第二十章数据的分析全章导学案

合集下载

第20章《数据的分析》单元复习--新人教版初中数学导学案八年级上册《数据的分析》【一流精品】

第20章《数据的分析》单元复习--新人教版初中数学导学案八年级上册《数据的分析》【一流精品】

课题: 第二十章 数据的分析复习导学案【学习目标】1.理解统计的基本思想是用样本的特征去估计总体的特征,会用平均数、中位数、众数、极差、方差进行数据处理。

2.经历探索数据的收集、整理、分析过程,在活动中发展学生的统计意识和数据处理的方法与能力。

3.培养合作交流的意识与能力,提高解决简单的实际问题能力,形成一定的数据意识和解决问题的能力,体会特征数据的应用价值。

【学习重点】应用样本数字特征估计总体的相应特征,处理实际问题中的统计内容。

【学习难点】方差概念的理解和应用。

一、知识框架:二、数据的代表1、算术平均数:把一组数据的总和除以这组数据的个数所得的商.公式:nx x x n +⋅⋅⋅++21 使用:当所给数据1x ,2x ,…,n x 中各个数据的重要程度相同时,一般使用该公式计算平均数. 2、加权平均数:若n 个数1x ,2x ,…,n x 的权分别是1w ,2w ,…,n w ,则n n n w w w w x w x w x +⋅⋅⋅+++⋅⋅⋅++212211,叫做这n 个数的加权平均数.使用:当所给数据1x ,2x ,…,n x 中各个数据的重要程度(权)不同时,一般选用加权平均数计算平均数. 权的意义:权就是权重即数据的重要程度.常见的权:1)数值、2)百分数、3)比值、4)频数等。

