 和△ACB 中,⎩⎨⎧AC =AC ,AD =AB ,DC =BC ,△△ACD△△ACB(SSS). △△B =△D.(2)设AD =x cm ,BC =y cm.当点C ,D 均在BA 的延长线上且点C 在点D 右侧时,由题意,得 ⎩⎨⎧x +2=y +5,x +(y +2)+5=30, 解得⎩⎨⎧x =13,y =10.此时AD =13 cm ,BC =10 cm. 经检验,符合题意.当点C ,D 均在BA 的延长线上且点C 在点D 左侧时,由题意,得 ⎩⎨⎧y =x +5+2,x +(y +2)+5=30, 解得⎩⎨⎧x =8,y =15.此时AD =8 cm ,BC =15 cm. △5+8<2+15,△不合题意. 综上,AD =13 cm ,BC =10 cm. 21. 【答案】证明:如图,延长AD 到点F ,使得DF =AD ,连接CF.11△AD 为△ABC 中BC 边上的中线,△BD =CD.在△ADB 和△FDC 中,⎩⎨⎧AD =FD ,△ADB =△FDC ,BD =CD ,△△ADB△△FDC(SAS).△AB =CF ,△B =△DCF.△CE =AB ,△CE =CF.△△ACE =△B +△BAC ,△ACF =△DCF +△BCA ,△BAC =△BCA , △△ACE =△ACF.在△ACF 和△ACE 中,⎩⎨⎧AC =AC ,△ACF =△ACE ,CF =CE ,△△ACF△△ACE(SAS).△△CAD =△CAE.。

全等三角形单元测验【附答案】

全等三角形单元测验【附答案】

全等三角形测试卷一、选择题(每小题3分,共30分)1.(3分)如图,利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是()A.PO B.PQ C.MO D.MQ2.(3分)下列命题中,真命题的个数是()①全等三角形的对应中线相等;②全等三角形的对应角相等;③全等三角形的周长面积相等;④全等三角形的对应角平分线相等.A.4B.3C.2D.13.(3分)下列条件中,能判定两个三角形全等的是()A.有三个角对应相等B.有两边及一角对应相等C.有两条边对应相等D.有两角及一边对应相等4.(3分)如图,△ABC≌△ADE,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.45°C.35°D.25°5.(3分)如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED成立的条件有()A.4个B.3个C.2个D.1个6.(3分)在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,∠A=∠B′,AB=B′A′,则下列结论中正确的是()A.AC=A′C′B.BC=B′C′C.AC=B′C′D.∠A=∠A′7.(3分)要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,如图,可以得到△EDC≌△ABC,所以测得ED的长就是AB的长,判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.8.(3分)如图所示,已知△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,AE与BD与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC,FG,①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.其中正确结论的个数是()A.1个B.2个C.3个D.4个9.(3分)一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可10.(3分)将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A =45°,∠D=30°.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B的度数为()A.10°B.20°C.7.5°D.15°二、填空题(每小题3分,共24分)11.(3分)如果△MON≌△M′O′N′,M′O′=24,S△MON=180,那么△MON中MO 边上的高是.12.(3分)一个三角形的三边长分别为2,5,m,另一个三角形的三边长分别为n,6,2,若这两个三角形全等,则m+n=.13.(3分)如图,OA=OB,OC=OD,∠O=60°,∠C=25°,则∠BED=______.14.(3分)下列说法正确的有个.(1)两条边对应相等的两个直角三角形全等.(2)有一锐角和斜边对应相等的两直角三角形全等.(3)一条直角边和一个锐角对应相等的两直角三角形全等.(4)面积相等的两个直角三角形全等.15.(3分)如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP=时,△ABC和△PQA全等.16.(3分)如图,△ABC的高BD,CE相交于点O.