生活中的运筹学ppt课件

合集下载

《运筹学排队论》课件

《运筹学排队论》课件
资源分配
合理分配服务器资源,以提高系统的吞吐量 和响应时间。
最优服务策略问题
总结词
研究如何制定最优的服务策略,以最大化系 统的性能指标。
服务顺序策略
确定服务器的服务顺序,以最小化顾客的等 待时间和平均逗留时间。
服务中断策略
在服务器出现故障时,选择最优的服务中断 策略,以最小化对顾客的影响。
服务时间分布策略
等待队长
指在某一时刻,正在等待服务的顾客总数。
逗留时间与等待时间
逗留时间
指顾客从到达系统到离开系统所经过的时间 。包括接受服务和等待的时间。
等待时间
指顾客到达系统后到开始接受服务所经过的 时间。
忙期与空闲期
要点一
忙期
指系统连续有顾客到达并接受服务的时间段。在这个时间 段内,系统内的顾客数可能会超过系统的容量。
03
02
交通运输
分析铁路、公路、航空等交通系统 的调度和运输效率。
计算机科学
研究计算机网络、云计算、分布式 系统的性能和优化。
04
排队论的基本概念
服务器
提供服务的设施或 人员。
等待时间
顾客到达后到开始 接受服务所需的时 间。
顾客
需要接受服务的对 象。
队列
顾客按到达顺序等 待服务的排列。
服务时间
顾客接受服务所需 的时间。
《运筹学排队论》ppt课件
目录
• 排队论简介 • 排队系统的组成 • 排队模型的分类 • 排队模型的性能指标 • 排队论的优化问题 • 排队论的发展趋势与展望
01
排队论简介
排队论的定义与背景
1
排队论(Queueing Theory)是运筹学的一个重 要分支,主要研究排队系统(Queueing Systems)的行为特性。

《运筹学图解法》课件

《运筹学图解法》课件

提高建模能力
提高模型解释和应用能力
提高求解效率的策略与技巧
选择合适的图解 法:根据问题类 型选择合适的图 解法,如最短路 径问题、最大流 问题等。
优化算法:对图 解法进行优化, 如使用动态规划、 贪心算法等。
并行计算:利用 多核处理器进行 并行计算,提高 求解速度。
利用软件工具: 使用专业的图解 法软件,如 Matlab、 Python等,提 高求解效率。
缺点:需要一定 的数学基础,不 适合初学者使用
运筹学图解法的基本步骤
确定问题目标
明确问题的性质 和类型
确定问题的目标 和约束条件
分析问题的关键 因素和影响因素
确定问题的求解 方法和步骤
建立模型
确定问题:明确需要解决的问题
建立模型:根据数据建立数学模 型
添加标题
添加标题
添加标题
添加标题
收集数据:收集与问题相关的数 据
模型验证与优化的方法与技巧
模型验证:通过实际数据验证模型的准确性和可靠性
模型优化:根据实际需求对模型进行优化,提高模型的效 率和效果
模型选择:根据实际问题选择合适的模型,提高模型的适 用性和准确性
模型调整:根据实际数据对模型进行调整,提高模型的适 应性和准确性
模型评估:对模型进行评估,了解模型的优缺点和改进方 向
软件工具的使用:熟悉软件工具 的界面和功能,掌握基本的操作 方法
软件工具的优化与调整:根据问 题特点和需求,对软件工具进行 优化和调整,提高求解效率和准 确性
软件工具的常见问题与解决方 案:了解软件工具的常见问题, 掌握相应的解决方案,提高求 解效率和准确性
软件工具的学习与提高:不断学 习和实践,提高软件工具的使用 水平和求解能力

