二次三项式的因式分解(用公式法)
二次三项式的因式分解(用公式法)及一元二次方程的应用 人教版
二次三项式的因式分解(用公式法)及一元二次方程的应用一. 本周教学内容:二次三项式的因式分解(用公式法)及一元二次方程的应用[学习目标]1. 熟练掌握二次三项式的意义;了解二次三项式的因式分解与解一元二次方程的关系;运用一元二次方程的求根公式在实数范围内将二次三项式分解因式。
2. 学会用列一元二次方程的方法解实际应用题。
3. 通过二次三项式的因式分解的学习,提高分析问题,解决问题的能力;进一步了解认识问题和解决问题的一般规律,即由一般到特殊,再由特殊到一般。
4. 通过一元二次方程的应用的学习,提高化实际问题为数学问题的能力和分析问题,解决问题的能力,培养用数学的意识;深刻体会转化,方程,数形结合等初等数学的思想方法。
二. 重点、难点:1. 教学重点:①应用公式法将二次三项式因式分解;会用列一元二次方程的方法解决实际应用的问题。
②在列一元二次方程的方法解应用题时,分析题意找出表示全部含义的相等关系,是能否列出方程的前提和保证。
2. 教学难点:①一元二次方程的根与二次三项式因式分解的关系;一个二次三项式在实数范围内因式分解的条件。
②在列一元二次方程的方法解应用题时,分析题意找等量关系是难点;注意求解后,检验根是否符合实际意义。
【典型例题】例1. 分解因式①x x 264-+②32312x x -+ ③24322x xy y +-④-+-x x 2525 ⑤()x x 221+- 分析:前四个均为二次三项式ax bx c a 20++()≠或二元二次三项式Ax Bxy Cy 22++的因式分解,直接用公式进行分解。
ax bx c a x x x x 212++=--()()其中x x 12,为方程ax bx c a 200++=()≠的两根。
Ax Bxy Cy A x x x x 2212++=--()(),其中x x 12,为关于x 的方程Ax Bxy Cy A 2200++=()≠的两根。
第五个用平方差公式,再用公式法分解二次三项式。
初三数学教案-初三数学二次三项式的因式分解
初三数学二次三项式的因式分解教学优化设计【概念与规律】1.若方程ax2+bx+c=0(aM0)的两实根为xl,x2,则二次三项式ax2+bx+c在实数范围内可因式分解成ax2+bx+c=a(x—x1)(x—x2).2.用公式法分解二次三项式时要注意:(1)右边不能遗漏二次项系数a.(2)若xl,x2的分母的积恰好是a的约数时,则将a分解成两个适当的数的积,分别乘入两个括号中,约去分母;若xl,x2的分母的积不是a的约数时,则a仍保留在括号外.(3)当4V0时,则二次三项式在实数范围内不能分解因式.【讲解设计】•重点与难点例1在实数范围内分解因式:分析直接运用公式可进行因式分解.例2在实数范围内分解因式:(1)2x2-8xy+5y2;(2)3x2y2-5xy-1.分析(1)将它看成关于x的二次三项式,运用公式法分解因式;(2)将它看成关于(xy)的二次三项式,运用公式法分解因式.例3在实数范围内分解因式:(1)4x2+8xy-y2;(2)x4-2x2-3.分析(1)将它看成关于x的二次三项式运用公式法分解因式;(2)先用十字相乘法,再在实数范围内运用平方差公式进行因式分解.例4在实数范围内分解因式:(2)(x2+1)(x2+2)-73.分析(1)将它看成关于x的二次三项式,但要注意根式运算的准确性;(2)展开后转化为双二次型的因式分解.(2)(x2+1)(x2+2)-73=x4+3x2-70=(x2+10)(x2-7)=(x2+【讲解设计】•思路与方法例5若2x2—3x+m+1可以在实数范围内分解因式,求m的取值范围.提示二次三项式在实数范围内能分解因式的条件是对应的二次方程根的判别式△三0.例6分别在有理数范围内和实数范围内分解因式:(x2—5x+4)(x2+9x+18)+180.提示原式=(x—1)(x—4)(x+3)(x+6)+180=(x2+2x—3)(x2+2x—24)+180,转化为(x2+2x)的二次三项式.但要注意两种不同的分解范围.【练习设计】•识记与理解1.填空题:(1)若x1,x2是ax2+bx+c=0(aM0)的两个根,则二次三项式ax2+bx+c分解因式的结果为.(2)分解因式x2—2xy—3y2=.(3)在实数范围内分解因式x2—x—1=.(4)若2x2—3x+m—1是一个完全平方式,则m=;若它能在实数范围内分解因式,则m的取值范围是.2.选择题:(1)在实数范围内分解x4—16为[]A.(x2+4)(x2-4)B.(x2+4)(x+2)(x—2)(2)二次三项式2x2—5x+1在实数范围内分解因式,其结果为[]3.在有理数范围内分解因式:(1)x+2—x2;(2)—12z2—xyz+x2y2;(3)(x2+xy+y2)(x2+xy+2y2)—12y4;(4)(x2+x)2—2(7x2—12+7x).4.在实数范围内分解因式:(1)4x—4x2+1;(3)(x+1)(x+3)(x+5)(x+7)+15;(4)(x2—7x+6)(x2—x—6)+56.【练习设计】•巩固与掌握在实数范围内因式分解的结果是什么?6.设x2—2kx+k=0有相等的两正根,试将二次三项式x2—(k+3)x+k在实数范围内分解因式.7.将x4—4在实数范围内分解因式,其结果共有几个含有x的代数式的因式(因式1除外)?这几个因式中,对任何实数x,哪个的值最小?8.若二次三项式x2+mx+n(nM0)可因式分解成(x—m)(x—n),求m与n的值.9.已知:a,b分别是等腰三角形的一腰和底边的长.求证:关于x的二次三项式x2—4ax+b2一定能在实数范围内分解因式.10.在实数范围内分解因式:x2—px+q=(x—2)(x—3),请写11.若多项式xmyn+x2y2+xy—1是一个五次四项式(m,n都是大于1的正整数),试将二次三项式x2+(m+n)x+(—mn)分解因式.12.求证:对任何有理数a,x2+2ax+a2—2在有理数范围内总不能因式分解,而在实数范围内总能因式分解.13.已知a2+b2—2a—2b+2=0,m,n是方程y2—3y+2=0的两个根(m>n),试将xa+b+mx+n 在实数范围内分解因式.【练习设计】•拓展与迁移14.已知在RtAABC中,ZC=90°,ZB=60°,a、b、c分别是ZA、ZB、ZC的对边.试判断二次三项式ax2+bx+c能否在实数范围内分解因式,如果能,请写出分解的结果;如果不能,请说明理由.15.设m为正整数,x2—4x+m能在有理数范围内分解因式,(1)求出m的值;(2)对于所有可能的m值,写出这些多项式;(3)将写出的所有多项式相加,试问:相加后得到的多项式还能在有理数范围内分解吗?答案2.(1)B(2)D3.(1)—(x—2)(x+1)(2)(xy+3z)(xy—4z)(3)(x2+xy+5y2)(x—y)(x+2y)(4)(x-1)(x+2)(x-3)(x+4)6.提示:先求k值,kl=l,k2=0(舍去),再分解,x2—(k+8.m=l,n=—29.△=4(2a+b)(2a—b),而2a+b,2a—b均大于011.(x+6)(x—1)12.(1)A=8不是完全平方数(2)A=8>013.a=b=1,m=2,n=1,xa+b+mx+n=(x+1)215.(1)m=3,m=4(2)x2—4x+3,x2—4x+4(3)2x2—8x+7,不能。
17.4二次三项式的因式分解--求根公式法
5
5
当m为何值时,二次三项式2x2 + 6x – m (默8)
(1)在实数范围内能分解;(2)不能分解; (3)能分解成两个相同的因式
B组
(1)在实数范围内分解因式 3x2 4xy y2为
( 3 x 2 7 y)( x 2 7 y)
3
3
破题思路
由△= [(2k 1)]2 41 (k 2 5) 4k 19 0
该方程的实数根是
x1
3 4
17
3 17 x2 4
=
2 (x 3
4
17 )(x 3 4
17 )
例题1 分解因式:
(2)
小试牛刀
(1)解: 对于方程 4x2 8x 1 0 b2 4ac 82 4 41 80 0
该方程的实数根是
x1
2. 选择题
k 19 4
K的值为 ( B )
A、 19 4
B、19
C、2
4
D、 2
小结
1. 对于不易用以前学过的方法:x2 (a b)x ab (x a)( x b)
分解二次三项式 ax2 bx c 宜用一元二次方程的
(2)第二步:求出方程①的两个根x1, x2;
(3)因式分解 ax2 bx c a(x x1)( x x2 )
课堂练习
A组
1. 填空题
(1)若方程ax2 bx c 0的两根为 x1, x2,则ax2 bx c分解为
a(x x1)( x x2 )
(2)分解因式: x2 20x 96 = (x 8)(x 12)
2
二次三项式的因式分解(用公式法)教学案(二)
二次三项式的因式分解(用公式法)教学案(二)一、素质教育目标(一)知识教学点:熟练地运用公式法在实数范围内将二次三项式因式分解.(二)能力训练点:通过本节课的教学,提高学生研究问题、解决问题的能力.(三)德育渗透点:进一步对学生进行辩证唯物主义思想教育.二、教学重点、难点1.教学重点:用公式法将二次三项式因式分解.2.教学难点:一元二次方程的根和二次三项因式分解的关系.三、教学步骤(一)明确目标对于含有一个字母在实数范围内可分解的二次三项式,学生利用十字相乘法或用公式法可以解决.对于含有两个字母的二次三项式如何用公式法进行因式分解是我们本节课研究的目标.(二)整体感知本节课是上节课的继续和深化,上节课主要练习了利用公式法将含有一个字母的二次三项式因式分解,这节课研究含有两个字母的二次三项式的因式分解,实际上可设二次三项式为零,把一个字母看成是未知数,其它看成已知数,求出方程的两个根,然后利用公式法将问题解决.本节课较上节课有一定的难度.通过本节课,进一步提高学生分析问题、解决问题的能力.上节课是本节课的基础,本节课是上节课的加深和巩固.(三)重点、难点的学习和目标完成的过程1.复习提问:(1)如果x1,x2是方程ax2+bx+c=0的两个根,则ax2+bx+c如何因式分解?(2)将下列各式因式分解?①4x2+8x-1;②6x2-9x-21.2.例1 把2x2-8xy+5y2分解因式.解:∵关于x的方程2x2-8xy+5y2=0的根是教师引导、板书,学生回答.注意以下两个问题:(1)把x看成未知数,其它看成已知数.(2)结果不能漏掉字母y.练习:在实数范围内分解下列各式.(1)6x2-11xy-7y;(2)3x2+4xy-y2.学生板书、笔答,评价.注意(1)可有两种方法,学生体会应选用较简单的方法.例2 把(m2-m)x2-(2m2-1)x+m(m+1)分解因式.分析:此题有两种方法,方法(一)∵关于x的方程(m2-m)x2-(2m2-1)x+m(m+1)=0∴(m2-m)x2-(2m2-1)x+m(m+1)=[(m-1)x-m][mx-(m+1)]=(mx-x-m)(mx-m-1).方法(二)用十字相乘法.(m2-m)x2-(2m2-1)x+m(m+1)=m(m-1)x2-(2m2-1)x+m(m+1)=[(m-1)x-m][mx-(m+1)]=(mx-x-m)(mx-m-1).方法(二)比方法(一)简单.由此可以得出:遇见二次三项式的因式分解:(1)首先考虑能否提取公因式.(2)能否运用十字相乘法.(3)最后考虑用公式法.以上教师引导,学生板书、笔答,学生总结结论.练习:把下列各式因式分解:(1)(m2-m)x2-(2m2-1)x+m(m+1);(2)(x2+x)2-2x(x+1)-3.解:(1)(m2-m)x2-(2m2-1)x+m(m+1)=m(m-1)x2-(2m2-1)x+m(m+1)=[mx-(m+1)][(m-1)x-m]=(mx-m-1)[(m-1)x-m)].(因式分解法)(2)(x2+x)2-2x(x+1)-3…第一步=(x2+x-3)(x2+x+1)…第二步(1)题用十字相乘法较简单.(2)题第一步到第二步用十字相乘法,由第二步到第三步用公式法.注意以下几点:(1)因式分解一定进行到底.(2)当b2-4ac≥0时,ax2+bx+c在实数范围内可以分解.当b2-4ac<0时,ax2+bx+c在实数范围内不可分解.(四)总结与扩展启发引导、小结本节课内容.1.遇见二次三项式因式分解.(1)首先考虑能否提取公因式.(2)其次考虑能否选用十字相乘法.(3)最后考虑公式法.2.通过本节课的学习,提高学生分析问题、解决问题的能力.3.注意以下几点;(1)在进行2x2-8xy+5y2分解因式时,千万不要漏掉字母y.(2)因式分解一定进行到不能再分解为止.(3)对二次三项式ax2+bx+c的因式分解,当b2-4ac≥0时,它在实数范围内可以分解;当b2-4ac<0时,ax2+bx+c在实数范围内不可以分解.四、布置作业1.教材P.38中B 1 . 2(8).2.把下列各式分解因式:(1)(m2-m)x2-(2m2-1)x+m(m+1);(2)(x2+x)2-3x(x+1)-4.五、板书设计12.6 二次三项式的因式分解(二)结论:例1.把2x2-8xy+5y2因式分解.如果x1,x2为一元二次方解:略程ax2+bx+c=0的两个根,则ax2+bx+c=a(x-x1)(x-x2)六、作业参考答案A21.教材P.39中1.(1)(3x+5)(2x-3);(2)(7x-6y)(6x-7y);(4)(2x-9y)(7x-2y)3.(1)[mx-(m+1)][(m-1)x-m] (2)解:(x2+x)2-3x(x+1)-4 =(x2+x-4)(x2+x+1)。