请你添加一个条件,使BD=CE.你所添加的条件是_____________ .(仅添加一对相等的线段或一对相等的角)17.(3分)如图,已知点C是∠AOB平分线上的点,点P、P′分别在OA、OB上,如果要得到OP=OP′,需要添加以下条件中的某一个即可:①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.请你写出所有可能的结果的序号:.18.(3分)在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE=_______cm.三、解答题(共46分)19.(6分)如图所示,已知∠ACB和∠ADB都是直角,且AC=AD,P是AB上任意一点.求证:CP=DP.20.(6分)如图所示,AB⊥BC,DC⊥AC,垂足分别为B,C,过D点作BC的垂线交BC于F,交AC于E,AB=EC,试判断AC和ED的长度有什么关系,并说明理由.21.(8分)如图,在四边形ABCD中,AB=BC,BF是∠ABC的平分线,AF∥DC,连接AC,CF.求证:CA是∠DCF的平分线.22.(6分)如图所示,施工队在沿AC方向开山修路,为了加快施工进度,要在小山的另一边点E同时施工,从AC上的一点B,取∠ABD=145°,BD=500米,∠D=55°,要使A,C,E成一直线,那么开挖点E离点B的距离如何求得?请你设计出解决方案.23.(6分)如图,∠BAC=∠BAD,点E在AB上.(1)添加一个条件,使△ACE≌△ADE,你添加的条件是;(2)根据(1)中你添加的条件,再写出另外一对全等三角形,并证明.24.如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系,请证明你的猜想;(2)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(1)中所猜想的BQ与AP的数量关系还成立吗?若成立,给出证明;若不成立,请说明理由;参考答案一、选择题(每小题3分,共30分)1.B2.A3.D4.B5.B6.C7.B8.D9.D10.D二、填空题(每小题3分,共24分)11.1512.1113.70°14.3个15.5或1016.BE=CD 或∠EBC=∠DCB或∠DBC=∠BCE或AB=AC17.①②④18.3三、解答题(共46分)19.先根据HL判定Rt△ACB≌Rt△ADB得出BC=BD,∠CBA=∠DBA,再利用SAS判定△CBP≌△DBP从而得出CP=DP.20.解:AC=ED,理由如下:∵AB⊥BC,DC⊥AC,ED⊥BC,∴∠B=∠EFC=∠DCE=90°.∴∠A+∠ACB=90°,∠CEF+∠ACB=90°.∴∠A=∠CEF.在△ABC和△ECD中∠A=∠CEF,AB=EC,∠B=∠DCE,∴△ABC≌△ECD(ASA).∴AC=ED(全等三角形的对应边相等).21.先证△ABF≌△CBF,得出AF=FC,利用等腰三角形的性质可知∠3=∠4,再利用平行线的性质可证出∠4=∠5,等量代换,可得:∠3=∠5.那么AC就是∠DCF的平分线.22.解:方案设计如图,延长BD到点F,使BD=DF=500米,过F作FG⊥ED于点G.因为∠ABD=145°,所以∠CBD=35°,在△BED和△FGD中,∠EBD=∠F,BD=DF,∠EDB=∠GDF(对顶角相等)所以△BED≌△FGD(ASA),所以BE=FG(全等三角形的对应边相等).所以要求BE的长度可以测量GF的长度.23.解:(1)∵在图形中有AE=AE,且∠BAC=∠BAD,∴可添加AC=AD,利用SAS判断△ACE≌△ADE,故答案为:AC=AD;(2)可证明△ACB≌△ADB,证明如下:在△ACB和△ADB中,AC=AD,∠BAC=∠BAD,AB=AB∴△ACB≌△ADB(SAS).24.解:(1)猜想:BQ=AP.证明:由题意可知EF⊥FP,又EF=FP,所以∠EPF=45°,所以QC=CP,又∠BCQ=∠ACP=90°,AC=BC,所以△BCQ≌△ACP,得出BQ=AP;(2)BQ=AP.证明:∵∠EPF=45°,AC⊥CP,∴CQ=CP,又∵BC=AC,∴Rt△BCQ ≌Rt△ACP,∴BQ=AP;。

全等三角形单元测试题(含答案)

全等三角形单元测试题(含答案)
7.用两个全等的直角三角形,拼下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形,其中不一定能拼成的图形是
A.①②③B.②③C.③④⑤D.③④⑥
8.如图,平行四边形ABCD中,AC、BD相交于点O,过点O作直线分别交于AD、BC于点E、F,那么图中全等的三角形共有
A.2对B.4对C.6对D.8对
∴△ABC≌△DCB(SSS)
∴∠A=∠D
在△AOC和△DOB中
9.给出下列条件:①两边一角对应相等 ②两角一边对应相等 ③三角形中三角对应相等④三边对应相等,其中,不能使两个三角形全等的条件是
A.①③B.①②C.②③D.②④
10.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是
A. B.
C.△APE≌△APFD.
