结构动力学1.2.3
结构动力学 陈政清教授
结构动力学1.概论1.1应用范围(土木工程领域)正问题:地震.风震.移动荷载.动力机械反问题:结构参数与损伤识别地震:由基础传入.激发能量大.高度随机性.作用时间短.风振:可以事微振动.也可能事发散的.造成灾难性的后果。
(Tocoma桥)1940年后才被认识。
车振:列车质量大.恒/活载比小,车振明显:竖向行人振动:人荷载的特点:1.8~2.0步/秒动力荷载:机械周期性运动的不平衡力的激发.结构的振动土木工程师.必须要有很强的结构动力与稳定的意识。
1.2动力问题及其特点一.总的原则:惯性力不可忽略,即是动力问题。
例:一个茶杯.慢慢推它.往前移忽然推它.往后退因此.动力问题也可视为考虑惯性力的平衡问题.二.特点:1.位移不仅是位置的函数,而是时间的函数2. 惯性力荷载与加速度成正比。
F=ma=以后用上面一点表示对时间的数=3.惯性力与质量分布有关.例1.3结构动力学基本术语结构动力学:研究结构在平衡位置的往复振动的特性.一.确定性荷载确定性分析.P(t)有明确的函数表达式,任一时刻的P(t)的已知.例:简谐荷载P(t)=随机荷载随机性分析荷载的时间历程不确定,例如风荷载,可能的地震波,列车过桥的振动。
本课程只讨论研究确定性分析,它式基础,体现的动力学全部的概念与方法,某些随机性问题可以化为确定性分析。
如:地震分析,应用检测的地震波输入.随机荷载随机振动,变为确定性问题。
二.动力设计问题拟定结构解析模型数学模型动力分析动力实验验证动力修改本课程主要研究数学模型与动力分析两部分.三.解析模型(力学模型)3要素:简化假定.计算简图.结构参数表例:梁的解析模型承受横向荷载:平截面假定.直线法假设离散参数模型(集参数模型)集中刚度..集中质量连续参数模型(分布参数模型):刚度.质量均为连续函数为使问题简化,一般均将连续模型进一步简化为离散模型四.数学模型即解析模型的运动微分方程例:梁的运动方程:m+EI=P(t)建立方法以后讲解:有动力平衡法,虚位移法与达朗尔原理3种&&&&&&五.自由度(DOF:degree of freedom)所考虑的动力系统种位移变量的个数例:附:实变函数论知识:可数无穷.不可数无穷。
结构动力学稳定分析与优化设计
结构动力学稳定分析与优化设计概述:结构动力学稳定性是指结构在受到外力作用后能否保持稳定的能力。
在工程设计中,稳定性是确保结构的安全和可靠性的关键因素之一。
结构动力学稳定分析与优化设计是通过对结构的动力学响应进行分析和优化,以提高结构的稳定性和性能。
1. 结构动力学稳定性分析结构动力学稳定性分析是确定结构在受到外力作用时是否会发生不稳定现象的过程。
它通常包括以下几个步骤:1.1. 力学模型的建立:根据结构的实际情况,建立结构的力学模型。
可以采用有限元法、弹性力学理论等方法进行建模。
1.2. 动力学方程的建立:根据结构的力学模型,建立结构的动力学方程。
通过求解动力学方程,可以得到结构的动力学响应。
1.3. 稳定性判据的选择:选择合适的稳定性判据来评估结构的稳定性。
常用的稳定性判据包括屈曲、失稳、临界荷载等。
1.4. 分析与评估:根据所选的稳定性判据,对结构的稳定性进行分析与评估。
如果结构不稳定,则需要进行优化设计以提高结构的稳定性。
2. 结构动力学优化设计结构动力学优化设计是通过对结构参数的调整和优化,以提高结构的稳定性和性能。
它的核心思想是在满足结构约束条件的前提下,通过改变结构的几何形状、材料参数或连接方式等因素,来达到最优的结构性能。
2.1. 设计变量的选择:设计变量是指影响结构性能的参数,包括结构的几何形状、材料参数、连接方式等。
