数学物理方法 刁元胜 第13.14章课后答案
《物理学基本教程》课后答案 第十三章 电磁感应
第十三章 电磁感应13-1 地球表面的磁感应强度约为5105-⨯T,若将一个电阻Ω5.0,半径为20cm 的金属圆环翻转︒180,则流过该圆环截面的电荷量的最大值为多少?若将该金属圆环放在中子星的表面作同样的翻转,流过圆环截面的最大电荷量又为多少 (中子星表面的磁感应强度为810T)?分析 由(13-4)式可知,金属环在翻转中要获得流穿过环截面的感应电量的最大值,应将翻转前金属环面的法线方向置于地磁场方向,则通过环面的磁通量有最大值,翻转后磁通量为最大负值,这样翻转才有最大的磁通量改变,才能产生最大的感应电量.解 在地球表面, 最大感应电荷量为RBSR R q 221)(1121==-=ΦΦΦ 5251051.2C 5.02.014.31052--⨯=⨯⨯⨯⨯= C在中子星表面, 最大感应电荷量为RBS R R q 221)(1121==-=ΦΦΦ81002.5⨯= C 13-2半径分别为R 和r 的金属圆环共轴放置,且R >>r ,在大圆环中有恒定电流,而小圆环则以恒定速度沿轴线方向运动,问当小圆环运动到什么位置时,其内部的感应电流为最大?分析 本题中载流大圆环半径远大于小圆环的半径,小圆环所围面积内的磁场可视为均匀,其中各点的磁感应强度均近似等于位于大圆环轴线上的小圆环圆心处的值.在真空中恒定电流的磁场一章(11-10)式给出,载流圆环轴线上某点的磁感应强度B 是该点到圆环圆心距离x 的函数,小圆环沿轴线远离大圆环运动时,所围面积的磁通量减小,小圆环中将产生感生电动势和感应电流.应用极值条件可以求出感应电流为最大时小圆环的位置.解 如图13-2所示,小圆环所围面积内的磁感应强度近似等于其圆心处的值,由(11-10)式得2/3222)(2x R IR B +=μ 小圆环以恒定的速度t xd d =v 运动到轴线上x 处,圆环中的感生电动势为 2/5222202/3222202/322220i )(3d d )(2d d )(2d d d d d d x R xI R r tx x R r IR x x R r IR t BS t t +=⋅⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+=-=-=2v πμπμπμΦE 圆环中感生电动势最大时感应电流也为最大值.令0d d i=xE ,得 02)(25)()(d d 227222/5222522=+-+=+--x x R x R x R x x解得2R x ±=,并取2Rx =.计算可得22i 2d d Rx x =E < 0,故小圆环运动到轴线上2R 处时,环中感应电流最大.13-3 一立方体在坐标系中的位置如图13-3所示,它的一边长为1m ,磁感应强度为0.2T 的均匀磁场沿y 轴方向,导体A 、C 和D 沿图中所示的方向以0.5m/s 的速度运动,试求每一导体内的感应电动势.分析 与用法拉第电磁感应定律比较,本题用动生电动势的定义式⎰⋅⨯=Li d )(l B v E 计算较简便.从该定义式可以看出,i E 的计算涉及到三个矢量的矢量积和标量积,因此必须先确定)(B ⨯v 的方向,以及导体棒上线元d l 的方向.解 对于导体A ,因)//(B v ,则0=⨯B v , E i = 0对于导体C ,因v 与B 夹角为 45,且 //)(B ⨯v d l ,则⎰⋅︒=⋅⨯=ll B 0i 45sin d )(v l B v E V 1007.7V 1222.05.02-⨯=⨯⨯⨯= 对于导体D ,因B v ⊥,)(B ⨯v 方向与l d 夹角为︒45,︒⋅=⋅⨯=⎰45cos 2d )(20i l B lv l B v E V 1.0V 22122.05.0=⨯⨯⨯⨯= 13-4 一载流长直导线中电流为I ,一矩形线框置于同一平面中,线框以速度v 垂直于导体运动,如图13-4所示.当线框AB 边与导线的距离为d 时,试用如下两种方法求出此时线框内的感应电动势,并标明其方向.(1)用动生电动势定义式;(2)用法拉第电磁感应定律.分析 这是一道很典型的求动生电动势题.注意以下几点:长直导线的磁场具有轴对称性,因而矩形框沿垂直于轴线方向运动时,框内将产生动生电动势;线框内的感应电动势大小与运动中矩形框的位置有关;可以用动生电动势定义式和法拉第定律求解;用法拉第定律需先求穿过闭合回路的磁通量. 在线框平面内凡与长直导线距离相等处B 大小相等方向相同,而在垂直长直导线方向B 大小不等,于是计算穿过矩形框的磁通量时,应该取平行于长直导线的细长条面元,面元内各点磁感强度可视为大小相等方向相同,其磁通量等于磁感强度与面积的乘积,再积分计算整个矩形框的磁通量.解1 用动生电动势的定义式计算 对于AD 和BC 边,因)(B ⨯v 方向与l d 方向垂直,电动势为零.取AB 边上线元l d 方向从A 到B ,CD 边上线元l d 方向从C 到D ,动生电动势分别为d Ibl d I ABbAB πμππμ2d cos 2d )(000v v-=⋅=⋅⨯=⎰⎰l B v E )(2d )(2d )(000a d Ibl a d ICDbCD +=+=⋅⨯=⎰⎰πμπμv vl B v E)(2)11(200a d d I d a d b I ABCDA +-=-+=πμπμvab v E 其中负号表明电动势的方向为ADCBA .解2 用法拉第定律计算如图13-4所示,以长直导线为坐标原点取x 轴向右.t 时刻AB 边距长直导线为x . 在框内取宽为x d 的面元x b S d d =,面元法线垂直纸面向里,穿过矩形框的磁通量为xax Ib x x Ib ax x+==⎰+ln2d 200πμπμΦ )(2d d ln d d 2d d 00i a x x aIb t x x a x x Ib t +=⋅⎪⎭⎫ ⎝⎛+-=-=πμπμΦv E 当d x =时矩形框上的电动势为0)(20i >+=a d d aIb πμv E即矩形框电动势i E 的方向为ADCBA .也可以用楞次定律判定框内电动势的方向为ADCBA 方向.13-5 一长为L 的导体棒CD ,在与一均匀磁场垂直的平面内,绕位于L 处的轴O 以匀角速度ω沿反时针方向旋转,磁场方向如图13-5所示,磁感强度为B ,求导体棒内的感应电动势,并指出哪一端电势较高.分析 导体棒在磁场中转动,导体棒切割磁感线,棒中产生感应电动势.如果转轴位于2L 处,棒两端电势相等,与转轴间有电势差.假如用铜盘代替导体棒,盘心与盘边缘便有一定的电势差,分别用导线从盘心和盘边缘接出,就构成一个直流发电机.解 在棒上取线元l d 沿CD 方向,则导体棒内的感应电动势为⎰⎰⋅⨯+⋅⨯=+O CDOOD CO l B l B d )(d )(v v E E⎰⎰+=3320d cos d lll Bl l Bl πωω6)32(2)3(2222L B L B L B ωωω-=-= 即棒内感应电动势大小为62L B ω,方向从D 指向C .CD 两端间的电势差为261L B V V ODCO C D ω-=+=-E E 表明C 点电势较高.13-6 如图13-6,一半径为R 的半圆形导线,保持与一载流长直导线共面,且直径CD 与长直电流垂直,C 端到直电流的距离为d .当半圆导线以匀速度v 平行于长直电流向上运动时,求半圆导线中的感应电动势大小,那一端电势较高?设cm 0.10=d ;.A 0.2;s m 0.2;m 0.15===I R v分析 连接直径CD ,与半圆弧导线构成闭合回路CDOC ,设回路顺时针绕行.由于回路匀速地平行长直导线运动,磁通量没有变化,回路中感应电动势为零,则沿回路绕行方向半圆弧导线与直线上的感应电动势大小相等,方向相反.因直径CD 上的感应电动势计算简单,可由此确定半圆弧导线上的感应电动势.