二、解答题(共56分)
∴FE= AB. ………………………………………… 2分
∵FD=BE,∴DF=EC,………………………………………… 3分
∠CFE=∠DAF= 90°,
在RtΔFAD和RtΔCFE中,
∴RtΔFAD≌RtΔCFE. ………… 4分
∴AБайду номын сангаас=FE,
∴AD= AB. ……………………… 5分
15.证明:在△ABC和△DCB中
D
ABD
B
B
D
C
A
D
二、解答题答案:
11.∵△ABC和△ECD是等边三角形,
∴∠ACB=∠ECD=60°,BC=AC,EC=CD.
∴∠ACB+∠ACE=∠ECD+∠ACE,
即∠BCE=∠ACD.
在△BCE和△ACD中,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形单元测试卷附答案一、八年级数学轴对称三角形填空题(难)1.我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形(1)如图,在ABC∆中,25,105A ABC∠=︒∠=︒,过B作一直线交AC于D,若BD 把ABC∆分割成两个等腰三角形,则BDA∠的度数是______.(2)已知在ABC∆中,AB AC=,过顶点和顶点对边上一点的直线,把ABC∆分割成两个等腰三角形,则A∠的最小度数为________.【答案】130︒1807︒⎛⎫⎪⎝⎭【解析】【分析】(1)由题意得:DA=DB,结合25A∠=︒,即可得到答案;(2)根据题意,分4种情况讨论,①当BD=AD,CD=AD,②当AD=BD,AC=CD,③AB=AC,当AD=BD=BC,④当AD=BD,CD=BC,分别求出A∠的度数,即可得到答案.【详解】(1)由题意得:当DA=BA,BD=BA时,不符合题意,当DA=DB时,则∠ABD=∠A=25°,∴∠BDA=180°-25°×2=130°.故答案为:130°;(2)①如图1,∵AB=AC,当BD=AD,CD=AD,∴∠B=∠C=∠BAD=∠CAD,∵∠BAC+∠B+∠C=180°,∴4∠B=180°,∴∠BAC=90°.②如图2,∵AB=AC,当AD=BD,AC=CD,∴∠B=∠C=∠BAD,∠CAD=∠CDA,∵∠CDA=∠B+∠BAD=2∠B,∴∠BAC=3∠B,∵∠BAC+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°,∴∠BAC=108°.③如图3,∵AB=AC,当AD=BD=BC,∴∠ABC=∠C,∠BAC=∠ABD,∠BDC=∠C,∵∠BDC=∠A+∠ABD=2∠BAC,∴∠ABC=∠C=2∠BAC,∵∠BAC+∠ABC+∠C=180°,∴5∠BAC=180°,∴∠BAC=36°.④如图4,∵AB=AC,当AD=BD,CD=BC,∴∠ABC=∠C,∠BAC=∠ABD,∠CDB=∠CBD,∵∠BDC=∠BAC+∠ABD=2∠BAC,∴∠ABC=∠C=3∠BAC,∵∠BAC+∠ABC+∠C=180°,∴7∠BAC=180°,∴∠BAC=180 ()7︒.综上所述,∠A的最小度数为:180 ()7︒.故答案是:180 ()7︒.【点睛】本题主要考查等腰三角形的性质定理以及三角形内角和定理与外角的性质,根据等腰三角形的性质,分类讨论,是解题的关键.2.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出下列四个结论:①AE=CF;②△EPF是等腰直角三角形;③EF=AB;④12ABCAEPFS S∆=四边形,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有________(把你认为正确的结论的序号都填上).【答案】①②④【解析】试题分析:∵∠APE、∠CPF都是∠APF的余角,∴∠APE=∠CPF,∵AB=AC,∠BAC=90°,P是BC中点,∴AP=CP,∴∠PAE=∠PCF,在△APE与△CPF中,{?PAE PCFAP CPEPA FPC∠=∠=∠=∠,∴△APE≌△CPF(ASA),同理可证△APF≌△BPE,∴AE=CF,△EPF是等腰直角三角形,S四边形AEPF=12S△ABC,①②④正确;而AP=12BC,当EF不是△ABC的中位线时,则EF不等于BC的一半,EF=AP,∴故③不成立.故始终正确的是①②④.故选D.考点:1.全等三角形的判定与性质;2.