在优化设计中,需要选择合适的设计变量来进行调整和优化。
2.2. 目标函数的设定:目标函数是衡量结构性能的指标,例如结构的最小重量、最小位移、最大刚度等。
在优化设计中,需要设定合适的目标函数来指导优化过程。
2.3. 约束条件的设置:结构的优化设计必须满足一定的约束条件,例如材料的强度、几何形状的限制等。
在优化设计中,需要设置适当的约束条件来保证结构的可行性和可靠性。
2.4. 优化算法的选择:优化算法是实现结构优化设计的关键工具。
常用的优化算法包括遗传算法、粒子群算法、模拟退火算法等。
结构动力学_运动控制方程_分段解析法
结构动力学运动控制方程分段解析法1. 引言1.1 概述在工程领域中,结构动力学是研究结构物体受外界力或激励下的响应和振动特性的一门学科。
结构动力学广泛应用于建筑、桥梁、飞机等领域,对于确保结构物的安全性和稳定性具有重要意义。
随着现代科技的发展,运动控制方程在结构动力学中扮演着至关重要的角色。
通过运动控制方程,我们可以深入理解和预测结构物运动的规律,并为其设计合适的控制策略。
因此,研究和解析这些方程是结构动力学研究中必不可少的一部分。
1.2 文章结构本文将按照以下顺序进行组织和阐述:首先,在第二部分中,我们将简要介绍结构动力学的定义和原理,以及涉及到的动力学方程。
接着,在第三部分中,我们将详细介绍分段解析法作为一种常见的求解方法,包括其基本原理、算法步骤以及相关应用案例。
在第四部分中,我们将描述所设计实验的参数设置,并对实验结果进行分析和讨论。
最后,在第五部分中,我们将总结本文的主要结论,并展望未来研究方向。
1.3 目的本文的主要目的是通过对结构动力学和运动控制方程的介绍,以及分段解析法的应用案例分析,进一步加深对相关理论和方法的理解。
同时,希望为研究者提供一个清晰、系统的框架,以便于更好地理解和应用这些内容。
鉴于分段解析法在结构动力学领域具有广泛应用和良好效果,本文还旨在为读者提供相关方法在实际工程问题中的指导参考。
2. 结构动力学2.1 定义和原理结构动力学是一门研究物体在受到外部力作用下的运动规律的领域。
它主要涉及质点的运动学和动力学,以及刚体与弹性体的运动特性。
在结构工程中,结构动力学用于分析和预测建筑物、桥梁、飞机等工程结构在自然环境或人为作用下的响应情况,并提供相应的设计依据。
2.2 动力学方程结构动力学理论通过牛顿定律和哈密顿原理等基本原理推导出结构系统的运动方程。
这些方程描述了结构物各个部分之间的相互关系,并包括质量、刚度、阻尼等参数。
根据实际工程问题,可以选择合适的数值解法求解这些方程,从而得到结构系统随时间变化的运动状态。
结构动力学完整ppt课件
输出 (动力反应)
.
第四类问题:控制问题
输入 (动力荷载)
结构 (系统)
输出 (动力反应)
控制系统 (装置、能量)
本课程主要介绍结构的反应分析
任务 讨论结构在动力荷载作用下反应的分析的方法。寻找
结构固有动力特性、动力荷载和结构反应三者间的相互关 系,即结构在动力荷载作用下的反应规律,为结构的动力 可靠性(安全、舒适)设计提供依据。
结构动力学是研究结构、动荷载、结构反应三者关 系的学科。
.
当前结构动力学的研究内容为:
第一类问题:反应分析(结构动力计算)
输入 (动力荷载)
结构 (系统)
输出 (动力反应)
第二类问题:参数(或称系统)识别
输入 (动力荷载)
结构 (系统)
第三类问题:荷载识别。
输出 (动力反应)
输入 (动力荷载)
结构 (系统)
11
l3 3 EI
柔度系数
m y (t)3lE3 Iy(t)P(t)
柔度法步骤: 1.在质量上沿位移正向加惯性力; 2.求外力和惯性力引起的位移; 3.令该位移等于体系位移。
.