解 如图13-6,在直径CD 上距长直导线为x 处取线元x d ,方向从D C →,CD 上的动生电动势为1.04.0ln 2d 2d )(04.01.00πμπμI x x I CD CD v v ==⋅⨯=⎰⎰x B v E 0V 1011.1V 4ln 22210467<⨯-=⨯⨯⨯⨯=--ππ故C 点电势高.半圆弧导线上感应电动势与直径CD 上的大小相等为V 1011.16-⨯.13-7如图13-7(a),在通有电流的无限长直导线附近,有一直角三角形线圈ABC 与其共面,并以速度v 垂直于导线运动,求当线圈的A 点距导线为d 时,线圈中的感应电动势的大小及方向.已知θ=∠=ACB b AB ,.分析 本题与13-4题相似.要注意的是AC 边与v 有一夹角,BA 边上l d 方向与)(B v ⨯方向垂直,0=AB E .解1 用动生电动势的定义如图13-7(a),取ACBA 为回路绕行方向.对于AC 段,)(B v ⨯方向竖直向上,平行长直导线,在AC 上与A 相距为l 处取线元l d ,方向C A →,动生电动势为⎰⋅+=CAAC l l d Id cos )sin (20θθπμvE⎰+=θθπθμsin 0sin d 2cos b l d l I v db d I +⋅=ln cot 20θπμv方向C A →.对于CB 段,)(B v ⨯方向竖直向上,得θπμοcot )(2b b d ICB⋅+⋅-=v E方向C B →.对于BA 段,)(B v ⨯方向与l d 垂直,则0=BA E .所以直角三角形线框上电动势大小为)(ln cot 20i bd bd b d I BA CB AC +-+⋅=++=θπμv E E E E 因b d bd b d +>+ln,则0i >E ,表明感应电动势方向为ACBA .解2 用法拉第定律如图13-7(b),在距直导线x 处取宽为x d 的面元x t x S d cot )(d θv -=,面元法线方向垂直纸面向里.设t 时刻A 点距离长直导线t v ,面元处磁感强度方向垂直纸面向里 ,大小为xIB x πμ20=穿过直角三角形的磁通量为⎰+-=b t t x x t I v v v d )1(cot 20θπμΦ)ln (cot 20tbt t b I v v v +-=θπμ当d t =v 时,应用法拉第电磁感应定律,直角三角形中的感应电动势为)(ln cot 2d d 0i bd bd b d I tdt +-+=-==θπμΦv v E >0 电动势的方向为ACBA .13-8 如图13-8,在水平放置的光滑平行导轨上,放置质量为m 的金属杆,其长度为l ab =,导轨一端由一电阻相连(其他电阻忽略),导轨又处于竖直向下的均匀磁场B 中,当杆以初速度为0v 运动时,求(1)金属杆能够移动的距离;(2)在此过程中电阻R 所放的焦耳热.分析 金属杆以0v 的初速度在磁场中向右运动,金属杆与导轨组成的回路中有感应电流,因而金属杆受到向左的安培力作用.在安培力作用下杆的运动速度渐慢,最后为0.速度的变化使安培力为变力.于是本题不能简单地用匀加速直线运动公式aS 22-=v -计算,而应从牛顿第二定律出发建立运动方程后求解.根据能量守恒定律,在此过程中杆的初动能全部转化电阻所发出的焦耳热.解 (1)取向右为x 正向,当杆的速度为v ,金属杆ba 上的感应电动势为⎰=⋅⨯=abBl v l B d )(v E感应电流为 RBl R I v==E 方向沿b 到a .在金属杆ba 上取电流元I l d 方向从b 到a ,I B l ⊥d ,安培力B l F ⨯=d d I ,所以作用于杆的安培力沿x 轴的负方向.Rl B B l I F F ab x v22 d -=⋅-==⎰负号表示F 与v 反向.应用牛顿第二定律,得mRl B m F t v v 22d d -== x mRl B t mR l B d d d 2222-=-=v v 设杆的移动距离为d ,由上式分离变量两边积分,有⎰⎰-=022d d v v dx mRl B得 d mRl B 220-=-v 即杆可移动的最大距离为 220l B mR d v =(2)由焦耳热公式, 电阻R 上释放的焦耳热为⎰⎰==t R Rl B t R I Q d d 22222v (1) 又 v v mRl B t 22d d -= 分离变量两边积分,t 时刻有⎰⎰-=t t mR l B 022d d vv 0vv t mRl B 22e0-=v v (2)(2)式代入(1)式,且当∞→t 时0→v ,得⎰⎰∞-=-==222022222221d ed 22v v v m t R l B t R R l B Q t mRl B 即杆从开始运动到停止,其间电阻所放的焦耳热在量值上等于2021v m .13-9磁场沿x 方向,磁感强度大小为T )6(y -,在yOz 平面内有一矩形线框,在0=t 时刻的位置如图13-9所示,求在以下几种情况下,线框中的感应电动势与t 的函数关系:(1)线框以速度m 2=v 的速度平行于y 轴匀速运动;(2)线框从静止开始,以2s m 2=a 的加速度平行于y 轴运动;(3)线框在yOz 平面内平行于z 轴重复以上两种运动.分析 磁场沿x 轴方向,矩形线框沿y 轴运动,所以DC 、BA 边上的电动势为0. 磁感强度是y 的函数,AD 边上的各点B 相等,BC 边上的各点B 相等.此题可以用动生电动势定义式和法拉第定律两种方法求解.不过,对此类既有感生又有动生电动势的题,一般来说先求磁通量,再用法拉第定律求解较易.解1 (1))(B v ⨯的方向为z 轴负向,DC 、BA 边的感应电动势为0,设AD 边感应电动势为1E ,BC 边的为2E ,方向分别为从D 到A 、从C 到B ,矩形框的总电动势为)]6()6[()(212121i y y l B B l ---=-=-=v v E E E lb v =2.0V 2.05.02=⨯⨯=V 方向为逆时针方向.(2) 矩形框作加速运动时,框上的动生电动势为lb y y l B B l v v v =---=-=-=)]6()6[()(212121i E E E其中 at =v 故 2.0i ==a t l bE t 解2 (1)以下均取逆时针方向为回路绕行方向,若0i >E ,则其沿回路绕行方向,反之亦然.穿过矩形框的磁通量为)2(26)2(26d )6(d b t lblb b y lb lb y l y by y +-=+-=-=⋅=⎰⎰+v s B Φ 其中y=vt .矩形框中的电动势为2.0d d i ==-=bl tv ΦE V (2)取回路逆时针绕行,矩形框作加速运动时穿过框的磁通量为⎰⎰++-=-=⋅=by yb y lblb y l y )2(26d )6(d s B Φ其中 2202121at at t y =+=v即 22622lb labt lb --=Φ 矩形框上的电动势为 t l a b t t2.0d d i ==-=ΦE (3)线框沿z 轴方向运动时,Φ不变,则i E 均为0.13-10 如图13-10所示,在两无限长载流导线组成的平面内,有一固定不动的矩形导体回路.两电流方向相反,若有电流A t I )12(+=,求线圈中的感应电动势的大小和方向.分析 在本题中,应用法拉第电磁感应定律求感应电动势有两条途径:分别求出两个直电流在框上产生的感应电动势,再进行叠加;或者,先求出两直电流的合磁感强度,再求磁通量,应用法拉第定律.载流长直导线磁场是不均匀的,欲求磁通量,应该取平行于长直导线的细长条面元,面元内各点磁感强度可视为大小相等方向相同,其磁通量等于磁感强度与面积的乘积,再积分计算整个矩形框的磁通量.因两直电流方向相反,靠近线框的直电流在框上电动势大一些,它的贡献决定了线框上电动势的方向. 解 框内任一点磁感应强度为)(22120021d d x Ix I B B B -+-=-=πμπμ取逆时针方向为回路绕行方向,如图13-10,在线框上取面元d S ,且d S =h d x ,穿过框的磁通量为x d d x x Ih S B ld d d )11(2d 12011-+-==⎰⎰+πμΦ其中12+=t I .