运筹学运输问题-图文

运筹学运输问题-图文
❖ 建模:设xij为从产地Ai运往销地Bj的物资数量(i=1, …m;j=1,…n。
销地 B1
B2
...
Bn
产量
产地
A1
X11 X12
...
X1n
a1
A2
X21 X22
...
X2n
a2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Am
Xm1 Xm2
...
Xmn
am
销量
b1
b2
...
bn
则运输问题的数学模型如下:
产销平衡表
销地 B1
B2
...
Bn
产量
产地
A1
a1
A2
a2
.
.
.
.
.
.
Am
am
销量
b1
b2
...
bn
单位运价表
销地
B1
B2
...
Bn
产地
A1
c11
c12
...
c1n
A2
c21
c22
...
c2n
.
.
.
.
.
.
.
.
.
.
.
.
Am
cm1
cm2
...
cmn
❖ 若总产量等于总销量(产销平衡),试确定总运费最省 的调运方案。
Table14 检验数表
销地
B1
B2
B3
B4
产地
A1

运筹学基础及应用(全套课件296P) ppt课件

运筹学基础及应用(全套课件296P)  ppt课件

我国朴素的运筹学思想:田忌赛马、丁渭修皇宫
1938年英国最早出现了军事运筹学,命名为“Operational
Research”,1942年,美国从事这方面工作的科学家命其名为
“Operations Research”这个ppt课名件字一直延用至今。
2
§0.1 运筹学简述
美国运筹学的早期著名工作之一是研究深水炸弹起爆深度问 题。当飞机发现潜艇后,飞机何时投掷炸弹及炸弹的引爆引 度是多少?运筹学工作者对大量统计数字进行认真分析后, 提出如下决策:1.仅当潜艇浮出水面或刚下沉时,方投掷深 水炸弹。2.炸弹的起爆深度为离水面25英尺(这是当时深水 炸弹所容许的最浅起爆点)。空军采用上述决策后,所击沉 潜艇成倍增加,从而为反法西斯战争的胜利做出了贡献,为 运筹学增添了荣誉。
16 y3
4 X2 1Leabharlann y4X1 0 , X2 0
设第i种资源收购价格为yi,( i=1, 2, 3, 4,) 则有 min w= 12y1 + 8y2 + 16y3 +12 y4
s.t 2y1 + y2 + 4y3 +0 y4 2
2y1 +2y2 + 0y3 +4 y4 3 yi 0, (i=1, 2, 3, 4 )
ppt课件
6
§0.2 运筹学的发展
2. 20世纪50年代初期到50年代末期——成长时期 电子计算机技术的迅速发展促进运筹学的推广; 美国的约半数的大公司经营管理中融入运筹学;
大批的国家成立运筹学会,各种运筹学刊物相继问世 ; 1957年,牛津大学,第一次国际运筹学会议 1959年,国际运筹学会 成立
ppt课件
11
第 2 章 线性规划的对偶 理论

运筹学课件PPT课件

运筹学课件PPT课件

整数规划的解法
总结词
整数规划的解法可以分为精确解法和近似解法两大类。
详细描述
整数规划的解法可以分为两大类,一类是精确解法,另一类是近似解法。精确解法包括割平面法、分支定界法等, 这些方法可以找到整数规划的精确最优解。而近似解法包括启发式算法、元启发式算法等,这些方法可以找到整 数规划的近似最优解,但不一定能保证找到最优解。
模拟退火算法采用Metropolis准则来 判断是否接受一个较差解,即如果新 解的能量比当前解的能量低,或者新 解的能量虽然较高但接受的概率足够 小,则接受新解。
模拟退火算法的应用
01
模拟退火算法在旅行商问题中得到了广泛应用。通过模拟退火算 法,可以求解旅行商问题的最优解,即在给定一组城市和每对城 市之间的距离后,求解访问每个城市恰好一次并返回出发城市的 最短路径。
动态规划的解法
确定问题的阶段和状态
首先需要确定问题的阶段和状态,以便将问 题分解为子问题。
建立状态转移方程
根据问题的特性,建立状态转移方程,描述 状态之间的转移关系。
求解子问题
求解每个子问题,并存储其解以供将来使用。
递推求解
从最后一个阶段开始,通过递推方式向前求 解每个阶段的最优解。
动态规划的应用
线性规划的解法
单纯形法
01
单纯形法是求解线性规划问题的经典方法,通过迭代过程逐步
找到最优解。
对偶理论
02
对偶理论是线性规划的一个重要概念,它通过引入对偶问题来
简化求解过程。
分解算法
03
分解算法是将大规模线性规划问题分解为若干个小问题,分别
求解后再综合得到最优解。
线性规划的应用
生产计划
线性规划可以用于生产计划问题, 通过优化资源配置和生产流程, 提高生产效率和利润。