二、刚度法
P(t)
m
1
m y(t)
y(t)
l EI
y
k11
k11y(t)
k 1y 1 (t)P (t) m y (t)
EI
m
l/2
l/2
W
m y(t)
1
11
st y(t)
Y(t)y(t)st
加速度为
Y(t) y(t)
y (t) s t 1[P 1 (t) W m y (t)]
st W11
结构动力学
结构动力学复习 新
结构动力学与稳定复习1.1 结构动力计算与静力计算的主要区别是什么?答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力;(2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。
1.2 什么是动力自由度,确定体系动力自由度的目的是什么?答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。
确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。
1.3 结构动力自由度与体系几何分析中的自由度有何区别?答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。
结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。
1.4 结构的动力特性一般指什么?答:结构的动力特性是指:频率(周期)、振型和阻尼。
动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确定的、表征结构动力响应特性的量。
动力特性不同,在振动中的响应特点亦不同。
1.5 什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼?答:振动过程的能量耗散称为阻尼。
产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。
当然,也包括结构中安装的各种阻尼器、耗能器。
阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假想力。
粘滞阻尼理论假定阻尼力与质量的速度成比例。
粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻尼。
[美]R.克里夫《结构动力学》补充详解及习题解
前言结构动力学是比较难学的一门课程,但是你一旦学会并且融会贯通,你就会为成为结构院士、大师和总工垫定坚实的基础。
结构动力学学习的难点主要有以下两个方面。
1 概念难理解,主要表现在两个方面,一是表达清楚难,如果你对概念理解的很透彻,那么你写的书对概念的表述也会言简意赅,切中要害(克里夫的书就是这个特点),有的书会对一个概念用了很多文字进行解释,但是还是没有说清楚,也有的书受水平限制,本身表述就不清楚。
二是理解难,有点只可意会不可言传的味道,老师讲的头头是道,自己听得云山雾绕。
2 公式推导过程难,一是力学知识点密集,推导过程需要力学概念清析,并且需要每一步的力学公式熟悉;二是需要一定的数学基础,而且有的是在本科阶段并没有学习的数学知识。
克里夫《结构动力学》被称为经典的结构动力学教材,但是也很难看懂。
之所以被称为经典,主要就是对力学的概念表达的语言准确,概念清楚。
为什么难懂呢?是因为公式的推导过程比较简单,省略过多。
本来公式的推导过程既需要力学概念清楚也需要数学公式熟悉,但是一般人不是力学概念不清楚,就是数学公式不熟悉,更有两者都不熟悉者。
所以在学习过程中感觉很难,本学习详解是在该书概念清楚的基础上,对力学公式推导过程进行详细推导,并且有的加以解释,帮助你在学习过程中加深理解和记忆。
达到融会贯通,为你成为结构院士、大师和总工垫定坚实的基础。
以下黑体字是注释,其它为原书文字。
[美] R∙克里夫《结构动力学》辅导学习详解第1章结构动力学概述… …第Ⅰ篇单自由度体系第2章基本动力体系的组成… …§2-5 无阻尼自由振动分析如上一节所述,有阻尼的弹簧-质量体系的运动方程可表示为mv̈(t)+cv̇(t)+kν(t)=p(t)(2-19)其中ν(t)是相对于静力平衡位置的动力反应;p(t)是作用于体系的等效荷载,它可以是直接作用的或是支撑运动的结构。
为了获得方程(2-19)的解,首先考虑方程右边等于零的齐次方程,即mv̈(t)+cv̇(t)+kν(t)=0(2-20)mv(t)+kν(t)=0(2-20a)此处公式应该为mv(t)+kν(t)=0,因为该节是无阻尼自由振,而且(2-20)的解,式(2-21)也是公式mv(t)+kν(t)=0的解在作用力等于零时产生的运动称为自由振动,现在要研究的即为体系的自由振动反应。
