简易数字电容表的设计说明

合集下载

简易数字电容计的设计

简易数字电容计的设计

简易数字电容计的设计【摘要】利用89C2051设计了一个数字电容表,其设计思想是利用对被测电容进行冲放电,将脉波输入计数器通过计数,最后送出正确的显示信号给显示电路,可测量容量小于2微法的电容器的容量,采用4位数码管显示。

【关键词】电容测量;充放电法;89C2051;数字在日常的电路工程或者是电路实验中,电容是一个最常见的元器件,实际应用中,对电容的电容值的准确值要求也是很高的。

本文利用89C2051设计了一个数字电容表,能够精确地测量电容值。

1.整体电路设计框图电路由单片机电路、电容充电测量电路和数码显示电路等部分组成。

整体电路设计框图2.测量电路测量电路如图所示。

A为AT89C2051内部构造的电压比较器,AT89C2051的P1.0和P1.1口除了作I/O口外,还有一个功能是作为电压比较器的输入端,P1.0为同相输入端,P1.1为反相输入端,电压比较器的比较结果存入P3.6口对应的寄存器,P3.6口在AT89C2051外部无引脚。

电压比较器的基准电压设定为0.632E+,在CX两端电压从0升到0.632E+的过程中,P3.6口输出为0,当电池电压CX两端电压一旦超过0.632E+时,P3.6口输出变为1。

以P3.6口的输出电平为依据,用AT89C2051内部的定时器T0对充电时间进行计数,再将计数结果显示出来即得出测量结果。

AT89C2051内部的电压比较器和电阻R2-R7等组成测量电路,其中R2-R5为量程电阻,由波段开关S1选择使用,电压比较器的基准电压由5V电源电压经R6、RP1、R7分压后得到,调节RP1可调整基准电压。

当P1.2口在程序的控制下输出高电平时,电容CX即开始充电。

量程电阻R2-R5每档以10倍递减,故每档显示读数以10倍递增。

由于单片机内部P1.2口的上拉电阻经实测约为200K,其输出电平不能作为充电电压用,故用R5兼作其上拉电阻,由于其它三个充电电阻和R5是串联关系,因此R2、R3、R4应由标准值减去1K,分别为999K、99K、9K。

简易数字电容测试仪的设计

简易数字电容测试仪的设计

电平跳变为高电平 , 电路进入暂稳态 , 放 电三极管T 截止。 此后 电容 c 充电, 当 充 电至 = _ 时, 电路的输出端 电压 由高 电平翻 转为低 电平 , 同时T 导通 , 于是电容 c 放 电, 电路返回到稳定状态 。


如 果 忽 略T的饱 和压 降 , 则 从 零 电平上 升 到 _ 的 时 间 , 即
2系统概述
2 . 1 测 量 系统构 成 该系统主要 由标准脉冲发生器 、 单稳态触发器、 测量控制 电路 、 计数器 、 译码器和显示器等部分组成。 其原理 图如( 图1 ) 所示。 2 . 2系统 的 总体 方 案设 计 利用 NE 5 5 5 电路 的多 谐 振 荡器 或 单 稳 态 电路 来 测量 。 本 方 案 采 用 单 稳 态 触 发 器 或 电容器充放 电规律 等, 可 以 把 被 测 电 容 的大小转换成脉 冲的宽 窄 , 即控 制 脉冲宽 度Tx严格 C X成 正 比。 只要 把 图 1 数 字 电容 测 试 仪 的原 理 框 图 此脉冲 与频率 固定 不变 的方 波 即 时钟 脉冲相 与 , 便 可 得 到计 数脉冲 , 把 计 数脉冲送给计数器 计数 , 然 后 再 送 给 显示 器 显示 。 如果 时 钟 脉 冲 的 频 率 等 参数 合适 , 数字 显 示器 显示 的数字N 便是 C X的大 小 。 简易 数 字 式 电 容测试仪主要分为 六大 板 块 : 由5 5 5 定 时器 构成 的多 谐 振
为输 出电压 的脉宽 t 。
Tw =RCx l n 3 1 . 1 RCx
3 . 2计数 、 译 码 和 显示 电路 ( 1 ) 计 数器 。 计数器主要用来对时钟进行计数并送入显示 电路 显示 。 4 5 1 8 :  ̄ : g T . B C D 码同步十进制计数器 , 每个计数器包含两个时 钟输入端 : C P 和E N。 C P 用于上升沿触 发, 要求E N=1 ; E N用于下降 沿触发 , 要求 C P =O 。 C R是异步复位 端 , 高 电平有效 , 正常计 数时 C R= O 。 这里 , 我们要测量的 电容范围是0  ̄ J 9 9 9 p F, 需要三位十进 制 计数 器 进 行 级联 。 其级联 的方 法 是将 低 位 的Q 3 端 接高 位 的E N端 , 高 位 计 数器 的 C P 端接地。 其 输 出 端Q3 Q 2 Q1 Q O 输出8 4 2 1 B C D 码, 接 显 示译码器 的代码 输入端 。 电路 图比较简单 , 在这里就不再赘述 了。 ( 2 ) 译码 器 电路 。 译 码 显 示 电路 的 设计 比较 简 单 , 选 用4 5 1 1 , 该 译 码器 为B C D一七段 锁存 /译 码 /驱 动 器 , 其 数据 输 入端 接计 数器 Q3 Q 2 Q1 Q O 端输出的B C D 码, 译码器 的输 出端接共 阴极七段半导体 数码 显 示 器 。

一款简单的数字电感电容表设计制作

一款简单的数字电感电容表设计制作

一款简单的数字电感电容表设计制作本文介绍一款由555时基构成多谐振荡器构成的参数变换电路,反相器、晶振构成标准脉冲发生器,以及三个独立LED数码管组成的数显电路构成的简易数字电感电容表,经过测试电路数显直观、方便有效,精确度高,较好的解决了设计时因制作均衡电容、音箱分频电感产生误差导致音质受损的问题,值得电子发烧友们亲自动手操作一试。