二次三项式的因式分解(5种题型)-2023年新八年级数学核心知识点与常见题型(沪教版)(解析版)
二次三项式的因式分解【知识梳理】二次三项式的因式分解(1)形如()2ax bx c a b c ++,,都不为零的多项式称为二次三项式;(2)如果一元二次方程20ax bx c ++=(0)a ≠的两个根是1x 和2x , 那么二次三项式的分解公式为:2ax bx c ++()()12a x x x x =−−.,【考点剖析】 题型一:两根与二次三项式因式分解关系 例1.若方程24210y y −−=的两个根是1y =,2y =,则在实数范围内分解因式2421y y −−=____________.【答案】⎪⎪⎭⎫ ⎝⎛−−⎪⎪⎭⎫ ⎝⎛+−4514514y y . 【解析】如果一元二次方程20ax c ++=(0)a ≠的两个根是1x 和2x,那么二次三项式2ax bx c ++可分解为:2ax bx c ++()()12a x x x x =−−.【总结】本题主要考查利用一元二次方程进行二次三项式的因式分解. 【变式1】若二次三项式)0(2≠++a c bx ax 在实数范围内可分解因式为)221)(221(3−++−−x x ,则一元二次方程)0(02≠=++a c bx ax 的两个实数根为________________.【答案】2211+=x ,2122−=x .【解析】如果一元二次方程20ax bx c ++=(0)a ≠的两个根是1x 和2x,那么二次三项式的分 解公式为:2ax bx c ++()()12a x x x x =−−.【总结】本题主要考查二次三项式的因式分解与相对应的一元二次方程的根的关系.题型二:不能在实数范围内因式分解的二次三项式例2.下列二次三项式在实数范围内不能因式分解的是(,,,,,,) A.2615x x +−;,,,,,,,,,,,,,,,,,,,,,B.,2373y y ++;,,,,,,,,, C.2224x x −−;,,,,,,,,,,,,,,,,,,,,,D.2245y y −+. 【答案】D ;【解析】解:A 、因为24146153610b ac −=+⨯⨯=>,故此二次三项式在实数范围内可以因式分解;B 、因为2449433130b ac −=−⨯⨯=>,故此二次三项式在实数范围内可以因式分解;C 、因为244424360b ac −=+⨯⨯=>,故此二次三项式在实数范围内可以因式分解;D 、因为2416425240b ac −=−⨯⨯=−< 故此二次三项式在实数范围内不能因式分解.故答案选D.【变式1】下列二次三项式在实数范围内不能因式分解的是(,,,,,)A.1562−+x x ,,,,,B.3732++y y ,,,,,C.422−−x x ,,,,,D.22542y xy x +−【答案】D ;【解析】,解:A 、因为24146153610b ac −=+⨯⨯=>,故此二次三项式在实数范围内可以因式分解;B 、因为2449433130b ac −=−⨯⨯=,故此二次三项式在实数范围内可以因式分解;C 、因为24444200b ac −=+⨯=>,故此二次三项式在实数范围内可以因式分解;D 、因为222241642524b ac y y y −=−⨯⨯=− 又因为二次三项式,故20,240y y ≠∴−<,故此二次三项式在实数范围内不能因式分解. 故答案选D.【变式2】下列二次三项式在实数范围内不能因式分解的是(,,,,,,)A.2411x x +−;,,B.,2373y y ++;,,,,C.,224x x −−;,,,D.,22245x xy y −+.【答案】D ;【解析】解:A 、因为24144111770b ac −=+⨯⨯=>,故此二次三项式在实数范围内可以因式分解;B 、因为2449433130b ac −=−⨯⨯=>,故此二次三项式在实数范围内可以因式分解;C 、因为24444200b ac −=+⨯=>,故此二次三项式在实数范围内可以因式分解;D 、因为222241642524b ac y y y −=−⨯⨯=− 又因为二次三项式,故20,240y y ≠∴−<,故此二次三项式在实数范围内不以因式分解. 故答案选D.【变式3】如果关于x 的二次三项式24x x m −+在实数范围内不能因式分解,那么m 的值可以是_________.(填出符合条件的一个值) 【答案】5;【解析】解:当241640b ac m −=−<即4m >时,关于x 的二次三项式24x x m −+在实数范围内不能因式分解,如m 取5等等.题型三:二次项系数为1的实数范围内二次三项式因式分解 例3.在实数范围内分解因式:241x x −−=______________【答案】(22x x −+−;【解析】解:原式=2445x x −+−=()222x −−=(22x x −−−.【变式1】在实数范围内分解因式:232x x −−=,,,,,,,,,,,,,,,,,,,,.【答案】x x ⎛−− ⎝⎭⎝⎭; 【解析】解:因为方程2320x x −−=的两根为x =,故232x x −−=x x ⎛ ⎝⎭⎝⎭. 【变式2】在实数范围内分解因式:243x x −−=,____________________.【答案】(22x x −−;【解析】解:解方程x2-x-3=0,得x=2±则:x2-4x-3=(22x x −−+.【变式3】在实数范围内分解因式: (1)224x x −−;(2)223x xy y −−.【答案】(1)(11x x −−,,,,(2)3322x y x y ⎛⎫⎛⎫−−− ⎪⎪ ⎪⎪⎝⎭⎝⎭【分析】(1)前两项先配成完全平方公式,然后根据平方差公式,可得答案;(2)先解方程2230x xy y −−=,然后分解因式即可. 【详解】(1)原式=(x2﹣2x+1)﹣5=(x ﹣1)22=(x ﹣1(x ﹣1;(2)∵2230x xy y −−=的解是x y =,∴原式=x y x y ⎛⎫⎛⎫− ⎪⎪ ⎪⎪⎝⎭⎝⎭.【点睛】本题考查了因式分解,利用乘法公式和求根公式是解答本题的关键. 题型四:二次项系数不为1的实数范围内二次三项式因式分解 例4.二次三项式2x 2-8x+5在实数范围内因式分解为(,,,,)A.,B.,C.,2(x+)(x-)22D.,2(x-)(x-)22【答案】D ;【解析】解:令2x2-8x+5=0,解得:x1=,x2=,则2x2-8x+5=2(x x .故选D .【变式1】在实数范围内因式分解:222x x −−=__________________.【答案】2(x x ;【解析】解:2220x x −−=的解是1x =,214x =,所以222x x −−=2(x x【变式2】在实数范围内因式分解:2221x x −−=______.【答案】2⎛ ⎝⎭⎝⎭x x ;【解析】解:22122122x x x x ⎛⎫−−=−− ⎪⎝⎭=21111222442x x ⎛⎫−⋅+−− ⎪⎝⎭=213224x ⎡⎤⎛⎫−−⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=221222x ⎡⎤⎫⎛⎫⎢⎥−−⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦=11222x x ⎛−− ⎝⎭⎝⎭=2x x ⎛⎝⎭⎝⎭.【变式3】在实数范围内分解因式:2225x x −−=____.【答案】112()2222x x −−−+;【解析】解:2225x x −−=21112()42x x −+−=21112()22x −−=21112()24x ⎡⎤−−⎢⎥⎣⎦11=2(22x x −−,故答案为:112()()2222x x −−−+.【变式4】分解因式:2235a ab b −−.【答案】3a a ⎛⎫⎛⎫− ⎪⎪ ⎪⎪⎝⎭⎝⎭; 【解析】解:因为222=2543()370b b b ∆−⨯⨯−=≥,故方程22350a ab b −−=的两根为a ==,故22353a ab b a a ⎛⎫⎛⎫−−= ⎪⎪ ⎪⎪⎝⎭⎝⎭. 题型五:实数范围内二次三项式因式分解的应用例5.如果二次三项式px 2+2x ﹣1在实数范围内可以因式分解,求p 的取值范围. 【答案】p≥﹣1且p≠0;【解析】解:∵二次三项式px2+2x ﹣1在实数范围内可以因式分解, ∴px2+2x ﹣1=0有实数解, ∴△=4+4p≥0,且p≠0, 解得:p≥﹣1且p≠0.【变式1】二次三项式2342x x k −+,当k 取何值时,(1)在实数范围内能分解; (2)不能分解;(3)能分解成一个完全平方式,这个完全平方式是什么?【答案】(1)32≤k ;(2)32>k ;(3)32=k ,完全平方式为2323⎪⎭⎫ ⎝⎛−x . 【解析】(1)要使二次三项式2342x x k −+在实数范围内能分解,则方程23420x x k −+=要有实数根,则需要满足()021242≥⋅−−=∆k ,解得:32≤k ;(2)要使二次三项式2342x x k −+在实数范围内不能分解,则方程23420x x k −+=没有实数根,则需要满足()021242<⋅−−=∆k ,解得:32>k ;(3)要使二次三项式2342x x k −+在实数范围内能分解成一个完全平方式,则方程23420x x k −+=有两个相等实数根,则需要满足()021242=⋅−−=∆k ,解得:32=k .此时,完全平方式为2323⎪⎭⎫ ⎝⎛−x . 【总结】当一个二次三项不能在实数范围内分解因式时,则说明该二次三项式所对应的一元二次方程在实数范围内无解,反之,则说明该二次三项式所对应的一元二次方程有实数解. 【变式2】阅读题:分解因式:223x x −−. 解:原式22113x x =++−−,,,,,,,,()2214x x =++−,,,,,,,,()214x =+− ,,,,,,,,()()1212x x =+++− ,,,,,,,,()()31x x =+−.此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,我们称这种方法为配方法.此题为用配方法分解因式.请体会配方法的特点,然后用配方法解决下列问题:在实数范围内分解因式:2441a a +−.【答案】(2121a a ++.【分析】先配方,再根据平方差公式分解即可. 【详解】()(224412122121a a a a a +−=+−=+++【点睛】本题考查了配方法的应用,熟练掌握配方的方法是解答本题的关键.,此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,,再减去一次项系数一半的平方,使整个式子的值不变,这种变形的方法称为“配方法”.,【过关检测】一、单选题1.(2022秋·上海浦东新·八年级统考期中)下列关于x 的二次三项式在实数范围内不能够因式分解的是( )【答案】C【分析】利用完全平方公式把A 分解,利用十字乘法把B 分解,再分别令229=0,y y −+21=0,y −再计算根的判别式,从而可判断C ,D ,从而可得答案. 