高等结构动力学【教程】pdf格式
θx ,θy ,θz λ
u 位移向量
Λ
µ
υ ζ, ζ s , ζ a ρ
σ x ,σ y ,σ z , σ
2 2 σ2 x , σ B ( E ), σ D ( E )
V , Vx , V y , Vz
&, w && w, w We , Wi
τ τ xy
φ
& ,Y && , Y Ym , Y m m
D EI f gB , gD G h H ( n)
i I
薄板的弯曲刚度 梁的弯曲刚度 频率 非共振峰因子,共振峰值因子 地震风险分析中的几何系数;Lame 常数 震源深度 接受率
−1 修正的 Mercalli 烈度;冲量 P(t )dt ; 重要度系数(地震设计) 刚度,刚度矩阵,广义坐标下的刚度
8.移动荷载
1
1.2 振动的物理特性
发生在特定的频率范围。运动的车辆可以按照在其静止的重量上增加一个 冲压作用,实践表明这种做法对于一般高速公路和铁路桥设计是可行的, 但是在超高速移动的荷载作用下不一定行得通。机器设备的振动、爆炸和 打桩引起的振动必须借助于动力分析和实验解决。
在很多设计规范中找到,其他类型的荷载不那么常见,有关数据需要查阅 相关的研究文献。本课程的其中一个目标是讨论最重要的几种荷载的动力 特性,为进行相关的动力学分析和研究打下基础。
2.单自由度系统的振动
2.1 引言 2.2 运动方程 2.3 自由振动 2.4 阻尼 2.5 周期激励下的结构响应 2.6 任意激励下的结构响应 2.7 Duhamel 积分 2.8 支座运动 2.9 运动方程的直接积分法
5.地震作用及分析
5.1 引言 5.2 地震的特性 5.3 地震危险性 5.4 反应谱 5.5 地震作用的计算分析
同济大学高等结构动力学课件(全)
车辆振动作用 地震振动作用 风致振动作用
同济大学土木工程防灾国家重点实验室、 同济大学土木工程防灾国家重点实验室、桥梁工程系
主要内容
第一讲 单自由度系统自由振动 第二讲 单自由度系统强迫振动 第三讲 广义单自由度叠加方法 第四讲 广义单自由度分步方法 第五讲 多自由度系统动力问题 第六讲 特征值问题求解方法 第七讲 随机振动基础 第八讲 结构随机振动分析 第九讲 结构动力可靠性分析 第十讲 桥梁车辆振动作用 第十一讲 桥梁地震振动作用 第十二讲 桥梁风致振动作用
阻尼比计算:
2πξω vn = exp vn +1 ωD
Hale Waihona Puke 两边取对数: δ ≡ ln vn = 2πξ ≈ 2πξ = c
ξ≈
vn +1 1−ξ v n − v n +1
2mf
2πv n +1
ξ≈
vn − vn+m 2mπv n + m
振幅衰减值:振幅减小50%的振动次数
1. 1结构重力影响(续)
&&(t ) + cv &(t ) + k∆ st + kv (t ) = p (t ) + W mv
∵ k∆ st = W ∴ ∵ ∴
&&(t ) + cv &(t ) + kv (t ) = p (t ) mv
&&(t ) , v & (t ) &&(t ) = v ν &(t ) = v
A = 0,
B=− p0 β k 1 1 − β 2
无阻尼系统通解:
p v(t ) = 0 k 1 1 − β 2 (sin ω t − β sin ωt )
结构动力学-第一章
2019/9/16
38
2019/9/16
39
2019/9/16
40
2019/9/16
41
2019/9/16
42
2019/9/16
43
三. 自由度的确定
广义坐标法:广义坐标个数即为自由度个数; 有限元法:独立结点位移数即为自由度数; 集中质量法:独立质量位移数即为自由度数;
11
l3 3EI
柔度系数
my(t) 3 EI l3y( Nhomakorabea)
P(t)
2019/9/16
柔度法步骤: 1.在质量上沿位移正向加惯性力; 2.求外力和惯性力引起的位移; 3.令该位移等于体系位移。
49
二、刚度法
P(t)
m
1
my(t)
y(t)
l EI
y
k11
k11 y(t )
k11y(t) P(t) my(t)
变分法(Hamilton原理)以及lagrange等。
我们这节课主要介绍达朗泊尔原理建立的动力学微分方程,用能量法建立 微分方程的方法在以后的章节中介绍。
达朗泊尔原理
质点系运动的任意瞬时,除了实际作用于每个质点的主动力和约束反力外, 在加上假象的惯性力,则在该瞬时质点系处于假象的平衡状态。
m P(t) my(t)
结构动力学
2019/9/16
1/
思考问题
1,结构动力学和静力学的区别和联系在哪里?