运筹学-第四章-运输问题和指派问题 PPT课件

运筹学-第四章-运输问题和指派问题 PPT课件

A1 A2 A3 销量
B1
B2
B3
B4
1
32
11 4 3
3 10
3 1 3 9 1 2 -1 8
4
7
6 4 12 10 3 5
3
6
5
6
产量
7 4 9 20
检验数<0表示:例如(A2,B4)如果增加A2到B4的1单位产 品,将会降低1单位的运费,所以,该解不是最优解。
13
解的改进
(1)以 xij 为换入变量,找出它在运输表中的闭回路;
B2 4 11 29
4
6
B3 3
22
3 10
5
B4 产量 10 7
8
4
65
9
5
6
20
求平衡运输问题初始解方法—西北角方法
西
B1
B2
B3
B4 产量
北 角
A1 3
34
11
3
10 7

A2
12
92
2
8
4

A3
7
43
10 6 5
9
初 始
需求量
3
6
5
6
20

x11 3, x12 4, x22 2, x23 2, x33 3, x34 6
min cij xij
s.t.
n
xij si
j 1
m
xij d j
i 1
xij 0
目标函数
n表示物资的n个销地 m表示物资的m个产地
供给约束
需求约束
非负约束
18
问题分析
决策变量 目标函数 约束条件:产量约束、销量约束、非负

生活中的运筹学

生活中的运筹学

12 13.吃 13
9
11.煮饺子(10min)10.做水(8min)
2.洗菜 3.切菜
4.拌陷
(5min) 3(3min) 5 (6min) 10
9.包饺子(3min)
5.和面 6.醒面 7.做劲儿 8.擀皮 (5min)4(60min)6 (3min) 7(3min) 8
计算时间参数
工序 1-2 2-3 3-5 5-10 2-4 4-6 6-7
4.拌陷
(5min) 3(3min) 5 (6min) 10
9.包饺子(3min)
5.和面 6.醒面 7.做劲儿 8.擀皮 (5min)4(60min)6 (3min) 7(3min) 8
其它问题——择业中的抉择
在我们毕业后择业中会面临许多选择,比如 可以选择应聘或创业,创业成功的可能性叫应聘 小,但收益大。怎样抉择是很多人面临的问题, 这类问题可以用决策树来解决。
7-8 8-10 9-10 10-12
11-12
工序时间 tES tEF tLS tLF 总时差 关键工序
15 0 15 0 15 0
5
15 20 75 80 60
3 18 21 80 83 62
6 24 30 83 89 69
5 15 20 15 20 0
60 20 80 20 80 0
3 80 83 80 83 0
e.g.
抉 择
应聘 创业
可能性0.4
可能性0.6
可能性0.2 可能性0.8
收入+1200
收入+500 收入+10000 收入-20Biblioteka 0应聘=780;创业=400
生活中的运筹学
——“图”的应用

