连续梁支架midas计算书
midas曲梁计算书
上部结构纵向计算A匝道A0~A4联4X30m(8.8m宽)计算依据及标准如下:设计方提供的初步设计图纸及设计原则《公路工程技术标准》JTG B01—2003《公路桥涵设计通用规范》JTG D60—2004《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG 025—86注:在设计方提供的施工图图纸中,该联中支点A1~A3处支座均为固定支座,经程序试算后应力及内力结果都与目标结果相差很远,也不符合一般连续梁支座常规布置形式,经调试支座布置形式后,建立此模型。
(一)主梁纵向计算1、计算内容根据设计方提供的主梁结构和预应力钢筋的设计图,按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)的要求,对结构持久状况截面极限承载能力、正常使用极限状态的截面抗裂、挠度以及使用阶段构件的应力等内容进行了全面的验算。
2、计算模型纵向计算按杆系理论,采用midas civil 2006进行分析,将箱梁纵向作为平面梁单元进行离散;并考虑支座布置及荷载横向分配等因素,考虑满堂支架上现浇、张拉等施工过程。
1)离散模型计算模型结构离散图见下图所示,共78个节点,70个单元。
图10.4.1-1 结构离散图2)材料混凝土:主梁采用C50混凝土,弹性模量E=3.45×104MPa,fck=32.4MPa,ftk=2.65 MPa,fcd=22.4 MPa,ftd=1.83 MPa。
普通钢筋:HRB335预应力钢束:采用Φj15.24钢绞线,弹性模量195000MPa,张拉控制应力0.75fpk=0.75×1860=1395MPa,松弛比0.035,孔道摩阻系数0.3,偏差系数0.0015,一端锚具回缩6mm。
3、计算参数1)恒载一期恒载:按构件实际截面计入,混凝土容重γ=26.25KN/m3(考虑5%的施工误差);二期恒载(公路桥面桥面系):沥青混凝土铺装厚度18cm,容重γ=25KN/m3,行车道宽8m;地袱栏杆每侧:单条每延米12.5KN/m;则:∑q=0.18X8x25+2x12.5=61KN/m横隔板:(厚50cm)Pt1::6.8KN支座沉陷:按5mm考虑。
midas计算预应力连续刚构桥梁工程课程设计
预应力混凝土连续刚构桥结构设计书1.结构总体布置本部分结构设计所取计算模型为三跨变截面连续箱梁桥,根据设计要求确定桥梁的分孔,主跨长度为80m,取边跨46m,边主跨之比为0.575。
设计该桥为三跨的预应力混凝土连续梁桥(46m+80m+460m),桥梁全长为172m。
大桥桥面采用双幅分离式桥面,单幅桥面净宽20m (4X3.75行车道+1m左侧路肩+3.0m右侧路肩人行道+2X0.5m防撞护栏),两幅桥面之间的距离为1m,按高速公路设计,行程速度100Km/h。
桥墩采用单墩,断面为长方形,长14米,宽3.5米,高25米。
上部结构桥面和下部结构桥墩均采用C50混凝土,预应力钢束采用Strand1860钢材。
桥梁基本数据如下:桥梁类型 : 三跨预应力箱型连续梁桥(FCM)桥梁长度 : L =46 + 80 + 46 = 172 m桥梁宽度 : B = 20 m (单向4车道)斜交角度 : 90˚(正桥)桥梁正视图桥梁轴测图2.箱梁设计主桥箱梁设计为单箱单室断面,箱梁顶板宽20m,底板宽14m,支点处梁高为h支= (1/15 ~ 1/18)L中= 4.44 ~5.33m,取h支=5.0m,高跨比为1/16,跨中梁高为h中= (1/1.5~1/2.5) h 支= 2~ 3.33m,取h中=2.30m,其间梁底下缘按二次抛物线曲线变化。
箱梁顶板厚为27.5cm。
底板厚根部为54cm,跨中为27cm,其间分段按直线变化,边跨支点处为80cm,腹板厚度为80cm 具体尺寸如下图所示:箱梁断面图连续梁由两个托架浇筑的墩顶0号梁段、在两个主墩上按“T构”用挂篮分段对称悬臂浇筑的梁端、吊架上浇筑的跨中合拢梁段及落地支架上浇筑的边跨现浇梁段组成, 0号梁段长2m ,两个“T构”的悬臂各分为9段梁段,累计悬臂总长38m 。
全桥共有一个2m 长的主跨跨中合拢梁段和两个2m 长的边跨合拢梁段。
两个边跨现浇梁段各长4m ,梁高相同。
迈达斯(midas)计算
迈达斯(midas)计算潇湘路连续梁门洞调整后⽀架计算书1概述原《潇湘路(32+48+32)m连续梁施⼯⽅案》中,门洞条形基础中⼼间距为7.5⽶,现根据征迁⼈员反映,为满⾜门洞内机动车辆通⾏需求,需将条形基础中⼼间距调整⾄8.5⽶。
现对门洞结构体系进⾏计算,调整后门洞横断⾯如图1-1所⽰。
图1-1调整后门洞横断⾯图门洞纵断⾯不作改变如图1-2所⽰。
图1-2门洞总断⾯图门洞从上⾄下依次是:I40⼯字钢、双拼I40⼯字钢、Ф426*6钢管(内部灌C20素混凝⼟),各结构构件纵向布置均与原⽅案相同。
2主要材料⼒学性能(1)钢材为Q235钢,其主要⼒学性能取值如下:抗拉、抗压、抗弯强度:[ =125MpaQ235:[σ]=215Mpa, ](2)混凝⼟采⽤C35混凝⼟,其主要⼒学性能取值如下:弹性模量:E=3.15×104N/mm2。
抗压强度设计值:f c=14.3N/mm2抗拉强度设计值:f t=1.43N/mm2(3)承台主筋采⽤HRB400级螺纹钢筋,其主要⼒学性能如下:抗拉强度设计值:f y=360N/mm2。
(4)箍筋采⽤HPB300级钢筋,其主要⼒学性能如下:抗拉强度设计值:f y=270N/mm23门洞结构计算3.1midas整体建模及荷载施加Midas整体模型如图3.1-1所⽰。
图3.1-1MIDAS整体模型图midas荷载加载横断⾯图如图3.1-2所⽰。
3.1-2荷载加载横断⾯图荷载加载纵断⾯如图3.1-3所⽰。
图3.1-3荷载加载纵断⾯图3.2整体受⼒分析整体模型受⼒分析如图5.2-1~5.2-3所⽰。
图5.2-1门洞整体位移等值线图5.2-2门洞整体组合应⼒云图图5.2-3门洞整体剪应⼒云图由模型分析可得,模型最⼤位移D=3.2mm<[l/600]=14.1mm,组⼤组合应⼒σ=144.2Mpa<[σ]=215Mpa,最⼤剪应⼒σ=21.6Mpa<[σ]=125Mpa 门洞整体强度、刚度均满⾜要求。
midas支架计算说明
模型计算简要说明
1.模型参数选取