等腰直角三角形.3.如图,1AB A B=,1112A B A A=,2223A B A A=,3334A B A A=,…,当2n≥,70A∠=︒时,11n n nA A B--∠=__________.【答案】1702n -︒ 【解析】【分析】先根据三角形外角的性质及等腰三角形的性质分别求出121B A A ∠,232B A A ∠及343B A A ∠的度数,再找出规律即可得出11n n n A A B --∠的度数.【详解】解:∵在1ABA ∆中,70A ∠=︒,1AB A B =∴170BA A A ∠==︒∠∵1112A A A B =,1BA A ∠是121A A B ∆的外角 ∴12111211703522B A A A B A BA A ︒∠=∠===︒∠ 同理可得,2321217017.542B A A BA A ︒∠===︒∠,343131708.7582B A A BA A ︒∠===︒∠ ∴111702n n n n A A B ---︒∠=. 故答案为:1702n -︒ 【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据特殊情况找出规律是解题关键.4.如图,在ABC ∆和DBC ∆中,40A ∠=,2AB AC ==,140BDC ∠=,BD CD =,以点D 为顶点作70MDN ∠=,两边分别交,AB AC 于点,M N ,连接MN ,则AMN ∆的周长为_______.【答案】4【解析】【分析】延长AB至F,使BF=CN,连接DF,通过证明△BDF≌△CDN,及△DMN≌△DMF,从而得出MN=MF,△AMN的周长等于AB+AC的长.【详解】延长AB至F,使BF=CN,连接DF.∵BD=CD,且∠BDC=140°,∴∠BCD=∠DBC=20°.∵∠A=40°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠DBA=∠DCA=90°.在Rt△BDF和Rt△CND中,∵BF=CN,∠DBA=∠DCA,DB=DC,∴△BDF≌△CDN,∴∠BDF=∠CDN,DF=DN.∵∠MDN=70°,∴∠BDM+∠CDN=70°,∴∠BDM+∠BDF=70°,∴∠FDM=70°=∠MDN.∵DF=DN,∠FDM=∠MDN,DM=DM,∴△DMN≌△DMF,∴MN=MF,∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=4.故答案为:4.【点睛】本题主要利用等腰三角形的性质来证明三角形全等,构造全等三角形是解答本题的关键.5.如图,已知,点E 是线段AB 的中点,点C 在线段BD 上,8BD =,2DC =,线段AC 交线段DE 于点F ,若AF BD =,则AC =__________.【答案】10.【解析】【分析】延长DE 至G ,使EG=DE ,连接AG ,证明BDE AGE ∆≅∆,而后证明AFG ∆、CDF ∆是等腰三角形,即可求出CF 的长,于是可求AC 的长.【详解】解:如图,延长DE 至G ,使EG=DE ,连接AG ,∵点E 是线段AB 的中点,∴AE=BE,∴在BDE ∆和AGE ∆中,BE AE BED AEGDE EG =⎧⎪∠=∠⎨⎪=⎩, ∴BDE AGE ∆≅∆,∴AG=BD, BDE AGE ∠=∠,∵AF=BD=8,∴AG=AF,∴AFG AGE ∠=∠∵AFG DFC ∠=∠,∴BDE DFC ∠=∠,∴FC=DC,∴FC=2,∴AC=AF+FC=8+2=10.【点睛】本题考查了等腰三角形的性质与判定以及全等三角形的判定与性质,能利用中点条件作辅助线构造全等三角形是解题的关键.6.△ABC 中,最小内角∠B =24°,若△ABC 被一直线分割成两个等腰三角形,如图为其中一种分割法,此时△ABC 中的最大内角为90°,那么其它分割法中,△ABC 中的最大内角度数为_____.【答案】117°或108°或84°.【解析】【分析】根据等腰三角形的性质进行分割,写出△ABC 中的最大内角的所有可能值.