【详解】解:()22442,x x x −+=−故A 不符合题意;()()22352=32,x xy y x y x y −−+−故B 不符合题意;令229=0,y y −+则4419320,=−⨯⨯=−<,所以229y y −+在实数范围内不能分解,故C 符合题意;令21=0,y −则()2=4241160,b ac −=−⨯⨯−=>,y ∴=,12y y ∴==,21=,y y y ⎛∴− ⎝⎭⎝⎭故D 不符合题意; 故选:C【点睛】本题考查的是因式分解,一元二次方程的解法,根的判别式,掌握利用公式法解一元二次方程,进而分解因式是解题的关键.2.(2023·上海·八年级假期作业)下列关于x 的二次三项式中,一定能在实数范围内因式分解的是( ) A .21x x −+ B .21x mx −+ C .21x mx −− D .22x xy y −+【答案】C【分析】根据一定能在实数范围内因式分解可知必须满足240b ac ∆=−≥,分别进行判断即可;【详解】21x x −+的241430b ac −=−=−<,故A 错误;21x mx −+的2244b ac m −=−,可能大于0,也可能小于0,故B 错误; 21x mx −−的22440b ac m −=+>,故C 正确;22x xy y −+的22224430b ac y y y −=−=−≤,故D 错误;故选C .【点睛】本题主要考查了能在实数范围内分解因式的条件,根据题意判断出判别式的符号,认真计算,熟练掌握任何数的平方都是非负数是解题的关键.3.(2021秋·上海宝山·八年级校考期中)下列关于x 的二次三项式在实数范围内不能够因式分解的是( ) A .x 2﹣3x +2 B .2x 2﹣2x +1C .2x 2﹣xy ﹣y 2D .x 2+3xy +y 2【答案】B【分析】利用十字乘法把选项A ,C 分解因式,可判断A ,C ,利用一元二次方程根的判别式计算的值,从而可判断B ,D ,从而可得答案. 【详解】解:()()23212,x x x x -+=--Q ,故A 不符合题意;令22210,x x -+=,()2=242140,\--´´=-<V ,所以2221x x −+在实数范围内不能够因式分解,故B 符合题意;()()2222,x xy y x y x y --=+-Q ,故C 不符合题意;令2230,x xy y ++=,()22234150,y y y \=-´´=³V ,所以223x xy y ++在实数范围内能够因式分解,故D 不符合题意;故选B【点睛】本题考查的是利用十字乘法分解因式,一元二次方程的根的判别式的应用,掌握“利用一元二次方程根的判别式判断二次三项式在实数范围内能否分解因式”是解本题的关键.【答案】C【分析】从题中可以看出多项式非一般方法可以解出,可以将式子变成关于x 的一元二次方程进行求解,之后再代入因式分解的形式中即可.【详解】解:令22230x xy y −−=,解得1x y =,2x y =,所以22232()()x xy y x y x y −−=,故选:C .【点睛】本题主要考查的是利用特殊方法进行因式分解,掌握一元二次方程的求解方法是解题的关键. 5.(2022秋·上海嘉定·八年级统考期中)在实数范围内不能分解因式的是( )【答案】C【分析】二次三项式可分解因式的前提是方程有实数根,根据方程根的判别式24b ac ∆=−与0的大小关系判断方程是否有实数根,即是否可分解因式. 【详解】A 、()()24421240∆=−−⨯⨯−=>,B 、(()2416360∆=−−⨯⨯−=>,C 、()2245112160∆=−−⨯⨯=−<,D 、()()22442360∆=−−⨯⨯−=>,只有C 选项∆小于0,,即C 选项不能分解因式,故选:C .【点睛】本题考查了二次三项式是否可因式分解,熟练运用根的判别式是解题的关键.【答案】B【分析】二次三项式能不能在实数范围内分解因式,关键是看判别式的范围.0∆≥,能分解因式;Δ0<,不能分解因式.【详解】解:A :24b ac ∆=−,()21413=−−⨯⨯,112=−,,110=−<.23x x −+不能在实数范围内分解因式.故A 错.B :24b ac ∆=−()21412m ⎛⎫=−−⨯⨯− ⎪⎝⎭220m =+>. 212x mx −−能在实数范围内分解因式.故B 正确.C :24b ac ∆=−,()2243−−=,,40−,223x −+不能在实数范围内分解因式.故C 错.D :24b ac ∆=−,()()21412m =−−⨯⨯−,18m =+,m 的值不定,18m +的符号不确定,故不能判断22x x m −−能否在实数范围内分解因式.故D 不一定.故答案为:B .【点睛】本题考查是在实数范围内分解因式,解题的关键是判别式的应用.二、填空题7.(2022秋·上海·八年级上海市民办立达中学校考阶段练习)在实数范围内因式分解:2331x x +−=__________.【答案】3x x ⎛ ⎭⎝⎝⎭ 【分析】求得方程23310x x +−=的两个根,即可求解.【详解】解:23310x x +−=3a =,3b =,1c =−,()249431210b ac ∆=−=−⨯⨯−=>,x =,136x −=,236x −=23333666633133x x x x x x ⎛⎛+−=−=+ −+− ⎝⎭⎝−+⎝⎭⎭⎝⎭,故答案为:3x x ⎛ ⎭⎝⎝⎭ 【点睛】此题考查了因式分解,涉及了公式法求解一元二次方程,解题的关键是正确求得一元二次方程的两个根.8.(2022秋·上海松江·八年级校考期中)在实数范围内因式分解:223105x xy y ++=________.【答案】)【分析】先把原式变形为()222522x xy y x +−+,可得到()2225x y x +−,再利用平方差公式进行因式分解,即可求解. 【详解】解:223105x xy y ++22251205x xy y x +−=+()222252x xy y x +−=+()2252x y x +−=))22x y ⎤⎦−+=)=.故答案为:)【点睛】本题考查了实数范围内分解因式:一些式子在有理数的范围内无法分解因式,可是在实数范围内就可以继续分解因式.通过补项配成完全平方公式是解决问题的关键.9.(2022秋·上海浦东新·八年级统考期中)在实数范围内分解因式:233x x−−=_____.【答案】322x x⎛−−⎝⎭⎝⎭【分析】令2330x x−−=,解得1x=,2x,把233x x−−写成因式分解的形式即可.【详解】解:令2330x x−−=,则1,3,3a b c==−=−,∵()()224341321b ac−=−−⨯⨯−=,∴x=,即1x=,2x=,则233xx x x⎛−−⎛⎝⎝=⎭⎭.故答案为:322x x⎛−−⎝⎭⎝⎭.【点睛】此题考考查了实数范围内的因式分解,正确求解一元二次方程是解题的关键.10.(2022秋·上海黄浦·八年级上海市黄浦大同初级中学校考期中)在实数范围内分解因式:231−−=xx_________________.【答案】3x x⎛⎝⎭⎝⎭【分析】先解方程2310x x−−=,求得方程的两个根,即可求解.【详解】解:2310x x−−=,∵3,,1,1a b c ==−=−,∴2411213b ac ∆=−=+=,∴x ,∴12x x =, ∴231−−=xx 3x x ⎛ ⎝⎭⎝⎭.故答案为:3x x ⎛ ⎝⎭⎝⎭. 【点睛】本题考查了解一元二次方程,因式分解,正确的求得方程的两根是解题的关键.11.(2022秋·上海杨浦·八年级校考期中)在实数范围内分解因式237x x −−=_______.【答案】x x ⎛ ⎝⎭⎝⎭ 【分析】将237x x −−化成一个完全平方式与另一个数的差,再运用平方差公式分解因式.【详解】解:237x x −−22337324x x ⎛⎫=−+− ⎪⎝⎭ 233724x ⎛⎫=−− ⎪⎝⎭3322x x ⎛=−− ⎝⎭⎝⎭x x ⎛= ⎝⎭⎝⎭.故答案为:x x ⎛ ⎝⎭⎝⎭. 【点睛】本题主要考查实数范围内分解因式,其中涉及完全平方公式和平方差公式的运用. 12.(2022秋·上海·八年级上海市进才实验中学校考期中)若二次三项式234ax x ++在实数范围内能因式分解,则a 的最大整数解为______.【答案】1−【分析】由二次三项式234ax x ++在实数范围内可以因式分解,可得2340ax x ++=是一元二次方程且在实数范围内有解,再根据一元二次方程根的判别式列不等式即可得到答案.【详解】解:∵,二次三项式234ax x ++在实数范围内可以因式分解,∴2340ax x ++=是一元二次方程且在实数范围内有解,∴0a ≠,23440a ∆=−⨯⨯≥,解得,916a ≤且0a ≠,所以a 的最大整数解为1−.故答案为:1−.【点睛】本题主要考查了二次三项式在实数范围内分解因式,一元二次方程根的判别式,掌握“二次三项式在实数范围内可以因式分解的含义”是解本题的关键. 13.(2022秋·上海黄浦·八年级上海外国语大学附属大境初级中学校考期中)在实数范围内因式分解:223105x y xy ++=______.【答案】3xy xy ⎛ ⎝⎭⎝⎭ 【分析】令t xy =,则式子可化为3105t t ++,令231050t t ++=,求解即可.【详解】解:令t xy =,则式子可化为23105t t ++,令231050t t ++=,3a =,10b =,5c =t ==即1t=,2t=∴22310533x y xy xy xy xy xy ⎛⎛++== ⎝⎭⎝⎭⎝⎭⎝⎭故答案为:3xy xy ⎛ ⎝⎭⎝⎭【点睛】此题考查了因式分解,涉及了一元二次方程的求解,解题的关键是正确求得一元二次方程的两个根. 14.(2022秋·上海宝山·八年级上海市泗塘中学校考期中)在实数范围内因式分解:22231xy xy −−=__________【答案】2xy xy ⎛ ⎝⎭⎝⎭ 【分析】令t xy =,则式子可化为2231t t −−,令22310t t −=−,求解即可.【详解】解:令t xy =,则式子可化为2231t t −−,令22310t t −=−则2a =,3b =−,1c =−t===则1t =,2t =222312x y xy xy xy ⎛−−=⎝⎭⎝⎭故答案为:xy xy ⎛ ⎝⎭⎝⎭ 【点睛】此题考查了因式分解,涉及了换元法和一元二次方程的求解,解题的关键是正确求得方程的根.15.(2022秋·上海长宁·八年级上海市第三女子初级中学校考期中)在实数范围内因式分解:2231x x +−=_____.【答案】2x x ⎛ ⎝⎭⎝⎭【分析】结合题意,当231022x x +−=时,通过求解一元二次方程,得 231022x x x x ⎛+−==⎝⎭⎝⎭,结合22312x x x x ⎛+−= ⎝⎭⎝⎭,即可得到 答案.【详解】解:2231231222x x x x ⎛⎫+−=+− ⎪⎝⎭, 当231022x x +−=时,得x ==,∴231022x x x x ⎛+−== ⎝⎭⎝⎭,∴23122x x x x ⎛+−= ⎝⎭⎝⎭,∴22312x x x x ⎛+−= ⎝⎭⎝⎭.故答案为:2x x ⎛ ⎝⎭⎝⎭. 【点睛】本题考查了因式分解和一元二次方程的知识,解题的关键是熟练掌握一元二次方程的性质,从而完成求解.16.(2022秋·上海金山·八年级校联考期末)在实数范围内分解因式:224x x −−=__.【答案】(11x x −−【详解】解:原式,()2215x x =−+−22(1)x =−−(11x x =−−故答案为:(11x x −+−【点睛】本题考查了因式分解,利用完全平方公式得出平方差公式是解题关键.17.(2022秋·上海·八年级校考期中)在实数范围内分解因式:2243x x −−___________.【答案】2x x ⎛ ⎝⎭⎝⎭ 【分析】根据公式法解22430x x −−=,得出22x =,再根据因式分解即可得出答案.【详解】解:由22430x x −−=,得:22x =,原式232222x x x x ⎛⎛⎫=−−= ⎪ ⎝⎭⎝⎭⎝⎭,故答案为:2x x ⎛ ⎝⎭⎝⎭. 【点睛】本题考查了实数范围内分解因式,准确熟练地进行计算是解题的关键.18.(2022秋·上海普陀·八年级校考期中)在实数范围内分解因式:2226x xy y −−=_____________.【答案】2x y x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭ 【分析】先提取2,再将括号里面的式子配方,最后用平方差公式因式分解即可.