我的数学选讲

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学史上的三次危机

经济上有危机,历史上数学也有三次危机。在数学发展的过程中, 人的认识是不断深化的. 在各个历史阶段,人的认识又有一定的局限性和相对性. 当一种“反常”现象用当时的数学理论解释不了,并且因此影响到数学的基础时,我们就说数学发生了危机. 许多人并不赞成使用危机这个词,因为它们并没有阻碍数学的发展.在历史上,数学曾发生过三次危机. 这三次危机,从产生到消除, 经历的时间各不相同, 都极大地推动了数学的发展,成为数学史上的佳话.

第一次数学危机——无理数的产生

第一次数学危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为l的正方形的对角线长度既不是整数,也不是整数的比所能表示。希伯索斯的发现被认为是“荒谬”和违反常识的事。它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。这场危机通过在几何学中引进不可通约量概念而得到解决。两个几何线段,如果存在一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。正方形的一边与对角线,就不存在能同时量尽它们的第三线段,因此它们是不可通约的。很显然,只要承认不可通约量的存在使几何量不再受整数的限制,所谓的数学危机也就不复存在了。不可通约量的研究开始于公元前4世纪的欧多克斯,其成果被欧几里得所吸收,部分被收人他的《几何原本》中。第一次数学危机对古希腊的数学观点有极大冲击。这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却可以由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。

第一次数学危机持续了两千多年. 十九世纪,数学家哈密顿(Hamilton) 、梅雷(Melay) 、代德金(Dedekind) 、海涅(Heine) 、波雷尔(Borel) 、康托尔(Cantor) 和维尔斯特拉斯(Weietstrass) 等正式研究了无理数,给出了无理数的严格定义,提出了一个含有有理数和无理数的新的数类———实数,并建立了完整的实数理论. 这样,就完全消除了第一次数学危机.

第二次数学危机——对无限的理解

第二次数学危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分

的理论基础问题,数学界出现混乱局面,即第二次数学危机。微积分的形成给数

学界带来革命性变化,在各个科学领域得到广泛应用,但微积分在理论上存在矛

盾的地方。无穷小量是微积分的基础概念之一。微积分的主要创始人牛顿在一些

典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为

零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾。焦点是:无穷小量是零还是非零?如果是零,怎么能用它做除数?如果不是零,又怎么能把包含着无穷小量的那些项去掉呢?直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,而且把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。

1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指向微积分的基础--无穷小的问题,提出了所谓贝克莱悖论。他指出:"牛顿在求xn的导数时,采取了先给x以增量0,应用二项式(x+0)n,从中减去xn以求得增量,并除以0以求出xn的增量与x的增量之比,然后又让0消逝,这样得出增量的最终比。这里牛顿做了违反矛盾律的手续──先设x有增量,又令增量为零,也即假设x没有增量。"他认为无穷小dx既等于零又不等于零,召之即来,挥之即去,这是荒谬,"dx为逝去量的灵魂"。无穷小量究竟是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论。导致了数学史上的第二次数学危机。

18世纪的数学思想的确是不严密的,直观的强调形式的计算而不管基础的可靠。其中特别是:没有清楚的无穷小概念,从而导数、微分、积分等概念也不清楚,无穷大概念不清楚,以及发散级数求和的任意性,符号的不严格使用,不考虑连续就进行微分,不考虑导数及积分的存在性以及函数可否展成幂级数等等。直到19世纪20年代,一些数学家才比较关注于微积分的严格基础。从波尔查诺、阿贝尔、柯西、狄里赫利等人的工作开始,到威尔斯特拉斯、戴德金和康托的工作结束,中间经历了半个多世纪,基本上解决了矛盾,为数学分析奠定了严格的基础。终于消除了贝克莱悖论, 把微积分建立在坚实的极限理论之上,从而结束了第二次数学危机.

第三次数学危机——数学的根基(罗素悖论)

数学史上的第三次危机,是由1897年的突然冲击而出现的,到现在,从整体来看,还没有解决到令人满意的程度。这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。由于集合概念已经渗透到众多的数学分支,并且实际上集合论成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。

1897年,福尔蒂揭示了集合论中的第一个悖论。两年后,康托发现了很相似的悖论。1902年,罗素又发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。罗素悖论曾被以多种形式通俗化。其中最著名的是罗素于1919年给出的,它涉及到某村理发师的困境。理发师宣布了这样一条原则:他给所有不给自己刮脸的人刮脸,并且,只给村里这样的人刮脸。当人们试图回答下列疑问时,就认识到了这种情况的悖论性质:"理发师是否自己给自己刮脸?"如果他不给自己刮脸,那么他按原则就该为自己刮脸;如果他给自己刮脸,那么他就不符合他的原则。罗素悖论使整个数学大厦动摇了。无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第2卷末尾写道:"一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了,当本书等待印出的时候,罗素先生的一封信把我置于这种境地"。于是终结了近12年的刻苦钻研。

德国数学家策梅罗(Zermelo ,1871 - 1953) 认为:适当的公理体系可以限制集合的概念,从逻辑上保证集合的纯粹性. 经策梅罗、费兰克尔(Frenkel) 冯. 诺伊曼等人的努力,形成了一个完整的集合论公理体系,称为ZFC 系统.在ZFC系统中,“集合”和“属于”是两个不加定义的原始概念,另外还有十条公理. ZFC 系统的建立,不仅消除了罗素悖论,而且消除了集合论中的其它悖论. 第三次数学危机也随之销声匿迹了纵观三次数学危机, 每次都有一两个典型的悖论作为代表. 克服了这些悖论,也就推动了数学的长足发展.

结束语:

经历过历史上三次数学危机的数学界, 是否从此就与数学危机“绝缘”了呢?不!对此, 我国当代著名数学家徐利治教授说了一段很有见地的话,他说:“由于人的认识在各个历史阶段中的局限性和相对性, 在人类认识的各个历史阶段所形成的各个理论系统中, 本来就具有产生悖论的可能性,但在人类认识世界的深化过程中同样具备排除悖论的可能性和现实性, 人类认识世界的深化没有终结,悖论的产生和排除也没有终结。危机也意味着挑战,危机的解决就意味着进步。所以,危机往往是数学发展的先导。数学发展史上有三次数学危机。每一次数学危机,都是数学的基本部分受到质疑。实际上,也恰恰是这三次危机,引发了数学上的三次思想解放,大大推动了数学科学的发展。

相关文档
最新文档