运动方程为:
m y(t) c y(t) k y(t) p(t)
静力学方程为:
k y p
201所9/9/以16 两者的区别在于:动力学问题多了惯性力项以及由运动产生的阻尼力。 2
有限元法及其应用 pdf
有限元法及其应用 pdf标题:有限元法及其应用引言概述:有限元法是一种数值分析方法,广泛应用于工程领域。
本文将介绍有限元法的基本原理和应用领域,并详细阐述其在结构分析、流体力学、热传导、电磁场和生物力学等方面的具体应用。
正文内容:1. 结构分析1.1 结构力学基础1.1.1 杆件和梁的有限元分析1.1.2 平面和空间框架的有限元分析1.1.3 壳体和板的有限元分析1.2 结构动力学分析1.2.1 振动问题的有限元分析1.2.2 地震响应分析1.2.3 结构非线性分析2. 流体力学2.1 流体流动的有限元分析2.1.1 稳态流动问题的有限元分析2.1.2 非稳态流动问题的有限元分析2.1.3 多相流动问题的有限元分析2.2 流体结构耦合分析2.2.1 气动力和结构响应的有限元分析2.2.2 液固耦合问题的有限元分析2.2.3 流体流动与热传导的有限元分析3. 热传导3.1 热传导方程的有限元分析3.1.1 稳态热传导问题的有限元分析3.1.2 非稳态热传导问题的有限元分析3.1.3 辐射传热问题的有限元分析3.2 热结构耦合分析3.2.1 热应力分析3.2.2 热变形分析3.2.3 热疲劳分析4. 电磁场4.1 静电场和静磁场的有限元分析4.1.1 静电场的有限元分析4.1.2 静磁场的有限元分析4.2 电磁场的有限元分析4.2.1 电磁场的有限元分析方法4.2.2 电磁场与结构的耦合分析4.2.3 电磁场与流体的耦合分析5. 生物力学5.1 生物组织的有限元分析5.1.1 骨骼系统的有限元分析5.1.2 软组织的有限元分析5.1.3 生物材料的有限元分析5.2 生物力学仿真5.2.1 运动学分析5.2.2 力学分析5.2.3 生物仿真与设计总结:有限元法是一种广泛应用于工程领域的数值分析方法。
本文从结构分析、流体力学、热传导、电磁场和生物力学五个大点详细阐述了有限元法的应用。
通过对各个领域的具体应用介绍,我们可以看到有限元法在工程领域中的重要性和广泛性。
结构动力学第二版教学设计
结构动力学第二版教学设计一、教学目标本课程是结构工程专业中的重要专业课程之一,旨在培养学生具备结构动力学相关知识,能够独立完成复杂结构的动力学计算和分析。
本次教学目标包括:1.掌握结构的动力学分析方法和原理;2.熟悉结构的扭转、悬链线、弹性振动等动力学特性;3.学会运用结构动力学软件计算单自由度和多自由度结构的响应。
二、教学内容1. 动力学基础1.1 动力学的概念和分类;1.2 单自由度和多自由度动力学系统的基本特征;1.3 低阶和高阶模态及其特点;1.4 等效线性化方法和时间积分法。
2. 结构的扭转、悬链线、弹性振动2.1 扭转振动的分析方法;2.2 悬链线振动的分析方法;2.3 弹性振动的分析方法。
3. 结构动力学软件3.1 常用的结构动力学软件及其功能;3.2 单自由度和多自由度结构的响应计算实例。
三、教学方法授课采用理论讲解、实例分析、结构动力学软件实验和课堂互动等多种教学方法。
其中,对于动力学基础部分的讲解,将结合实例演示,以帮助学生更加直观地理解和掌握基本概念和特征;对于结构动力学软件部分,将设置针对性课程实验,让学生有机会通过实际操作掌握软件使用方法。
此外,教师将对学生提出的问题和难点进行解答和剖析,以巩固学生对知识点的掌握和理解。
四、教学评估为了确保教学效果,本课程将设置期中考试和期末考试两个考核环节。
其中期中考试占总评成绩的30%,主要考核基础知识理解和运用能力;期末考试占总评成绩的70%,主要考核学生对于整个课程的综合理解和能力掌握情况。
此外,课程还将设置结构动力学软件实验环节,并对学生实验成绩进行评估,用于辅助考核。
五、教学资源为了让学生更好地理解结构动力学知识和方法,教材采用了结构动力学相关领域内公认的经典教材《结构动力学(第二版)》;课程还将设置相关结构动力学软件实验,以便学生更好地掌握软件的运用方法。
六、教学进度本课程为64学时的专业课程,具体教学进度安排如下:教学单元学时数动力学基础16扭转、悬链线、弹性振动24结构动力学软件16课堂练习和实验8合计64学时七、总结通过本次结构动力学的教学,学生将能够全面掌握结构动力学相关的基础知识、分析方法和软件工具的使用,为将来从事结构工程实践打下深厚的基础。
结构动力学习题解答(一二章)
第一章 单自由度系统1。
1 总结求单自由度系统固有频率的方法和步骤。
单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。
1、 牛顿第二定律法适用范围:所有的单自由度系统的振动。
解题步骤:(1) 对系统进行受力分析,得到系统所受的合力;(2) 利用牛顿第二定律∑=F x m,得到系统的运动微分方程;(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率.2、 动量距定理法适用范围:绕定轴转动的单自由度系统的振动。