矩形框上的电动势为)ln (ln 22d d 11220i d l d d l d ht +-+=-=πμΦE )()(ln 12120l d d d l d h ++=πμ 因(l +d 2)d 1<d 2(l +d 1),得0i <E ,即i E沿顺时针方向. 13-11 如图13-11所示, 均匀磁场与半径为r 的圆线圈垂直 (图中l d 表示绕行回路的正方向).如果磁感强度随时间的变化的规律为τ-t/0e B B =,其中B 0和τ为常量, 试将线圈中的感应电动势表示为时间的函数,并标明方向.分析 本题用法拉第定律可方便求解.解 回路绕行方向为逆时针, 穿过圆线圈的磁通量为τππΦt B r B r -==e 022τττπτπΦ/02/02e e )1(d d t t B r B r t ---=-= 圆线圈上的电动势为ττπΦ/02ie d d t B r t -=-=E 方向沿回路正方向即逆时针方向.13-12 如图13-12所示,在与均匀磁场垂直的平面内有一折成α角的V 型导线框,其MN 边可以自由滑动,并保持与其它两边接触.今使ON MN ⊥,当t =0时,MN 由O 点出发,以匀速v 平行于ON 滑动,已知磁场随时间的变化规律为2)(2t t B =,求线框中的感应电动势与时间的关系.分析 导线在磁场中运动,磁感强度又随时间变化,因而线框中的电动势由动生电动势和感生电动势两部分组成,可以直接求出面积不断变化的回路MONM 任一时刻的磁通量,再应用法拉第电磁感应定律求解.也可以分别计算由于MN 边滑动产生的动生电动势和由于线框中磁感强度随时间变化引起磁通量变化产生的感生电动势.解1 取顺时针方向为回路绕行方向, t 时刻穿过V 型导线框的磁通量为B xl2=Φ 其中 t x v =,αtan x l =,22t B =,应用法拉第电磁感应定律,导线框上的感应电动势为)2(d d d d B xlt t -=-=ΦE ααt a n )t a n 4(d d 3242t t t v v -=-= 负号表明E 与回路绕行方向相反,即沿逆时针方向.解2 由于MN 边滑动产生的动生电动势为⎰==⋅⨯=MN t Bx ααtan 21tan d )(32v v l B v 动E 沿NM 方向.t 时刻回路面积xl S 21=,取逆时针方向为回路绕行方向,回路法向矢量n e 与B 相反,则())2(d d 2d d d d d d 2t t xl t B S BS t t ==--=-=Φ感E =αtan 2132t v总感应电动势为感动E E E +==αtan 32t v 沿逆时针方向.13-13 一导线弯成如图13-13的形状,在均匀磁场中绕轴O O '转动,角速度为1ω.若电路的总电阻为R ,当0=t 时从图示的位置开始转动.(1)当磁感强度B 为常量时;(2)当t B B 20sin ω=时,求导线中的感应电流和感应电动势.解 (1)B 为常量,t 时刻穿过线圈的磁通量为t l Bl 112cos ωΦ=,线圈上的感应电动势为t l Bl t1112i sin d d ωωΦ=-=E 线圈上的感应电流为t R l Bl R I 1112i i sin ωω==E(2)t B B 20sin ω=时,t 时刻穿过线圈的磁通量为t l l t B 11220cos sin ωωΦ⋅=线圈上的电动势为sin (d d 212211120i l l B tωωΦ=-=E线圈上的感应电流为)cos cos sin sin (212211120it t t t Rl l B R I i ωωωωωω-==E 13-14 均匀磁场B 被限制在如图13-14所示的圆柱型空间中, B 从0.5T 以0.1T/s 的速率减小,(1)确定涡旋电场电场线的形状和方向并示于图中;(2)求图中半径为r =10cm 的导体回路上各点的涡旋电场场强和回路中的感生电动势;(3)设回路的电阻为Ω2,求其中感应电流的大小;(4)回路中任意两点b a ,间的电势差为多大?(5)如果在回路某点将其切断,两端稍微分开,问此时两端的电势差为多大?分析 例题413-讨论了这种在圆柱形空间中随时间改变的均匀磁场所产生的涡旋电场,可以直接利用其结果计算该涡旋电场中的电场强度的大小和方向.解 (1)由例题413-的讨论知,该圆柱形空间中随时间改变的均匀磁场产生涡旋电场,其电场线是圆心在轴线上的一系列同心圆,又因0d d <t B ,该涡旋电场中的电场强度涡E 为同心圆上沿顺时针绕行的切线方向,如图13-14所示.(2)利用例题413-的结果,r = 10cm 的回路上涡旋电场强度大小为V/m 005.0V/m 1.021.0d d 2=⨯==t B r E 涡内 回路上的感生电动势为V 1014.3V 1.01.014.3d d d d 322i -⨯=⨯⨯=-=-=tBr t B SπE 方向为顺时针方向.(3)回路中感应电流为 A 1057.1A 21014.333ii --⨯=⨯==R I E (4)根据一段含源电路的欧姆定律,弧⋂b a 上的电势差等于该段导线上电阻引起的电势差减去该圆弧上的感应电动势⋂abE ,即0)(2)(2 2)2(i ii i=-⋅=-=⋅-⋅=-=-⋂⋂⋂⋂⋂⋂E E E E E R Rr ab IR r ab abrab r R I IR V V ab ab b a ππππ(5)断开一个缺口cd 后回路不再闭合,因此回路中无电流,则cd 两点间电势差为V 1014.303i -⨯-=-=-E d c V V由于d c V V <,表明d 点电势高.13-15 在半径为R 的圆柱形空间中,存在着变化的均匀磁场)(t B ,有一长为l 的导体棒放在磁场中,如图13-15(a)所示,设磁场的变化率为t B d d ,(1)用感生电动势定义⎰⋅=ba l E d i 涡E 求棒中的感生电动势;(2)用法拉第电磁感应定律求棒中的感生电动势;(3)若导体棒在图示位置时有一个方向与棒垂直指向O 点、大小为v 的速度,再求棒上的感应电动势.分析 这是与上题特征相同的磁场.利用例题413-的结果,涡旋电场线是一系列同心圆,涡E 在圆的切线方向,所以用感生电动势定义计算时应注意ab 棒上各点的涡E 与l d 有一夹角.如果应用电磁感应法拉第定律计算,将ab 棒连接半径Oa ,Ob 构成闭合回路OabO ,考虑到沿半径方向0d =⋅⎰l E 涡,则回路中的感应电动势就等于导体棒中的感应电动势.当导体棒运动时,闭合回路OabO 中的磁通量随时间变化,求出任一时刻t 回路OabO 所围面积的磁通量,便可求解. 解 (1)如图13-15(b)所示,在ab 棒上取线元l d ,方向从b a →.该处涡E 在切线方向,大小为tBr d d 2,涡E 与l d 的夹角为θ,且rlR 22)2(cos -=θ,得ab 棒上感应电动势ab E 的方向从b a →,大小为⎰⎰=⋅=b abaab l tBr d cos d d 2d θl E 涡E 0)2(2d d d d d 2)2(02222>-=-=⎰l l R l t B l t B l R(2)连接Ob Oa ,成闭合回路OabO ,设回路逆时针绕行,穿过回路的磁通量为4222l R Bl --=Φ闭合回路OabO 上的感应电动势为42d d d d 22l R l t B t oabo-=-=ΦE因沿半径方向0d =⋅⎰l E 涡,则回路中的感应电动势就等于导体棒中的感应电动势,即42d d 22l R l t B oabo ab -==E E方向从b a →.(3) 如图13-15(c),经t 时间棒向着O 点移动t v ,连接Oa 、Ob 成闭合回路OabO ,设回路逆时针绕行.