3、组中值:数据分组后,一个小组的组中值是指这个小组的两个端点的数的平均数,统计中常用各组的组中值代表各组的实际数据.4、中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 意义:在一组互不相等的数据中,小于和大于它们的中位数的数据各占一半.5、众数:一组数据中出现次数最多的数据就是这组数据的众数.特点:可以是一个也可以是多个. 用途:当一组数据中有较多的重复数据时,众数往往是人们所关心的一个量.6、平均数、中位数、众数的区别:平均数能充分利用所有数据,但容易受极端值的影响;中位数计算简单,它不易受极端值的影响,但不能充分利用所有数据;当数据中某些数据重复出现时,人们往往关心众数,但当各个数据的重复次数大致相等时,众数往往没有意义.考向1:算数平均数1、数据-1,0,1,2,3的平均数是( )A .-1B .0C .1D .52、样本数据3、6、x 、4、2的平均数是5,则这个样本中x 的值是( )A .5B .10C .13D .153、一组数据3,5,7,m ,n 的平均数是6,则m ,n 的平均数是( )A .6B .7C .7.5D .154、若n个数的平均数为p,从这n个数中去掉一个数q,余下的数的平均数增加了2,则q的值为()A.p-2n+2 B.2p-n C.2p-n+2 D.p-n+25、已知两组数据x1,x2,…,x n和y1,y2,…,y n的平均数分别为2和-2,则x1+3y1,x2+3y2,…,x n+3y n 的平均数为()A.-4 B.-2 C.0 D.2考向2:加权平均数6、如表是10支不同型号签字笔的相关信息,则这10支签字笔的平均价格是()A.1.4元 B.1.5元 C.1.6元 D.1.7元7、对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是()A.2.2 B.2.5 C.2.95 D.3.08、为了调查某一路口某时段的汽车流量,记录了15天同一时段通过该路口的汽车辆数,其中有2天是142辆,2天是145辆,6天是156辆,5天是157辆,那么这15天通过该路口汽车平均辆数为()A.146 B.150 C.153 D.16009、某校为了了解学生的课外作业负担情况,随机调查了50名学生,得到他们在某一天各自课外作业所用时间的数据,结果用右面的条形图表示,根据图中数据可得这50名学生这一天平均每人的课外作业时间为()第9题图第7题图A.0.6小时 B.0.9小时 C.1.0小时 D.1.5小时10、某学校举行理科(含数学、物理、化学、生物四科)综合能力比赛,四科的满分都为100分.甲、乙、丙三人四科的测试成绩如下表:综合成绩按照数学、物理、化学、生物四科测试成绩的1.2:1:1:0.8的比例计分,则综合成绩的第一名是()A.甲 B.乙 C.丙 D.不确定11、某班四个学习兴趣小组的学生分布如图①②,现通过对四个小组学生寒假期间所读课外书情况进行调查,并制成各小组读书情况的条形统计图③,根据统计图中的信息:这四个小组平均每人读书的本数是( )A .4B .5C .6D .712、某次射击训练中,一小组的成绩如下表所示:若该小组的平均成绩为8.7环,则成绩为9环的人数是( )A .1人B .2人C .3人D .4人13、下表中若平均数为2,则x 等于( )A .0B .1C .2D .3考向3:中位数14、在数据1、3、5、5、7中,中位数是( )A .3B .4C .5D .715、六个数6、2、3、3、5、10的中位数为( )A .3B .4C .5D .616、已知一组数据:-1,x ,1,2,0的平均数是1,则这组数据的中位数是( )A .1B .0C .-1D .217、若四个数2,x ,3,5的中位数为4,则有( )A .x=4B .x=6C .x ≥5D .x ≤518、某市一周每天最高气温(单位:℃)情况如图所示,则这组表示最高气温数据的中位数( )A .22B .24C .25D .2719、为了解九年级学生的视力情况,某校随机抽取50名学生进行视力检查,结果如下:第13题表格第25题图 第18题图这组数据的中位数是( )A .4.6 B .4.7 C .4.8 D .4.920、已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a 岁,中位数为b 岁,则下列结论中正确的是( )A .a <13,b=13B .a <13,b <13C .a >13,b <13D .a >13,b=13考向4:众数21、有一组数据:1,3,3,4,5,这组数据的众数为( )A .1B .3C .4D .522、若一组数据8,9,10,x ,6的众数是8,则这组数据的中位数是( )A .6B .8C .8.5D .923、某中学随机调查了15名学生,了解他们一周在校参加体育锻炼时间,列表如下:则这15名同学一周在校参加体育锻炼时间的中位数和众数分别是( )24、七名学生在一分钟内的跳绳个数分别是:150、140、100、110、130、110、120,设这组数据的平均数是a ,中位数是b ,众数是c ,则有( )A .c >b >aB .b >c >aC .c >a >bD .a >b >c25、学校“清洁校园”环境爱护志愿者的年龄分布如图,那么这些志愿者年龄的众数是( )A .12岁B .13岁C .14岁D .15岁三、数据的波动1、极差: 一组数据中的最大数据与最小数据的差叫做这组数据的极差.2、方差:各个数据与平均数之差的平方的平均数,记作2s .用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公 式是:()()()[]2222121x x x x x x ns n -+⋅⋅⋅+-+-= 意义:方差(2s )越大,数据的波动性越大,方差越小,数据的波动性越小.结论:①当一组数据同时加上一个数a 时,其平均数、中位数、众数也增加a ,而其方差不变;②当一组数据扩大k 倍时,其平均数、中位数和众数也扩大k 倍,其方差扩大2k 倍. 3、标准差:标准差是方差的算术平方根.()()()n x x x x xx s n 22221-+⋅⋅⋅+-+-=考向5:极差1、某班数学学习小组某次测验成绩分别是63,72,49,66,81,53,92,69,则这组数据的极差是( )A .47B .43C .34D .292、若一组数据-1,0,2,4,x 的极差为7,则x 的值是( )A .