运筹课件PPT课件

运筹课件PPT课件

它涉及到的问题包括最短路径、 最小生成树、最大流等。
图论与网络优化在计算机科学、 交通运输、通信网络等领域有 广泛应用,如路由算法、网络 设计等。
03 运筹学在现实生活中的应 用
生产与库存管理
01
02
03
生产计划
运筹学通过数学模型和算 法,帮助企业制定生产计 划,优化资源配置,提高 生产效率。
库存控制
Excel Solver的特点
Excel Solver易于使用
它提供了一个直观的用户界面,用户可以通过简单的拖放操作来定义问题。
Excel Solver具有广泛的适用性
它可以处理各种类型的优化问题,包括线性规划、整数规划、目标规划、非线性规划等。
Excel Solver具有高效性
它使用了多种优化算法,可以快速求解大规模问题。
它使用了高效的算法和优化的数据结构,可以快速地处理大规模数据和计算任务。
05 案例分析与实践
生产计划优化案例
总结词
生产计划是企业管理中的重要环节,通过优化生产计划可以提高企业的生产效率 和资源利用率。
详细描述
生产计划优化案例主要涉及如何根据市场需求、产品特性、生产能力等因素制定 合理的生产计划,以实现生产效益的最大化。具体包括对生产计划的制定、执行 、调整等环节进行优化,提高生产计划的准确性和灵活性。
运筹学的重要性
01
提高效率
降低成本
02
03
增强决策科学性
运筹学能够通过优化资源配置和 流程,提高系统的效率和生产力。
通过合理的资源配置和计划安排, 运筹学可以帮助企业降低成本和 资源消耗。
运筹学提供的数据分析和模型预 测等方法,有助于增强决策的科 学性和准确性。

运筹学教学课件(全)

运筹学教学课件(全)

实用举例
某公司通过市场调研,决定生产高中档新型拉杆箱。 某分销商决定买进该公司3个月内的全部产品。拉杆箱生 产需经过原材料剪裁、缝合、定型、检验和包装4过程。
通过分析生产过程,得出:生产中档拉杆箱需要用 7/10小时剪裁、5/10小时缝合、1小时定型、1/10小时检 验包装;生产高档拉杆箱则需用1小时剪裁、5/6小时缝合、 2/3小时定型、1/4小时检验包装。由于公司生产能力有限, 3月内各部的最大生产时间为剪裁部630小时、缝合部600 小时、定型部708小时、检验包装部135小时。
D {x | Ax b, x (x1,, xi ,, xn ) 0}
是凸集(凸多面体)。
引理2.1:线性规划的可行解 x (x1 ,, xn )T 为基本可行解的 充分必要条件是x的正分量所对应的系数列向量是线性无关的, 即每个正分量都是一个基变量。
定理2.2:线性规划问题的基本可行解x对应于可行域的顶点
通过分析生产过程,得出:生产中档拉杆箱需要用
7/10小时可剪裁以、通5/1过0小线时性缝合规、划1小求时定解型!、1/10小时
检验包装;生产高档拉杆箱则需用1小时剪裁、5/6小时 缝合、2/3小时定型、1/4小时检验包装。由于公司生产 能力有限,3月内各部的最大生产时间为剪裁部630小时、 缝合部600小时、定型部708小时、检验包装部135小时。
x2
L1:x1=6 L3:2x1+3x2=18
B 可行域
L2:x2=4 最优解
x1
4x1+3x2
解的特殊情况——解的特殊情况——无界解
线性规划的基本性质
若线性规划有最 优解,则最优解必在可 行域的顶点上达到。
X
可行域内部的点 • 可行解? 是 • 最优解? 不

《运筹学》全套课件(完整版)