【详解】解:2226x xy y −−221232x xy y ⎛⎫ ⎪⎝=−⎭− 222291923424x xy y y y ⎛⎫− ⎪⎝=−−⎭+ 22311224x y y ⎡⎤⎛⎫−⎢=⎥ ⎪⎝⎭⎢−⎥⎣⎦22322x y y ⎫=−⎪⎪⎝⎭⎡⎤⎛⎫⎢⎥− ⎪⎢⎥⎝⎭⎣⎦33222x y y x y y ⎛⎫⎛⎫=−− ⎪⎪ ⎪⎪⎝⎭⎝⎭2x y x y ⎛⎫⎛⎫= ⎪⎪ ⎪⎪⎝⎭⎝⎭.故答案为:2x y x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭ 【点睛】本题考查了利用公式法因式分解以及实数的概念,主要涉及完全平方公式以及平方差公式,熟记完全平方公式以及平方差公式是解题关键.三、解答题19.(2022秋·上海·八年级专题练习)在实数范围内分解因式:(1)422772x x +−;(2)4241036y y −−+.【答案】(1)())2833x +−+ (2)()(2229y y y −+【分析】(1)先利用十字相乘法分解,然后利用平方差公式法分解因式求解即可;(2)先提公因式,然后利用十字相乘法分解,然后利用平方差公式法分解因式求解即可.(1)原式()()22829x x =+−())2833x =+−+(2)原式为()4222518y y =−+−()()222292y y =−+−()(2=22+9y y y −−【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.20.(2021秋·上海·八年级校考阶段练习)在实数范围内因式分解:22327x xy y −−【答案】3x y x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭【分析】先提公因式,再进行配方,运用平方差公式进行因式分解.【详解】解:22327x xy y −−22273()33x xy y =−− 222221173()3993x xy y y y =−+−−221223[()]33x y y =−−113()()33x y y x y y =−−3()()x y x y =. 【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解决本题的关键.21.(2022秋·八年级统考期中)在实数范围内因式分解:22236x xy y −−+【答案】2x y x y ⎛⎫⎛⎫− ⎪⎪ ⎪⎪⎝⎭⎝⎭【分析】求出关于x 的一元二次方程222360x xy y −−+=的解即可得出答案.【详解】解:解关于x 的一元二次方程222360x xy y −−+=, 得:x ==, ∴1x y=,2x y=,∴222362x xy y x y x y ⎛⎫⎛⎫−−+=− ⎪⎪ ⎪⎪⎝⎭⎝⎭.【点睛】本题考查实数范围内分解因式,掌握“()200ax bx c a ++=≠的两个根分别为1x 、2x ,则()()212++=−−ax bx c a x x x x ”是正确解答的关键.22.(2022秋·上海青浦·八年级校考期中)在实数范围内因式分解:22323x xy y−−.【答案】3x y x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭【详解】解:22323x xy y −−=2223()3x xy y −−=22221103()399x xy y y −+−221103()39x y y ⎡⎤=−−⎢⎥⎣⎦11333x y y x y ⎛⎫⎛⎫=−− ⎪⎪ ⎪⎪⎝⎭⎝⎭3x y x y ⎛⎫⎛⎫= ⎪⎪ ⎪⎪⎝⎭⎝⎭.【点睛】本题主要考查因式分解,熟练掌握用配方法进行因式分解是解决本题的关键.23.(2022秋·上海普陀·八年级校考期中)在实数范围内因式分解:223105x y xy ++.【答案】xy xy ⎡⎡⎣⎣.【分析】把223x y 化为222252x y x y −,则利用完全平方公式得到原式()222512xy x y =+−,然后利用平方差公式分解因式.【详解】解:原式222251052x y xy x y =++− ()22225212x y xy x y =++−()222512xy x y =+−))11xy xy ⎤⎤=++⎦⎦xy xy ⎡⎡=⎣⎣故答案为:xy xy ⎡⎡⎣⎣ 【点睛】本题考查了实数范围内分解因式:一些式子在有理数的范围内无法分解因式,可是在实数范围内就可以继续分解因式.通过补项配成完全平方公式是解决问题的关键. 24.(2022秋·上海·八年级上海市黄浦大同初级中学校考阶段练习)在实数范围内因式分解:2222x xy y −++【答案】24x y x y ⎛⎫⎛⎫− ⎪⎪ ⎪⎪⎝⎭⎝⎭【分析】列出关于x 的一元二次方程,求得方程的根,再根据方程的根写出因式分解的结果即可【详解】解:∵关于x 的一元二次方程为:22022x xy y ++=−,∵()22224422170b ac y y y ∆=−=−⨯−⨯=≥,∴x y ==, ∴1x y =,2x y=,∴22222x xy y x y x y ⎛⎫⎛⎫=− ⎪⎪ ⎪⎪⎝⎭⎝+⎭−+【点睛】本题考查了实数范围内因式分解,掌握“若一元二次方程()200ax bx c a ++=≠的两个实数根为1x ,2x ,则()()212++=−−ax bx c a x x x x ”是解决问题的关键. 25.(2022秋·上海·八年级专题练习)在实数范围内因式分解(1)2442y y +−;(2)2235x xy y −−.【答案】(1)(2121y y ++;(2)3x x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭【分析】(1)先拆项,再根据完全平方公式变形,最后根据平方差公式分解即可;(2)首先解方程得出方程的根进而分解因式.【详解】解:(1)2442y y +−=24413y y ++−=()2213y +−=(2121y y ++;(2)令2235x xy y −−=0, ()()22254337y y y =−−⨯⨯−=△,∴x =,∴x 或x =,∴2235x xy y −−=3x y x ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭.。
二次三项式的因式分解(用公式法)
1、如果x1、x2是一元二次方程ax2+bx+c=0的两个根,那么分解因式ax2+bx+c= 。
2、当k 时,二次三项式x2-5x+k的实数范围内可以分解因式。
3、如果二次三项式x2+kx+5(k-5)是关于x的完全平方式,那么k= 。
4、4x2+2x-35、x4-x2-66、6x4-7x2-37、x+4y+4xy(x>0,y>0)8、x2-3xy+y29、证明:m为任何实数时,多项式x2+2mx+m-4都可以在实数范围内分解因式。
10、分解因式4x2-4xy-3y2-4x+10y-3。
11、已知:6x2-xy-6y2=0,求:y3x62y6x4--的值。
12、6x2-7x-3;13、2x2-1分解因式的结果是。
14、已知-1和2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,那么,ax2+bx+c可以分解因式为。
15、3x2-2x-8;16、2x2-3x-2;17、2x2+3x+4;18、4x2-2x;19、3x2-1。
20、3x2-3x-1;21、22x2-3x-2。
22、方程5x2-3x-1=0与10x2-6x-2=0的根相同吗?为什么?二次三项式2x2-3x-4与4x2-6x-8 分解因式的结果相同吗?把两个二次三项式分别分解因式,验证你的结论。
23、二次三项式2x2-2x-5分解因式的结果是( )A.⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫⎝⎛+-21112111xxB.⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫⎝⎛+-211121112xxC.⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫⎝⎛++21112111xxD.⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫⎝⎛++211121112xx24、二次三项式4x2-12x+9分解因式的结果是( )A.⎪⎭⎫⎝⎛-234xB.⎪⎭⎫⎝⎛-23xC.223⎪⎭⎫⎝⎛-xD.2234⎪⎭⎫⎝⎛-x25、2x2-7x+5;26、4y2-2y-1。
27、5x2-7xy-6y2;28、2x2y2+3xy-3。
二次三项式因式分解用公式法
二次三项式因式分解用公式法二次三项式因式分解是指将一个二次三项式表达式分解为两个一次因式的乘积。
对于给定的二次三项式 $ax^2 + bx + c$,其中$a \neq 0$,我们可以使用公式法来进行因式分解。
公式法主要分为两个步骤,先求解二次方程 $ax^2 + bx + c = 0$ 的根,然后根据根的性质进一步分解。
首先,根据求根公式,二次方程 $ax^2 + bx + c = 0$ 的根可以分为两种情况:实根和共轭复根。
1. 实根的情况:如果二次方程的判别式 $b^2 - 4ac \geq 0$,则方程有两个实根。
此时,我们可以使用根与系数的关系来进行因式分解。
设方程的两个实根分别为 $x_1$ 和 $x_2$,则可以得到以下关系:\[x_1 + x_2 = -\frac{b}{a}\]\[x_1 \cdot x_2 = \frac{c}{a}\]根据上述关系,我们可以将二次三项式因式分解为:\[ax^2 + bx + c = a(x - x_1)(x - x_2)\]2. 共轭复根的情况:如果二次方程的判别式 $b^2 - 4ac < 0$,则方程有两个共轭复根。
此时,我们需要使用复数的知识来进行因式分解。
设方程的两个共轭复根分别为 $x_1$ 和 $x_2$,则可以得到以下关系:\[x_1 + x_2 = -\frac{b}{a}\]\[x_1 \cdot x_2 = \frac{c}{a}\]根据上述关系,我们可以将二次三项式因式分解为:\[ax^2 + bx + c = (x - x_1)(x - x_2)\]其中,$x_1$ 和 $x_2$是共轭复数,可以表示为 $x_1 = p + qi$ 和$x_2 = p - qi$。
总结一下,二次三项式因式分解的公式法主要分为以下几个步骤:1. 求解二次方程 $ax^2 + bx + c = 0$ 的根。
2.根据根的性质将二次三项式因式分解为两个一次因式的乘积。
初中数学 如何因式分解二次三项式
初中数学如何因式分解二次三项式在初中数学中,我们经常会遇到需要因式分解二次三项式的问题。
因式分解是将一个多项式表示为两个或多个因式的乘积的过程。
对于二次三项式,我们可以使用以下几种方法进行因式分解:公式法、配方法和完全平方式。
下面我将为您详细介绍这些方法的步骤和示例。
一、公式法因式分解二次三项式的步骤公式法是一种快速因式分解二次三项式的方法,适用于特定的形式。
对于形如ax^2 + bx + c 的二次三项式,我们使用以下步骤进行因式分解:1. 计算二次项系数a,一次项系数b和常数项c的值。
2. 使用二次三项式的因式分解公式:ax^2 + bx + c = (mx + p)(nx + q),其中m、n、p和q是待确定的数。
3. 根据公式,展开右边的乘积:(mx + p)(nx + q) = mnx^2 + (mq + np)x + pq。
4. 将展开得到的多项式与原二次三项式进行比较,确定m、n、p和q的值。
5. 将得到的因式分解形式写出来。
二、配方法因式分解二次三项式的步骤配方法是一种常用的因式分解二次三项式的方法,适用于一些特殊的情况。
对于形如ax^2 + bx + c的二次三项式,我们使用以下步骤进行因式分解:1. 将二次项系数a、一次项系数b和常数项c的值确定下来。
2. 将二次项系数a乘以常数项c,得到ac。
3. 找到两个数的乘积等于ac,同时它们的和等于一次项系数b。
这两个数可以用于分解一次项。
4. 将一次项拆分为这两个数的和的形式。