-3B .6C .7D .6或-33、一次英语测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法正确的是( )A .中位数是91B .平均数是91C .众数是91D .极差是784、某中学随机地调查了50 名学生,了解他们一周在校的体育锻炼时间,结果如表:则50个数据的极差和众数分别是( )A .15,20B .3,20C .3,7D .3,55、王明同学随机抽某市10个小区所得到的绿化率情况,结果如下表:则关于这10个小区的绿化率情况,下列说法错误的是( )A .中位数是25%B .众数是25%C .极差是13%D .平均数是26.2%6、某射击小组有20人,教练根据他们某次射击命中环数的数据绘制成如图的统计图,则这组数据的众数和极差分别是( )第7题图A .10、6B .10、5C .7、6D .7、5 第8题图7、在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是( )A .众数是90B .中位数是90C .平均数是90D .极差是158、某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是( )A .1~2月份利润的增长快于2~3月份利润的增长B .1~4月份利润的极差于1~5月份利润的极差不同C .1~5月份利润的众数是130万元D .1~5月份利润的中位数为120万元9、如图是H 市2013年3月上旬一周的天气情况,右图是根据这一周每天的最高气温绘制的折线统计图,下列说法正确的是( )A .这周中温差最大的是星期一B .这周中最高气温的众数是25℃C .这周中最高气温的中位数是25℃D .折线统计图可以清楚地告诉我们这一周每天气温的总体情况第6题图考向6:方差10、一组数据:-2,-1,0,1,2的方差是( )A .1B .2C .3D .411、数据0,-1,6,1,x 的众数为-1,则这组数据的方差是( )A .2B .534 C .2 D .526 12、某校将举办一场“中国汉字听写大赛”,要求各班推选一名同学参加比赛,为此,初三(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.2,乙的成绩的方差是0.8.根据以上数据,下列说法正确的是( )A .甲的成绩比乙的成绩稳定B .乙的成绩比甲的成绩稳定C .甲、乙两人的成绩一样稳定D .无法确定甲、乙的成绩谁更稳定13、四名运动员参加了射击预选赛,他们成绩的平均环数x 及其方差2s 如表所示.如果选出一个成绩较好且状态稳定的人去参赛,那么应选( )A .甲B .乙C .丙D .丁14、甲、乙两名同学进行了6轮投篮比赛,两人的得分情况统计如下:下列说法不正确的是( )A .甲得分的极差小于乙得分的极差B .甲得分的中位数大于乙得分的中位数C .甲得分的平均数大于乙得分的平均数D .乙的成绩比甲的成绩稳定15、如图是某选手10次射击成绩条形统计图,根据图中信息,下列说法错误的是( )A .平均数为7B .中位数为7C .众数为8D .方差为416、在2014年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是( )A .18,18,1B .18,17.5,3C .18,18,3D .18,17.5,117、样本方差的计算式()()()[]222212303030201-+⋅⋅⋅+-+-=n x x x s 中,数字20和30分别表示样本中的( ) 第16题图第15题图A .众数、中位数B .方差、标准差C .样本中数据的个数、平均数D .样本中数据的个数、中位数18、如果一组数据a 1,a 2,…,a n 的方差是2,那么一组新数据2a 1,2a 2,…,2a n 的方差是( )A .2B .4C .8D .1619、某气象小组测得连续五天的日最低气温并计算出平均气温与方差后,整理得出下表(有两个数据被遮盖).被遮盖的两个数据依次是( )A .2℃,2B .3℃,56C .3℃,2D .2℃,58 三、统计量的选择※典型例题:考向7:统计量的选择1、有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的( )A .平均数B .中位数C .众数D .方差2、歌唱比赛有二十位评委给选手打分,统计每位选手得分时,会去掉一个最高分和一个最低分,这样做,肯定不会对所有评委打分的哪一个统计量产生影响( )A .平均分B .众数C .中位数D .极差3、某商场对上月笔袋销售的情况进行统计如下表所示:经理决定本月进笔袋时多进一些蓝色的,经理的这一决定应用了哪个统计知识( )A .平均数B .方差C .中位数D .众数4、体育课上,两名同学分别进行了5次立定跳远测试,要判断这5次测试中谁的成绩比较稳定,通常需要比较这两名同学成绩的( )A .平均数B .中位数C .众数D .方差5、期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映处的统计量是( )A .众数和平均数B .平均数和中位数C .众数和方差D .众数和中位数6、下列选项中,能够反映一组数据离散程度的统计量是( )A . 平均数B .中位数C .众数D .方差四、当堂检测、及时反馈1、一组数据23、27、20、18、X 、12,它的中位数是21,则X 的值是 .2、小华的数学平时成绩为92分,期中成绩为90分,期末成绩为96分,若按3:3:4的比例计算总评成绩,则小华的数学总评成绩应为( )A .92B .93C .96D .92.73、关于一组数据的平均数、中位数、众数,下列说法中正确的是( )A.平均数一定是这组数中的某个数B. 中位数一定是这组数中的某个数C.众数一定是这组数中的某个数D.以上说法都不对4、数据92、96、98、100、X 的众数是96,则其中位数和平均数分别是( )A.97、96B.96、96.4C.96、97D.98、975、一组数据X 1、X 2…X n 的极差是8,则另一组数据2X 1+1、2X 2+1…,2X n +1的极差是_________。