解题步骤:(1) 对系统进行受力分析和动量距分析;(2) 利用动量距定理J ∑=M θ,得到系统的运动微分方程;(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
3、 拉格朗日方程法:适用范围:所有的单自由度系统的振动.解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T —U ; (2)由格朗日方程θθ∂∂-∂∂∂LL dt )( =0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
4、 能量守恒定理法适用范围:所有无阻尼的单自由度保守系统的振动。
解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即0)(=+dtU T d ,进一步得到系统的运动微分方程;(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤.用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。
方法一:衰减曲线法.求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值i A 、1+i A .(2)由对数衰减率定义 )ln(1+=i iA A δ, 进一步推导有 212ζπζδ-=,因为ζ较小, 所以有πδζ2=。
最新克拉夫《结构动力学》习题答案汇总
第二章自由振动分析2-1(a )由例2 2W Tgk22()W K Tg 因此max()()D t kT 其中k=0、1、2……T D =0.64sec如果很小,T D =T222200()49.9/0.64sec 386/sec kips k kips inin 50/k kips in(b )211ln ln n n v v v v 222121()11.2ln0.3330.86210.05292()10.33320.053025.3%(a ’)21D2T21D TT 249.950/1kkips in(c)2c mW mg2T4cTg21D T T 241WcTg2240.05292000.64sec 386/sec 10.0529kipsc in 0.539sec/ckips inT=T D 0.538sec/ckips in 0.54sec/ckips in2-22k m40 4.472(1/sec )(0)(0)()sin(0)costDDDv v t et v t(0)(0)()sin(0)(0)(0))costDDDv v t et v v v t22(0)(0)()(0)cossinDtDDDv v t ev tt21D()(0)cos(0)(0)sintDDDt ev t v v t2(0)(0)()(0)c o s s i n1tD D v v t ev tt 0.055922(2)(4.47)c c cm(a) c=00D5.6(1)sin 4.470.7cos4.47 1.384.47v t in(1) 5.6cos 4.47 4.47(0.7)sin 4.47 1.69/secv t in (1) 1.4v in ,(1) 1.7/secv in (b) c=2.80.0559(2.8)0.15724.4710.1574.41D(1/sec )(0.157)(4.41)5.60.7(0.157)(4.47)(1)sin 4.410.7cos 4.414.41t e(1)0.764t in(0.157)(4.41)20.157(5.6) 4.41(0.7)(1) 5.6cos 4.41sin 4.4110.157t e (1) 1.10/sect in (1)0.76v in ,(1) 1.1/secv in 第三章谐振荷载反应3-1根据公式有21sin sin 1R t wt wt0.8w w2.778sin 0.8sin1.25R twt wt将t 以80°为增量计算)(t R 并绘制曲线如下:0 80°160°240°320°400°480°560°640°720°800°00.5471.71 -0.481 -3.214 0.357 4.33-0.19 -4.9244.9241.25w wt)(t R3-2解:由题意得:22mkips s in ,20kkips in ,(0)(0)0v v ,w w20 3.162sec2k w rad m8wt(a )0c1sin cos 2R twt wt wt将8wt 代入上式得:()412.566R t (b )0.5ck s in0.50.0395222 3.162cc c c mw1exp1cos exp sin 2R twtwtwt wt将8wt 代入上式得:()7.967R t (c ) 2.0ck s in2.00.158222 3.162cc c c mw1exp1cos exp sin 2R twtwtwt wt将8wt 代入上式得:() 3.105R t 3-3解:(a ):依据共振条件可知:1003860.0810.983sec4000k kg wwrad m W由2LTVw 得:10.9833662.96022wL V ft s(b ):122max2221212tgovv 1w w 0.41.2gov in 代入公式可得:max1.921tv in(c ):2L T Vw45m i n 66Vhf t s226611.51336V wrad secL11.513 1.04810.983w w0.4代入数据得:122max22212=1.85512t govv in3-4解:按照实际情况,当设计一个隔振系统时,将使其在高于临界频率比2下运行,在这种情况下,隔振体系可能有小的阻尼。