5. 将二次三项式进行拆分和合并,得到因式分解的形式。
三、完全平方式因式分解二次三项式的步骤完全平方式是一种适用于特定情况下的因式分解二次三项式的方法。
对于形如ax^2 + bx + c 的二次三项式,我们使用以下步骤进行因式分解:1. 将二次项系数a、一次项系数b和常数项c的值确定下来。
2. 将一次项系数b的绝对值拆分为两个数的乘积,这两个数的乘积等于二次项系数a和常数项c的乘积。
二次三项式的因式分解(公式法)
二次三项式的因式分解(用公式法)(一)一、教学目标(一)知识教学点:1.使学生理解二次三项式的意义;了解二次三项式的因式分解与解一元二次方程的关系.2.使学生会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式.(二)能力训练点:通过本节课的教学,提高学生研究问题的能力.(三)德育渗透点:结合教材对学生进行辩证唯物主义观点的教育,进一步渗透认识问题和解决问题的一般规律,即由一般到特殊,再由特殊到一般.二、教学重点、难点、疑点及解决办法1.教学重点:用公式法将二次三项式因式分解.2.教学难点:一元二次方程的根与二次三项式因式分解的关系.3.教学疑点:一个二次三项式在实数范围内因式分解的条件.三、教学步骤(一)明确目标二次三项式的因式分解常用的方法是公式法、十字相乘法等.但对有些二次三项式,用这两种方法比较困难,如将二次三项式4x2+8x-1因式分解.在学习了一元二次方程的解法后,我们知道,任何一个有实根的一元二次方程,用求根公式都可以求出.那么一元二次方程ax2+bx+c=0(a≠0)的两个根与二次三项式ax2+bx+c的因式分解有无关系呢?这就是我们本节课研究的问题,也就是研究和探索二次三项式因式分解的又一种方法——用公式法.(二)整体感知一元二次方程的一般形式是ax2+bx+c=0(a≠0),观察方程的特点:左边是一个二次三项式,曾经借助于将左边二次三项式因式分解来解一元二次方程.反之,我们还可以利用方程的根,来将二次三项式因式分解.即在分解二次三项式ax2+bx+c的因式时,可先用公式求出方程ax2+bx+c=0的两个根x1,x2,然后写成ax2+bx+c=a (x-x1)(x-x2).通过知识之间的相互联系、相互作用和相互促进,对学生进行辩证唯物主义思想教育.公式ax2+bx+c=a(x-x1)(x-x2)的得出的依据是根与系数的关系.一元二次方程根与系数的关系为公式ax2+bx+c=a(x-x1)(x-x2)的得出奠定了基础.通过因式分解新方法的导出,不仅使学生学习了一个新方法,还能进一步启发学生学习的兴趣,提高他们研究问题的能力.(三)重点、难点的学习与目标完成过程1.复习提问(1)写出关于x的二次三项式?(2)将下列二次三项式在实数范围因式分解.①x2-2x+1;②x2-5x+6;③6x2+x-2;④4x2+8x-1.由④感觉比较困难,引出本节课所要解决的问题.2.①引入:观察上式①,②,③方程的两个根与方程左边的二次三项式的因式分解之关系.①x2-2x+1=0;解:原式变形为(x-1)(x-1)=0.∴ x1=x2=1,②x2-5x+6=0;解原方程可变为(x-2)(x-3)=0∴ x1=2,x2=3.③6x2+x-2=0解:原方程可变为(2x-1)(3x+2)=0.观察以上各例,可以看出,1,2是方程x2-3x+2=0的两个根,而x2-3x+2=(x-1)(x-2),……所以我们可以利用一元二次方程的两个根来分解相应左边的二次三项式.②推导出公式=a(x-x1)(x-x2).这就是说,在分解二次三项式ax2+bx+c的因式时,可先用公式求出方程ax2+bx+c=0的两个根x1,x2,然后写成ax2+bx+c=a(x-x1)(x-x2).教师引导学生从具体的数字系数的例子,观察、探索结论,再从一般的字母系数的例子得出一般性的推导,由此可知认识事物的一般规律是由特殊到一般,再由一般到特殊.③公式的应用例1 把4x2+8x-1分解因式解:∵方程4x2+8x-1=0的根是教师板书,学生回答.由①到②是把4分解成2×2分别与两个因式相乘所得到的.目的是化简①.练习:将下列各式在实数范围因式分解.(1)x2+20x+96;(2)x2-5x+3学生板书、笔答,评价.解2 用两种方程把4x2-5分解因式.方法二,解:∵ 4x2-5=0,方法一比方法二简单,要求学生灵活选择,择其简单的方法.练习:将下列各式因式分解.(1)4x2-8x+1;(2)27x2-4x-8;(3)25x2+20x+1;(4)2x2-6x+4;(5)2x2-5x-3.学生练习,板书,选择恰当的方法,教师引导,注意以下两点:(1)要注意一元二次方程与二次三项式的区别与联系,例如方程2x2-6x-4=0,可变形为x2-3x-2=0;但将二次三项式分解因式时,就不能将3x2-6x-12变形为x2-2x-4.(2)还要注意符号方面的错误,比如上面的例子如果写成2x2-5x-(3)一元二次方程ax2+bx+c=0(a≠0)当△≥0时,方程有两个实根.当△<0时,方程无实根.这就决定了:当b2-4ac≥0时,二次三项式ax1+bx+c在实数范围内可以分解;当b2-4ac<0时,二次三项式ax2+bx+c在实数范围内不可以分解.(四)总结与扩展(1)用公式法将二次三项式ax2+bx+c因式分解的步骤是先求出方程ax2+bx+c=0(a≠0)的两个根,再将ax2+bx+c写成a(x-x1)(x-x2)形式.(2)二次三项式ax2+bx+c因式分解的条件是:当b2-4ac≥0,二次三项式ax2+bx+c在实数范围内可以分解;b2-4ac<0时,二次三项式ax2+bx+c在实数范围内不可以分解.(3)通过本节课结论的探索、发现、推导、产生的过程,培养学生的探索精神,激发学生的求知欲望,对学生进行辩证唯物主义思想教育,渗透认识事物的一般规律.四、布置作业五、板书设计12.5 二次三项式的因式分解(一)结论:在分解二次三项式例1.把4x2+8x-1分解因式ax2+bx+c的因式时解:………可先用公式求出方程:……ax2+bx+c=0的两个根x1,x2,然后写成练习:………ax2+bx+c=a(x-x1)(x-x2)。
因式分解的七种常见方法
因式分解的七种常见方法因式分解是代数学中非常重要的一个基本概念,可以帮我们优化计算过程,得到简化的式子。
在因式分解的过程中,需要运用不同的方法来将一个给定的式子分解为若干个简单的乘积,本文将会介绍七种常见的因式分解方法。
1. 公式法公式法是一种较为常见的因式分解方法,它可以应用于一些特定的式子。
公式法常用的公式有两个:(1)$a^2-b^2=(a+b)(a-b)$该公式被称为"a二次减b二次"公式。
它告诉我们,一个平方数减另一个平方数的结果可以表示为两个因子的乘积,并分别是它们的和与差。
例如:$16-9=7\times5=(4+3)\times(4-3)$(2)$a^3+b^3=(a+b)(a^2-ab+b^2)$该公式被称为"a立方加b立方"公式。
它告诉我们一个立方数加另一个立方数的结果可以表示为两个因子的乘积,并分别是它们的和与差减去它们的积。
例如:$8^3+1^3=513=(8+1)\times(8^2-8+1)$2. 提公因式法提公因式法是一种常用的因式分解方法。
它的主要思想是将式子中的公因式先提出来,再对剩下的部分进行因式分解。
例如:$ax^2+bx=a(x^2+\frac{b}{a}x)$在上述式子中,$a$是公因式,$(x^2+\frac{b}{a}x)$是剩余部分的因式分解。
这样我们就把原始式子分解成了两个因子的乘积。
3. 十字相乘法十字相乘法主要用于二次三项式的因式分解。
该方法基于以下思想:将二次三项式分解为两个一次三项式的乘积,其中每个一次三项式的首项系数积等于原始式子的二次项系数,常数项积等于原始式子的常数项。
例如:$ax^2+bx+c$,首先将它分解为两个一次三项式$(px+q)(rx+s)$,然后进行十字相乘运算$(px+q)(rx+s)=px\times rx+px\times s+qrx+qs$,其中最后两项括号里的$c$是常数项。
二次三项式的因式分解
二次三项式的因式分解因式分解和整式乘法的关系密切,因式分解就是把一个整式写成乘积形式,反之就是整式的乘法。
我们可以把它们的关系看做乘法和整除的关系。
学习除法的前提一定是熟练掌握乘法,同样地想做好因式分解就要先把整式的乘法练熟。
关于整式乘法的计算可以看一下我之前的文章,传送门:用竖式做多项式的运算关于因式分解课本中主要介绍了提取公因式法和公式法。
在课后练习中提到了二次三项式因式分解的十字相乘法。
十字相乘法对应的就是两个一次式相乘。
我们先来用竖式来计算一下两个一次式相乘的一般情况。
注意红框标出的部分,右边相乘得结果中的常数项,左边相乘得结果中的二次项,交叉相乘再相加得结果中的一次项,这恰好是十字相乘法的口诀。
动手试一试:X2+3X+2 这里很容易看出1=1╳1,2=1╳2,3=1╳1+1╳2,所以X2+3X+2 =(X+1)(X+2)复杂一点的:X2+9X+20 这里也不难看出1=1╳1,20=4╳5,9=1╳4+1╳5,所以X2+9X+20 =(X+4)(X+5)类似的:X2+12X+20 =(X+10)(X+2),这里20=2╳10,1=1╳1,12=1╳2+1╳10。
上面这些例子都是中学生常见的类型,二次项系数都是1,分解后出现的数字都是整数,比较简单。
即使这样也能从后两个例子中可以看出一些问题。
同样是20,既可以是4╳5又可以是2╳10,甚至还可以是1╳20,那么在具体题目中如何选择呢?没别的办法,只能多试几次。
比如X2-29X-210 怎么分解呢?-210要写成哪两个数的乘积呢?容易想到21╳10、3╳70、7╳30,但是这些结果都不能相加后得到29,。
我们要想办法找到210所有可能的乘积的形式,这里可以用小学学过的因数分解来处理。
221031055357通过短除法可以看出210=2╳3╳5╳7,所以就有210=2╳105,210=3╳70,210=5╳42,210=7╳30,210=6╳35,210=10╳21,210=14╳15以及210=1╳210八种结果。
二次三项式的因式分解用公式法
二次三项式的因式分解用公式法二次三项式的因式分解是一个常见的数学问题。
在解答这类问题时,有时可以使用“公式法”来分解二次三项式。
这个方法利用了二次三项式的特定公式,即二次三项式的通项公式和二次三项式的因式分解公式。
本文将详细讨论二次三项式的因式分解,并说明如何使用公式法来进行因式分解。
首先,让我们回顾一下二次三项式的通项公式。
二次三项式的通项公式为:$y=ax^2+bx+c$,其中$a, b, c$为实数,且$a\neq 0$。
要注意的是,这个公式只适用于二次三项式,不适用于其他类型的多项式。
接下来,我们来说明二次三项式的因式分解公式。
对于任意二次三项式$y=ax^2+bx+c$,其中$a, b, c$为实数,且$a\neq 0$,它的因式分解形式为:$y=a(x-r_1)(x-r_2)$,其中$r_1$和$r_2$是二次三项式的两个实根。
根据这个因式分解公式,我们可以使用公式法来分解二次三项式。
下面,我们将具体介绍如何进行这个过程。
步骤一:将二次三项式的系数代入通项公式中,得到二次三项式的一般形式$y=ax^2+bx+c$。
步骤二:计算二次三项式的判别式$\Delta=b^2-4ac$。
根据判别式的值,我们可以判断二次三项式的根的情况。
- 如果判别式$\Delta>0$,则二次三项式有两个不同的实根。
这意味着二次三项式可以进行因式分解。
- 如果判别式$\Delta=0$,则二次三项式有两个相同的实根。
这意味着二次三项式可以进行因式分解,且其中一个因式是二次三项式的平方。
- 如果判别式$\Delta<0$,则二次三项式没有实根。
这意味着二次三项式不能进行因式分解。
步骤三:根据判别式的值,进行不同的因式分解。
- 如果判别式$\Delta>0$,则根据二次三项式根的公式,可以计算出两个实根$r_1$和$r_2$。
- 如果判别式$\Delta=0$,则根据二次三项式根的公式,可以计算出一个实根$r$。
配方法因式分解
配方法因式分解
方法因式分解是一种将多项式分解为其因子的方法。
它可以帮助我们简化和解析复杂的多项式表达式。
下面将介绍几种常用的因式分解方法。
1.公式法:对于特定的多项式,可以使用公式来进行因式分解。