一、数字电感电容表的工作原理数字电感电容表原理图1、参数变换电路:参数变换电路由555时基构成多谐振荡器,可把被测元件Lx/Cx转换成与元件参数成正比的脉宽。

然后把这具有特定脉宽的矩形作为门控信号,在脉宽时间内对一个已知周期的标准脉冲计数通过显示器就可以把脉宽(实际上是元件参数)显示出来。

测量电容时(这时波段开关在5、6、7位)是以Cx为定时元件的多谐振荡器,产生的矩形波经3脚输出,送到计数器的门控端,脉宽tw=CRcln2。

测量电感时(波段开关在1、2、3位),是以Lx为定时元件的多谐振荡器,刚接通电源时,V2(6)=Vcc,555的3脚输出低电平,7脚通地,电源经RL的Lx充电,随着充电的进行,V2(6),当达到V2(6)=1/3Vcc时,电路翻转,3脚输出高电平,7脚与地断开,因Lx电流不能突变,必将产生一个感生电动势使D1导通,Lx经D1、RL放电,V2(6),当达到V2(6)=2/3Vcc时,电路又翻转,5脚输出低电平,7脚又与地接通,Lx又开始充电,这样5脚输出占空比为1:1的方波,送到计数器的门控端。

这时脉宽为tw=Lx/RLln2。

2、标准脉冲发生器:该电路由反相器3、4和晶体构成,晶振频率为1MHz,标准脉冲周期为T=1s,以它作为计数器的计数脉冲。

3、计数、显示电路:显示器由三位LED数码管构成,计数器由MC14553三位动态扫描计数器为核心构成。

T=1s。

数字电容表设计-毕业设计

数字电容表设计-毕业设计

数字电容表设计学生:XX 指导教师:XX内容摘要:新时代,科学技术不断的腾飞中。

电子仪器数不胜数,层层不出,同时,各种电子产品也不断更新完善。

给人类带来了无穷的利益。

大电容测量仪亦也是如此,品种种类繁多,功能强大完善.而以下所设计的是一种精度比较高,操作非常简便的电容测量仪。

并且此电容表设计是基于单稳态触发器的输出脉宽tw与电容C成正比,是把电容C转换变成宽度为tw的矩形脉冲,接着将其作为闸门信号控制计数器计标准频率脉冲的个数,最后送锁存--译码--显示系统就可以得到电容量的数据关键词:大电容测量仪电容表矩形脉冲digital capacitance table designAbstract:The new age, the rapid development of science and technology continuously. Counting the electronic instrument, layer upon layer out, at the same time, various kinds of electronic products is also constantly updated perfect. Brought infinite interests. Large capacitance measuring instrument is also is such, breed varieties, powerful perfect. And the design is a kind of precision is higher, the operation is very simple capacitance measuring instrument. And the capacitance table design is based on a single state trigger the output pulse width tw and capacitance c is proportional to the capacitance C conversion is become the rectangular pulse width for tw, then as a gate signal control counter plan the number of standard frequency pulse, eventually give latch-decoding-show that the system can get electric capacity dataKeywords: large capacitance measuring instrument capacitance table rectangular pulse.目录前言............................................................................................................. 错误!未定义书签。

电容ESR表(二)电容ESR表的设计、制作、调试

电容ESR表(二)电容ESR表的设计、制作、调试

电容ESR表(⼆)电容ESR表的设计、制作、调试3 设计构思及最终完成的电路⼀、⽅案选择在设计制作之前,最重要的决定是动⼿的⽅向。

⼏经考虑和权衡,笔者决定采⽤指针式ESR表的⽅案。

原因有三:⼀是指针式ESR表的测量更便捷。

指针表长于定性测量,数字表长于定量测量,这已是很多电⼦爱好者的共识。

如果不需要确切的测量数值,使⽤指针表更为⽅便。

当我们使⽤ESR表测量⼀只电容时,这只电容“正确”的ESR值往往是未知的,需要做的⼯作是,判断此值是否落在⼀个合理的区间内。

因为有刻度的辅助,指针表的指⽰更直观。

根据笔者多年既使⽤指针式万⽤表,⼜使⽤数字式万⽤表的经验,对于这样的模糊判断,指针表明显更快、更省事(前提是你需习惯指针表的使⽤)。

只要看⼀眼指针摆动的⼤致情况,即可作出判别,不⽤像使⽤数字表那样,需在脑海中进⾏数字的读⼊与⽐较。

⼆是指针式ESR表的量程更宽。

⼀个挡位就可以覆盖从0~∞的范围。

只要适当安排好⾼分辨率指⽰区域,就可以满⾜我们检测电解电容(以及部分⾮电解电容)的需要。

若做成数字表形式,⼀个挡位就只能覆盖某⼀个范围。

⽐如,采⽤万⽤表专⽤A/D芯⽚ICL7106。

因其显⽰数值最⼤为1999,若安排最⼩显⽰ 0.01Ω,其最⼤显⽰将变为19.99Ω,在某些场合下使⽤会受到限制,这样就不能⽤于辅助检测那些容量不⼤的⾮电解电容。

三是指针式ESR表的制作难度更低。

对于数字式ESR表来说,适⽤的显⽰屏难以购买得到,可⾏的⽅法是利⽤现成的数字万⽤表来改制。

但数字万⽤表体积⼩,内部空间狭窄,元件不易安排,还需对准显⽰屏原来安装的位置,给PCB的制作带来较⼤的困难。

对于指针式ESR表来说,则没有这样的限制。

因此,在国外电⼦爱好者的DIY中,数字式ESR表多是以套件形式供应的,个⼈独⽴制作⼤部分采⽤指针式⽅案。

此外,另⼀个促使笔者下决⼼选定指针表制作⽅案的重要因素是,刚好⼿头有⼀块闲置多年的MF500指针式万⽤表。

这⼀型号的指针表曾经在国内风靡,成为⼀代经典。

电容表制作 使用说明

电容表制作 使用说明

DN060-01v03今越电子制作 - 1 - Tel. 150********电容表制作使用说明 电容表特点• 1%的精度• 量程范围:1pF - 500uF• 全自动转换量程• 有校零功能• 测量结果实时串行输出,可用电脑记录• 低成本,容易制作,无需调整 工作原理该电容表是基于RC 充放电的原理测量电容量的。

如图1所示,在开关断开前,电容上的电压为0,开关断开后电容上的电压与时间的关系为:)t/1(RC −−=e E Vc当Vc 达到th V 时,有)/1(RC c th T e E V −−=从而)1ln(E V R T C th c−=由于R 和EV th 均已知,故可以根据c T 算出C 。