第二十章《数据的分析》复习导学案-人教版八年级下册数学

第二十章《数据的分析》复习导学案-人教版八年级下册数学

第二十章《数据的分析》复习导学案
学习目标:
1.进一步理解平均数、中位数和众数等统计量的统计意义。

2.会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势。

3.会计算方差,理解它们的统计意义,会用它们表示数据的波动情况。

4.会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想。

一、知识点回顾
知识网络形式进行多媒体展示
1.加权平均数
2.平均数、中位数、众数比较(联系和区别)
3.方差的计算公式及反应的量
二、巩固练习
1. 10名学生的体重分别是41,48,50,53,50,50,53,51,67(单位:kg),这组数据的众数是()
(A)53 (B)50 (C) 51 (D)48
2.某校五个绿化小组一天植树的棵数如下:10,10,12,x,8。

已知这组数据的众数与平均数相等,那么这组数据的中位数是()
(A)x=8 (B)x=9 (C)x=10 (D)x=12
3.如果一组数据a1,a2,…an的方差是2,那么一组新数2a1,2a2,…2an的方差是()
(A)2 (B)4 (C) 8 (D)16
4.已知:1、2、3、4、5、这五个数的平均数是3,方差是2.
则:101、102、103、104、105、的平均数是,方差是。

2、4、6、8、10、的平均数是,方差是。

三、小结:
本时间段我们加强了哪些知识点?
四、作业课本第128页,第4题。

第二十章数据的分析教案全章

第二十章数据的分析教案全章

人教版八年级(下)数学教案《数据的分析》单元教案(一)学习目标1.进一步理解平均数、中位数与众数等统计量的统计意义;2.会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势;3.会计算极差与方差,理解它们的统计意义,会用它们表示数据的波动情况;4.能用计算器的统计功能进行统计计算,进一步体会计算器的优越性;5.会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想;6.从事收集、整理、描述与分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活与生产中的作用,养成用数据说话的习惯与实事求就是的科学态度。

(二)重、难点分析统计中常用的平均数有算数平均数(简单算数平均数与加权算数平均数)、调与平均数、几何平均数等。

根据《标准》的要求,本章着重研究了加权平均数。

(三)内容分析本章主要研究平均数(主要就是加权平均数)、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势与离散情况,并通过研究如何用样本的平均数与方差估计总体的平均数与方差,进一步体会用样本估计总体的思想。

下面就是本章知识展开的结构框图。

本章知识的展开顺序如下图:(四)课时分配全章教学约需15课时(不包括选学内容的课时数),具体内容与课时分配如下:18.1 数据的代表约6课时18.2 数据的波动约5课时18.3 课题学习约2课时数学活动小结约2课时18、1数据的代表18、1、1平均数(第一课时)一、教学目标:1、使学生理解数据的权与加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义与作用:描述一组数据集中趋势的特征数字,就是反映一组数据平均水平的特征数。

二、重点、难点分析: 1、重点:会求加权平均数 2、难点:对“权”的理解 三、课程类型:新授课方法手段:启发式教学法 四、课堂引入:1、若不选择教材中的引入问题,也可以替换成更贴近学生学习生活中的实例,下举一例可供借鉴参考。

人教版2022-2022年八下数学第20章《数据的分析》全章教学案(含解析)

人教版2022-2022年八下数学第20章《数据的分析》全章教学案(含解析)