例如,二次多项式的因式分解常常使用二次方程的求根公式。
以二次三项式ax^2+bx+c为例,可以使用公式x=-b±√(b^2-
4ac)/2a来找到其因子。
2.提公因式法:对于多项式中存在公因式的情况,我们可以将
公因式提取出来。
例如,多项式2x^2+4x可以因式分解为
2(x^2+2x)。
3.分组法:对于四项式中含有两对求和项的情况,可以使用分
组法进行因式分解。
这种方法可以通过重新组合求和项来寻找公因式。
例如,多项式x^3+2x^2+x+2可以因式分解为
(x^3+2x^2)+(x+2)。
4.特殊因式公式法:对于特定的多项式,我们可以使用特殊因
式分解公式来进行因式分解。
例如,二次多项式的差平方公式可用于将差的平方进行因式分解。
例如,多项式x^2-4可以因
式分解为(x+2)(x-2)。
总之,因式分解是一种将多项式分解为其因子的方法,通过使用不同的方法和公式,我们可以找到多项式的因子,并将其简
化为更简单的形式。
因式分解在代数、方程求解和数学证明中起着重要的作用。
二次三项式,分解因式的技巧、窍门
二次三项式,分解因式的技巧、窍门二次三项式,ax" + bx + c ( a > 0 ),构成了中学数学的重点,一元二次方程ax" + bx + c = 0 和二次函数y = ax" + bx + c 。
解一元二次方程,通常也都是使用因式分解法。
二次三项式,分解因式通常使用【十字相乘法】,可是有些式子,使用十字相乘法,或许不知从何下手,我们看得不知所措,怎么办呢?我根据自己的经验,来讲讲自己“新一代”的方式方法,希望我们共同掌握技巧、窍门。
让我们一同探索奥秘,一同拿起新武器吧!工具/原料∙拆项分组分解因式,或者这样做草稿,分解因式就会感到方便轻松。
∙例题(1),x" ±10x ±24 ;∙例题(2),8x" ±52x ±60 ;∙配方法分解因式,解一元二次方程,对付复杂的式子,也是使用配方法。
①拆项分组分解法(1),x" ±10x ±24正如x" + (a+b)x + ab = ( x + a )( x + b ),先把单项式mx = (a+b)x 一分为二,变成ax + bx ,就能够分组,提公因式,进行分解了。
关键是看常数项的正负,决定一次项怎样一分为二:【】如果常数项是正数,一次项拆开两个项的绝对值,就都比原来小;【】如果常数项是负数,一次项的绝对值,就是拆开两个项的相差数。
2②一次项怎样一分为二,为什么要根据常数项的正负呢?我们看看 x" ±10x ±24 这个二次三项式。
它相当特别,一次项、常数项,都有正负两种情况。
一次项、常数项的绝对值不变,整个式子就有四种情况,具体的四个式子都能做因式分解。
只要把具体的四个式子都做一遍,我们就会发现:【】常数项不变,只是一次项变成相反数,一次项一分为二的绝对值就不变;【】一次项不变,只要常数项变成相反数,一次项就要改变一分为二的方式。
第12讲 二次三项式的因式分解及一元二次方程的应用(一)解析版
第12讲 二次三项式的因式分解及一元二次方程的应用(一)【学习目标】本节涉及的二次三项式的因式分解,是不能直接运用十字相乘法进行因式分解,针对此类的二次三项式要借助一元二次方程的知识进行解答.同时,通过本节的学习,充分了解二次三项式与其相对应的一元二次方程之间的联系.其次,会运用方程思想解决实际问题,重点问题找到题目中的等量关系,其中列方程思想是本节的重点内容.【基础知识】一、二次三项式的因式分解(1)形如的多项式称为二次三项式;(2)如果一元二次方程20ax bx c ++=的两个根是1x 和2x ,那么二次三项式的分解公式为:2ax bx c ++. 二、一元二次方程应用:利率问题 1、列一元二次方程解应用题的步骤:审题,设元,列方程,解方程,检验,写答句.注:解得一元二次方程的解后,一定需检验是否符合应用题的题意,若不合题意则舍去. 2、利率问题:利息=本金×年利率×期数×(1-利息税); 本利和=本金+利息=本金+本金×年利率×期数×(1-利息税)=本金×[1+年利率×期数×(1-利息税)] .【考点剖析】考点一:二次三项式的因式分解例1.若方程24210y y --=的两个根是1154y +=,2154y -=,则在实数范围内分解因式2421y y --=____________.【难度】★ 【答案】.【解析】如果一元二次方程20ax bx c ++=的两个根是1x 和2x ,那么二次三项式2ax bx c ++可分解为:2ax bx c ++.【总结】本题主要考查利用一元二次方程进行二次三项式的因式分解.例2.将2441x x --在实数范围内分解因式___________.【难度】★ 【答案】4.【解析】因为方程24410x x --=的两个根为:1122x +=,2122x -=,所以2441x x --=4. 【总结】考查如果一元二次方程20ax bx c ++=的两个根是1x 和2x ,那么二次三项式 2ax bx c ++可分解为:2ax bx c ++.例3.将2352x x -+在实数范围内因式分解,正确的结果是( )A .2(1)()3x x ++B .2(1)()3x x --C .23(1)()3x x -+D .【难度】★ 【答案】D【解析】考查如果一元二次方程20ax bx c ++=的两个根是1x 和2x ,那么二次三项式 的分解公式为:2ax bx c ++.【总结】本题可以利用公式进行分解,也可以根据选项,将每一个选项乘开之后进行判定.例4.若二次三项式)0(2≠++a c bx ax 在实数范围内可分解因式为)221)(221(3-++--x x ,则一元二次方程)0(02≠=++a c bx ax 的两个实数根为________________. 【难度】★ 【答案】2211+=x ,2122-=x . 【解析】如果一元二次方程20ax bx c ++=的两个根是1x 和2x ,那么二次三项式的分 解公式为:2ax bx c ++.【总结】本题主要考查二次三项式的因式分解与相对应的一元二次方程的根的关系.例5.在实数范围内分解因式: (1)28x -;(2)35x x -; (3)2328x x +-;(4)21130x x -+.【难度】★【答案】(1)(282222x x x -=-+; (2)(3555x x x x x -=;(3)()()232874x x x x +-=+-;(4)()()2113056x x x x -+=--.【解析】 (1)(2)中不能够用十字相乘法;(3)(4)可以用十字相乘法. 【总结】本题主要考查利用适当的方法对多项式进行因式分解.例6.在实数范围内分解因式: (1)426x x --; (2)42341x x -+.【难度】★【答案】(1)()()()4226233x x x x x --=++-;(2)()()423334131133x x x x x x ⎛⎫⎛⎫-+=+--+ ⎪⎪ ⎪⎪⎝⎭⎝⎭. 【解析】将表达式中的2x 看成一个整体,则可以进行十字相乘法或者求根公式法分解. 【总结】本题主要考查在实数范围内进行因式分解,注意分解要彻底.例7.在实数范围内分解因式: (1)241x x ++;(2)242x x --.【难度】★★【答案】(1)()()2412323x x x x ++=+++-;(2)()()2422626x x x x --=---+.【解析】如果一元二次方程20ax bx c ++=的两个根是1x 和2x ,那么二次三项式 2ax bx c ++可分解为:2ax bx c ++.【总结】本题主要考查利用一元二次方程进行二次三项式的因式分解.例8.在实数范围内分解因式: (1)2231x x +-; (2)2423x x +-; (3)2361x x -+;(4)2633x x +-.【难度】★★【答案】(1)23173172312x x x x ⎛+-+-=+ ⎝⎭⎝⎭;(2)21131134234x x x x ⎛+-+-= ⎝⎭⎝⎭; (3)236363613x x x x ⎛+--+= ⎝⎭⎝⎭;(4)233633623x x x x ⎛⎫⎛⎫+-=+- ⎪⎪ ⎪⎪⎝⎭⎝⎭. 【解析】如果一元二次方程20ax bx c ++=的两个根是1x 和2x ,那么二次三项式 2ax bx c ++可分解为:2ax bx c ++.【总结】本题主要考查利用一元二次方程进行二次三项式的因式分解.例9.在实数范围内分解因式: (1)2621x x --+;(2)24411x x -++.【难度】★★【答案】(1)21717621666x x x x ⎛⎫⎛⎫+---+=-++ ⎪⎪ ⎪⎪⎝⎭⎝⎭;(2)21231234411422x x x x ⎛⎫⎛⎫+--++=--- ⎪⎪ ⎪⎪⎝⎭⎝⎭. 【解析】如果一元二次方程20ax bx c ++=的两个根是1x 和2x ,那么二次三项式 2ax bx c ++可分解为:2ax bx c ++.【总结】本题主要考查利用一元二次方程进行二次三项式的因式分解.例10.在实数范围内分解因式:(1)222x ax a --; (2)2231211x xy y ++; (3)2241x y xy +-;(4)22285x xy y -+.【难度】★★【答案】(1)()()22222x ax a x a a x a a --=--;(2)226363312113x xy y x y x y ⎛⎫⎛⎫+-++=++ ⎪⎪ ⎪⎪⎝⎭⎝⎭; (3)22117117414x y xy xy xy ⎛+-+-=+ ⎝⎭⎝⎭;(4)2246462852x xy y x y x y ⎛⎫⎛⎫+--+= ⎪⎪ ⎪⎪⎝⎭⎝⎭. 【解析】如果一元二次方程20ax bx c ++=的两个根是1x 和2x ,那么二次三项式2ax bx c ++可分解为:2ax bx c ++.【总结】本题主要考查利用一元二次方程进行二次三项式的因式分解.例11.二次三项式2342x x k -+,当k 取何值时, (1)在实数范围内能分解; (2)不能分解;(3)能分解成一个完全平方式,这个完全平方式是什么? 【难度】★★ 【答案】(1)32≤k ;(2)32>k ;(3)32=k ,完全平方式为.【解析】(1)要使二次三项式2342x x k -+在实数范围内能分解,则方程23420x x k -+=要有实数根,则需要满足()021242≥⋅--=∆k ,解得:32≤k ;(2)要使二次三项式2342x x k -+在实数范围内不能分解,则方程23420x x k -+=没有实数根,则需要满足()021242<⋅--=∆k ,解得:32>k ;(3)要使二次三项式2342x x k -+在实数范围内能分解成一个完全平方式,则方程23420x x k -+=有两个相等实数根,则需要满足()021242=⋅--=∆k ,解得:32=k .此时,完全平方式为.【总结】当一个二次三项不能在实数范围内分解因式时,则说明该二次三项式所对应的一元二次方程在实数范围内无解,反之,则说明该二次三项式所对应的一元二次方程有实数解. 考点二:一元二次方程应用:利率问题例1.某人想把10000元钱存入银行,存两年.一年定期年利率6%,两年定期年利率为6.2%.方式一:采用一年期的利率存一年后到期取出再存一年;方式二:一次性存两年再取出,问两种方式哪种划算? 【难度】★【答案】方式一划算.【解析】方式一:两年后可取出:()1123661100002=+%;方式二:两年后可取出:()100622.6110000=+%; ∵11236>10062,∴方式一划算.【总结】本题主要考查利率的应用,注意对两种不同存款方式的区分.例2.某人将1000元人民币按一年期存入银行,到期后将本金和利息再按一年期存入银行,两年后本金和利息共获1077.44元,则这种存款的年利率是多少?(注:所获利息应扣除5%的利息税,). 【难度】★ 【答案】4%.【解析】设这种存款的年利率是x ,由题意可列方程:, 则()07744.19512=+x %,解:038.1951±=+x %(负值舍去),04.0=x .答:这种存款的年利率是4%.【总结】注意要扣除利息税,则第一年的表达式为()x %9511000+,而不是()x +11000.例3.王红梅同学将1000元压岁钱第一次按一年定期存入“少儿银行”,到期后将本利和全部取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本利和共530元,求第一次存款时的年利率,只列式不计算.