装配说明 该电容表的装配很简单,只要按电路上的标记将除R10之外的所有元件焊上去即可,不用做任何调整。

一般按照元件高低的顺序,先安装比较低的元件,后安装比较高的元件。

全部元件安装完成后,检查焊接完全无误即可通电投入使用。

注意:由于环境的电磁场会对仪器形成干扰,这对于测量小电容会有比较明显的影响。

解决的方法是将电路板加以屏蔽,即将其置于金属壳内,并将仪器的地与金属壳相连,这样做后测量结果会非常稳定。

使用方法测量:将被测电容直接插在J5上,或通过J3用鳄鱼夹连接,LED 即显示电容量,其中“n ”表示1000pF(毫微法)。

校零:不接任何电容,按一下“ZERO ”按键,仪器显示“C0”,进入校零状态,完成后“C0”消失,回复正常工作状态。

校零值自动保存在单片机的EEPROM 内,关机不会丢失,开机时自动恢复。

提示:在J3处可连接两个鳄鱼夹,用于测量不便于插到J5上的较大的电容器。

串行数据输出格式:J4的TXD 以ASCII 码实时输出电容表的测量结果,其输出的波特率为38.4Kbps ,格式8N1,每个数据包括测量序号、测量时间(单位是秒)和测得的电容量,数据段之间以空格隔开,每组数据单独占一行。

数字电路课程设计报告_简易数字电容测试仪+原创

数字电路课程设计报告_简易数字电容测试仪+原创

数电课程设计报告题目简易数字式电容测试仪简易数字电容C测量仪前言电子制作中需要用到各种各样的电容器,它们在电路中分别起着不同的作用。

和电阻器相似,通常简称其为电容,用字母C表示。

顾名思义,电容器就是“储存电荷的容器”。

尽管电容器品种繁多,但它们的基本结构和原理是相同的。

两片相距很近的金属中间被某物质(固体、气体或液体)所隔开,就构成了电容器。

两片金属称为的极板,中间的物质叫做介质。

电容器也分为容量固定的和容量可变的。

但常见的是固定容量的电容,最多见的是电解电容和瓷片电容。

不同的电容器储存电荷的能力也不相同。

规定把电容器外加1伏特直流电压时所储存的电荷量称为该电容器的电容量。

电容的基本单位为法拉(F)。

但实际上,法拉是一个很不常用的单位,因为电容器的容量往往比1法拉小得多,常用微法(μF)、纳法(nF)、皮法(pF)(皮法又称微微法)等,它们的关系是:1法拉(F)= 1000000微法(μF)1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。

电容器在电子线路中得到广泛的使用,它的容量大小对电路的性能有重要的影响,本课题就是用数字显示方式对电容进行测量。

本设计报告共分三章。

第一章介绍系统设计;第二章介绍主要电路及其分析;第三章为总结部分。

摘要:由于单稳态触发器的输出脉宽t W和电容C成正比,把电容C转换成宽度为t W的矩形脉冲,然后将其作为闸门信号控制计数器计标准频率脉冲的个数,并送锁存--译码--显示系统就可以得到电容量的数据。

关键词:闸门信号标准频率脉冲目录第一章系统设计 (2)一、设计目的 (2)二、设计内容要求 (2)三、设计技术指标 (2)四、方案比较 (2)五、方案论证 (3)1、总体思路 (3)2、设计方案 (3)第二章主要电路设计和说明 (4)一、芯片简介 (4)1、555定时器 (4)2、单稳态触发器74121 (4)3、4位二进制加法计数器47161 (5)4、4位集成寄存器74 LSl75芯片 (6)5、七段译码器74LS47-BCD 芯片 (7)二、总电路图及分析 (7)1、总图 (7)2、参数选择及仪表调试 (9)3、产品使用说明 (9)4、以测待测电容Cx 的电容量为例说明电路工作过程及测容原理 (9)三、各单元电路的设计和分析 (9)1、基准脉冲发生器 (9)2、启动脉冲发生器 (10)3、Cx 转化为Tw 宽度的矩形脉冲 (10)4、计数器 (10)5、寄存—译码—显示系统 (10)第三章 总结 .............................................................................................. 11 参考文献 .................................................................................................... 11 附 录 .. (11)附录1 元器件清单 ................................................................................ 11 附录2 用集成元件代分立元件电路 ........................................................... 12 评 语 (13)第一章 系统设计一、设计目的1 掌握电容数字测量仪的设计、组装和调试方法。

数字电容表

数字电容表

数字电容表数字电容表是一种用于测量电容的精密测试仪器,其采用数字显示技术,可测量的电容范围通常在pF到uF之间。

数字电容表具有测量精度高、测量速度快的优点,被广泛应用于电子元器件的生产和测试,电子工程教育培训等领域。

数字电容表的原理是基于电荷和电压之间的关系,即Q=C×V。

当电压稳定时,所充电的电容中储存的电量正比于电容的值。

通过测量这些电量或充电时间,可以计算出电容的值。

数字电容表一般采用自动操作,可以自动识别测量物体的电容值,并自动选择最佳测量方式。

数字电容表的结构不同于其他测试仪器,它主要由以下几个部分构成:1.数码显示:数码显示屏通常是LED数字管或LCD数字屏,在测量电容时,显示仪表会直接将测得的数据显示在屏幕上。