穿过回路的磁通量为t l R Bl v ---=4222Φ导体棒中的感应电动势为v v 2Bl t l R l t B t oaboab 21)4(2d d d d 2---=-==ΦE E若0>oabo E ,则ab E 从b a →;若0<oabo E ,则ab E 从a b →.13-16 如图13-16(a),均匀磁场被限制在半径为R 的圆柱形空间,磁感强度对时间的变化率0d d >t B ,在圆柱形空间外与磁场垂直的平面内有一导体AB .(1)计算AB 上的感应电动势;(2)B A 、两点间的电势差有多高?(3)在图中表示出B A 、两点的涡旋电场强度.分析 磁场局限在圆柱形空间内部,连接OB OA 、,计算穿过三角形OAB ∆的磁通量时,只需计算该三角形所包围的圆柱形空间内扇形面积的磁通量.解1 (1) 如图13-16(a),连接OB OA 、,穿过OAB ∆的磁通量与穿过扇形的磁通量相等为tBd b l a b R t dbl a b R B d d )arctan (arctan 21d d )arctan(arctan 212i 2-+-=-=-+⋅=ΦΦE(2) 0d d >tB,应用楞次定律判定电动势从B A →,所以B 点的电势高. tBd b l a b R U BA d d )arctan (arctan 212-+= (3)kB kA E E 、都在该点切线方向,且沿逆时针绕行的切线方向.解2 (1) 如图13-16(b),在AB 上取线元l d 方向从A 到B ,到圆心的距离为r ,据(13-7)式,有⎰⎰=⋅=BA BA l tB r R d cos d d 2d 2i θl E 涡E而θθcos d d r l =,AB 上的感生电动势为 )(21cos cos d d d 221202i 21θθθθθθθ+-=⋅-=⎰+R r t B r R E 其中d bl ab-==arctanarctan21θθ,得 tBd b l a b R d d )arctan (arctan 212i-+-=E 13-17截面为矩形的环形螺线管,平均半径为R ,截面边长为b 和c ,螺线管共有N 匝导线,管内充满磁导率为μ的均匀磁介质,如图13-17(a )所示,试求其自感系数.分析 螺绕环的磁感线是以对称中心为圆心的一系列同心圆,每条磁感线都要穿过矩形截面,于是求自感系数的问题归结为求穿过矩形截面的磁通量.由于沿螺绕环半径方向的磁场分布不均匀,需在矩形截面上取面元S d ,算出ϕd ,再积分得ϕ.解 如图13-17(b),在矩形截面上取面元r c S d d =,与螺绕环中心距离为r .由安培环路定理(11-15)式得S d 处的磁感应强度为rNIB πμ2=穿过螺绕环的磁通链为⎰⋅==sS N N d B ϕΦ22ln 2d 22222b a b a Ic N r r Ic N b a b a -+==⎰+-πμπμ 螺绕环的自感系数为22ln 22b a b a c N I L -+==πμΦ13-18 如图13-18, 两平行长直导线,其中心距离为d ,载有等大反向的电流(可以想象它们在相当远的地方汇成单一回路),每根导线的半径均为R ,如果不计导线内部磁通量的贡献,试求单位长度的自感系数.分析 两平行长直导线间的磁感应强度为两长直导线在该处磁感应强度之代数和.沿着以下思路解题:先求出两导线间的B ,再求两导线间的磁通量,再求自感系数.解 如图13-18,由磁场叠加原理,在两条导线间距左边一根为r 远(R r <)处磁感应强度为)11(20rd r I B -+=πμ取长为l 的一段导线,通过图中阴影部分的磁通量为⎰--+=R d Rr r d r Il d )11(20πμΦRR d Il -=ln 0πμ 长为l 的一段导线的自感系数为RRd l IL l -==ln 0πμΦ单位长导线的自感系数为RR d l L L l -==ln 0πμ 13-19 如图13-19,两圆形线圈共轴放置在一平面内,它们的半径分别为1R 和2R ,21R R >>,匝数分别为1N 和2N ,试求它们之间的互感系数.(大线圈中有电流时,小线圈所在处的磁场可看作是均匀的.)分析 题目给出条件21R R >>,2R 线圈与1R 线圈共轴,所以2R 线圈所在处的磁感应强度可视为均匀,且等于1R 线圈圆心处的磁感应强度. 解 因21R R >>,当大线圈中有电流1I 时,小线圈所在处各点的磁感应强度近似相等,且等于圆心处的磁感应强度,即1110212R N I B μ=穿过小线圈的磁通链为1221102212212R R N I N N πμϕΦ==互感系数为1222101212R R N N I M πμΦ==13-20 在如图13-20所示的电路中,线圈I 连线上有一长为l 的导线棒CD 可在垂直于均匀磁场B 的平面内左右滑动并保持与线圈I 连线接触,导体棒的速度与棒垂直.设线圈I 和线圈Ⅱ的互感系数为M ,电阻为1R 和2R .分别就以下两种情况求通过线圈I 和线圈Ⅱ的电流:(1)CD 以匀速v 运动;(2)CD 由静止开始以加速度a 运动.分析 CD 边运动,线圈I 中有感应电流. 由于互感,线圈I 中的电流变化将在线圈Ⅱ中产生感应电流.解(1)CD 匀速运动时,线圈I 中的感应电流是常量,为111R lB R I i v ==E 它在线圈Ⅱ中引起的磁通量的变化率为0 d d 21=tΦ 在线圈Ⅱ中引起的互感电动势021=E ,因此线圈Ⅱ中的感应电流为零.(2)CD 加速运动时, 线圈I 中的感应电流为11R BlatI =在线圈Ⅱ中引起的磁通量为at R BlMMI 1121==Φ在线圈Ⅱ中引起的互感电动势为12121 d d R BlMat -=-=ΦE因此线圈Ⅱ中的感应电流为212212R R BlMa R I -==E13-21 如图13-21所示的两个共轴圆形线圈,它们的间距为d ,半径为R 和r ,且r R >>,大线圈中有电流时,小线圈所在处的磁场可看作是均匀的,试求(1)大线圈中的电流t I I ωsin 0=时小线圈中的感应电动势;(2)两线圈的互感系数M ;(3)当小线圈偏转,使得两线圈平面法线的夹角分别为︒︒︒90 60 30、、时,再求M .解 (1)大线圈在小线圈处产生的磁感强度为2/3222021)(2d R R IB +=μ 大线圈电流产生的磁场穿过小线圈的磁通量为232222022121)(2d R r IR S B +==πμΦ大线圈电流变化, 在小线圈中产生的互感电动势为232222002121)(2cos d d d R t R r I t +-=-=ωωπμΦE (1) (2)两电流的互感电动势又可表示为 t MI tIM ωωcos d d 021-=-=E 将(1)式代入上式,得232222021)(2d d d R r R t I M +=-=πμE(3)两线圈平面法向夹角为 30时穿过小线圈的磁通量为2121212330cos ΦΦΦ==' 互感系数 2322220)(43d R r R M +='πμ 夹角为 60时,得 2121212160cos ΦΦΦ==' 2322220)(4d R r R M +='πμ夹角为 90时,得 021='Φ 0='M13-22 试求题13-10中二长直导线组成的回路与矩形框之间的互感系数. 分析 在本题中,显然求出长直导线在矩形框处的磁通量,然后求互感系数较容易.解 利用习题13-10的结果,两长直导线在矩形线圈处产生的磁通量为)ln (ln 222110d ld d l d Ih +-+=πμΦ 得互感系数为 )()(ln 2)ln (ln 22112022110l d d l d d h d ld d l d h IM ++=+-+==πμπμΦ13-23 两线圈的自感系数分别为1L 和2L ,它们的互感系数为M ,当两线圈串联时,试证它的等效自感系数为M L L L 221±+=,其中的正负号分别是对应图13-23中的两种连接情况.分析 两线圈串联后的等效自感系数,应该等于输入端与输出端间自感电动势与回路电流变化率之比.