模板支架高度为4.7m,立杆横距为0.6m,纵距为0.9m,立杆竖向步距为1.2m,顶板模板支撑小梁采用10×10cm方木,间距20cm;主梁采用48*3.5钢管支撑,模板采用1.5cm竹胶板。
支架宽度范围为12m,高4.7m,为简化计算,纵向取9m分析。
本模型为考虑剪刀撑,属于偏安全验算。
计算荷载钢筋混凝土容重为26KN/m3,厚度为1m,考虑各种不利因素及结构安全系数,放大系数取1.4。
施加均布荷载: q=26×1×1.4=36.4 KN/m2
计算模型
模型荷载添加立面图
2、模型计算结果如下
(1)支架底部反力
从计算结果可以看出,最小反力为5.1KN,最大反力为19.8KN。
(2)支架应力
中间一排支架应力
应力计算结果
从应力云图上可以看出,支架最大压应力为44Mpa,拉应力仅为5.2 Mpa,小于钢管支架的容许压应力205 Mpa。
midas连续梁计算书
第1章 89#~92#预应力砼连续梁桥1.1结构设计简述本桥为27+27+25.94现浇连续箱梁,断面型式为弧形边腹板大悬臂断面,根据道路总体布置要求,主梁上下行为整体断面,变宽度32.713m -35m,单箱5室结构变截面。
箱梁顶板厚度为0.22m,底板厚度0.2m;支点范围腹板厚度0.7m,跨中范围腹板厚度0.4m。
主梁单侧悬臂长度为4.85m,箱梁悬臂端部厚度为0.2m,悬臂沿弧线一直延伸至主梁底板。
主梁两侧悬臂设置0.1m后浇带,与防撞护栏同期进行浇筑。
本桥平、立面构造及断面形式如图11.1.1和图11.1.2所示。
图11.1.1 箱梁构造图图11.1.2 箱梁断面图纵向预应力采用φs15.2高强度低松弛钢绞线(Ⅱ级)(GB/T5224-1995),标准强度f=1860MPa。
中支点断面钢束布置如图11.1.3所示。
pk图11.1.3 中支点断面钢束布置图主要断面预应力钢束数量如下表墩横梁预应力采用采用φs15-19,单向张拉,如下图。
1.2主要材料1.2.1主要材料类型(1) 混凝土:主梁采用C50砼;(2) 普通钢筋:R235、HRB335钢筋;(3) 预应力体系:采用φs15.2高强度低松弛钢绞线(Ⅱ级)(GB/T5224-1995),标准强度f=1860MPa;预应力锚具采用符合GB/T14370-2002《预应力筋锚具、pk夹具和连接器》中Ⅰ类要求的优质锚具;波纹管采用符合JT/T529-2004标准的塑料波纹管。
1.2.2主要材料用量指标本桥上部结构主要材料用量指标如表11.2.2-1所示,表中材料指标均为每平米桥面的用量。
表11.2.2-1 上部结构主要材料指标1.3 结构计算分析1.3.1 计算模型结构计算模型如下图所示。
图11.3.1-1 结构模型图有效分布宽度0.50.60.70.80.912.255.49.0612.916.819.523.22730.834.337.140.94447.551.155.158.662.565.168.972.776.179.4坐标Iyy 系数图11.3.1-2 箱梁抗弯刚度折减系数示意图1.3.2 支座反力计算本桥各桥墩均设三支座。
连续梁支架计算书
支架受力检算一、荷载计算1、施工动荷载(1)施工人员、机械:Q1=2.0KN/m2(2)混凝土振捣器:Q2=2.0KN/m22、静荷载计算(1)模板、施工人员等:Q3=2.0KN/m2(2)方木自重:Q4=2.0KN/m2(3)支架系统自重:①支架立杆间距为0.6m×0.6m,横杆步距0.6m:每平米立杆根数:n1=1/(0.6×0.6)=2.8根/ m2立杆自重:(h=8m):8×3.86kg/m×2.8×9.8÷1000=0.85KN/m2横杆自重:(8÷0.6×0.6×2×3.86kg/m)×2.8×9.8÷1000=1.694KN/m2(4)箱梁砼重:A-A处横断面积为:S1=10.535m2则每平米砼重: N1=(10.535m2×2.6T/m3×1m)÷(6.7m×1m)×9.8=40.06KN/m2B-B处横断面积为:S2=21.115m2则每平米砼重: N2=(21.115m2×2.6T/m3×1m)÷(6.7m×1m)×9.8=80.3KN/m2连续梁箱梁截面图:A-A截面B-B截面二、底层纵向方木(14×12cm)验算:顶托上面横向分布14cm×12cm 方木,布置间距35cm,计算模型为简支梁。
1、A-A截面:(计算跨径按60cm计)Q=(Q1+Q2+Q3+Q4+N1)×1.2×0.35=(2+2+2+2+40.06)×1.2×0.35=20.185kN/mW (弯曲截面系数)= bh2/6 = 14×122/6 =336.0cm3由梁正应力计算公式得:σ = QL2/ 8W =20.185×0.62×106/ (8×336.0×103)=2.7Mpa <[σ]= 13Mpa (木材容许正应力)强度满足要求。
基于midas软件的连续箱梁挂蓝计算书模板
精心整理连续箱梁挂蓝计算书(midas)一、工程简介主桥上部结构为32+68+32m三跨预应力混凝土连续箱梁,梁体自重γ取26kN/m3,跨端支座处、边垮直线段和跨中处梁高为2.8m,中支点处梁高为3.4m,梁高按圆曲线变化,圆曲线半径R=367.80m,顶板厚34cm,腹板厚分别为40cm和70cm,底板厚度由跨中的30cm按圆曲线变化至中点梁根部的60cm,中点处加厚到110cm。
节段主要参数如下表所示:90.01、结构受力分析根据悬灌梁段的实际情况,挂篮分以下三种工况进行受力检算:(1)、工况一:1#梁段施工时连体挂篮的强度检算;(2)、工况二:2#梁段施工时挂篮的强度检算(2)、工况三:挂篮挠度验算;(3)、工况四:挂篮走行时抗倾覆计算。
2、作用于挂篮的主要荷载参考《路桥施工计算手册》箱梁荷载取值如下:荷载集中(KN) 梁单元(KN) 楼板(KN) 压力(KN) 自重(KN) 合计(KN)底模混凝土0.00E+00 -5.34E+01 0.00E+00 0.00E+00 0.00E+00 -5.34E+01(1)、浇注箱梁的重量同时考虑动力系数1.2、胀模超载系数1.05;混凝土重量分底板、翼板、顶板混凝土考虑。
底板混凝土重量加载在底纵梁上;翼板混凝土重量加载在外滑梁上;顶板混凝土重量加载在内滑梁上。