《运筹学》全套课件(完整版)
负指数分布、几何分布、爱尔朗分布等。
服务时间分布
负指数分布、确定型分布、一般分布等。
顾客到达和服务时间的独立性
假设顾客到达和服务时间是相互独立的。
单服务台排队系统
M/M/1排队系统
顾客到达服从泊松分布,服务时间服从负指 数分布,单服务台。
M/D/1排队系统
顾客到达服从泊松分布,服务时间服从确定 型分布,单服务台。
投资组合优化
确定投资组合中各种资产的最 优配置比例,以最大化收益或
最小化风险。
03
整数规划
整数规划问题的数学模型
01
整数规划问题的定 义
整数规划是数学规划的一个分支 ,研究决策变量取整数值的规划 问题。
02
整数规划问题的数 学模型
包括目标函数、约束条件和决策 变量,其中决策变量要求取整数 值。
03
Edmonds-Karp算法
介绍Edmonds-Karp算法的原理、步骤和实现方法,以及其与FordFulkerson算法的比较。
网络最大流问题的应用
列举网络最大流问题在资源分配、任务调度等领域的应用案例。
最小费用流问题
最小费用流问题的基本概 念
介绍最小费用流问题的定义、 分类和应用背景。
Bellman-Ford算法
优点是可以求解较大规模的整数规划问题,缺点是计算量较大,需 要较高的计算精度。
割平面法
割平面法的基本思想
通过添加新的约束条件(割平面)来缩小可行域的范围,从而逼 近最优解。
割平面法的步骤
包括构造割平面、求解子问题和更新割平面三个步骤,通过不断 迭代找到最优解。
割平面法的优缺点
优点是可以处理较复杂的整数规划问题,缺点是构造割平面的难 度较大,需要较高的数学技巧。

运筹学PPT完整版

运筹学PPT完整版
优化炼油程序及产品供应、配送和营销
每年节约成本600万美元 每年节约成本7000万
优化商业用户的电话销售中心选址
控制成本库存(制定最优再定购点和定购 量确保安全库存) 制定最优铁路时刻表并调整铁路日运营量
优化员工安排,以最低成本服务客户
每年节约成本4.06亿美元,销 售额大幅增加 每年节约成本380万美元
s.t

n j1
aij
xj
bi
(i 1,2,,m)
(2)
xj 0, j 1,2,,n (3)
求解线性规划问题,就是从满足约束条件(2)、(3)的方程组 中找出一个解,使目标函数(1)达到最大值。
线性规划问题的数学模型
Page 28
可行解:满足约束条件②、③的解为可行解。所有可行解 的集合为可行域。
(5) 目标函数是最小值,为了化为求最大值,令z′=-z,得到max z′=-z,即当z达到最小值时z′达到最大值,反之亦然;
线性规划问题的数学模型
标准形式如下:
maxZ 2x1 x2 3(x3 x3)0x4 0x5
5x1 x2 (x3 x3) x4 7
1 2
1 0
0 1
r(A)=2,2阶子矩阵有10个,其中基矩阵只有9个,即
5 1
1 1 5 0 1 1
B 1 106 B 2 6 2 B 3 101 B 4 6 0
5 1 1 0
1 1 1 0
1 0
B 5 100 B 6 2 1 B 7 2 0 B 8 6 1 B 9 0 1
线性规划问题的数学模型
Page 17
2. 线性规划的数学模型由三个要素构成 决策变量 Decision variables 目标函数 Objective function 约束条件 Constraints

第10章 排队论 《运筹学》PPT课件全

第10章  排队论  《运筹学》PPT课件全

WL
Wq
Lq
W
1
M/M/s 混 合 制 排 队 模 型
一、 单服务台混合制模型
M/M/1/K: 顾客的相继到达时间服从参数 为λ的负指数分布(即顾客的到达过程为 Poisson流),服务台个数为1,服务时间V 服从参数为μ的负指数分布,系统的空间 为K。

平稳状态下队长N的分布pn=P{N=n},n=0,1,2,…。

由于所考虑的排队系统中最多只能容纳K个顾 客(等待位置只有K-1个),因而有
务 台
n
0
n
n=0,1,2,...,K-1 n≥K n=1,2,...K
混 合

Cn
(
)n
n
n=0,1,2,...,K
0
n>K

故 pn n p0 n=1,2,…,K
模 型
1
其中,p0
1
1
K
n
1
K
1
1
n1

其分布函数为B(t),密度函数为b(t),则

常见的分布有: (1) 定长分布(D)