任一线圈两端的感应电动势应等于各自的自感电动势与另一线圈在其上产生的互感电动势的代数和.根据楞次定律,线路顺接如图13-23(a)时,互感电动势与自感电动势方向相同;反接如图13-23(b)时,互感电动势与自感电动势方向相反.假如再拓展考虑两线圈顺并联和反并联的情况.这时流经两线圈的电流分别为1I 和2I ,但互感系数M 不变,且并联后的总电动势12E E E ==.可解出顺并联时M L L M L L L 221221-+-+=,反并联时ML L M L L L 221221++-+=. 解 顺连接如图13-23(a ),设左边的线圈为(1),右边的线圈为(2).根据楞次定律,线圈(1)上的总电动势1E ,应为其上的自感电动势11E 与线圈(2)在线圈(1)上产生的互感电动势12E 之和,有)d d d d (112111tIM t I L +-=+=E E E 同理 )d d d d (221222tI M t I L +-=+=E E E 输入端与输出端间的电动势为tIM L L d d )2(2121++-=+=E E E 两线圈串联顺接时的等效自感系数为M L L tI L 2d d 21++=-=E反连接如图13-23(b ),根据楞次定律,线圈(1)上的总电动势E 1 ,应为其上的自感电动势E 11与线圈(2)在线圈(1)上产生的互感电动势E 12之差,有)d d d d (112111tIM t I L --=-=E E E同理 )d d d d (221222tI M t I L --=-=E E E 输入端与输出端间的电动势为tIM L L d d )2(2121-+-=+=E E E 两线圈串联反接时的等效自感系数为M L L tI L 2d d 21-+=-=E13-24 在一细线密绕螺线管内填满了某种磁导率为μ(常量)的均匀介质,若该介质的电阻率为ρ,在介质中存在感应电流的情况,由定义tI L d d E-=求该螺线管的自感系数.设螺线管半径为R 、长为l 、总匝数为N ,且R l >>,忽略边缘效应.分析 缠绕螺线管的传导电流I 变化时,传导电流要产生自感电动势1E .现螺线管内充满磁导率为μ的磁介质,变化的传导电流在介质中激发感应电流,变化的感应电流也要产生自感电动势2E .总的自感电动势为21E E E +=.由传导电流激发的螺线管内磁场,方向沿轴线,且分布均匀,所以由变化的传导电流激发的感应电流是以轴线为圆心的圆电流.考虑到介质有电阻,感应电流在介质的径向分布不均匀,因而感应电流产生的磁场方向沿轴线,为非均匀磁场,在计算感应电流产生的磁通量时要注意.。
数学物理方法第一章作业答案
第一章复变函数§1.1 复数与复数运算1、下列式子在复数平面上个具有怎样的意义?(1)z≤ 2解:以原点为心,2 为半径的圆内,包括圆周。
(2)z−a=z−b,(a、b 为复常数)解:点z 到定点a 和 b 的距离相等的各点集合,即a 和 b 点连线的垂直平分线。
(3)Re z>1/2解:直线x=1/ 2右半部分,不包括该直线。
(4)z+Re z≤1解:即x2 +y2 +x≤1,则x≤1,y2 ≤1−2x,即抛物线y2 =1−2x及其内部。
(5)α<arg z<β,a<Re z<b,(α、β、a、b为实常数)解:(6)0 <arg zz−+ii<π4解:zz−+ii=x2+x2y−1−i2x2+(y+1)2因为0 <arg zz−i+i<π4x+ 2 −(2yx+1) 2>0x 2 2 ++(yy2+−11)2>所以,即x <0,x2 +y2 −1+2x >0 x0 <x2x−+(+22yyx+1)22 −1<1x+( y+1)2 2综上所述,可知z 为左半平面x<0,但除去圆x2 +y2 −1+2x =0 及其内部z -1 ≤(7)1,z +12z-1 x 1 iy x y 1 4y−+⎡+−⎤2 2 2==+⎢⎥解:()[()] +++++iy 1 y22 2z 1 x 1 x⎣x 1 y⎦+ 2 +2所以()[()]x+−+≤++222 y 1 4y2 x 1 y2 22化简可得x≥0(8)Re(1 /z) =2⎛⎞⎡−⎤1 x iy x解:Re( ⎟=R e 21/ z=⎜) Re 2 ==⎜⎟⎢⎥⎝iy⎦x ⎣x++y+y⎠x2 2 2即(1/ 4)1/16x− 2 +y=2(9)Re Z2 =a2解:Re Z2 =x2 −y2 =a2(10) z1 +z+z−z=2 z+2 z2 2 22 1 2 1 22解:()()()()()() x1+x+y+y+x−x+y−y=2 x+y+2 x+y2 2 2 2 2 2 2 22 1 2 1 2 1 2 1 1 2 2 可见,该公式任意时刻均成立。
数学物理方法答案(科学出版社)
λn (x )=(
nπ 2 nπ x ) , X n (x )=sin l l
(3)特解的线性叠加
n 2π 2 a 2t − ∞ nxπ u ( x , t ) = ∑ Cn e sin l2 l n =1
(4)根据本征函数正交性,由初始条件定系数. 由 x (l
n
∞
( 2n + 1) π at 得 A
=0,
得Bn =
8lv0 2 (2 n +1)π x l dx = ∫0 v0 sin (2 n +1)π a 2l (2 n +1)2 π 2 a
8lv0 ∞ 1 (2 n +1)π at (2 n +1)π x sin sin ∑ 2l 2l π 2 a n = 0 (2 n +1)2
l nxπ − x ) = u ( x , 0) = ∑ Cn sin l n =1
nxπ 2 l 4l 2 n C = ∫0 x (l − x ) sin dx = [1 − ( −1) ] n l l n3π 3 (2 n +1)2 π 2a 2 2 − 8l ∞ ( 2 n +1) xπ 1 2 ∑ ∴ u ( x, t ) = e sin l l π 3 n =0 (2 n +1)3
段的相对伸长为
( X =0端固定)
1 (n+ )π x 2 X (x )=sin n l
(3)通解为:
,λ
n
(x )=(
(2n+1)π 2 ) 2l
∞ 2 n +1 2 n +1 2 n +1 u ( x , t ) = ∑ [A cos( at ) + B sin( at )]sin( π π π x) n n 2 l 2 l 2 l n =0 (4)由 u ( x , 0) = 0 得 B = 0 t n ∞ F0 x 2 n +1 π x ) 得: = u( x , 0) = ∑ An sin( YS l 2 时,上式中的 x ± at 就会超出这个区间.考虑本题是第一内 边界条件,这里的 ϕ ( x ) 与ψ ( x ) 应理解为经过奇沿拓的,周期为 2l 的初位移与初速 度.
数理方法习题参考答案(1)
x
P0
(x)dx
=
1 xdx = 1
0
2
∫ ∫ c2n
=
4n +1 2
1 −1
x P2n (x)dx
= (4n +1)
1 0
xP2n
(x
)dx
∫ ( ) =
(4n +1) 22n (2n)!
1
x
0
d 2n dx 2n
x 2 − 1 2n dx
( ) ∫ ( ) ( ( )) ( ( )) =
4n 22n
+ c3
1 2
5x3
− 3x
=
5c3 2
x3
+
3c2 2
x2
+
⎜⎛ ⎝
c1
−
3c3 2
⎟⎞ ⎠
x
+
c0
5c3 2
= 1,3c2 2
= 0,c1
− 3c3 2
= 0,c0
=0
c0 = 0,
c1
=
3, 5
c2
= 0,
c3
=2 5
∴ x3
=
3 5
P1(x) +
2 5
P3 (x)
待定系数法只能适用于 f (x) 为 xn 多项式或者可以展开 xn 多项式的情况。
1 x2
−1
d l−1 dx l−1
x 2 − 1 l dx
∫ ( ) ( ) =
−
3
2l + 1 2l+1 l!