飞行器结构动力学
第1章 概 论
第1章 概 论
1.6 振动的频谱
第1章 概 论
1.6 振动的频谱
在数学上,周期函数可展为傅里叶三角级数,设
x(t)=x(t+kT), k为整数,并令 1 2 / T , 则有
x(t) a0 (an cos n1t bn sin n1t) (1-8) n1
z Ae j(ωt) Ae jt
第1章 概 论
(1-4)
1.5 振动的表示方法
用复振动表示简谐过程,使许多振动问题的分析或运 算得到简化,如用复振动表示的简谐振动的位移 、速
度 v(t)及加速度 a(t)之间的关系为
x(t) X e jωt
(1-5)
v(t)
dx dt
jωXe jωt
第1章 概 论
1.1 飞行器结构动力学的目的与任务
其他问题 飞行器结构与其他系 统的动力学耦合问题( 如飞行器结构与推进系 统耦合产生的 POGO 问题);保证飞行器乘 员舒适性的问题;液体 燃料火箭的燃油晃动问 题等。
第1章 概 论
1.1 飞行器结构动力学的目的与任务
分为以下四方面的基本课题:
第1章 概 论
第1章 概 论
1.4 振动的类型
第1章 概 论
1.4 振动的类型
振动过程是指振动位移、速度、加速度、力和应变等 机械量随时间的变化历程。对振动过程,按不同的标准 有多种分类方法。
a.
第1章 概 论
1.4 振动的类型
b.
第1章 概 论
1.4 振动的类型
c.
第1章 概 论
第1章 概 论
1.1 飞行器结构动力学的目的与任务
结构动力学课件
矩阵M和K两边相乘的是同一个振型向量φi时, 它们的乘 积等于一个数:
Mi Mi
Mi 称为广义质量. Ki 称为广义刚度.
i Ki Ki
T
返回目录
自测题
一、判断题
1. 动力荷载对结构的影响不仅随时间而变化,而 且使结构产生不容忽视的惯性力。( √ ) 2. 动力位移总是要比静力位移大一些。( ╳ ) 3. 多自由度体系, 刚度系数与柔度系数的关系是: kij=1/δij 。 ( ╳) 4. 图示体系作动力计算时,若不计轴向变形影响则为 m 单自由度体系。( ╳ )
F F
t 1
自测题
三、考研题选解
1. 在动力计算中,图a、b所示体系的动力自由度分 别为:( A )(4分)(西南交通大学1997年)
A. 1,4
(a)
B. 2,3
(b)
C. 2,2
(c)
D.3,4
(d) (d)
(a)
(b)
(c)
提示:用附加链杆法分析,附加链杆分别如图 c、d, 有几个附加链杆,就有几个自由度。
4. 建立运动方程的方法
基本方法是惯性力法,即在体系的各运动质点上加入惯性力并认 为各质点处于瞬时的平衡状态,采用静力学方法列出运动方程。 y ,速 注意,通常取静平衡位置为位移 y的坐标原点,位移 度 、加速度 y 的正方向取为一致。 y
(1)刚度法
FI (t ) Fc (t ) Fe (t ) Fp (t ) 0 (t ) cy (t ) k11 y(t ) Fp (t ) m y
X (1) X (2) X X (n)
1 X (2) X (1) X ( n ) X ( 1 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t
All Rights Reserved
School of Civil Engineering®
3).The strain is different
FP
FP (t)
M
All Rights Reserved School of Civil Engineering®
m (a) P (d) P(t)
u3 (b) u 1
u2
u6
u5 u4 (e) u 1
u2
u4 u3
u2 (c)
u3 u1 (f) u1
All Rights Reserved
School of Civil Engineering®
2). Concern about the process, not only the position
Bridge(USA)
Bridge(Russian)
All Rights Reserved
School of Civil Engineering®
2) . Buildings
Multistory masonry buildings Reinforced concrete workshop
The Tangshan Earthquake occurred July 28, 1976. It is the largest earthquake of the 20th century by death toll (around 240,000 to 255,000). Its magnitude is 7.8.