(2) 负指数分布(M)

(3) k阶爱尔朗分布(Ek):

排队系统的符号表示

“Kendall记号”,其一般形式为:X/Y/Z/A/B/C,其中 XX:顾客到达时间间隔的分布

YY:服务时间的分布

Z Z:服务台个数

A :系统容量 B B:顾客源数量

C C:服务规则

例 (M / M / 1 /
FCFS)表示:

到达间隔为负指数分布,服务时间也为负指数分 布,1个服务台,顾客源无限,系统容量也无限,

运筹学PPT完整版

运筹学PPT完整版

C 变量:决策变量和非决策变量
B 约束条件:线性等式或不等式
A 目标函数:求最大值或最小值
非线性规划
目标函数:非线性函数
约束条件:非线性不等式
求解方法:梯度下降法、 牛顿法、拟牛顿法等
应用领域:生产计划、资 源分配、投资决策等
动态规划
基本概念:将复杂问题分解为若干子 0 1 问题,通过求解子问题来解决原问题
运筹学广泛应用于生产、运输、库存、销售、人力 资源等各个领域。
运筹学通过建立数学模型,求解最优解,以实现资 源的合理配置和高效利用。
运筹学的应用领域
生产与运营管理 项目管理 交通与运输规划
供应链管理 财务管理 资源分配与调度
运筹学的发展历程
起源:二战期间, 军事需求推动运 筹学的发展
20世纪50年代: 运筹学逐渐应用 于工业、经济等 领域
适用范围:解决资源分配、路径规划、 02 生产调度等问题
主要步骤:划分阶段、确定状态、建 0 3 立状态转移方程、求解最优解
特点:具有最优子结构性质,能够高 04 效地求解复杂问题
运筹学的实际应 用
生产计划与调度
生产计划:根据市场需求和生产能力制定生产计划, 包括生产数量、生产时间、生产地点等
生产调度:根据生产计划,合理分配生产资源,包 括人员、设备、原材料等
场趋势
运筹学在生物学中 的应用:分析生物 种群数量变化,预
测生物进化趋势
运筹学在工程学中 的应用:优化工程 设计,提高工程效

THANK YOU
汇报人:稻小壳
运筹学与人工智 能的结合,拓展
2 了运筹学的应用
领域
3 运筹学与人工智
能的结合,推动 了运筹学的理论 研究和实践应用

生活中的运筹学ppt课件

生活中的运筹学ppt课件
12
13
含量限制55条件分析乙中3的含量50丙中3的含量50甲中1的含量60甲中3的含量20乙中1的含量30含量限制限制条件66条件分析1限用20002限用25003限用1200用料限制种原料种原料之和不之和不能超过能超过限制限制尽可能尽可能多生产多生产以提高以提高利润利润77建立模型对于未知数的假设用i123代表原料123j123代表糖果甲乙丙xij表示第j种产品中i的含量88建立模型a满足限量要求限制条件分析限制条件
甲中1的含量>=60% 甲中3的含量>=20%
丙中3的含量=<50% 含量限制
乙中3的含量=<50%
乙中1的含量>=30%
5
条件分析
甲,乙, 丙中各 种原料 之和不 能超过 限制
用料限制
1限用2000 2限用2500 3限用1200
尽可能 多生产, 以提高 利润
6
建立模型
❖ 对于未知数的假设 用i=1,2,3代表原料1,2,3, j=1,2,3代表糖果甲,乙,丙,Xij表示第j种产品中i的含量
原料1
X11
X12
X13
原料2
X21
X22
X23
原料3
X31
X32
X33
糖果甲 糖果乙 糖果丙
X11 X12 X13
X21 X22 X23
X31 X32 X33
7
建立模型
❖a、满足限量要求: b、满足用料需求
❖ X11 +X12 +X13≤2000 ❖ X21 +X22 +X23 ≤ 500 ❖ X31 +X32 +X33 ≤ 1200
X33 ≤ 0.6(X13+X23 +X33)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12
13
限制
条件分析
限制条件
甲中1的含量>=60% 甲中3的含量>=20%
丙中3的含量=<50% 含量限制
乙中3的含量=<50%ຫໍສະໝຸດ 乙中1的含量>=30%
5
条件分析
甲,乙, 丙中各 种原料 之和不 能超过 限制
用料限制
1限用2000 2限用2500 3限用1200
尽可能 多生产, 以提高 利润
6
建立模型
❖ 对于未知数的假设 用i=1,2,3代表原料1,2,3, j=1,2,3代表糖果甲,乙,丙,Xij表示第j种产品中i的含量
原料1
X11
X12
X13
原料2
X21
X22
X23
原料3
X31
X32
X33
糖果甲 糖果乙 糖果丙
X11 X12 X13
X21 X22 X23
X31 X32 X33
7
建立模型
❖a、满足限量要求: b、满足用料需求
❖ X11 +X12 +X13≤2000 ❖ X21 +X22 +X23 ≤ 500 ❖ X31 +X32 +X33 ≤ 1200
,该厂每月如何生产才能获得最大利润?