输入荷载如下表:(2(3按实际(5(63(1(2(3四、1#2#?6六、1、挂篮内力图强度变形验算轴力图强度变形验算弯矩图强度变形验算剪力图走行时轴力图走行时弯矩图走行时剪力图2.挂篮主要杆件内力计算成果汇总表:杆件名称规格型号荷载组合最大弯距(KN*M)最小弯距(KN*M)轴力(KN) 剪力(KN)内模混凝土0.00E+00 -3.51E+01 0.00E+00 0.00E+00 0.00E+00 -3.51E+01 外模混凝土0.00E+00 -1.81E+01 0.00E+00 0.00E+00 0.00E+00 -1.81E+01输出荷载统计集中(KN) 梁单元(KN) 楼板(KN) 压力(KN) 自重(KN) 合计(KN)0.00E+00 -1.07E+02 0.00E+00 0.00E+00 0.00E+00 -1.07E+02主桁前横梁2I40a 组合一111.2 -192.87 214.17 主桁纵梁2[32 组合一8.77 -49.93 -580.07 84.23 主桁立柱2[32 组合一-784.54斜拉带2[32 组合一697.86后锚杆φ32 组合一214.94吊杆φ32 组合一159.253(1因为:(2)斜拉带斜拉带采用[]32a,主要受轴力,正应力验算:斜拉带在穿孔处验算,钢销采用20CrMnTi,直径为100mm验算。
连续梁支架midas计算书
11 1#、4#墩桩基偏压检算 .......................................................................................... 29 12 结论 .................................................................................................................... 32
2 计算依据
(1) 《公路桥涵施工技术规范》 (JTGT F50-2011) ; (2) 《公路桥涵设计通用规范》 (JTJ021-04) ; (3) 《混凝土结构设计规范》 (GB50010-2010) ; (4) 《建筑施工碗扣式脚手架安全技术规范》 (JGJ 166-2008) ; (5) 《钢结构设计规范》 (GB 50017-2003) ; (6) 《木结构设计规范》 (GB50005-2003) (7) 《建筑施工模板安全技术规范》 (JGJ162-2008) ; (8) 《建筑地基基础设计规范》 (GB50007-2011) (9) 《公路桥涵地基与基础设计规范》 (JTG D63-2007) (10) 《装配式公路钢桥制造》 (JT/T728-2008) (11) 《装配式公路钢桥多用途使用手册》
XX 大道 XX 线 现浇连续梁支架计算书
1 工程概况
XX 大道 XX 线 XX 桥位于 XX 镇与 XX 镇交界处,全桥孔跨布置为 1× 25+(33+56+33)+1 × 25 预 应 力砼 简支 箱 梁和预 应 力砼 现 浇箱 梁, 起点 桩 号 K10+311,终点桩号 K10+491,桥梁全长 180 米,桥宽 80 米,横向布置为分离 式四幅,每幅宽 20m,桥梁与道路正交,设计纵坡 1.5%,桥面横坡为双向 1.5%。 主桥为 33+56+33 连续梁,横跨 XX 河,主墩基础为Φ1800 桩承台基础,桥 墩为拱形 3 柱式墩,设计桩长 18m,墩高 10.78m~13.00m。上部结构为变截面 预应力混凝连续箱梁, 每幅箱梁为单箱四室结构, 箱梁顶宽 20m, 底宽 14.985m, 腹板厚度 70cm、45cm,中间 5m 范围内过渡,主墩处梁高 6m,跨中及边墩处梁 高 1.7m,成 3 次抛物线过渡,底板厚度由 70cm 按三次抛物线变化至跨中 24cm, 单幅现浇 C50 砼 2900m³。 地质情况:主桥跨 XX 河,河床砂卵石覆盖层较薄 30~50cm,砂卵石以下约 2.5m 厚强风化砂岩,承载力 300kPa;强风化砂岩以下为中风化砂岩,承载力 700kPa。
midas_连续梁计算书
第1章89#~92#预应力砼连续梁桥1.1结构设计简述本桥为27+27+25.94现浇连续箱梁,断面型式为弧形边腹板大悬臂断面,根据道路总体布置要求,主梁上下行为整体断面,变宽度32.713m -35m,单箱5室结构变截面。
箱梁顶板厚度为0.22m,底板厚度0.2m;支点范围腹板厚度0.7m,跨中范围腹板厚度0.4m。
主梁单侧悬臂长度为 4.85m,箱梁悬臂端部厚度为0.2m,悬臂沿弧线一直延伸至主梁底板。
主梁两侧悬臂设置0.1m后浇带,与防撞护栏同期进行浇筑。
本桥平、立面构造及断面形式如图11.1.1和图11.1.2所示。
图11.1.1 箱梁构造图图11.1.2 箱梁断面图纵向预应力采用φs15.2高强度低松弛钢绞线(Ⅱ级)(GB/T5224-1995),标准强f=1860MPa。
中支点断面钢束布置如图11.1.3所示。
度pk图11.1.3 中支点断面钢束布置图主要断面预应力钢束数量如下表墩横梁预应力采用采用φs15-19,单向张拉,如下图。
1.2主要材料1.2.1主要材料类型(1) 混凝土:主梁采用C50砼;(2) 普通钢筋:R235、HRB335钢筋;(3) 预应力体系:采用φs15.2高强度低松弛钢绞线(Ⅱ级)(GB/T5224-1995),标准强度f=1860MPa;预应力锚具采用符合GB/T14370-2002《预应力筋锚具、pk夹具和连接器》中Ⅰ类要求的优质锚具;波纹管采用符合JT/T529-2004标准的塑料波纹管。
1.2.2主要材料用量指标本桥上部结构主要材料用量指标如表11.2.2-1所示,表中材料指标均为每平米桥面的用量。
表11.2.2-1 上部结构主要材料指标1.3结构计算分析1.3.1计算模型结构计算模型如下图所示。
图11.3.1-1 结构模型图有效分布宽度0.50.60.70.80.912.255.49.0612.916.819.523.22730.834.337.140.94447.551.155.158.662.565.168.972.776.179.4坐标Iyy 系数图11.3.1-2 箱梁抗弯刚度折减系数示意图1.3.2 支座反力计算本桥各桥墩均设三支座。
midas连续梁计算书
4 gLCB4
激活
相加
整体升温( 1.400) +
降温梯度( 1.400) +