2.模拟-数字转换电路:模拟-数字转换电路一般负责将模拟电晕转换成数字信号,以便数码显示器显示。

3.微控制器:微控制器通常是数字电容表中的核心部分,用于控制仪器的工作并对探头读数进行处理。

4.精度器 / 档位选择开关:落在仪器背部的档位选择开关用于在测试前将测量范围调整到合适的值。

在测量时可以使用内部精度校准装置调整仪器的精度。

5.测量端子:测量端子是数字电容表中最基本的部分,它连接到电容,并将电容值传递到仪器。

使用步骤:1.准备工作:将电容表连接到电源,将测量端子与待测电容连接。

此时,选择适当的量程,可选用多档量程。

2.调整零点:数字电容表需要进行零点校正,将它用于置零的操作称为“开路校正”操作,具体方法是先将电容表测量端子悬空,将它上电后,按照要求的操作设置开路校正。

3.测量电容:将测量端子分别连接到待测电容的两端,读取显示数据。

将电容切换或更换电源时,应重新进行校准。

数字电容表的优点:1.数字式显示,方便读数。

2.精度高,能够精准测量电容值。

3.测量速度快,测量动作简单,不需要额外的设备辅助。

4.易于使用和操作。

总体来说,数字电容表是一种非常实用的测试仪器,它的普及和使用从根本上提高了电容测量和电子测量的精度和效率。

简易数字电容测量仪设计

简易数字电容测量仪设计

简易数字电容测量仪设计引言电容是电子电路中常见的元件之一,用于存储电荷和调节电路的频率响应。

因此,对电容进行准确测量是电子工程师和爱好者常常面临的挑战之一。

本文将介绍一种简易数字电容测量仪的设计,该仪器可以实现对电容的快速、准确测量。

一、设计原理数字电容测量仪的设计基于计时电路的原理。

当一个已知电容通过一个已知电阻充电或放电时,可以测量所需的时间来计算电容的值。

具体而言,我们需要设计一个计时电路,通过测量电容充电或放电所需的时间,然后使用公式 C = t / (R * ln(2)) 来计算电容的值。

二、硬件设计1. 电路图我们的数字电容测量仪的电路图如下所示:2. 元件选择为了简化设计,我们选择了一些常用的元件。

电阻选用1kΩ的标准电阻,电容选用10μF的陶瓷电容。

此外,我们还需要一个微控制器来处理计时和计算电容值。

3. 电路实现根据电路图,我们可以使用常见的电子元件将电路实现。

首先,将电容和电阻按照图中的连接方式进行连接。

然后,将微控制器与电路连接,以便进行计时和计算。

最后,将电路供电,即可完成硬件的设计。

三、软件设计1. 计时和计算我们需要编写一个程序来实现计时和计算电容值。

首先,我们需要初始化计时器,并设置为充电或放电模式。

然后,我们可以使用计时器来测量所需的时间,并存储在一个变量中。

最后,我们使用上述公式来计算电容的值。

2. 显示结果为了方便使用者查看测量结果,我们可以在液晶显示屏上显示电容的值。

我们需要编写一个程序来将计算得到的电容值转换为适当的格式,并将其显示在液晶屏上。

四、实验结果与讨论我们通过使用实际的电容进行测试,验证了我们设计的数字电容测量仪的准确性和可靠性。

实验结果表明,我们的测量仪可以精确地测量电容的值,并将其显示在液晶屏上。

五、总结本文介绍了一种简易数字电容测量仪的设计。

通过使用计时电路和微控制器,我们可以实现对电容的快速、准确测量。

该仪器的设计原理简单,硬件和软件设计也相对简单,适合初学者和爱好者使用。

一种简易数字式电容测试仪的设计

一种简易数字式电容测试仪的设计


。 -。
f l

图 1 数字式 电容测试仪原理框 图 3 电路设计 3 1 控制器 电路 . 控 制器 的主要功能是根 据被 测电容 c 的容量大 小形 x 成与其成正 比的控制脉 冲宽度 T . 2 示为 单稳 态控制 x图 所 电路 的原理 图 . 该电路 的工作原理如下 :
V0 . 3 o 1 1 2 N . F b 2 07 e .0 r

种 简易数 字式 电容测试 仪 的设 计
张 立 萍
( 赤峰 学院 物理与电子信息工程 系, 内蒙古 赤峰 040 ) 200

要 :本 文介 绍 了一种 数字式电容测试仪 电路 ,能够测量并显示电容的大小 .
因为时钟周 期 T .( 3 R) 是在 忽略 了 55 07 R +24 5 定 时器 6 脚的输入 电流条件 下得到 的 , 而实际上 6 有 1 脚 0 的电流 流入 . , 了减 小该 电流的影 响 , 使流 过 的电 因此 为 应 流最小值大 于 1 . 因为要求 C = 9t ,x 2, 0 又 99. T = s , v时 所

2 r Vc/3 :
/ 3 ,


I 1


]. 一 一 厂厂厂 ]]
() b
() a
图 3 时钟脉 冲发生器
振荡 波形 的周期为 :
T=t +t  ̄07 R +2 4C p p - .( 3 R )a l 2
u 达到 2 3 , c V / 时 流过 R 、 4 3R 的电流最小 , 为
至 计数器 时钟 脉 冲端
图 2 单稳态控制 电路 当被测 电容 c 接 到 电路 中之后 , x 只要 按一下 开 关 S , 电源 电压 经微 分电路 c、 l 1R 和反 向器 , 送给 55 时器 5定 的低 电平触发端 2 一个负脉 冲信号使单稳态触发器 由稳态 变为暂稳态 , 其输 出端 3 由低电平变为高 电平 . 高电平控 该

简易数字显示交流毫伏表的设计讲解

简易数字显示交流毫伏表的设计讲解

2011 - 201 2学年第1 学期《单片机课程设计》课程设计报告题目:简易数字显示交流毫伏表的设计专业:通信工程班级:姓名:指导教师:成绩:电气工程系201 1年12 月20日课程设计任务书一个交变信号的有效值的定义为:这时,VRMS为信号的有效值,T为测量时间,V(t)是信号的波形。

V(t)是一个时间的函数,但不一定是周期性的。

对等式的两边进行平方得:右边的积分项可以用一个平均来近似:这样式(2)可以简化为:VRMS2=Avg[V2(t)] (4)等式两边除以VRMS得:V RMS ={Avg[]V2(t)}}VRMS(5)这个表达式就是测量一个信号真实有效值的基础、AD公司的真有效值直流变换器也正是采用了这一原理。

2.3等精度频率计电路设计由于输入的信号是交流信号而CPLD(现场可编程逻辑器件)和施密特触发器是数字芯片,不识别负信号,要把输入交流信号变为直流信号。

用两个电阻实现电压钳位功能,钳位后的信号经7414(施密特触发器)整形为方波后直接输入CPLD 对其计数。

原理图如图-11所示。

由于CPLD可以实现高速响应,可以实现准确计数。

图-11频率计原理图2.4 电源电路设计本系统采用±5V,±12V直流供电。

用多抽头变压器产生多路交流低压,桥堆整流,电容滤波,再经LM2576T、LM7905、LM7812、LM7912稳压给系统供电。

电路总功耗<20W。

3.系统的软件设计3.1程序流程图3.1.1电压频率测量系统程序流程图图-20 频率计测控时序4. 系统测试4.1 测试仪器数字式双踪示波器TDS2012,信号发生器TFG2040,交流毫伏表等HG2070 4.2 指标测试4.2.1真有效值测试这里列出了在1.000V下的频率响应和在1kHz下的幅值响应,以供参考。

详频率响应测试:序号频率输入电压测试结果误差1 10Hz 1.000V 0.996 0.4%2 100Hz 1.000V 0.998V 0.2%3 1kHz 1.000V 1.001V 0.1%4 10kHz 1.000V 1.001V 0.1%5 100kHz 1.000V 1.007V 0.2%6 1MHz 1.000V 0.997V -0.3%7 2MHz 1.000V 0.996V -0.4%幅值响应测试:8、评语表。

简易电容测试电路(经典)

简易电容测试电路(经典)