成本
每月限用量
1
≥60% ≥ 30%
8
2
6
3
≤20% ≤ 50% ≤ 60%
4
加工费(元
5
4
3
\Kg)
售价(元 34
\Kg)
28.5 22.5
3
2000 2500 1200
问题分析
利润最大
利润=收 入-原料成 本-加工费
4
约束条件: a.原料用量 限制b.含量
X33 ≤ 0.6(X13+X23 +X33)
Xi>0,i=1,2,3,4,5,6,7,8,9
9
输入数据 在表中输入数据如下
10
通过计算机求解
最优解如下:
11
结果分析
❖由表可知 最大利润max z=108200; ❖ 问题拓展
在日常生活中到处都存在着最优解或最大利润的 问题,想要解决这些问题就要求我们有清晰的思 路,从各个方面考虑问题,从而给出最优解。在 生活中到处都有运筹学,古有“田忌赛马”,今 有军事演习,甚至做家务都有最优分配来节省时 间。可见,运筹学的思想的确给我们带来很多方 便和好处。
❖ 约束条件:
X11 +X12 +X13≤2000
X21 +X22 +X23 ≤ 500
X31 +X32 +X33 ≤ 1200
X11 ≥ 0.6(X11 +X21+X31)
s.t
X31 ≤ 0.2(X11 +X21+X31)
X12 ≤ 0.3(X12 +X22 +X32)
X32 ≤ 0.5(X12 +X22 +X32)
X11 ≥0.6(X11 +X21+X31) X31 ≤ 0.2(X11 +X21+X31) X12 ≥ 0.3(X12 +X22 +X32) X32 ≤ 0.5(X12 +X22 +X32) X33 ≤ 0.6(X13+X23 +X33) Xij ≥ 0,i=1,2,3;j=1,2,3;
使利润最大,即Max z=(34-5)(X11+X21+X31)+ (28.5-
4)(X12+X22+X32)+(22.5-3)(X13+X23+X33)-8(X11+X12 +X13)-6(X21+X22+X23)-4(X31 +X32+X33)
8
建立模型
❖ 整理后得出
max z=21X11+16.5X12+11.5X13+23X21+18.5X22+13.5X23+25 X31+20.5X32+15.5X33
生 活 中 的 运 筹 学
1
主要内容
aim❖熟练数学模型的建立 ❖ 运用数学软件求解多个函数的线性规划问题 ▪ 问题分析 ▪ 建立模型 ▪ 结果分析 ▪ 问题拓展
2
案例
❖ 某糖果厂用原料1,2,3加工三种不同牌号的糖果甲、乙 、丙。已知各种牌号糖果中原料1,2,3的含量,原料每 月限用量,三种牌号糖果的加工费及售价。如下表所示
相关文档
最新文档