(不计利息税) 【难度】★★【答案】设第一次存款时的年利率为x ,则可列方程为:.【解析】注意年利率的变化.例4.李立购买了1500元的债券,定期1年,到期兑换后他用去了435元,然后把其余的钱又购买了这种债券定期1年(利率不变),再到期后他兑换得到1308元,求这种债券的年利率. 【难度】★★ 【答案】9%.【解析】设这种债券的年利率为x , 则可列方程为,化简可得:0818555002=-+x x ,分解可得:,解:591-=x (负值舍去),09.02=x .答:这种债券的年利率为9%.【总结】本题中需要注意对题意得理解以及解方程的方法.【过关检测】一、选择题1(2019浦东一署10月考4)下列二次三项式在实数范围内不能因式分解的是( ) A.2615x x +-; B. 2373y y ++; C.2224x x --; D.2245y y -+. 【答案】D ;【解析】解:A 、因为24146153610b ac -=+⨯⨯=>,故此二次三项式在实数范围内可以因式分解;B 、因为2449433130b ac -=-⨯⨯=>,故此二次三项式在实数范围内可以因式分解;C 、因为244424360b ac -=+⨯⨯=>,故此二次三项式在实数范围内可以因式分解;D 、因为2416425240b ac -=-⨯⨯=-<,故此二次三项式在实数范围内不能因式分解.故答案选D.2.(浦东南片2019期中4)下列二次三项式在实数范围内不能因式分解的是( ) A.1562-+x x B.3732++y y C.422--x x D.22542y xy x +- 【答案】D ;【解析】 解:A 、因为24146153610b ac -=+⨯⨯=>,故此二次三项式在实数范围内可以因式分解;B 、因为2449433130b ac -=-⨯⨯=>,故此二次三项式在实数范围内可以因式分解;C 、因为24444200b ac -=+⨯=>,故此二次三项式在实数范围内可以因式分解;D 、因为222241642524b ac y y y -=-⨯⨯=-,又因为二次三项式,故20,240y y ≠∴-<,故此二次三项式在实数范围内不能因式分解.故答案选D.3.(2019曹杨10月考4)下列二次三项式在实数范围内不能因式分解的是( ) A.2411x x +-; B. 2373y y ++; C. 224x x --; D. 22245x xy y -+. 【答案】D ;【解析】解:A 、因为24144111770b ac -=+⨯⨯=>,故此二次三项式在实数范围内可以因式分解;B 、因为2449433130b ac -=-⨯⨯=>,故此二次三项式在实数范围内可以因式分解;C 、因为24444200b ac -=+⨯=>,故此二次三项式在实数范围内可以因式分解;D 、因为222241642524b ac y y y -=-⨯⨯=-,又因为二次三项式,故20,240y y ≠∴-<,故此二次三项式在实数范围内不以因式分解.故答案选D.4.(青浦实验2019期中2)二次三项式2x 2-8x+5在实数范围内因式分解为( )A. B.C. 2(x+)(x-)22D. 2(x-)(x-22【答案】D ;【解析】解:令2x 2-8x +5=0,解得:x 1x 22x 2-8x +5=2(x x .故选D .二、填空题5.(浦东四署2020期末9)在实数范围内分解因式:232x x --= .【答案】3322x x ⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭;【解析】解:因为方程2320x x --=的两根为x =,故232x x --=x x ⎛ ⎝⎭⎝⎭. 6.(青浦实验2019期中15)在实数范围内因式分解:222x x --=__________________.【答案】2(x x ;【解析】解:2220x x --=的解是114x +=,214x -=,所以222x x --=2(x x .7.(嘉定区2019期中12)在实数范围内分解因式:243x x --= ____________________.【答案】(22x x --;【解析】解:解方程x 2-x-3=0,得x=2±则:x 2-4x-3=(22x x --+.8.(西延安2019期中11)在实数范围内因式分解:2221x x --=______.【答案】2⎛ ⎝⎭⎝⎭x x ; 【解析】解:22122122x x x x ⎛⎫--=-- ⎪⎝⎭=21111222442x x ⎛⎫-⋅+-- ⎪⎝⎭=213224x ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦==11222x x ⎛-- ⎝⎭⎝⎭=2x x ⎛ ⎝⎭⎝⎭. 9(徐教院附2019期中13)在实数范围内分解因式:241x x --=______________【答案】(22x x --;【解析】解:原式=2445x x -+-=()222x --=(22x x -+-.10(浦东新区2020期末10)在实数范围内分解因式:2225x x --=____.【答案】112(22x x ---+;【解析】解:2225x x --=21112()42x x -+-=21112()22x --=21112()24x ⎡⎤--⎢⎥⎣⎦11=2(22x x --,故答案为:112()()2222x x ---+. 11.(浦东南片2020期末9)如果关于x 的二次三项式24x x m -+在实数范围内不能因式分解,那么m 的值可以是_________.(填出符合条件的一个值) 【答案】5;【解析】解:当241640b ac m -=-<即4m >时,关于x 的二次三项式24x x m -+在实数范围内不能因式分解,如m 取5等等. 三、解答题12.(2019·上海八年级课时练习)在实数范围内分解因式:(1)224x x --;(2)223x xy y --.【答案】(1)(11x x -- (2)【分析】(1)前两项先配成完全平方公式,然后根据平方差公式,可得答案; (2)先解方程2230x xy y --=,然后分解因式即可.【详解】(1)原式=(x 2﹣2x +1)﹣5=(x ﹣1)22=(x ﹣1x ﹣1(2)∵2230x xy y --=的解是x y =,∴原式=. 【点睛】本题考查了因式分解,利用乘法公式和求根公式是解答本题的关键. 13.(浦东南片2019期中21)在实数范围内将关于x 的二次三项式因式分解: (1)231x x +- (2)2232y xy x --.【答案】(1)(x x ;(2)2()()x y x y ;【解析】 解:(1)令2310x x +-=,则9413∆=+=,所以1,232x -±=,故231(x x x x +-=;(2)令22230x xy y --=,则2229817y y y ∆=+=,所以1,234x y -±=,故22232()()x xy y x y x y +-=. 14.(2019曹杨10月考22)分解因式:2235a ab b --.【答案】;【解析】解:因为222=2543()370b b b ∆-⨯⨯-=≥,故方程22350a ab b --=的两根为a =,故22353a ab b a a ⎛⎫⎛⎫--= ⎪⎪ ⎪⎪⎝⎭⎝⎭.15.(2019上外10月考22)如果二次三项式px 2+2x ﹣1在实数范围内可以因式分解,求p 的取值范围. 【答案】p ≥﹣1且p ≠0;【解析】解:∵二次三项式px 2+2x ﹣1在实数范围内可以因式分解,∴px 2+2x ﹣1=0有实数解,∴△=4+4p ≥0,且p ≠0,解得:p ≥﹣1且p ≠0.16.(2019·上海八年级课时练习)阅读题:分解因式:223x x --. 解:原式22113x x =++--()214x =+- .此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,我们称这种方法为配方法.此题为用配方法分解因式.请体会配方法的特点,然后用配方法解决下列问题:在实数范围内分解因式:2441a a +-.【答案】(2121a a ++.【分析】先配方,再根据平方差公式分解即可.【详解】()(224412122121a a a a a +-=+-=++【点睛】本题考查了配方法的应用,熟练掌握配方的方法是解答本题的关键. 此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,,再减去一次项系数一半的平方,使整个式子的值不变,这种变形的方法称为“配方法”.。
二次三项式的因式分解用公式法
3 17 3 17 x1 , x2 (2)解这个方程,得方程 的根 __________ _______; 4 4 2
2 x 3x 1 ___; 0 方程 __________
2
ax bx c __________ a( x x1 )(x ____; x2 ) (3)代入公式 __________
准备练习 1.下列多项式能否用 x2+(a+b)x+ab=(x-a)(x-b)分解 =(x-1)(x-2) ( x x1 )(x x2 ) (1)x2-3x+2 (2)2x2 –10x +12 =2(x-2)(x-3) 2( x x1 )(x x2 ) (3)x2+x-1 ( x 1 5 )(x 1 5 ) ( x x1 )(x x2 ) 2 2 2求下列方程的根: (1)x2-3x+2 =0
2
b c x1 x 2 , x1 x 2 a a b c 即: ( x1 x 2 ), x1 x 2 a a
b c ax bx c a( x ) a a 2 a x ( x1 x2 ) x x1 x2
2 2
a( x x1 )(x x2 ) 2 在分解二次三项式 ax bx c的
(x1=1,x2=2) (x1=2,x2=3)
(2)2x2 –10x +12=0
(3)x2+x-1 =0
1 5 1 5 x1 , x2 2 2
探索:二次三项式ax2+bx+c 的因式分解与一元二次方程 ax2+bx+c=0的根有什么联 系?
设ax bx c ( 0 a 0)的两个根为x 1 , x 2 , 则
二次三项式的因式分解(用公式法)
二次三项式的因式分解(用公式法)引言在代数学中,因式分解是一个重要的概念和技巧。
它可以将一个多项式表达式分解为较简单的乘积形式。
在本文中,我们将重点讨论二次三项式的因式分解,并介绍一种常用的方法——公式法。
二次三项式的定义二次三项式是指具有以下形式的多项式表达式:f(x) = ax^2 + bx + c其中,a、b和c是实数且a ≠ 0。
公式法的基本原理公式法是一种通过使用特定的公式来分解二次三项式的方法。
具体来说,我们可以使用下面的公式来完成因式分解:f(x) = a(x - x1)(x - x2)其中,x1和x2为f(x)的根(也就是函数图像与x轴的交点)。
公式法的步骤下面是使用公式法进行二次三项式因式分解的一般步骤:1.计算二次三项式的判别式Δ。
判别式Δ的计算公式为Δ = b^2 - 4ac。
根据Δ的值可以判断二次三项式的根的情况。
–当Δ > 0时,二次三项式有两个不相等的实根。
–当Δ = 0时,二次三项式有两个相等的实根。
–当Δ < 0时,二次三项式没有实根,但可以分解为两个共轭复根。
2.根据根的情况计算x1和x2。
–当Δ > 0时,根据求根公式:x1 = (-b + √Δ) / 2ax2 = (-b - √Δ) / 2a–当Δ = 0时,二次三项式只有一个实根,即 x = -b / 2a。
–当Δ < 0时,二次三项式的根可以表示为复数形式:x1 = (-b + i√(-Δ)) / 2a和 x2 = (-b - i√(-Δ)) / 2a。
3.代入公式进行因式分解。
将计算得到的x1和x2代入公式f(x) = a(x -x1)(x - x2),即可得到该二次三项式的因式分解形式。
示例为了更好地理解公式法的使用,我们来看一个例子:假设我们有一个二次三项式:f(x) = x^2 + 5x + 6。
首先,计算判别式Δ:Δ = b^2 - 4ac = 5^2 - 4 * 1 * 6 = 25 - 24 = 1由于Δ > 0,说明该二次三项式有两个不相等的实根。
利用求根公式对二次三项式的因式分解.