VCC 5V VCC
R2 50% 1K _LIN Key = A 39 R12 470 40 R8 R9 100k 1.0M 30
R1 10k
31 A1 J2
VCC RST DIS OUT
U1A 42 74LS00D 36 R3 41 1k J1 Key = B 0 32 U2B
寡人猪八戒 制作
简易电容测试电路
要求:能够测0.01微法—99微法范围内的电容值, 且可以换档操作。用两个数码管作为显示原件。测 试时,测试电容接至测试端自动显示出被测电容值, 且响应时间不超过2秒。
方案论证
电容、电阻和施密特触发器构成一个多谐振荡器。 在电源刚接通时,电容C上的电压为0,多谐振荡器 输出Vo为高电平,Vo通过R对电容C充电。当C上充 得的电压Vc=Vt+时,施密特触发器翻转,Vo变成低 电平,Vc又通过R放电,Vc下降,当Vc=Vt-时施密 特触发器又翻转,输出Vo又变成高电平。如此往复 振荡产生一系列时间脉宽送入单片进行中央处理, 最后送出显示信号通过LED显示。 本系统设计主要采用555集成定时器构成多谐振荡 器、单稳态触发器等电路把被测电容的电容量转换 成电压量,再把电压量通过译码器把电压量转换成 数字量并显示,从而实现电容测量。
总结
通过这周对电容测量仪的设计,使我们了解很多芯 片的功能及应用,更重要的是我们对芯片理解加深, 丰富的了这方面的知识,课程设计是在模拟电路和 数字电路理论基础上进行的一次综合性系统设计, 通过设计和实践,培养了我们的综合运用知识、实 践操作及解决实际问题的能力,使我们牢固掌握课 程中学到的电子线路的工作原理、分析方法和设计 方法,学会电路的一般设计方法和设计流程,并应 用这些方法进行一个实际的电子线路的系统设计。 因种种原因调试不出正确结果,在不断的调整和修 改后,终于有了正确的结果,在失败中也学到很多, 这对我们以后学习中将会有很大的帮助,也会激励 我们在困难面前勇敢向前。

简易电阻、电容和电感测试仪设计原理

简易电阻、电容和电感测试仪设计原理

简易电阻、电容和电感测试仪设计原理简易电阻、电容和电感测试仪一、任务设计并制作一台数字显示的电阻、电容和电感参数测试仪,示意框图如下:二、要求1.基本要求.基本要求(1)测量范围:电阻100Ω~1M Ω;电容100pF 100pF~~10000pF 10000pF;电感;电感100μH ~10mH 10mH。

(2)测量精度:±5% 。

)测量精度:±5% 。

(3)制作4位数码管显示器,显示测量数值,并用发光二极管分别指示所测元件的类型和单位。

三、设计步骤三、设计步骤1、分模块测量电路的设计原理(1)电阻测量电路的基本原理电阻测量仪的关键技术是电阻测量仪的关键技术是R X /V 转换器,转换器,R R X 即所需测量的电阻,无论电路多么复杂,总可以把与R X 相并联的元件等效为两只互相串联的电阻R 1和R 2。

由此构成三角形电阻网络,其原理图如下所示:上图中R 0为量程电阻,只要使R 1两端呈等电位,此时U R1=0=0,则,则R 1相当于开路,路,R R 2变成运放的负载电阻,变成运放的负载电阻,R R 1和R 2就不起分流作用,这样即可直接测就不起分流作用,这样即可直接测 R R X 的阻值。

的阻值。

E E 为测试电压,为测试电压,I I S 为测试电流,设流过R X 和R 1的电流分别为I X 和I 1,根据基尔霍夫定律可知:,根据基尔霍夫定律可知:I S =I X + I 1又根据“虚地”原理,则又根据“虚地”原理,则U R1= I 1 R 1=0故I 1=0=0,可忽略不计。

由此得到:,可忽略不计。

由此得到:,可忽略不计。

由此得到:I S =I X再考虑到C 点接地,则D 点为“虚地”,因此:点为“虚地”,因此:I S=E/ R0进而推导出:进而推导出: U X= I X R X= I S R X= (E/ R0)·R X显然,只要能得到RX 两端的电压UX,就能求出RX的值,即:的值,即: R X= U X/(E/ R0)= U X R0/ E这就是电阻测量的基本原理。

简易数字微电容表的设计

简易数字微电容表的设计

2 软件系统设计
程序 由主程序 、 定 时中断服务子程序等模块组成 。 定 时器 , m 作被 测 电容器充电时间的计数用 。 定 时器 T 1 用 于定时 中断服务 。 定 时时间 为5 m s ,即 5 m s 产生一次 中断 数组 磷t T a b[ 4 ] 用 来存储位驱 动码 ,
【 摘 要】 本文利 用 A T 8 9 C 2 0 5 1 单片机设计 一款可 用于测量 2 u F以 内微 电容的数 字 电容表 , 系统 采用 3 位 半数 字显 示 , 最大显 示值 为
1 9 9 9 , 读数单位 统一采 用 n f , 量程分四档 , 读数 分别乘 以相应的倍率。
图 3 整 体 电 路
图 1 电容 测 量原 理 图
电路 由单片机 电路、电容充电测量 电路和数码显示电路等部分组 成。A T 8 9 C 2 0 5 1 内部 的电压比较器和电阻 R 2 一 R 7 等组成测量 电路 . 其 中R 2 一 R 5 为量程 电阻 . 由波段开关 s 1 选择使用 . 电压 比较器 的基准 电
【 关键i  ̄ ] A T 8 9 C 2 0 5 1 ; 微 电容 ; 数 字电容表 0 引 言
P 1 . 0 为 同相输入端 , P 1 . 1 为反相输入端 .电压 比较器 的比较结果存人 P 3 . 6口对应的寄存器 . P 3 . 6口在 A T 8 9 C 2 0 5 1 外部无引脚。 电压 比较器 的基准电压设定为 0 , 6 3 2 E + . 在C X两端电压从 O升到 0 . 6 3 2 E +的过程 中. P 3 . 6口输 出为 0 .当电池 电压 C X两端 电压一 旦超 过 0 . 6 3 2 E + 时, P 3 . 6口 输 出变为 1 以 P 3 . 6口的输 出电平为依据 . 用A T 8 9 C 2 0 5 1 内部 的定时器 T 0 对充电时间进行计数 .再将计数结果显示 出来 即得 出测 量结果 。

简易数字式电阻电容和电感测量仪设计方案

简易数字式电阻电容和电感测量仪设计方案

简易数字式电阻电容和电感测量仪设计方案设计一个简易的数字式电阻、电容和电感测量仪可以分为以下几个步骤:1.设计测量电路:首先,需要设计一个测量电路,电路可以使用基本的电压和电流测量技术。