识别值
Ansys 4 6 8
节点号
节点号
4). Damage detection
Amount New-build Reinforce Rebuild
Time
1980-2010 2010-2030 2030-
4). Damage detection model-drived method
Measured value Parameters:E、 A、I and K Object function
Systems with many degree of freedom • Modelling and equation of motion • Modal analysis and Forced oscillations • response spectrum method and time-history analysis Continuous systems • Modelling and equation of motion • Free vibrations
M
4). Dynamic loading will cause fatigue damage
All Rights Reserved
School of Civil Engineering®
5) . Material performance will change under dynamic The rate of loading influences the stiffness and resistance characteristic of materials.
All Rights Reserved School of Civil Engineering®
5 Reference
《结构动力学》(美)R.克拉夫,J.彭津,王光远等译,高等教 育出版社 《 结 构 动 力 学 - 理 论 及 其 在 地 震 工 程 中 的 应 用 》( 美 ) Chopra,A.K,谢礼立、吕大刚译,清华大学出版社 Dynamics of structures,(加拿大) Jagmohan L. Humar
除上款的建筑结构,宜采用振型分解反应谱法;
特别不规则建筑、甲类建筑和表5.1.2-1所列高度范围的 高层建筑,应采用时程分析法进行多遇地震作用下的补 充计算;
2). Vibration Control:
2). Vibration Control:
Base isolation Without base isolation
All Rights Reserved School of Civil Engineering®
The Wenchuan earthquake
2). Buildings
The 911 terrorist attacks
All Rights Reserved School of Civil Engineering®
All Rights Reserved
School of Civil Engineering®
2. Application of Dynamics of Structures
1). Aseismic calculation 《建筑抗震设计规范》GB50011-2010 第5.1.2条 各类结构的抗震计算,应采用下列方法: 高度不超过40m,以剪切变形为主且质量和刚度沿高度 分布比较均匀的结构,以及近似于单质点体系的结构, 可用底部剪力法等简化方法;
3). Drill platform
All Rights Reserved
School of Civil Engineering®
4). pipe
The hydrodynamic pressure introduced by opening and closing valves will cause the pipe vibration.
For example, the compressive strength of concrete can increase by
close to 30% for strain rates of 0.05/s, which is typical of the rates
induced in a structure by earthquake loading.
All Rights Reserved School of Civil Engineering®
1. Why we need Dynamics of Structures
1). Bridges
Collapse of Tacoma Narrows
Over-vibration of Volgograd
第1阶振型
1 0.8
第2阶振型
1 0
识别值
Ansys
识别值
Ansys
振型值
振型值
0
0.6 0.4 0.2 0 2 4 6
-1 -2 -3
0
2
4
6
8
节点号
节点号
第6阶振型
1.5 1
第7阶振型
识别值
Ansys
1 0.5
振型值
振型值
0.5 0 -0.5 -1 0 2 4 6 8
0 -0.5 -1 -1.5 0 2
All Rights Reserved School of Civil Engineering®
2). Buildings
the Great Hanshin Awaji Earthquake collapsed 5 storey in1995
Chi Chi earthquake in Taiwan Temple Chile earthquake
• Dynamic loading: any load of which its magnitude, direction, and/or position varies with time.
•
Vibration: mechanical oscillations about an equilibrium point.
Chapter 1 Introduction
§1-1. Objective of the course (课程目的)
To study methods for analyzing the stresses and defections developed in any given type of structure under an arbitrary dynamic loading.
RD
0.5
0
-0.5
g eddin Emb
0 0.5 1 1.5 2 2.5
Statistical analysis
-1
3. Difference between dynamic and static
1). The way to compute the DOF number is different
40
20
...
0Байду номын сангаас5
1
1.5
2
2.5
20
40
60
80
0
0. 2
0. 4
0. 6
0. 8
1. 6
1. 8 x 10
2
4
Structural response
RD
0.5
Baseline condition
RD
Segment 1 Segment 2
0
0
-0.5 1.5 -1 1
ed Emb
0 0.5 1 1.5 2
ding
2.5
0.5
Emb ed
0
ding
80
...
1 1. 2 1. 4
-0.5
Segment k
-1 1.5 0 1
60
40
20
...
0.5
1
1.5
2
2.5
20
40
60
80