1 x2d
−1
d l−2 dx l−2
x2 −1 l
( ) ∫ ( ) ( ) ( ) =
物理学 第三版 上下卷 (刘克哲 张承琚 著) 高等教育出版社 课后答案第14章习题解答
[物理学14章习题解答]14-15 光源s 1 和s 2 在真空中发出的光都是波长为 λ的单色光,现将它们分别放于折射率为n 1 和n 2的介质中,如图14-5所示。
界面上一点p 到两光源的距离分别为r 1 和r 2。
(1)两束光的波长各为多大?(2)两束光到达点p 的相位变化各为多大?(3)假如s 1 和s 2 为相干光源,并且初相位相同,求点p干涉加强和干涉减弱的条件。
解 (1) 已知光在真空中的波长为λ,那么它在折射率为n的介质中的波长λ'可以表示为,所以,在折射率为n 1和n 2的介质中的波长可分别表示为和. (2)光传播r 的距离,所引起的相位的变化为,所以,第一束光到达点p 相位的变化为,第二束光到达点p 相位的变化为.(3)由于两光源的初相位相同,则两光相遇时的相位差是由光程差决定的,所以,点p 干涉加强的条件是,; 点p 干涉减弱的条件是, .14-16若用两根细灯丝代替杨氏实验中的两个狭缝,能否观察到干涉条纹?为什么?解 观察不到干涉条纹,因为它们不是相干光源。
14-17在杨氏干涉实验中,双缝的间距为0.30 mm ,以单色光照射狭缝光源,在离开双缝1.2 m 处的光屏上,从中央向两侧数两个第5条暗条纹之间的间隔为22.8 mm 。
求所用单色光的波长。
图14-5解在双缝干涉实验中,暗条纹满足,第5条暗条纹的级次为4,即,所以,其中。
两个第5条暗条纹的间距为,等于22.8 mm,将此值代入上式,可解出波长为.14-18在杨氏干涉实验中,双缝的间距为0.30 mm,以波长为6.0 102nm的单色光照射狭缝,求在离双缝50 cm远的光屏上,从中央向一侧数第2条与第5条暗条纹之间的距离。
解因为第1条暗条纹对应于,所以第2条暗条纹和第5条暗条纹分别对应于和。
根据双缝干涉的规律,暗条纹的位置应满足.所以,第2条与第5条暗条纹之间的距离为.14-20在空气中垂直入射到折射率为1.40的薄膜上的白光,若使其中的紫光(波长为400 nm)成分被薄膜的两个表面反射而发生干涉相消,问此薄膜厚度的最小值应为多大?解光从第一个表面反射要产生半波损失,但从第二个表面反射无半波损失,所以光程差应表示为,式中e为薄膜的厚度,此厚度应为最小值,干涉级次k最小应取1,因为当时,薄膜的厚度必须取零,上式才能成立。
数学物理方法课后答案 (2)
2
2+ 4 i
1+i
[( x 2 − y 2 ) + 2ixy ](dx + idy )
86 − 6i 3
= ∫ [ x 2 − (3 x − 2) 2 + 2ix(3 x − 2)](1 + 3i ) dx = −
(3)沿1 + i 到 2 + i ,再到 2 + 4i 的折线。
I =∫
2 1
2+ 4 i
L
∫ ∫
L
f (ξ )[
f (ξ ) Δ z ∫ L (ξ − z ) 2 (ξ − z − Δ z ) d ξ
ξ − z ( ξ − z − Δz )
2
d ξ , 现 在 讨 论 能 否 找 到 δ ( ε ), 使 当 Δ z < δ 时 d ,同 时 将 2
上 式 成 立 。 因 本 题 是 讨 论 Δ z → 0时 的 积 分 极 限 , 不 妨 令 Δ z < min z − ξ = d 代 入 有 Δ I ≤ δ
4 4 1 1 0 0
I3 = ∫ {[2(t2 + 3) + (2t)2 ]2dt + [3(2t)-(t2 + 3)]2tdt} = ∫ (24t 2 + 12 − 2t 3 − 6t )dt =
数理方法答案
i
1
+
1 1!3i
(z
− i)
−
2 2!9i2
(z
− i)2
+ ... +
1 11 k ! 3 3
−
1
1 3
−
2
...
1 3
−
k
+ 1 i−k
(z
− i)k
+ ...
R
=
lim
k →∞
ak ak +1
= lim k →∞
1 k!
1 3
1 3
( ) ( ) 解 z 3 = (x + iy)3 = x3 − 3xy 2 + i 3x2 y − y3 = ρ 3ei3ϕ = ρ 3 (cos 3ϕ + i sin 3ϕ )
其中
ρ = x2 + y2
ϕ
=
arctg
y x
(6) e1−i
解 e1+i = e × ei = e(cos1 + i sin1)
e x cosy
∴ v = −e x cos y + c
则f(z) = e x sin y − ie x cos y + ic = e x [sin y + i(− cos y)]+ ic
= e x( − i)[cos y + i sin y]+ ic = −ie x+iy + ic = −ie z + ic
故必须求出 ∂ 2u ∂x 2
= ... = 2F '+4x2 F"
∂2u ∂y 2
新编基础物理学第13章习题解答和分析
《新编基础物理学》第13章习题解答和分析(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第13章 电磁场与麦克斯韦方程组13-1 如题图13-1所示,两条平行长直导线和一个矩形导线框共面,且导线框的一个边与长直导线平行,到两长直导线的距离分别为1r ,2r 。
已知两导线中电流都为0sin I I t ω=,其中I 0和ω为常数,t 为时间。
导线框长为a ,宽为b ,求导线框中的感应电动势。
分析:当导线中电流I 随时间变化时,穿过矩形线圈的磁通量也将随时间发生变化,用法拉第电磁感应定律md d i tΦε=-计算感应电动势,其中磁通量m d sB S Φ=⋅⎰, B 为两导线产生的磁场的叠加。
解:无限长直电流激发的磁感应强度为02IB rμ=π。
取坐标Ox 垂直于直导线,坐标原点取在矩形导线框的左边框上,坐标正方向为水平向右。
取回路的绕行正方向为顺时针。
由场强的叠加原理可得x 处的磁感应强度大小00122()2()IIB r x r x μμ=+π+π+方向垂直纸面向里。
通过微分面积d d S a x =的磁通量为00m 12d d d d 2()2()I I B S B S a x r x r x μμΦππ⎡⎤=⋅==+⎢⎥++⎣⎦通过矩形线圈的磁通量为00m 012d 2()2()b I I a x r x r x μμΦ⎡⎤=+⎢⎥π+π+⎣⎦⎰012012ln ln sin 2a r b r b I t r r μω⎛⎫++=+ ⎪π⎝⎭ 感生电动势 0m 12012d ln ln cos d 2i a r b r b I t t r r μωΦεω⎛⎫++=-=-+ ⎪π⎝⎭012012()()ln cos 2ar b r b I t r r μωω⎡⎤++=-⎢⎥π⎣⎦0i ε>时,回路中感应电动势的实际方向为顺时针;0i ε<时,回路中感应电动势的实际方向为逆时针。
高考物理典型方法习题及专题汇编含详解答案下集
拾躲市安息阳光实验学校最新高考物理典型方法、习题及专题汇编含详解答案下集内容简介13、物理思想与物理方法 14、图像及其应用15、与弹簧有关的物理问题 16、与绳传送带有关的物理问题17、天体运动的各种物理模型18、物块在木板上的各种运动19、有关碰撞的综合题20、光学计算题21、高考物理证明题13、物理思想与物理方法一、隔离分析法与整体分析法隔离分析法是把选定的研究对象从所在物理情境中抽取出来,加以研究分析的一种方法.需要用隔离法分析的问题,往往都有几个研究对象,应对它们逐一隔离分析、列式.并且还要找出这些隔离体之间的联系,从而联立求解.概括其要领就是:先隔离分析,后联立求解.1.隔离法.【例1】如图所示,跨过滑轮细绳的两端分别系有m1=1kg、m2=2kg的物体A和B.滑轮质量m=0.2kg,不计绳与滑轮的摩擦,要使B静止在地面上,则向上的拉力F不能超过多大?2.整体分析法.整体分析法是把一个物体系统(内含几个物体)看成一个整体,或者是着眼于物体运动的全过程,而不考虑各阶段不同运动情况的一种分析方法.【例2】如图所示,质量0.5kg、长1.2m的金属盒,放在水平桌面上,它与桌面间动摩擦因数m=0.125.在盒内右端放着质量也是0.5kg、半径0.1m的弹性小球,球与盒接触光滑.若在盒的左端给盒以水平向右1.5N·s的冲量,设盒在运动中与球碰撞的时间极短,且无能量损失.求:盒从开始运动到完全停止所通过的路程是多少?(g取10m/s2)二、极值法与端值法极值问题是中学物理中常见的一类问题.