【详解】①∠BAD =∠BDA =12(180°﹣24°)=78°,∠DAC =∠DCA =12∠BDA =39°,如图1所示:∴∠BAC =78°+39°=117°;②∠DBA =∠DAB =24°,∠ADC =∠ACD =2∠DBA =48°,如图2所示:∴∠DAC =180°﹣2×48°=84°,∴∠BAC =24°+84°=108°;③∠DBA =∠DAB =24°,∠ADC =∠DAC =2∠DBA =48°,如图3所示:∴∠BAC =24°+48°=72°,∠C =180°﹣2×48°=84°;∴其它分割法中,△ABC 中的最大内角度数为117°或108°或84°,故答案为:117°或108°或84°.【点睛】本题考查了等腰三角形的性质,解题的关键是根据等腰三角形的性质进行分割找出所有情况.7.如图,已知30AOB ∠=︒,点P 在边OA 上,14OD DP ==,点E ,F 在边OB 上,PE PF =.若6EF =,则OF 的长为____.【答案】18【解析】【分析】由30°角我们经常想到作垂线,那么我们可以作DM垂直于OA于M,作PN垂直于OB 于点N,证明△PMD≌△PND,进而求出DF长度,从而求出OF的长度.【详解】如图所示,作DM垂直于OA于M,作PN垂直于OB于点N.∵∠AOB=30°,∠DMO=90°,PD=DO=14,∴DM=7,∠NPO=60°,∠DPO=30°,∴∠NPD=∠DPO=30°,∵DP=DP,∠PND=∠PMD=90°,∴△PND≌△PMD,∴ND=7,∵EF=6,∴DF=ND-NF=7-3=4,∴OF=DF+OD=14+4=18.【点睛】本题考查了全等三角形的判定及性质定理,作辅助线构造全等三角形是解题的关键.8.如图,过边长为1的等边三角形ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,当AP=CQ时,PQ交AC于D,则DE的长为______.【答案】1 2【解析】过点Q作AD的延长线的垂线于点F.因为△ABC是等边三角形,所以∠A=∠ACB=60°.因为∠ACB=∠QCF,所以∠QCF=60°.因为PE⊥AC,QF⊥AC,所以∠AEP=∠CFQ=90°,又因为AP=CQ,所以△AEP≌△CFQ,所以AE=CF,PE=QC.同理可证,△DEP≌△DFQ,所以DE=DF.所以AC=AE+DE+CD=DE+CD+CF=DE+DF=2DE,所以DE=12AC=12.故答案为1 2 .9.如图,在第1个△A1BC中,∠B=20°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,按此做法继续下去,第2019个等腰三角形的底角度数是______________.【答案】20181802⎛⎫⨯ ⎪⎝⎭【解析】【分析】根据等腰三角形的性质求出∠BA 1C 的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA 2A 1,∠EA 3A 2及∠FA 4A 3的度数,找出规律即可得出第2019个三角形中以A 2019为顶点的内角度数.【详解】解:∵在△CBA 1中,∠B=20°,A 1B=CB , ∴∠BA 1C=°180-2B ∠=80°, ∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角,∴∠DA 2A 1=12∠BA 1C=12×80°; 同理可得∠EA 3A 2=(12)2×80°,∠FA 4A 3=(12)3×80°, ∴第n 个三角形中以A n 为顶点的底角度数是(12) n-1×80°. ∴第2017个三角形中以A 2019为顶点的底角度数是(12)2018×80°, 故答案为:(12) 2018×80°. 【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA 2A 1,∠EA 3A 2及∠FA 4A 3的度数,找出规律是解答此题的关键.10.如图:在ABC ∆中,D ,E 为边AB 上的两个点,且BD BC =,AE AC =,若108ACB ∠=︒,则DCE ∠的大小为______.【答案】036【解析】【分析】根据三角形内角和求出∠A+∠B,再根据AC=AE,BC=BD ,用∠A 表示∠AEC,用∠B 表示∠BDC,然后根据内角和求出∠DCE 的度数.【详解】∵∠ACB=1080,∴∠A+∠B=1800-1080=720,∵AC=AE ,BC=BD,∴∠ACE=∠AEC,∠BCD=∠BDC,∴01(180)2AEC A ∠=-∠01902A =-∠ 01(180)2BDCB ∠=-∠ =01902B -∠ ∵∠DCE+∠CDE+∠DEC=1800,∴0180DCE CDE CED ∠=-∠-∠ = 00011180(90)(90)22A B --∠--∠ =1122A B ∠+∠ =1()2A B ∠+∠ =360【点睛】此题考察等腰三角形的性质,注意两条等边所在三角形,依此判断对应的两个底角相等.