支座沉降( 0.500)
+
恒荷载( 1.200) +
钢束二次( 1.200) +
徐变二次( 1.000)
+
收缩二次( 1.000)
--------------------------------------------------------------------------------------------
本计算书模板是依据 2004 年 10 月颁布的《公路钢筋混凝土及预应力混凝土桥涵 设计规范》(JTG D62-2004)[以下简称《公桥规》]编写的。适用于公路桥梁上部结 构计算。文中以沿江高速淡水河特大桥主桥(82+2x140+82)m 连续刚构为例进行计算, 相关参数仅为参考。
望读者在使用本计算书模板的同时,一定要认真阅读《公桥规》(JTG D62-2004) 中的相关内容及要求。
(3)施工方案
纵向钢束布置情况
顶板钢束
腹板钢束
23-7φ5/19-7φ5 18x3=54 1339
23-7φ5 16x3=48
1395
中跨底板钢束
19-7φ5 11x3=33
1339
边跨底板钢 束
17-7φ5 5x3=15 1339
连续刚构采用对称逐段悬臂灌注和支架现浇两种施工方法。先托架浇注 0 号块,
由于编者水平有限,对《公桥规》(JTG D62-2004)理解还不够深透,有不少认 识有待深化,难免有缺失和错漏之处,恳请读者批评指正。
编者 2010 年 12 月
目
MIDAS检算现浇梁支架计算书3-1.1-整体模型
目录1 计算依据 (1)2 工程概况 (1)3 施工方案综述 (2)4 现浇支架计算 (2)4.1 支架设计 (2)4.2 设计参数及材料强度 (3)4.2.1 设计参数 (3)4.2.2 材料设计强度 (4)4.3 荷载分析 (4)4.3.1 荷载类型 (4)4.3.2 荷载组合 (4)4.3.3 箱梁混凝土自重 (5)4.3.4 模板自重 (6)4.3.5 分配梁12.6工字钢自重 (6)4.3.6 单片贝雷梁荷载统计 (6)4.4 建立模型计算分析 (6)4.4.1 模型单元 (6)4.4.2 边界条件 (7)4.4.3 模型荷载 (7)4.4.4 支架体系计算模型 (7)4.4.5 计算结果 (7)5 结论 (11)32.6m简支箱梁现浇支架计算书1 计算依据(1)连续梁相关施工图(2)《钢结构设计规范》GB50017-2003(3)《建筑结构荷载规范》(GB50009-2012)(4)《桥梁临时结构设计》中国铁道出版社(5)《路桥施工计算手册》人民交通出版社(6)《装配式公路钢桥多用途使用手册》(7)Midas设计手册2 工程概况32m现浇简支梁全长32.6m,计算跨度31.1m,截面中心梁高3.05m,梁顶宽为12m,梁底宽5.5m,墩高9.85m,每片梁重836.8t。
箱梁正视图、断面图分别如图2.1.1所示。
图2.1.1 简支箱梁正视图图2.1.2 简支箱梁断面图3 施工方案综述简支梁现浇施工工序为施工准备→支架搭设→支架预压→调整模板→绑扎钢筋→安装内模→浇筑混凝土→养护→支架拆除,具体施工流程简图3.1.1所示。
施工准备测量放样支架搭设安装底模及外模支座安装支架预压沉降观测调整模板安装、绑扎钢筋安装内模测量中线及标高检查合格浇筑混凝土及预应力养护支架拆除图3.1.1 简支梁现浇流程图4 现浇支架计算4.1 支架设计现浇支架采用钢管柱+分配梁+贝雷梁结构体系,采用φ530x10钢管做受力支柱,单层贝雷片做受力纵梁。
迈达斯(midas)计算
潇湘路连续梁门洞调整后支架计算书1概述原《潇湘路(32+48+32)m连续梁施工方案》中,门洞条形基础中心间距为7.5米,现根据征迁人员反映,为满足门洞内机动车辆通行需求,需将条形基础中心间距调整至8.5米。
现对门洞结构体系进行计算,调整后门洞横断面如图1-1所示。
图1-1调整后门洞横断面图门洞纵断面不作改变如图1-2所示。
图1-2门洞总断面图门洞从上至下依次是:I40工字钢、双拼I40工字钢、Ф426*6钢管(内部灌C20素混凝土),各结构构件纵向布置均与原方案相同。
2主要材料力学性能(1)钢材为Q235钢,其主要力学性能取值如下:抗拉、抗压、抗弯强度:[ =125MpaQ235:[σ]=215Mpa, ](2)混凝土采用C35混凝土,其主要力学性能取值如下:弹性模量:E=3.15×104N/mm2。
抗压强度设计值:f c=14.3N/mm2抗拉强度设计值:f t=1.43N/mm2(3)承台主筋采用HRB400级螺纹钢筋,其主要力学性能如下:抗拉强度设计值:f y=360N/mm2。
(4)箍筋采用HPB300级钢筋,其主要力学性能如下:抗拉强度设计值:f y=270N/mm23门洞结构计算3.1midas整体建模及荷载施加Midas整体模型如图3.1-1所示。
图3.1-1MIDAS整体模型图midas荷载加载横断面图如图3.1-2所示。
3.1-2荷载加载横断面图荷载加载纵断面如图3.1-3所示。
图3.1-3荷载加载纵断面图3.2整体受力分析整体模型受力分析如图5.2-1~5.2-3所示。
图5.2-1门洞整体位移等值线图5.2-2门洞整体组合应力云图图5.2-3门洞整体剪应力云图由模型分析可得,模型最大位移D=3.2mm<[l/600]=14.1mm,组大组合应力σ=144.2Mpa<[σ]=215Mpa,最大剪应力σ=21.6Mpa<[σ]=125Mpa 门洞整体强度、刚度均满足要求。
连续梁满堂支架计算书
一、计算依据及参考资料1、《铁路桥梁钢结构设计规范》(TB10002.2-99)2、《公路桥涵施工技术规范》JTJ041-20003、《钢结构设计规范》GB50017-20034、《建筑施工碗扣式脚手架安全技术》JGJ 166-20085、铁四院设计图纸6、《客运专线铁路桥涵工程施工技术指南》TZ213-2005二、碗扣支架计算为了保障安全,计算采用MIDAS/Civil 软件建立整体模型计算和手工复核的方法。
1、荷载钢筋砼容重取26kN/m3;钢模板重量:双线32.7米单孔两侧模重80t ,底模8.5t ,内模为11t,共重100t ,则每延米按30.6kN/m ;方木容重为7.5kN/m³;施工荷载为2kN/㎡;倾倒砼产生的荷载为2kN/㎡,倾倒混凝土对侧模冲击产生的水平荷载取6.0kPa ;振捣砼产生的荷载取4kN/㎡。