在物理状态发生变化的过程中,某一个物理量的变化函数可能不是单调的,它可能有最大值或最小值.分析极值问题的思路有两种:一种是把物理问题转化为数学问题,纯粹从数学角度去讨论或求解某一个物理函数的极值.它采用的方法也是代数、三角、几何等数学方法;另一种是根据物体在状态变化过程中受到的物理规律的约束、限制来求极值.它采用的方法是物理分析法.【例3】如图所示,一辆有四分之一圆弧的小车停在不光滑的水平地面上,质量为m的小球从静止开始由车的顶端无摩擦滑下,且小车始终保持静止状态.试分析:当小球运动到什么位置时,地面对小车的静摩擦力最大?最大值为多少?【例4】如图所示,娱乐场空中列车由许多节完全相同的车厢组成,列车先沿水平轨道行驶,然后滑上半径为R的空中圆环形光滑轨道.若列车全长为L(L>2pR),R远大于一节车厢的长度和高度,那么列车在运行到圆环前的速度v0至少多大,才能使整个列车安全通过圆环轨道?三、等效法等效法是物理思维的一种重要方法,其要点是在效果不变的前提下,把较复杂的问题转化为较简单或常见的问题.应用等效法,关键是要善于分析题中的哪些问题(如研究对象、运动过程、状态或电路结构等)可以等效.【例5】如图(甲)所示电路甲由8个不同的电阻组成,已知R1=12Ω,其余电阻阻值未知,测得A、B间的总电阻为4Ω,今将R1换成6Ω的电阻,则A、B间的总电阻是多少?【例6】如图所示,一个“V”型玻璃管倒置于竖直平面内,并处于E=103v/m、方向竖直向下的匀强电场中,一个带负电的小球,重为G=10-3N,电量q=2×10-6C,从A点由静止开始运动,球与管壁的摩擦因数m=0.5.已知管长AB=BC=2m,倾角a=37°,且管顶B处有一很短的光滑圆弧.求:(1)小球第一次运动到B时的速度多大?(2)小球运动后,第一次速度为0的位置在何处?(3)从开始运动到最后静止,小球通过的总路程是多少?(sin37°=0.6,cos37°=0.8)四、排除法解选择题排除法又叫筛选法,在选择题提供的四个答案中,若能判断A、B、C选项不对,则答案就是D项.在解选择题时,若能先把一些明显不正确的答案排除掉,在所剩下的较少选项中再选择正确答案就较省事了.【例7】在光滑水平面上有A、B两个小球,它们均向右在同一直线上运动,若它们在碰撞前的动量分别是p A=12kg·m/s,p B=13kg·m/s(向右为正方向),则碰撞后它们动量的变化量△p A及△p B有可能的是A.△p A =4kg·m/s △p B =-4kg ·m/sB.△p A =-3kg ·m/s △p B =3kg ·m/sC.△p A =-24kg ·m/s △p B =24kg ·m/sD.△p A =-5kg ·m/s △p B =8kg ·m/s五、微元法一切宏观量都可被看成是由若干个微小的单元组成的.在整个物体运动的全过程中,这些微小单元是其时间、空间、物质的量的任意的且又具有代表性的一小部分.通过对这些微小单元的研究,我们常能发现物体运动的特征和规律.微元法就是基于这种思想研究问题的一种方法.【例8】真空中以速度v飞行的银原子持续打在器壁上产生的压强为P,设银原子打在器壁上后便吸附在器壁上,银的密度为r.则器壁上银层厚度增加的速度u为多大?六、作图法作图法就是通过作图来分析或求解某个物理量的大小及变化趋势的一种解题方法.通过作图来揭示物理过程、物理规律,具有直观形象、简单明了等优点.【例9】某物体做初速度不为0的匀变速直线运动,在时间t内通过的位移为s,设运动过程中间时刻的瞬时速度为v1,通过位移s中点的瞬间速度为v2,则A.若物体做匀加速直线运动,则v1>v2B.若物体做匀加速直线运动,则v1<v2C.若物体做匀减速直线运动,则v1 >v2D.若物体做匀减速直线运动,则v1<v2练习题1.如图所示,直杆质量为M,小猴质量为m.今将悬线剪断后,小猴保持所在高度不变,直杆的加速度有多大?2.带电量为q的质量为m的小球在离光滑绝缘平面高H0处,以v0速度竖直向上运动.已知小球在运动中所受阻力为f,匀强电场场强为E,方向竖直向下,如图9-15所示.小球每次与水平面相碰均无机械能损失,带电小球经过的路程多大?3.两相互平行的金属板,长L,板间距离为d,两板间有沿水平向纸面外的匀强磁场.今有一质量为m带电量为q的正离子(重力不计)从两板的左端水平射入磁场中,如图所示.问初速度v0应满足什么条件,才能使带电粒子飞离磁场而不至于落到金属板上?专题十三物理思想与物理方法答案【例1】【解析】(1)先以B为研究对象,当B即将离开地面时,地面对它的支持力为0.它只受到重力m B g和绳子的拉力T的作用,且有:T- m B g=0.(2)再以A为研究对象,在B即将离地时,A受到重力和拉力的作用,由于T=m B g>m A g,所示A将加速上升.有T- m A g=m A a A.(3)最后以滑轮为研究对象,此时滑轮受到四个力作用:重力、拉力、两边绳子的两个拉力T.有F- mg-2T=ma.这里需要注意的是:在A上升距离s时,滑轮只上升了s/2,故A的加速度为滑轮加速度的2倍,即: a A=2a.由以上四式联立求解得:F=43N.【例2】【解析】此题中盒与球交替做不同形式的运动,若用隔离法分段求解,将非常复杂.我们可以把盒和球交替运动的过程看成是在地面摩擦力作用下系统动能损耗的整体过程.这个系统运动刚开始所具有的动能即为盒的动能mv02/2=p2/2m=1.52/(2×0.5)=2.25J整体在运动中受到的摩擦力:f=mN=m2mg=10×0.125=1.25N根据动能定理,可得-fs=0-mv02/2 , s=1.8m【解题回顾】不少同学分析完球与盒相互作用和运动过程后,用隔离法分段求解.先判断盒与球能否相撞,碰撞后交换速度,再求盒第二次运动的路程,再把各段路程相加.对有限次碰撞尚能理解,但如果起初的初动能很大,将会发生多次碰撞,遇到这种情况时,同学们会想到整体法吗?当然,隔离分析法与整体分析法是相辅相成的,是不可分割的一个整体。
数学物理方法习题解答(完整版)
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()000000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z zz z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
高等数学第四册第三版数学物理方法答案 完整版
k = 0, ±1, ±2,⋅⋅⋅
3i = eiLn3 = ei(ln3+2kπ ) = cos ln 3 + i sin ln 3
e2+i = e2 iei = e2 (cos1+ i sin1) sin z
22,求证lim =1 z→0 z
证 : z = x +iy (x,y, 均 为 实 数 ) , 所 以
=[
a2
+ b2
(cosθ
1
+ i sinθ )]2
=
(a2
+
b2
)
1 4
(cos
θ
+ i sin θ
);
2
2
3.设 试用三角形式表示 及 。 1+i
z1 =
, 2 z2 = 3 − i;
z1
z1z2
z2
π
π 1π
π
解: z1 = cos 4 + i sin 4 ; z2 = 2 (cos 6 + i sin 6 );
解:由题意 ,所以有 ; z4 = −a4
⎛ ⎜ ⎝
z a
4
⎞ ⎟ ⎠
=
−1( a
>
0)
;所以 ; ⎛
⎜⎝
z a
4
⎞ ⎟⎠
=
cos π
+ i sin π
=
eiπ
z
=
iθ +2kπ
e4
(k
=
0,1, 2,3)
a
; ; ; . iπ
i 3π
i 5π
i 7π
z1 = ae 4 z2 = ae 4 z3 = ae 4 z4 = ae 4
数学物理方法习题答案
数学物理⽅法习题答案数学物理⽅法习题答案:第⼆章:1、(1)a 与b 的连线的垂直平分线;以0z 为圆⼼,2为半径的圆。
(2)左半平⾯0,x <但是除去圆22(1)2x y ++=及其内部;圆2211()416x y -+= 2、2,cos(2)sin(2)ie i πππ+; 32,2[c o s (3)s i n (3)iei πππ+; ,(c o s 1s i n 1ie e e i ?+ 3、2k eππ--; (623)i k eππ+; 42355c o s s i n 10c o s s i n s i n-+; 11()sin ()cos 22b b b b e e a i e e a --++- 1()c o s2y y ay b e e x e ----4、(1)2214u υ+=变为W 平⾯上半径为12的圆。