二、八年级数学轴对称三角形选择题(难)11.在平面直角坐标系中,等腰△ABC 的顶点A 、B 的坐标分别为(0,0)、(2,2),若顶点C 落在坐标轴上,则符合条件的点C 有( )个.A .5B .6C .7D .8【答案】D【解析】【分析】要使△ABC 是等腰三角形,可分三种情况(①若AC =AB ,②若BC =BA ,③若CA =CB )讨论,通过画图就可解决问题.【详解】①若AC =AB ,则以点A 为圆心,AB 为半径画圆,与坐标轴有4个交点;②若BC =BA ,则以点B 为圆心,BA 为半径画圆,与坐标轴有2个交点(A 点除外); ③若CA =CB ,则点C 在AB 的垂直平分线上.∵A (0,0),B (2,2),∴AB 的垂直平分线与坐标轴有2个交点.综上所述:符合条件的点C 的个数有8个.故选D .【点睛】本题考查了等腰三角形的判定、垂直平分线的性质的逆定理等知识,还考查了动手操作的能力,运用分类讨论的思想是解决本题的关键.12.如图,60AOB ∠=,OC 平分AOB ∠,如果射线OA 上的点E 满足OCE ∆是等腰三角形,那么OEC ∠的度数不可能为( )A .120°B .75°C .60°D .30°【答案】C【解析】【分析】 分别以每个点为顶角的顶点,根据等腰三角形的定义确定∠OEC 是度数即可得到答案.【详解】∵60AOB ∠=,OC 平分AOB ∠,∠AOC=30︒,当OC=CE 时,∠OEC=∠AOC=30︒,当OE=CE 时,∠OEC=180OCE COE ∠∠︒--=120︒,当OC=OE 时,∠OEC=12(180COE ∠︒- )=75︒, ∴∠OEC 的度数不能是60°,故选:C.【点睛】此题考查等腰三角形的定义,角平分线的定义,根据题意正确画出符合题意的图形是解题的关键.13.如图所示,等边三角形的边长依次为2,4,6,8,……,其中1(0,1)A ,()21,13A --,()31,13A -,4(0,2)A ,()52,223A --,……,按此规律排下去,则2019A 的坐标为( )A .(673,6736733-B .(673,6736733--C .(0,1009)D .(674,6746743- 【答案】A【解析】【分析】 根据等边三角形的边长依次为2,4,6,8,……,及点的坐标特征,每三个点一个循环,2019÷3=673,A 2019的坐标在第四象限即可得到结论.【详解】∵2019÷3=673,∴顶点A 2019是第673个等边三角形的第三个顶点,且在第四象限.第673个等边三角形边长为2×673=1346,∴点A2019的横坐标为12⨯1346=673.点A2019的纵坐标为673-134632⨯=673﹣6733.故点A2019的坐标为:()673,6736733-.故选:A.【点睛】本题考查了点的坐标、等边三角形的性质,是点的变化规律,主要利用了等边三角形的性质,确定出点A2019所在三角形是解答本题的关键.14.在一个33⨯的正方形网格中,A,B是如图所示的两个格点,如果C也是格点,且ABC是等腰三角形,则符合条件的C点的个数是()A.6B.7C.8D.9【答案】C【解析】【分析】根据题意、结合图形,画出图形即可确定答案.【详解】解:根据题意,画出图形如图:共8个.故答案为C.【点睛】本题主要考查了等腰三角形的判定,根据题意、画出符合实际条件的图形是解答本题的关键.15.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为()A.130°B.120°C.110°D.100°【答案】B【解析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案:如图,作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.作DA延长线AH.∵∠BAD=120°,∴∠HAA′=60°.∴∠AA′M+∠A″=∠HAA′=60°.∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°.故选B.16.