2、碗扣支架钢管手工计算计算方法采用容许应力法,但考虑恒载的荷载系数为1.2,活载的分项系数为1.4。
(1)支架钢管轴向受力计算碗扣支架钢管断面为Φ48×3.5mm,其自由长度为m l 2.10=。
根据受压稳定原理进行承载力计算。
单根钢管回转半径:mm A I i 8.154414822=+==长细比:76/0==i l λ查表得:744.0=φ[][][]kN A P 51)4148(744.022=-⨯⨯==σπφσ即单根立杆在步距为1.2m 的条件下,最大允许承载力为51kN 。
实际计算容许的立杆轴向力采用30kN 。
因箱梁腹板处重量最大,碗扣支架立杆纵向间距60cm ,腹板下横向间距30cm ,水平步距120cm 。
按最不利的受力方式计算:单根立杆承受的重量为60cm×30cm 面积上的砼、模板、方木、施工荷载和振捣荷载以及自身的重量,其大小分别为:箱梁混凝土重:kN q 6.123.06.07.2261=⨯⨯⨯=底模模板重量:kN q 94.036.01/7.32/852=⨯=方木重量:kN q 7.1625.025.06.05.73=⨯⨯⨯⨯=施工荷载及振捣荷载:kN q 16.236.0)42(4=⨯+=作用在箱梁下方单根钢管上的总荷载:KN P KN P 30][3.214.116.22.1)7.194.06.12(==⨯+⨯++=<(2)碗扣支架顶部方木的受力计算碗扣支架顶部的方木大小为15 cm×15 cm ,顺桥向放置,间距与支架立杆间距相同即0.6m,查《桥梁计算手册》得。
(完整word版)一联四跨木板midas计算书
作业1:支架连续梁计算报告姓名:学号:一、基本计算参数跨度组成:1.55m+2.0m+2.0m+1.55m截面形式:矩形材料:木混凝土荷载集度:35.5kN/m临时施工荷载集度:7.5kN/m荷载组合方式:方式1(强度组合):1.2×35.5kN/m+1.4×7.5kN/m=53.1kN/m方式2(刚度组合):1.0×35.5kN/m+1.0×7.5kN/m=43 kN/m 二、建模过程图2.1 节点建立对话框截图图2.2材料输入界面截图图2.3截面输入界面截图2.4 边界条件图2.4边界条件表格截图2.5有限元模型图2.5有限元模型消影图二、计算结果3.1变形结果图3.1混凝土荷载作用下梁变形图(单位mm)图3.2自重作用下梁变形图(单位mm)表3.1混凝土荷载作用下梁的变形结果节点号竖向挠度(mm)节点号竖向挠度(mm)节点号竖向挠度(mm)节点号竖向挠度(mm)1 0.00 21 -0.09 41 -0.08 61 -0.062 -0.02 22 -0.11 42 -0.11 62 -0.083 -0.05 23 -0.14 43 -0.13 63 -0.104 -0.07 24 -0.16 44 -0.16 64 -0.115 -0.10 25 -0.18 45 -0.18 65 -0.126 -0.11 26 -0.19 46 -0.19 66 -0.137 -0.12 27 -0.19 47 -0.19 67 -0.128 -0.13 28 -0.19 48 -0.19 68 -0.119 -0.12 29 -0.18 49 -0.18 69 -0.1010 -0.11 30 -0.16 50 -0.16 70 -0.0711 -0.10 31 -0.13 51 -0.14 71 -0.0512 -0.08 32 -0.11 52 -0.11 72 -0.0213 -0.06 33 -0.08 53 -0.09 73 0.0014 -0.04 34 -0.05 54 -0.0615 -0.02 35 -0.03 55 -0.0316 0.00 36 -0.01 56 -0.0117 0.00 37 0.00 57 0.0018 -0.01 38 -0.01 58 0.0019 -0.03 39 -0.03 59 -0.0220 -0.06 40 -0.05 60 -0.043.2内力结果图3.3混凝土荷载作用下弯矩图(单位kN.m)图3.4混凝土荷载作用下剪力图(单位kN)图3.5临时施工荷载作用下弯矩图(单位kN.m)图3.6临时施工荷载作用下剪力图(单位kN)图3.7强度组合作用下弯矩图(单位kN.m)图3.8强度组合作用下剪力图(单位kN)表3.2强度组合作用下内力结果表格3.3竖向支反力结果。
MIDAS连续梁计算书
MIDAS连续梁计算书⽬录第1章设计原始资料 (1)1.1设计概况 (1)1.2技术标准 (1)1.3主要规范 (1)第2章桥跨总体布置及结构尺⼨拟定 (2)2.1尺⼨拟定 (2)2.1.1 桥孔分跨 (2)2.1.2 截⾯形式 (2)2.1.3 梁⾼ (3)2.1.4 细部尺⼨ (4)2.15 主要材料及材料性能 (6)2.2模型建⽴与分析 (7)2.2.1 计算模型 (8)第3章荷载内⼒计算 (9)3.1荷载⼯况及荷载组合 (9)3.2作⽤效应计算 (10)3.2.1 永久作⽤计算 (10)3.3作⽤效应组合 (16)第4章预应⼒钢束的估算与布置 (20)4.1⼒筋估算 (20)4.1.1 计算原理 (20)4.1.2 预应⼒钢束的估算 (24)4.2预应⼒钢束的布置(具体布置图见图纸) (27)第5章预应⼒损失及有效应⼒的计算 (29)5.1预应⼒损失的计算 (29)5.1.1摩阻损失 (29)5.1.2. 锚具变形损失 (30)5.1.3. 混凝⼟的弹性压缩 (30)5.1.4.钢束松弛损失 (31)5.1.5.收缩徐变损失 (31)5.2有效预应⼒的计算 (32)第6章次内⼒的计算 (33)6.1徐变次内⼒的计算 (33)6.2预加⼒引起的次内⼒ (33)第7章内⼒组合 (35)7.1承载能⼒极限状态下的效应组合 (35)7.2正常使⽤极限状态下的效应组合 (37)第8章主梁截⾯验算 (41)8.1正截⾯抗弯承载⼒验算 (41)8.2持久状况正常使⽤极限状态应⼒验算 (44)8.2.1 正截⾯抗裂验算(法向拉应⼒) (44)8.2.2 斜截⾯抗裂验算(主拉应⼒) (46)8.2.3混凝⼟最⼤压应⼒验算 (49)8.2.4 预应⼒钢筋中的拉应⼒验算 (50)8.3挠度的验算 (51)⼩结 (53)第1章设计原始资料1.1 设计概况设计某预应⼒混凝⼟连续梁桥模型,标准跨径为35m+50m+35m。
midas标准满堂支架计算书1