(2)u υ=- 平分⼆、四象限的直线。
5、(1) zie iC -+; 2(1)2i z -; ln i z,,()22u C f z ??υ==+=6、ln C z D +第三章:1、(1)i π(2)、 iie π-- (3)、 0 (4)、i π(5)、6i π2、设()!n z z e f n ξξ=z 为参变数,则()122011()1(0)2!2!1()()!n z n n n l l n n n n z z n z e d f d f i n i n z d z z e e n n d n n ξξξξξξξξπξξπξξ+=======??第四章:1、(1)2323()()ln 22z i z i z i i i i i ---+-+-(2)23313(1)2!3!e z z z ++++(3)211111()()[(1)(1)](1)11222k k k kk k z z i i i z z z i z i z i ∞=---=-=--++--<+-+∑2、(1)n z ∞=--∑(2)11()43f z z z =--- ①3z <时 11011()34kk k k z ∞++=-∑ ,34z <<时11101134k kk k k k z z -∞++=-∞=-∑∑,4z >时11111()43k kk k k z z -++=-∞-∑ ②11011()34kk k k z ∞++=-∑③ 031z <-<时1(3)kk z ∞=---∑,041z <-<时11()(4)k kk z ∞=-∑,41z ->时,21()(4)kk k z ∞=--∑ 3、(1)两个奇点 1,z z ==∞ 所以,1z =为()f z 的⼆阶极点。
数学物理方法课后答案 (2)
dz 1 π 2 i = i π = 4i ∫ z −i =2 z − 2i 4i 2
∫
z +i = 2
−
1 π dz = − i 2π i = − z + 2i 4i 2
1 1 1 ( )dz = (2π i − 2π i ) = 0 − 4i 4i ∫ z =8 z − 2i z + 2i
(2)
∫
4
Байду номын сангаас
l1
f ( z )dz = 0 ( l2 内无奇点)
dz dz +∫ = 2π i + 2π i = 4π i ∫ l3 ∫ l3 z + 1 = 2π i ∫l f ( z )dz = ∫l dz l z +1 z 4 设 f ( z ) 是 单 通 区 域 D 内 的 解 析 函 数 , z0 为 D 的 内 点 , 试 证 明 f ( z )dz =
(1)沿抛物线 x = t , y
= t 2 ,其中1 ≤ t ≤ 2
(2)沿连接1 + i 到 2 + 4i 的直线。 (3)沿1 + i 到 2 + i ,再到 2 + 4i 的折线 解: (1) z
= x + iy = t + it 2 , z 2 = t 2 (1 + it ) 2 = t 2 + 2it 3 − t 4 dz = (1 + 2it )dt
积 分 为 极 限 , 设 边 界 L的 全 长 为 l, z点 到 边 界 线 最 短 距 离 为 min z − ξ = d f (ξ )在 D 上 连 续 意 味 着 f (ξ )有 界 f (ξ ) ≤ M (常 数 ) 。 应 用 复 变 积 分 性 质 5以 及 矢 量 差 的 模 小 于 矢 量 模 的 差 , 可 证 以 下 成 立 ΔI = ≤ Δz 1 1 ]d ξ = − (ξ − z )(ξ − z − Δ z ) (ξ − z ) 2 f (ξ )
数学物理方法第三版答案
数学物理方法第三版答案【篇一:数学物理方法试卷答案】xt>一、选择题(每题4分,共20分) 1.柯西问题指的是( b ) a.微分方程和边界条件. b. 微分方程和初始条件. c.微分方程和初始边界条件. d. 以上都不正确. 2.定解问题的适定性指定解问题的解具有( d)a.存在性和唯一性. b. 唯一性和稳定性. c. 存在性和稳定性. d. 存在性、唯一性和稳定性.??2u?0,?3.牛曼内问题 ??u 有解的必要条件是( c)??n?f??a.f?0.b.u??0.c.?fds?0. d.?uds?0.???x(x)??x(x)?0,0?x?l4.用分离变量法求解偏微分方程中,特征值问题??x(0)?x(l)?0的解是( b )n?n??n???n??x ).b.( ?x ). a.( ??,cos?,sinllll????(2n?1)?(2n?1)??(2n?1)???(2n?1)??x ).d.( ?x ). c.( ??,cos?,sin2l2l2l2l????22225.指出下列微分方程哪个是双曲型的( d )a.uxx?4uxy?5uyy?ux?2uy?0. b.uxx?4uxy?4uyy?0.c.x2uxx?2xyuxy?y2uyy?xyux?y2uy?0. d.uxx?3uxy?2uyy?0.二、填空题(每题4分,共20分)??2u?2u?2?2?0, 0?x??, t?0?t?x??1.求定解问题?ux?0?2sint, ux????2sint, t?0的解是(2sintcosx).??ut?0?0, utt?0?2cosx, 0?x????2.对于如下的二阶线性偏微分方程a(x,y)uxx?2b(x,y)uxy?c(x,y)uyy?dux?euy?fu?0其特征方程为( a(x,y)(dy)2?2b(x,y)dxdy?c(x,y)(dx)2?0). 3.二阶常微分方程y(x)?或0).4.二维拉普拉斯方程的基本解为( ln1().r1 ),三维拉普拉斯方程的基本解为r113y(x)?(?2)y(x)?0的任一特解y?( jx44x1(x) 3225.已知j1(x)?222sinx, j1(x)?cosx,利用bessel函数递推公式求??x?x23j3(x)?(221221dsinx(sinx?cosx)??x()()). ?xx?xdxx三、(15分)用分离变量法求解如下定解问题2??2u2?u??t2?a?x2?0, 0?x?l, t?0??u??u?0, ?0, t?0 ??xx?l??xx?0?u?x, utt?0?0, 0?x?l.?t?0?解:第一步:分离变量(4分) 设u(x,t)?x(x)t(t),代入方程可得x(x)t(x)x(x)t(t)?ax(x)t(t)??2x(x)at(x)2此式中,左端是关于x的函数,右端是关于t的函数。
数学物理方法课后答案
数学物理方法课后答案【篇一:数学物理方法习题】1、求解定解问题:utt?a2uxx?0,(0?x?1),u|x?0?u|x?l?0,l?n0hx,(0?x?),?ln0?(p-223) ?u|t?0??hl(l?x),(?x?l),?ln0?l???n0u|t?0?0,(0?x?l).2、长为l的弦,两端固定,弦中张力为t,在距一端为x0的一点以力f0把弦拉开,然后撤出这力,求解弦的震动。
[提示:定解问题为 utt?a2uxx?0,(0?x?l),u(0,t)?u(l,t)?0,?f0l?x0x,(0?x?x0), ??tlu(x,0)???f0x0(l?x),(x?x?l),0??tlut|t?0?0.] (p-227)3、求解细杆导热问题,杆长l,两端保持为零度,初始温度分布u|t?0?bx(l?x)/l2。
[定解问题为k?22u?au?0,(a?)(0?x?l),xx?tc???] (p-230)u|x?0?u|x?l?0,??u|t?0?bx(l?x)/l2.???4、求解定解问题??2u?2u2??a?0,0?x?l,t?022??t?x?ux?0?0,ux?l?0. ??3?x?u?u ?asin,?0.?t?0l?tt?0?4、长为l的均匀杆,两端受压从而长度缩为l(1?2?),放手后自由振动,求解杆的这一振动。
[提示:定解问题为?utt?a2uxx?0,(0?x?l),?ux|x?0?ux|x?l?0,??](p-236) ?2u|?2?(?x),t?0?l?ut|t?0?0.??5、长为l的杆,一端固定,另一端受力f0而伸长,求解杆在放手后的振动。
[提示:定解问题为?utt?a2uxx?0,(0?x?l),?u|x?0?0,ux|x?l?0,??] (p-238)x?uxf?0?u(x,0)??0dx??0,?xys?ut|t?0?0.??6、长为l的杆,上端固定在电梯天花板,杆身竖直,下端自由、电梯下降,当速度为v0时突然停止,求解杆的振动。