电阻测量可以使用恒流法或恒压法,电容测量可以使用充放电法或交流法,电感测量可以使用交流法。

根据选择的测量方法设计合适的电路。

2.选取合适的传感器:为了实现数字化测量,需要选择合适的传感器。

电阻可以使用电阻表,电容可以使用电容计,电感可以使用电感表。

根据需要选择合适的传感器并进行调试和校准。

3.连接传感器与微控制器:将选取的传感器与微控制器进行连接,确保传感器的输出信号可以被微控制器读取。

可以使用模拟输入通道或数字接口来连接传感器和微控制器。

4.编写微控制器程序:根据测量电路和传感器的特性,编写微控制器的程序,实现测量功能。

程序中需要包括对传感器信号的处理、测量结果的计算和存储等功能。

5.设计用户界面:为了方便使用,可以设计一个简单的用户界面。

可以使用液晶显示屏、按键或触摸屏等组件来实现用户界面。

用户界面可以用来选择测量类型、显示测量结果等。

6.调试和测试:将硬件和软件部分进行集成,并进行调试和测试。

确保测量准确性和可靠性,对测量仪进行必要的校准和调整。

总结:设计一个简易的数字式电阻、电容和电感测量仪需要选择合适的测量电路和传感器,采集传感器信号并经过微控制器处理、计算和显示。

同时需要设计合适的用户界面,实现用户操作和结果显示。

最后进行调试和测试,确保测量仪的准确性和可靠性。

开题报告数字电容表设计

开题报告数字电容表设计
西安交通大学XXX学院
本科毕业设计(论文)开题报告
题 目数字电容表设计
所在系电气与信息工程系
学生姓名XXXX
专业测控技术与仪器
班级XX班学号XXXXXX
指导教师XXXX
教学服务中心制表
2013年03月
本科毕业设计(论文)开题报告
对题目的陈述
电容表又称电容值测试仪,是一种利用充电放电、整流、振荡等作用测试电容容量的数字式电子仪器设备。电容表可包括电容测试仪、数字电感电容表、手持式电容表、便携式数字电容表、单片机数字电容表、简易数字电容表等。
单片机应用的特点:
控制功能和可靠性高
单片机是为了满足工业控制而设计的,所以实时控制功能特别强,其CPU可以对I/O接口直接进行操作,位操作能力更是其它计算机无法比拟的,另外,由于CPU,存储器,以及I/O接口集成在同一芯片内,各部件之间的连接紧凑,数据在传送时受到干扰小,且不易受环境条件的影响,所以单片机的可靠性非常高。
单片机的介绍:
单片微型计算机简称单片机,是典型的嵌入式(Microcontroller Unit),常用英文字母的缩写MCU表示单片机,单片机又称,它不是完成某一个逻辑功能的芯片,而是把一个到一个芯片上。相当于一个微型的计算机,和计算机相比,单片机只缺少了I/O设备。概括的讲:一块芯片就成了一台计算机。它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。同时,学习使用单片机是了解计算机原理与结构的最佳选择。它最早是被用在工业控制领域。
51系列单片机:
51单片机是对目前所有兼容Intel 8031指令系统的单片机的统称。该系列单片机的始祖是Intel的8031单片机,后来随着Flash rom技术的发展,8031单片机取得了长足的进展,成为目前应用最广泛的8位单片机之一,其代表型号是的AT89系列,它广泛应用于工业测控系统之中。目前很多公司都有51系列的兼容机型推出,在目前乃至今后很长的一段时间内将占有大量市场。51单片机是基础入门的一个单片机,还是应用最广泛的一种。需要注意的是52系列的单片机一般不具备自编程能力。当前常用的51系列单片机主要产品有:*Intel的:80C31、80C51、87C51,80C32、80C52、87C52等;*ATMEL的:89C51、89C52、89C2051等;*Philips、华邦、Dallas、Siemens(Infineon)等公司的许多产品。目前,国产宏晶STC单片机以其低功耗、廉价、稳定性能,占据着国内51单片机较大市场。

三位数字电容表课程设计

三位数字电容表课程设计

课程设计说明书设计题目:三位数字电容表系别:应用电子与通信技术系班级:学生姓名:指导教师:成绩:2010年3月23日课程设计任务书2010年3月23日目录第1章绪论 (1)1.1设计要求 (1)1.2 设计功能 (1)第2章电路的方框图 (2)2.1 电路的方框图 (2)第3章单元电路设计和参数计算 (3)3.1 单元电路设计 (3)3.1.1双时基电路 (3)3.1.2控制电路 (5)3.1.3计数电路 (5)3.1.4 译码电路 (7)3.1.5显示电路 (8)3.1.6 8550型号三极管 (9)3.1.7电容的作用 (9)3.2 参数计算 (11)第4章整机电路的工作原理 (13)4.1 三位数字电容表原理图 (13)4.2 电路工作原理 (13)第5章电路的组装与调试 (15)5.1合理布局 (15)5.2调试 (15)结论 (16)收获与体会 (17)致谢 (18)参考文献 (19)附录1 元器件清单 (20)第1章绪论课程设计是运用自己所学的数字电子技术、模拟电子技术知识,根据老师所给课程设计题目,自行分组(每组3-4人)来设计、搭接、调试电路,使其实现所给题目要求的功能、量化指标等参数,三周内上交电路,老师通过对电路的完成情况、出勤情况、说明书制作情况以及课程设计答辩情况对每位同学进行评分。

1.1设计要求1.被测电容范围:1PF-10000uF;2.测试误差<10%;3.电容值用三位数码管显示。

1.2 设计功能设计一个电路简洁、精度高及测量范围宽的电容表,将待测电容的电容值显示到数码管可显示三位数。

实际上就是,待测电容容量时间转换器将待测电容的容量转换成与其成正比的单稳态时间。

闸门控制器的开通时间及为单稳时间。

当闸门控制器开通,由基准脉冲发生器产生的标准计数脉冲被输入到计数器计数,然后再通过译码器对其译码,使BCD码转换成十进制数字笔段码,最后在共阴极数码管上直接显示测量结果。