如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC 于F,AD交CE于G.则下列结论中错误的是( )A.AD=BE B.BE⊥ACC.△CFG为等边三角形D.FG∥BC【答案】B【解析】试题解析:A.ABC 和CDE △均为等边三角形,60AC BC EC DC ACB ECD ∴==∠=∠=︒,,,在ACD 与BCE 中,{AC BCACD BCE CD CF =∠=∠=,ACD BCE ∴≌,AD BE ∴=,正确.B .据已知不能推出F 是AC 中点,即AC 和BF 不垂直,所以AC BE ⊥错误,故本选项符合题意.C.CFG 是等边三角形,理由如下:180606060ACG BCA ∠=︒-︒-︒=︒=∠,ACD BCE ≌,CBE CAD ∴∠=∠,在ACG 和BCF 中,{CAG CBFAC BCBCF ACG ∠=∠=∠=∠,ACG BCF ∴≌,CG CH ∴=,又∵∠ACG=60° CFG ∴是等边三角形,正确.D.CFG 是等边三角形,60CFG ACB ∴∠︒=∠﹦,.FG BC ∴ 正确.故选B.17.如图,等腰ABC ∆中,AB AC =,120BAC ∠=,AD BC ⊥于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP OC =.下列结论:①30APO DCO ∠+∠=;②APO DCO ∠=∠;③OPC ∆是等边三角形;④AB AO AP =+.其中正确结论的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】①②连接OB ,根据垂直平分线性质即可求得OB=OC=OP ,即可解题;③根据周角等于360°和三角形内角和为180°即可求得∠POC=2∠ABD=60°,即可解题;④AB 上找到Q 点使得AQ=OA ,易证△BQO≌△PAO,可得PA=BQ ,即可解题.【详解】连接OB ,∵AB AC =,AD ⊥BC ,∴AD 是BC 垂直平分线,∴OB OC OP ==,∴APO ABO ∠=∠,DBO DCO ∠=∠,∵AB=AC ,∠BAC =120∘∴30ABC ACB ∠=∠=︒∴30ABO DBO ∠+∠=︒,∴30APO DCO ∠+∠=.故①②正确;∵OBP ∆中,180BOP OPB OBP ∠=︒-∠-∠,BOC ∆中,180BOC OBC OCB ∠=︒-∠-∠,∴360POC BOP BOC OPB OBP OBC OCB ∠=︒-∠-∠=∠+∠+∠+∠,∵OPB OBP ∠=∠,OBC OCB ∠=∠,∴260POC ABD ∠=∠=︒,∵PO OC ,∴OPC ∆是等边三角形,故③正确;在AB 上找到Q 点使得AQ=OA ,则AOQ ∆为等边三角形,则120BQO PAO ∠=∠=︒,在BQO ∆和PAO ∆中,BQO PAO QBO APO OB OP ∠∠⎧⎪∠∠⎨⎪⎩=== ∴BQO PAO AAS ∆∆≌(),∴PA BQ =,∵AB BQ AQ =+,∴AB AO AP =+,故④正确.故选:D.【点睛】本题主要考查全等三角形的判定与性质、线段垂直平分线的性质,本题中求证BQO PAO ∆∆≌是解题的关键.18.如图,Rt ABC ∆中,90ACB ∠=,3AC =,4BC =,5AB =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段EF 的长为()A .52B .125C .4D .53【答案】B【解析】【分析】先利用折叠的性质证明出△ECF 是一个等腰直角三角形,因此EF=CE ,然后再根据文中条件综合得出S △ABC =12AC∙BC=12AB∙CE ,求出CE 进而得出答案即可.【详解】 根据折叠性质可知:CD=AC=3,BC=B C '=4,∠ACE=∠DCE ,∠BCF=∠B 'CF ,CE ⊥AB , ∴∠DCE+∠B 'CF=∠ACE+∠BCF ,∵∠ACB=90°,∴∠ECF=45°,又∵CE ⊥AB ,∴△ECF 是等腰直角三角形,∴EF=CE ,又∵S △ABC =12AC∙BC=12AB∙CE , ∴AC∙BC=AB∙CE ,∵3AC =,4BC =,5AB =,∴125CE =, ∴EF 125=. 所以答案为B 选项.【点睛】本题主要考查了直角三角形与等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.19.