1编制依据⑴“XX桥”相关施工图纸;⑵《公路桥涵施工技术规范》(JTG/ F50-2011);⑶《钢结构设计规范》(GB50017-2003);⑷《木结构设计规范》(GB50005-2003);⑸《建筑施工模板安全技术规范》(JGJ162-2008);⑹《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011);⑺《建筑施工碗扣式脚手架安全技术规范》(JGJ166-2008);⑻《路桥施工计算手册》(人民交通出版社2001.5);⑼《Midas Civil 2012 有限元分析软件》;⑽《建筑地基基础设计规范》(GB 50007-2011)。
2工程概况项目工程概况现浇梁概况(文字+梁截面构造图)3支架布置形式支架正面、侧面、平面布置图。
翼板下横向设置100mm×100mm的方木,轴间距600mm;纵向设置150×150mm的方木,轴间距600mm;碗扣式支架横向间距600mm,纵向间距900mm,横杆水平步距1200mm。
底腹板下横向设置100mm×100mm的方木,轴间距400mm;纵向设置150×150mm的方木,腹板区间距600mm,顶底板区间距900mm;碗扣式支架纵向间距900mm,腹板区横向间距600mm,顶底板区横向间距900mm,横杆水平步距1200mm。
基础采用60cm厚C20素混凝土+30cm厚37灰土换填压实。
所有模板均为15mm厚优质竹胶板。
满堂支架其余布置,如天杆、扫地杆、水平剪刀撑、竖向剪刀撑等参考《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011)、《建筑施工碗扣式脚手架安全技术规范》(JGJ166-2008)。
4设计参数及材料强度4.1 设计参数表4.1-1 材料设计参数表4.2 材料设计强度表4.2-1 钢材设计强度值(N/mm2)5荷载取值及荷载组合5.1荷载类型①模板、背带自重②新浇筑混凝土自重(取26kN/m3)③施工人员、材料及机具等施工荷载(2.5kPa)④倾倒混凝土产生的冲击荷载(2kPa)⑤振捣混凝土产生的荷载(2kPa)⑥新浇筑混凝土对侧面模板的压力标准值混凝土侧压力按下列两公式计算,并取其中的较小者:F = 0.22γc t0β1β2V(5.1-1)F = γc H (5.1-2)式中:F──新浇筑混凝土对模板的最大侧压力(kPa);h──为有效压头高度(m);υ──混凝土的浇筑速度(m/h),可按实测确定(暂定为2m/h);t0──新浇混凝土的初凝时间(h),可按实测确定(暂定为6小时),当缺乏试验资料时,可采用t0=200/(T+15)计算;T──混凝土的温度(℃);γc──混凝土的容重(kN/m3);β1──外加剂影响修正系数,不掺外加剂时取1.0,掺缓凝作用的2.8外加剂时取1.2;β2──混凝土坍落度影响修正系数,当坍落度小于30mm时,取0.85;50~90mm时,取1.0;110~150mm时,取1.15。
【精品】现浇箱梁支架计算书-(midas计算稳定性)概要
现浇箱梁支架计算书-(m i d a s计算稳定性)概要温州龙港大桥改建工程满堂支架法现浇箱梁设计计算书计算:复核:审核:中铁上海工程局温州龙港大桥改建工程项目经理部2015年12月30日目录1 编制依据、原则及范围 ···························································································· - 1 -1.1 编制依据················································································································- 1 -1.2 编制原则················································································································- 1 -1.3 编制范围················································································································- 1 -2 设计构造 ··················································································································· - 2 -2.1 现浇连续箱梁设计构造 ························································································- 2 -2.2 支架体系主要构造································································································- 2 -3 满堂支架体系设计参数取值····················································································· - 7 -3.1 荷载组合················································································································- 8 -3.2 强度、刚度标准····································································································- 8 -3.3 材料力学参数········································································································- 