△=0
△≥0且是一个完全平方数(式) △≥0 △<0 不能分解 △>0且不是完全平方式时,适合用配方法或求根公式法 当二次项系数是1一次项系数是偶数的时候适合用配方法
小结
x 2 (a b) x ab ( x a)(x b) 1. 对于不易用以前学过的方法:
分解二次三项式
ax bx c
2
宜用一元二次方程的
求根公式分解因式。 用公式法求出相应的一元二次方程ax2+bx+c=0(a≠o),的两个根 x1,x2,然后直接将ax2+bx+c写成a(x-x1)(x-x2),就可以了. 即ax2+bx+c= a(x-x1)(x-x2). 2.常见方法 求根公式法 配方法 十字相乘 完全平方公式
开启
智慧
二次三项式 ax2+bx+c 的因式分解
一般地,要在实数范围 内分解二次三项式ax2+bx+c(a≠0),只要用公式 法求出相应的一元二次方程ax2+bx+c=0(a≠0),的两个根x1,x2,然后直 接将ax2+bx+c写成a(x-x1)(x-x2),就可以了. 即ax2+bx+c= a(x-x1)(x-x2).
2
(2)第二步:求出方程①的两个根x1 , x2 ;
(3)因式分解 ax bx c a( x x1 )(x x2 )
2
四、课堂练习
1. 填空题
2
A 组
2 (1)若方程 ax bx c 0的两根为x1 , x2 , 则ax bx c分解为
a( x x1 )(x x2 )
1 B、 2( x 3)( x ) 2 1 D、 2( x 3)( x ) 2
数学教案:二次三项式的因式分解
数学教案:二次三项式的因式分解1. 教学目标通过本节课的学习,学生应该能够:1.熟练掌握二次三项式的基本概念和性质;2.掌握二次三项式的因式分解方法;3.能够独立解决二次三项式的因式分解问题。
2. 教学重点和难点2.1 教学重点1.二次三项式的基本概念和性质;2.二次三项式的因式分解方法。
2.2 教学难点1.二次三项式的因式分解方法的应用。
3. 教学过程3.1 二次三项式的基本概念和性质介绍二次三项式的基本概念和性质,包括:1.二次三项式的定义:ax2+bx+c;2.二次三项式的次数、系数、项数等基本概念;3.二次三项式的对称轴、顶点、零点等基本性质。
3.2 二次三项式的因式分解方法3.2.1 公式法介绍二次三项式的公式法因式分解方法。
对于形如ax2+bx+c的二次三项式,其因式分解公式为:ax2+bx+c=a(x−x1)(x−x2),其中x1和x2是二次三项式的两个零点,可以通过求根公式求出。
3.2.2 分解法介绍二次三项式的分解法因式分解方法。
对于形如ax2+bx+c的二次三项式,可以通过将其分解成两个一次三项式的乘积的形式进行因式分解,即:ax2+bx+c=a(x−m)(x−n),其中m和n是二次三项式的两个零点。
3.3 例题演练在课堂上,老师可以通过多个例题进行演示,以帮助学生更好的掌握二次三项式的因式分解方法。
例如,在演示中,老师可以先给出一个二次三项式,要求学生独立使用公式法或分解法进行因式分解。
如果有部分学生解答正确,则可以在黑板上进行演示,帮助学生更好的理解笔者的解题过程。
3.4 练习和作业通过课堂练习和作业,检验学生对二次三项式的因式分解方法是否掌握。
老师可以布置一些针对不同难度的练习题目,以帮助学生不断巩固所学知识。
4. 教学评价通过本节课的教育教学,老师可以对学生进行综合评价:1.学生是否能熟练掌握二次三项式的基本概念和性质;2.学生是否能灵活运用二次三项式的因式分解方法;3.学生是否能独立解决二次三项式的因式分解问题;4.学生的课堂学习态度和表现等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4+ 6 4− 6 ∴ 2 x − 8 xy + 5 y = 2( x − y )( x − y) 2 2
2 2
本题是关于x的二次三项式,所以应把 看作常数 本题是关于 的二次三项式,所以应把y看作常数 的二次三项式
注意: 因式分解是恒等变形 因式分解是恒等变形, 注意:1.因式分解是恒等变形,所以公式
2 2
2 2 由△= [−( 2k + 1)] − 4 ×1× (k + 5) = 4k − 19 = 0 19 ∴k = 4
K的值为 ( B ) 破题思路 的值为 19 19 B、 A、 − 4 4
C、 2
D、 2 −
五、本课小结
x 2 + (a + b) x + ab = ( x + a )( x + b) 1. 对于不易用以前学过的方法: 对于不易用以前学过的方法:
B组 组 1. 填空题 (1)在实数范围内分解因式 )
(x − 3 −2+ 3 7 y )( x −
2
3x + 4 xy − y 为
2 2
−2− 3
7
y)
(2)已知方程 )
x + mx + n = 0
的两根之和是5, 的两根之和是 ,
2 2
之积为3, 之积为 ,则 x 2 + mx + n分解因式为 ( x − 5 + 13 )( x − 5 − 13 ) 2. 选择题 是关于 的完全平方式, 若 x − (2k + 1) x + k + 5 是关于x 的完全平方式,则
分解二次三项式
ax + bx + c
2
宜用一元二次方程的
求根公式分解因式。 求根公式分解因式。 2. 当 ∆ = b 2 − 4ac ≥ 0时,ax 2 + bx + c在实数范围内可以分解因式; 当 ∆ = b 2 − 4ac〈0时,ax 2 + bx + c在实数范围内不能分解因式;
2 x 2 − 3x + 2 (例如:分解因式 例如: 例如
= a[x2 − (x1 + x2 )x + x1x2 ] = a(x − x1)(x − x2 )
结论: 结论:在分解二次三项式
ax 2 + bx + c(a ≠ 0)的因式分解时,可先用 公式求出方程ax 2 + bx + c = 0的两根x1 , x2然后写成
ax +bx+ c = a(x − x1)(x − x2 )
ax + bx + c = a ( x − x1 )( x − x2 )
2
千万不能忽略。 中的因式 a千万不能忽略。 2.在分解二次三项式 在分解二次三项式
ax
2
+ bx + c
的因式时, 的因式时,可先用求根公式求出方程
ax
2
+ bx + c = 0
的两个根x 的两个根 1,x2然后,写成
ax + bx + c = a ( x − x1 )( x − x2 )
2x −8x − 6 = 2(x − 4x −3) = 2[(x − 4x + 4) − 4 −3]
2 2 2
= 2[(x − 2) − 7] = 2[(x − 2) − ( 7) ] = 2[x − 2 + 7][x − 2 − 7]
2 2 2
我们知道在解一元二次方程时, 我们知道在解一元二次方程时,配方法的步骤是固定 模式的, 千篇一律” 模式的,即“千篇一律”,它的一般模式就是解一元二 次方程的求根公式法。由此推想, 次方程的求根公式法。由此推想,用配方法因式分解 必定与方程的根有关系, 必定与方程的根有关系,这个关系是什么
(3)在实数范围内分解因式x − 5 x + 3 =
2
(x −
5 + 13 5 − 13 )( x − ) 2 2
(4)已知方程 已知方程
2
2 x + 8 x + 5a = 0
2
有一个根是
4+ 6 , 2
则
2 x + 8 x + 5a
分解因式为 2( x −
4+ 6 12 + 6 ) )( x + 2 2
2
答案:二次三项式是代数式,没有等号,方程有等号。 答案:二次三项式是代数式,没有等号,方程有等号。
2 分解因式。 3. 用配方法把 x − 2 x − 2 分解因式。
分析: 分析:对 x 2 − 2 x 再添一次项系数的一半的平方 (注意:因为因式分解是恒等变形,所以必须同时 注意:因为因式分解是恒等变形, 减去一次项系数一半的平方) 减去一次项系数一半的平方) 解: 这是配方的关键
一、复习
分解因式
(1) x − x − 2
2
( 2) x − 3 x + 2
2
(3) x 2 − 2 x − 2
答案: 答案: (1)∵ - 2=1× (- 2)且1+(- 2)= -1 ) × 且 ( ) 原式= ∴原式 (x+1)(x-2) (2) ∵2= - 1×(- 2)且- 1+(- 2)= - 3 × ) ( ) 原式= ∴原式 (x-1)(x-2) (3)用原来学过的方法解本题较困难,本题怎解 )用原来学过的方法解本题较困难,
x −2x−2= x −2x+1−1−2=(x−1) −3
2 2 2
=(x−1) −( 3) =(x−1+ 3)(x−1− 3)
2 2
4. 分解因式
2x2 − 8x − 6
分析:把二次项系数化为1,便于配方,但不能各项 分析:把二次项系数化为 ,便于配方, 除以2 而是各项提取公因数2 除以 ,而是各项提取公因数 解:
在实数范围内不能分解) 在实数范围内不能分解
3. 用求根公式分解二次三项式 其程序是固定的, 其程序是固定的,即: (1)第一步:令 )第一步:
ax 2 + bx + c(a ≠ 0)
ax
2
+ bx + c = 0
①;
(2)第二步:求出方程①的两个根 )第二步:求出方程①
x1 , x2 ; x1 , x2 处。
2
四、课堂练习
A 组
1. 填空题
2 2 (1)若方程 ax + bx + c = 0的两根为x1 , x2 , 则ax + bx + c分解为 )
a( x − x1 )( x − x2 )
(2)分解因式: )分解因式: = ( x + 8)( x + 12)
(3x − 7 y )(2 x + y )
ax 2 + bx + c = a ( x − x1 )( x − x2 ) (3)写出公式 )
并把
x1 , x2 ;
的值代入公式中的
六、作业
课本P38习题 习题12.5 A组(全) 课本 习题 组 B组1,2(双) 组 , (
由此可以看出例2的因式分解的结果与两根的关系是什么? 由此可以看出例 的因式分解的结果与两根的关系是什么? 的因式分解的结果与两根的关系是什么
2 x 2 − 8 x − 6 = 2[ x − (2 − 7 )][ x − (2 + 7 )] = 2( x − x1 )( x − x2 )
这个关系是:二次三项式系数乘以 减去一个根的差, 这个关系是:二次三项式系数乘以x 减去一个根的差, 再乘以x减去另一个根所得的差 减去另一个根所得的差。 再乘以 减去另一个根所得的差。
分析: 分析:由根系关系可求出另一个根 − 然后代入公式即可
12 + 6 2
2. 选择题
1 (1)已知方程 2 x − ax − 3 = 0的两根为3和 − , ) 2
2
则2 x 2 − ax − 3分解因式的结果为(D )
1 A、x − 3)( x + ) ( 2 1 C、( x − 3)( x − ) 2 2
1 B、( x + 3)( x − ) 2 2 1 D、( x − 3)( x + ) 2 2
(2)下列二次三项式在实数范围内不能分解因式的是( D) )下列二次三项式在实数范围内不能分解因式的是(
A、x + x − 15 6
2
C、x − 2 xy − 4 y
2
2
D、x 2 − 4 xy + 5 y 2 2
4 即:x1 = , x2 = −2 5
4 ∴ 5 x + 6 x − 8 = 5( x − )( x + 2) 5 此步的目的是去掉括号内的分母 = (5 x − 4)( x + 2)
2
例2 把2 x 2 − 8 xy + 5 y 2分解因式
解:关于x的方程2 x 2 − 8 xy + 5 y 2 = 0的根是 8 y ± (−8 y ) 2 − 4 × 2 × (5 y 2 ) x= 2× 2
以上的结论怎样证明? 以上的结论怎样证明? 证明: 证明:设一元二次方程
ax 2 + bx + c = 0(a ≠ 0)的两根是x1,x2 − b + b 2 − 4ac − b − b 2 − 4ac 则x1 = , x2 = 2a 2a
b c ∴ x1 + x 2 = − , x1 x 2 = a a b c 就是 = − ( x1 + x 2 ), = x1 x 2 a a b c 2 2 ∴ ax + bx + c = a ( x + x + ) a a