数字电容表的课程设计

数字电容表的课程设计

数字电容表的课程设计一、课程目标知识目标:1. 学生能理解数字电容表的基本原理和功能,掌握其操作方法和使用注意事项。

2. 学生能够运用数字电容表测量不同电容器的电容值,并能够正确读取数据。

3. 学生了解电容的基本单位及其换算关系,能够进行简单的电容单位换算。

技能目标:1. 学生能够熟练使用数字电容表进行电容测量,掌握实验操作技巧。

2. 学生能够分析测量数据,处理实验结果,解决实际问题。

3. 学生能够运用所学知识,进行简单的电路设计和分析。

情感态度价值观目标:1. 学生培养对物理实验的兴趣,增强科学探究精神。

2. 学生培养团队协作意识,提高实验操作的积极性和主动性。

3. 学生认识到物理知识与实际生活的紧密联系,提高学以致用的意识。

课程性质:本课程为高二年级物理实验课程,旨在通过实践操作,帮助学生掌握电容测量方法,提高实验操作技能。

学生特点:高二年级学生对物理实验有一定的基础,具备基本的实验操作能力,但部分学生对实验原理的理解和实验数据分析处理能力较弱。

教学要求:结合学生特点,注重理论与实践相结合,强化实验操作训练,培养学生实验数据分析处理能力,提高学生的科学素养。

在教学过程中,将课程目标分解为具体的学习成果,以便进行有效的教学设计和评估。

二、教学内容本课程教学内容主要包括以下三个方面:1. 数字电容表原理与操作- 介绍数字电容表的工作原理、结构组成及其功能。

- 学习数字电容表的操作方法、使用注意事项及维护保养。

教学内容关联教材章节:第二章第四节《电容测量》2. 电容测量实验- 实践操作:使用数字电容表测量不同电容器的电容值。

- 数据处理:学习如何读取、记录和处理实验数据。

教学内容关联教材章节:第二章第四节《电容测量》实验部分3. 电容单位换算与电路分析- 学习电容的基本单位及其换算关系,进行简单的电容单位换算。

- 应用电容知识,进行简单的电路设计和分析。

教学内容关联教材章节:第二章第五节《电容的应用》教学进度安排:第一课时:数字电容表原理与操作第二课时:电容测量实验第三课时:电容单位换算与电路分析三、教学方法针对本课程的教学内容和学生特点,采用以下多样化的教学方法,以激发学生的学习兴趣和主动性:1. 讲授法:用于讲解数字电容表的工作原理、操作方法及注意事项。

数字电容表的相关功能介绍

数字电容表的相关功能介绍

数字电容表的相关功能介绍什么是数字电容表数字电容表是一种测试电容的仪器。

它可以测量电容的电量,并将其显示为数字。

这种电容表使用数字技术,可以对电容进行准确的计量和测量。

数字电容表适用于任何需要快速、精确地测量电容的场合,例如电子产品设计、无线电调试和通信设备确认。

数字电容表的优点相对于传统的模拟电容表来说,数字电容表有如下优势:显示准确性高数字电容表可以显示电容的精确值,精度可以达到0.001pF。

而模拟电容表只能粗略地显示电容的范围,需要进行手工估算。

稳定性好数字电容表使用数字技术,其测量结果稳定可靠,与传统模拟电容表相比,不会受到温度、湿度等环境因素的影响。

易于读取和理解数字电容表的结果以数字的形式呈现,易于读取和理解。

另外,数字电容表还可以根据不同场合需要进行显示,如显示保持、数据峰值、相对测量等。

数字电容表的功能介绍电容测试数字电容表是用来测试电容的,它可以直接读取电容器内部的电容值,同时也可以测试电容器的两极之间的电容值。

数字电容表可以测试的电容值范围广,一般可以达到100pF到100MF,甚至更高。

相对测量数字电容表可以进行相对测量,将电容值设置为参考值,并比较其他电容的值,得到这些电容与参考电容之间的差异。

这种功能非常适合微电子学、无线电、电子通信等领域的工程师在产品设计和维护过程中使用。

应用多样化数字电容表还有许多其他的应用,可以根据不同场合和需求来设置。

例如,数字电容表可以用来测试数字信号峰峰值、输出功率、缓冲区电容、电路稳定性等等。

与其他仪器的对比相对于其他电容测试仪器,数字电容表具有以下优点:测量精确相对于LCR探针和模拟电容表来说,数字电容表的测量精确性更好。

LCR探针和模拟电容表对于测量的误差较大,尤其是在小电容值的情况下易产生明显的测量误差。

功能多样化相对于单一功能的电容表,数字电容表具有更多样化的功能。

例如,数字电容表可以同时测量电容的ESR(等效串联电阻),而电容表则无法进行此类操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铁道大学四方学院毕业设计简易数字电容表的设计The Design of Simple Digital CapacitorPublished2013届电气工程系专业电气工程及其自动化学号学生指导老师完成日期 2013年5月27日毕业设计成绩单毕业设计任务书毕业设计开题报告摘要随着电子工业的发展,电子元器件急剧增加,电子元器件的适用围也逐渐广泛起来,正在不断地走向深入,同时带动传统控制检测日新月益更新。

在应用中我们常常要测定电容的大小,本文设计了一种测定电容的数字电容表。

本课题选用STC12C5204AD单片机作为一个核心部件来设计数字电容表,该设计的系统是由:单片机、555芯片电路、显示电路等部分组成。

采用Keil C语言进行编程,通过由555芯片和电容、电阻组成的振荡电路来输出方波,通过单片机软件计数,从而达到测量其频率,对数据进行进一步的计算从而得出被测电容的值,通过LCD1602显示出其测量值。

本次设计的数字电容表通过实际证明,该系统具有硬件设计简单,软件可调整性大,系统稳定可靠等优点,并且在体积方面比较小,方便携带,在生活生产中可以得到更普遍的应用。

关键字:单片机 LCD1602 数字电容表 555芯片AbstractWhile the traditional control test drive the crescent benefit update. With the development of electronic industry, electronic components increases rapidly, the scope of electronic components widely up gradually, in applications we often measured capacitance.The project uses STC12C5204AD MCU to design the digital capacitance meter, the design of the system is composed of MCU, 555: chip circuit, display circuit. Using Keil C programming language, through an oscillation circuit composed of 555 chip and capacitance, resistance to output square wave, measuring the pulse width of the microcontroller timer T0, so as to achieve the measurement of its cycle, and then through the single-chip microcomputer software counting, make further calculation of the data so that the measured capacitance value,the LCD1602 displays the measured value.The design of the digital capacitance meter through practice, this system has simple hardware design, the software can be adjusted, the advantages of the system is stable and reliable, and the volume is small, easy to carry, can be more generally applied in life and production.Key words:Single-chip LCD1602 Digital capacitance meter 555 chips目录第1章绪论 (1)1.1课题研究的目的及意义 (1)1.2国外研究现状 (1)1.3主要研究容 (2)第2章设计方案 (3)2.1设计要求 (3)2.2设计方案选择 (3)第3章硬件设计 (5)3.1硬件设计的任务 (5)3.2电容测量系统硬件设计 (5)3.2.1 STC12C5204AD单片机的使用 (5)3.2.2 电容测量系统555芯片电路 (8)3.2.3 电容测量系统显示电路 (10)第4章基于单片机电容测量软件设计 (13)4.1软件设计 (13)4.2软件设计任务 (13)4.3软件设计的工具 (13)4.4程序设计算法设计 (14)4.5软件设计流程 (15)4.5.1 主程序流程图 (15)4.5.2 中断子程序流程图 (16)4.5.3 显示子程序 (16)4.6编写程序 (17)4.7结果分析 (18)第5章结论 (19)参考文献 (20)致谢 (21)附录 (22)附录A外文资料 (22)附录B总原理图及仿真图 (35)附录C程序清单 (37)第1章绪论1.1 课题研究的目的及意义当今电子测试领域,电容的测量已经在测量技术和产品研发中应用的十分广泛。