8 -4 计算··························································································································· - 9 -4.1 模板计算················································································································- 9 -4.2 模板下上层方木计算··························································································- 10 -4.3 顶托上纵向方木计算··························································································- 11 -4.4 碗扣支架计算······································································································- 13 -4.5 地基承载力计算··································································································- 16 -温州龙港大桥改建工程现浇连续梁模板支架计算书1 编制依据、原则及范围1.1 编制依据1.1.1 设计文件(1)《温州龙港大桥改建工程两阶段施工图设计》(2013年8月)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XX大道XX线XX桥梁工程现浇连续梁支架计算书计算:复核:审核:XX公司XX大道XX线XX项目部XX年XX月目录1工程概况 (3)2计算依据 (3)3方案介绍 (4)4材料规格 (5)5模型建立 (6)5.1模型简化 (6)5.2荷载计算 (6)6模板检算 (10)6.1模板竹胶板检算 (10)6.2肋木验算 (11)6.3顶托方木检算 (12)6.4箱梁侧模对拉杆检算 (13)7钢材检算 (14)7.1荷载组合 (14)7.2脚手架钢管检算 (15)7.3I16分配梁检算 (17)7.4贝雷梁检算 (17)7.5横垫梁检算 (20)7.6钢管立柱检算 (21)7.7连接系及斜撑检算 (24)8柱底扩大基础检算 (24)9钢筋砼桩基检算 (26)10肋板处支架检算 (27)10.1 竹胶板及小肋木检算 (27)10.2 I16工字钢分配梁检算 (27)10.3 I45工字钢横垫梁检算 (28)10.3 钢管桩检算 (29)111#、4#墩桩基偏压检算 (29)12结论 (32)XX大道XX线现浇连续梁支架计算书1工程概况XX大道XX线XX桥位于XX镇与XX镇交界处,全桥孔跨布置为1×25+(33+56+33)+1×25预应力砼简支箱梁和预应力砼现浇箱梁,起点桩号K10+311,终点桩号K10+491,桥梁全长180米,桥宽80米,横向布置为分离式四幅,每幅宽20m,桥梁与道路正交,设计纵坡1.5%,桥面横坡为双向1.5%。
主桥为33+56+33连续梁,横跨XX河,主墩基础为Φ1800桩承台基础,桥墩为拱形3柱式墩,设计桩长18m,墩高10.78m~13.00m。
上部结构为变截面预应力混凝连续箱梁,每幅箱梁为单箱四室结构,箱梁顶宽20m,底宽14.985m,腹板厚度70cm、45cm,中间5m范围内过渡,主墩处梁高6m,跨中及边墩处梁高1.7m,成3次抛物线过渡,底板厚度由70cm按三次抛物线变化至跨中24cm,单幅现浇C50砼2900m³。
地质情况:主桥跨XX河,河床砂卵石覆盖层较薄30~50cm,砂卵石以下约2.5m厚强风化砂岩,承载力300kPa;强风化砂岩以下为中风化砂岩,承载力700kPa。
2计算依据(1)《公路桥涵施工技术规范》(JTGT F50-2011);(2)《公路桥涵设计通用规范》(JTJ021-04);(3)《混凝土结构设计规范》(GB50010-2010);(4)《建筑施工碗扣式脚手架安全技术规范》(JGJ 166-2008);(5)《钢结构设计规范》(GB 50017-2003);(6)《木结构设计规范》(GB50005-2003)(7)《建筑施工模板安全技术规范》(JGJ162-2008);(8)《建筑地基基础设计规范》(GB50007-2011)(9)《公路桥涵地基与基础设计规范》(JTG D63-2007)(10)《装配式公路钢桥制造》(JT/T728-2008)(11)《装配式公路钢桥多用途使用手册》3方案介绍XX湖XX渠桥布置为25+(33+56+33)+25m,主桥为33+56+33m变截面连续梁,引桥为25m简支现浇箱梁,引桥25m简支跨及主桥边跨落地支架现浇,支架采用Φ48×3.5mmWDJ碗扣型多功能脚手架钢管搭设,25m简支跨梁及主桥边跨部分梁段支架立杆间距60×60cm,步距120cm;边跨主墩10m范围内支架顺桥向间距60cm,横桥向腹板处间距加密至30cm,其余底板及翼板处间距按60cm布置,横杆间距120cm,钢管间距60×60cm,横杆间距120cm,底托下垫5×20cm木板,顶托上采用12×14cm方木,底模采用1.5cm厚竹胶板,采用10×10cm方木作为横肋,中心间距20cm;支架4.2m设纵、横向设置剪刀撑。
在台帽2m范围,由于受肋板的影响,无法进行支架搭设,所以采用Φ609×16mm 钢管桩基础,每幅设置钢管桩3根,间距为9.15m,桩中心距台帽边缘为2m。
钢管桩上铺设双拼I45b工字钢做横垫梁,采用I16工字钢做分配梁,长度为3m,跨度为2m,两边各伸出50cm,分配梁间距60cm,分配梁上采用10cm×10cm 枋木做肋木,间距为20cm。
底模采用1.5cm厚竹胶板。
中间连续梁33m+56m+33m联采用钢管加贝雷梁分幅搭设施工平台,分幅施工。
贝雷梁上铺设I16做横向分配梁,分配梁上搭设脚手架,再在支架上铺设方木竹胶板做底模系统。