如图,在△ABC 中,BI ,CI 分别平分∠ABC,∠ACB,过I 点作DE∥BC,交AB 于D ,交AC 于E ,给出下列结论:①△DBI 是等腰三角形;②△ACI 是等腰三角形;③AI 平分∠BAC;④△ADE 周长等于AB +AC .其中正确的是( )A .①②③B .②③④C .①③④D .①②④【答案】C【解析】【分析】 根据角平分线的性质、平行线的性质、等腰三角形的判定与性质分别对各选项分析判断后利用排除法求解.【详解】①∵IB 平分∠ABC ,∴∠DBI =∠CBI .∵DE ∥BC ,∴∠DIB =∠CBI ,∴∠DBI =∠DIB ,∴BD =DI ,∴△DBI 是等腰三角形.故本选项正确;②∵∠BAC 不一定等于∠ACB ,∴∠IAC 不一定等于∠ICA ,∴△ACI 不一定是等腰三角形. 故本选项错误;③∵三角形角平分线相交于一点,BI ,CI 分别是∠ABC 和∠ACB 的平分线,∴AI 平分∠BAC .故本选项正确;④∵BD =DI ,同理可得EI =EC ,∴△ADE 的周长=AD +DI +EI +AE =AD +BD +EC +AE =AB +AC . 故本选项正确;其中正确的是①③④.故选C .【点睛】本题考查了等腰三角形的判定与性质,熟记三角形的角平分线相交于一点是解题的关键.20.如图,ABC △中,60BAC ∠=︒,ABC ∠、ACB ∠的平分线交于E ,D 是AE 延长线上一点,且120BDC ∠=︒.下列结论:①120BEC ∠=︒;②DB DE =;③2BDE BCE ∠=∠.其中所有正确结论的序号有( ).A .①②B .①③C .②③D .①②③ 【答案】D【解析】 分析:根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角平分线的定义求出∠EBC+∠ECB ,然后求出∠BEC=120°,判断①正确;过点D 作DF ⊥AB 于F ,DG ⊥AC 的延长线于G ,根据角平分线上的点到角的两边的距离相等可得DF=DG ,再求出∠BDF=∠CDG ,然后利用“角边角”证明△BDF 和△CDG 全等,根据全等三角形对应边相等可得BD=CD ,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB ,根据等角对等边可得BD=DE ,判断②正确,再求出B ,C ,E 三点在以D 为圆心,以BD 为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE ,判断③正确.详解:∵60BAC ∠=︒,∴18060120ABC ACB ∠+∠=︒-︒=︒,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴12EBC ABC ∠=∠,12ECB ACB ∠=∠, ∴11()1206022EBC ECB ABC ACB ∠+∠=∠+∠=⨯︒=︒,∴180()18060120 BEC EBC ECB∠=︒-∠+∠=︒-︒=︒,故①正确.如图,过点D作DF AB⊥于F,DG AC⊥的延长线于G,∵BE、CE分别为ABC∠、ACB∠的平分线,∴AD为BAC∠的平分线,∴DF DG=,∴36090260120FDG∠=︒-︒⨯-︒=︒,又∵120BDC∠=︒,∴120BDF CDF∠+∠=︒,120CDG CDF∠+∠=︒.∴BDF CDG∠=∠,∵在BDF和CDG△中,90BFD CGDDF DGBDF CDG∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴BDF≌()CDG ASA,∴DB CD=,∴1(180120)302DBC∠=︒-︒=︒,∴30DBC DBC CBE CBE∠=∠+∠=︒+∠,∵BE平分ABC∠,AE平分BAC∠,∴ABE CBE∠=∠,1302BAE BAC∠=∠=︒,根据三角形的外角性质,30DEB ABE BAE ABE∠=∠+∠=∠+︒,∴DEB DBE∠=∠,∴DB DE=,故②正确.∵DB DE DC==,∴B、C、E三点在以D为圆心,以BD为半径的圆上,∴2BDE BCE∠=∠,故③正确,综上所述,正确结论有①②③,故选:D.点睛:本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.。

相关文档
最新文档