电容通常以传感器形式出现,因此,电容测量技术的发展归根结底就是电容传感器的发展。

由最初的用交流不平衡电桥就能测量基本的电容传感器。

最初的电容传感器有变面积型,变介质介电常数型和变极板间型。

现在的电容式传感器越做越先进,现在用的比较多的有容栅式电容传感器,陶瓷电容压力传感器等。

电容测量技术发展也很快现在的电容测量技术也由单一化发展为多元化。

随着测量技术的飞速发展以及人们对电容参数的测量精度要求的提高,目前教学实验中普遍采用的数字式万用表已不能满足测量要求,因此设计可靠,安全,便捷,测量精度更高的电容具有广泛的使用价值和应用前景。

1.2 国外研究现状现在国外做传感器的厂商也比较多,在世界围做电容传感器做的比较好的公司有:日本figaro、德国tecsis、美国alphasense。

中国本土测量仪器设备发展的主要瓶颈。

尽管本土测试测量产业得到了快速发展,但客观地说中国开发测试测量仪器还普遍比较落后。

每当提起中国测试仪器落后的原因,就会有许多不同的说法,诸如精度不高,外观不好,可靠性差等。

实际上,这些都还是表面现象,真正影响中国测量仪器发展的瓶颈为:(1)由于测试在整个产品流程中的地位偏低,人们的传统观念的影响,在产品的制造流程中,研发始终处于核心位置,而测试则处于从属和辅助位置。

关于这一点,在几乎所有的研究机构部门配置上即窥其一斑。

这种原因,造成整个社会对测试的重视度不够,造成测试仪器方面人才的严重匮乏,这是中国测量仪器发展的一个主要瓶颈。

实际上,即便是研发队伍本身,对测试的重视度以及对仪器本身的研究也明显不够。

(2)面向应用和现代市场营销模式还没有真正建立起来。

本土仪器设备厂商只是重研发,重视生产,重视狭义的市场,还没有建立起一套完整的现代营销体系和面向应用的研发模式。

传统的营销模式在计划经济年代里发挥过很大作用,但无法满足目前整体解方案流行年代的需求。

所以,为了快速缩小与国外先进公司之间的差距,国仪器研发企业应加速实现从面向仿制的研发向面向应用的研发的过渡。

特别是随着国应用需求的快速增长,为这一过渡提供了根本动力,应该利用这些动力,跟踪应用技术的快速发展。

近年来我国测量仪器的可靠性和稳定性问题得到了很多方面的重视,状况有了很大改观。

测试仪器行业目前已经越过低谷阶段,重新回到了快速发展的轨道,尤其最近几年,中国本土仪器取得了长足的进步,特别是通用电子测量设备研发方面,与国外先进产品的差距正在快速缩小,对国外电子仪器巨头的垄断造成了一定的冲击。

随着模块化和虚拟技术的发展,为中国的测试测量仪器行业带来了新的契机,加上各级政府日益重视,以及中国自主应用标准研究的快速进展,都在为该产业提供前所未有的动力和机遇。

从中国电子信息产业统计年鉴中可以看出,中国的测试测量仪器每年都以超过30%以上的速度在快速增长。

在此快速增长的过程中,无疑催生出了许多测试行业新创企业,也催生出了一批批可靠性和稳定性较高的产品。

1.3 主要研究容目前常用的两种测量电容的实现方法:一是利用多谐震荡产生脉冲宽度与电容值成正比信号,通过低通滤波后测量输出电压实现;二是利用单稳态触发装置产生与电容值成正比门脉冲来控制通过计数器的标准计数脉冲的通断,即直接根据充放电时间判断电容值。

利用多谐震荡原理测量电容的方案硬件设计比较简单,但是软件实现相对比较复杂,而直接根据充放电时间判断电容值的方案虽然基本上没有用到软件部分,但是硬件却又十分的复杂。

而且他们都无法直观的把测量的电容值大小显示出来。

根据上面两种方案的优缺点,本次设计提出了硬件设计和软件设计都相对比较简单的方案:基于STC12C5204AD单片机和555芯片的数显式电容测量。

该方案主要是根据555芯片[2]的应用特点,把电容的大小转变成555输出频率的大小,进而可以通过单片机对555输出的频率进行测量。

本方案的硬件设计和软件设计都相对简单。

第2章 设计方案2.1 设计要求设计一个可以直接测量电容的仪表,通过字符液晶LCD1602A 显示测量对象的电感值。

要求利用单片机、检测电路、液晶显示屏等设计并制作电容表。

单片机建议选用STC12C520XAD 系列SKDIP28封装。

字符液晶选用LCD1602A 。

主要技术指标:测量围:100PF —100NF ;精度要求:误差不大于20%;显示要求:保留1位小数点,单位用N ;供电:9V 万用表干电池或用DC9-12V 电源代替。

2.2 设计方案选择本次设计中考虑了三种设计方案,三种设计方案中主要区别在于硬件电路和软件设计的不同,对于本设计三种方案均能够实现,最后根据设计要求、可行性和设计成本的考虑选择了基于STC12C5204AD 单片机和555芯片构成的多谐振荡电路的测量的方案。

现在一一介绍论证如下:方案一、利用多谐振荡原理测量电容测量原理电容C 电阻R 和555芯片构成一个多谐振荡电路[3]。

在电源刚接通时,电容C 上的电压为零,多谐振荡器输出0V 为高电平 0V 通过R 对电容C 充电。

当C 上冲得的电压C V = +T V 时,施密特触发器翻转,0V 变为低电平,C 又通过R 放电,C V 下降。

当C V = T V 时施密特触发器又翻转,输出C V 又变为高电平,如此往复产生震荡波形。

由测得的校准值0T 测量值X T 及存放的软件中的标准电容值C 可得出待测电容值这种方法的利用了一个参考的电容实现,虽然硬件结构简单,软件实现却相对比较复杂。

相关文档
最新文档