边跨贝雷梁跨度按12+9+9m布置,中跨贝雷梁跨度按9+9+15+9+9m布置,共14排支墩,6#、7#临时支墩采用Φ609×16mm钢管搭设,其余临时支墩采用Φ609×14mm钢管搭设钢管顶焊接法兰,再放2I45b工字钢做横垫梁,横垫梁在钢管立柱支撑处焊接加劲肋。
钢管立柱横桥向间距 3.6m,0#、3#、4#、9#、10#、13#钢管桩设置于承台上,6#、7#临时支墩基础采用钢筋砼桩基础,直径为 1.3m,其余基础采用条形扩大钢筋砼基础,条形基础底层尺寸为2.5m×18m×0.7m,基础底受力面积45㎡,基础顶层尺寸为1.2m×18m×1.0m,条形基础底进入强风化基岩层深度不小于0.5m,条形基础顶钢管立柱位置处预埋锚板,锚板与钢管焊接,并在柱底焊接加劲钢板。
单幅桥横垫梁上布置21组单层双排321加强型贝雷梁,翼板下一组承受翼板砼湿重及施工荷载,底板下每组按90cm等间距布置(单片贝雷梁间距45cm)。
贝雷梁上I16工字顺桥向间距与脚手架立杆顺桥向间距一致为60cm,布置图如下所示。
4 材料规格钢管及型钢:Q235,f =215Mpa ;V f =125Mpa ;25mm /N 1006.2⨯=E 《钢结构设计规范》(GB 50017-2003)表3.4.1-5,表3.4.3;贝雷梁:Mn16,f =273Mpa ;V f =180Mpa ;25mm /N 1006.2⨯=E 强度等同于Q345。
竹胶板:15mm 厚,f =11.5Mpa ,23mm /N 100.4⨯=E 《建筑施工模板安全技术规范》(JGJ162-2008)附录A :表A.5.2。
方木:普通木材(松木、杉木)TC11A :顺纹抗拉,抗弯f =11Mpa ,横纹抗剪1.8Mpa ;23mm /N 100.9⨯=E 《建筑施工模板安全技术规范》(JGJ162-2008)附录A :表A.3.1-1、表A.3.1-3。
焊缝:E43手工电弧焊角焊缝:f =V f =160Mpa ;工地现场强度焊折减系数0.85,则f=f=135MPa。
V5模型建立5.1模型简化竹胶板及方木检查采用材料力学公式计算,脚手架及Q235型钢采用Midas civil软件建立空间模型计算结构内力、应力,根据规范相应公式进行检算。
竹胶板检算按净跨径单跨简支梁检算,方木按三跨连续梁检算。
钢管贝雷梁根据空间布置值建立模型,根据河水流流量及地质情况,钢管柱1#~5#、8#~12#临时墩取11m,6#、7#取6.5m、0#取5.8m,13#取5.28m,为方便压力荷载加载,脚手架建模型顶等高,脚手架钢管支架按跨中最大高度取4.78m;为方便加载,在脚手架钢管顶添加虚拟面模拟底模系统,虚拟面厚6mm,采用的虚拟材料与Q235等刚度0自重,与脚手架钢管顶连接采用铰接,并释放平动及转动约束,使虚拟面与脚手架钢管仅传竖向荷载。
边界条件:钢管脚手架顶托、底托采用铰接模拟,即建立模型中释放杆件单元端部转动约束,同时顶部释放平动约束,确保虚拟压力面仅仅传递竖向力,脚手架剪刀撑考虑仅增加结构整体性,不考虑受力,模型中未建立剪刀撑杆件;钢管立柱柱底与扩大基础预埋钢板焊接,且添加加劲肋,柱底边界条件模拟为固结。
模型效果图如下所示:5.2荷载计算(1)新浇砼湿重(含钢筋)重25kN/m³:考虑混凝土涨模系数 1.04,3m /kN 26=g γ;根据箱梁横向断面布置,对箱梁砼湿重等效简化,支架平台底边跨9m 范围内腹板简化为等厚度70cm ,中间9+15+9=33m 范围内腹板为等厚度45cm ,根据荷载取值按压力荷载加载,对模板根据根据最不利取值检算,对钢管+贝雷梁+脚手架组合平台按压力荷载加载。
各截面砼湿重简化分析见下图:1#临时墩顶截面腹板70cm厚2#临时墩顶截面腹板70cm厚2#临时墩顶截面腹板45cm厚2507026795270952507026795270250702679527034.91kN/㎡9.1kN/㎡38.51kN/㎡16.94kN/㎡34.91kN/㎡16.95kN/㎡ 1.0368㎡1.7398㎡1.2757㎡1.7601㎡1.2757㎡0.875㎡3#临时墩顶截面腹板45cm厚250702679527032.03kN/㎡9.1kN/㎡35.94kN/㎡13.17kN/㎡32.03kN/㎡13.176kN/㎡0.875㎡0.9676㎡1.3527㎡1.1702㎡1.3683㎡1.1702㎡跨中截面腹板45cm厚虚拟面上添加等效砼重的压力荷载示意图(2) 钢管支架、贝雷梁、型钢自重:程序根据单元自动计算,建模中考虑到软件按等截面钢管计算自重,未计入碗扣支架碗扣及接头的重量,未计入贝雷梁支撑架、插销等自重,未计入型钢焊缝、缀板及加劲肋自重,建模过程中支架自重系数取1.02.(3) 方木、模板等自重:21m /kN 0.2=q ;(4) 施工人员及机具荷载: 22m /kN 0.1=q(5) 泵送砼冲击竖向荷载:23m /kN 5.3=q ;(6) 振捣混凝土时产生的竖向荷载: 24m /kN 0.2=q对承重支架系统:恒载定义为砼湿重及支架结构自重;施工可变荷载:2m /kN 5.80.25.30.10.2=+++=q 采用均布压力荷载的模式加载。
(7) 风荷载:据碗扣脚手架安全技术规范 4.2.6,作用于脚手架及模板支撑架上的水平风荷载标准值,W k = 0.7μz ·μs ·W o类地区),田野地区(离地;风压高度系数B m 1514.18.0==Z s μμ; 据4.2.7考虑脚手架满挂密目安全网的脚手架挡风系数φ宜取0.8,则W k = 0.8μz ·μs ·W o施工支架为临时结构,设计基准风压d W 取成都市10年一遇的基本风压,根据桥涵设计通用规范附录A 成都市10年一遇风速18.5m/s,风压0.2kN/㎡,迎风面含支架,及现浇梁高度。
支架迎风面高度取1.7(梁高)+8m (脚手架高)=9.7,风荷载建模时在脚手架迎风面侧添加虚拟面,在脚手架高度范围内添加风压力荷载,则支架等效风力集度:2310m /kN 177.08/7.92.08.014.18.0/=⨯⨯⨯⨯==H H W k k k F h d wh ,加载图示见下图(8) 作用于钢管桩的流水压力kN 88.781.925.281.963.058.0222=⨯⨯⨯⨯⨯==g V KA F W γ 式中:圆形桥墩K 取0.8,支架按洪水季节计算,水流速度V=2.5m/s 。