第二十章数据的分析1.进一步理解平均数、中位数和众数等统计量的统计意义.2.会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势.3.会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况.1.探索并掌握平均数、方差的计算公式,会找一组数据的中位数、众数、极差,用样本估计总体,并解决生产、生活中的有关问题.2.从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度.1.能用计算器的统计功能进行统计计算,进一步体会计算器的优越性.2.会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想.3.通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质.本章属于“统计与概率”领域.对于“统计与概率”领域的内容,共有三章.这三章内容采用统计和概率分开编排的方式,前两章是统计,最后一章是概率.统计部分的两章内容按照数据处理的基本过程来安排.我们在7年级下册学习了“第10章数据的收集、整理与描述”,本章“数据的分析”主要学习分析数据的集中趋势和离散程度的常用方法.在前一章中,我们学习了收集、整理和描述数据的常用方法,将收集到的数据进行分组、列表、绘图等处理工作后,数据分布的一些面貌和特征可以通过统计图表等反映出来.为了进一步了解数据分布的特征和规律,还需要计算出一些代表数据一般水平(典型水平)或分布状况的特征量.对于统计数据的分布的特征,可以从三个方面来分析:一是分析数据分布的集中趋势,反映数据向其中心值(平均数)靠拢或聚集的程度;二是分析数据分布的离散程度,反映数据远离其中心值(平均数)的趋势;三是分析数据分布的偏态和峰度,反映数据分布的形状.这三个方面分别反映了数据分布特征的不同侧面.根据《标准》的要求,本章就从前两个方面研究数据的分布特征.【重点】平均数、众数、中位数、方差的定义及其应用.【难点】应用所学的统计知识解决实际问题.1.注意与前两个学段相关内容的衔接.本章在教学时,注意与前两个学段的衔接,将三个学段的相关内容,在分析数据的这个大背景下统一起来,在对学生已有的相关知识进行整理的基础上学习新的知识.例如,对于平均数、中位数、众数,本章就是在研究数据集中趋势的大背景下,在整理学生已有的关于这三种统计量的认识的基础上,学习加权平均数,研究如何根据统计量的特征选择适当的统计量描述数据的集中趋势等.这样的一种编写方式,将三个学段的学习连成一个相互联系、螺旋上升的整体.因此,教学中要注意对已有知识的复习,在复习的基础上学习新内容,使学生对于分析数据的知识和方法形成整体认识.2.准确把握教学要求.本章要求通过较多实例,从不同的方面进一步感受抽样的必要性,并初步感受样本的代表性,体会不同的抽样可能得到不同的结果,能够用样本的平均数、方差估计总体的平均数、方差等.因此,在本章教学时,要注意把握教学要求.3.合理使用计算器.信息技术的发展给统计学的研究带来很大变化,为统计工作的高效、准确提供了便捷的工具.对于计算器等现代信息技术对统计的作用,本章中,编写了使用计算器求一组数据的平均数和方差的内容作为必学内容,还编写了利用计算机求平均数、中位数、众数和方差等集中统计量的内容作为选学内容等.教学中要注意发挥计算器在处理数据中的作用,也要注意合理地使用计算器.20.1 数据的集中趋势20.1.1平均数(2课时) 20.1.2中位数和众数(2课时)4课时20.2 数据的波动程度1课时20.3 课题学习体质健康测试中的数据分析1课时单元概括整合1课时20.1数据的集中趋势1.进一步掌握算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数.2.理解中位数和众数的定义和意义,会求一组数据的中位数和众数,能结合具体问题解释中位数和众数的实际意义.3.能分清平均数、中位数、众数三者的区别,根据实际问题情境选择适当的统计量表示数据的特征.经历应用加权平均数对数据处理和探索中位数、众数的过程,体验对统计基本思想的理解过程.能运用数据信息的分析解决一些简单的实际问题.通过加权平均数、中位数和众数的学习,初步认识数学与人类生活的密切联系,感受数学结论的确定性,激发学生学好数学的热情,感受统计在生活中的应用,增强统计意识,培养统计能力.【重点】算术平均数、加权平均数的概念及计算,会求一组数据的中位数和众数,能结合实际情境理解其实际意义.【难点】理解平均数、中位数和众数这三个统计量之间的联系与区别,能根据具体问题选择适当的统计量分析数据信息并作出决策.20.1.1平均数1.进一步掌握算术平均数、加权平均数的概念.2.会求一组数据的算术平均数和加权平均数.经历应用加权平均数对数据处理的过程,体验对统计基本思想的理解过程.能运用数据信息的分析解决一些简单的实际问题.通过加权平均数的学习,初步认识数学与人类生活的密切联系,感受数学结论的确定性,激发学生学好数学的热情.【重点】1.算术平均数、加权平均数的概念及计算.2.掌握加权平均数的实际应用.【难点】1.体会平均数在不同情境中的应用.2.应用加权平均数对数据做出合理判断.第课时1.使学生理解数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.1.通过加权平均数的学习,经历运用数据描述信息,作出推断的过程,形成和发展统计观念.2.通过加权平均数的学习,进一步认识数据的作用,体会统计的思想方法.渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显、寓纷繁于严谨的辩证统一的数学美.【重点】会求加权平均数.【难点】对“权”的正确理解.【教师准备】教学中出示的课件和例题.【学生准备】预习课本内容.导入一:刘木头开了一家小工厂,生产儿童玩具.工厂的管理人员由刘木头、他的弟弟及其他6个亲戚组成.工作人员由5个领工和10个工人组成.现在需要一个新工人,刘木头正在与一个叫小王的青年人谈招聘问题.刘木头说:“我们这里报酬不错,平均每个人的薪金是每周300元,但在学徒期间每周是75元,不过很快就可以加工资.”小王上了几天班以后,要求和厂长谈谈.小王说:“你骗我,我已经和其他工人核对过了,没有一个人的工资超过每周100元.每人平均工资怎么可能是一周300元呢?”刘木头皮笑肉不笑地回答:“小王,不要激动嘛!每人平均工资确实是300元,不信你自己算一算.”刘木头拿出一张表,说道:“这是我每周付出的薪金.我得2400元,我弟弟得1000元,我的6个亲戚每人得250元,5个领工每人得200元,10个工人每人得100元.总共是每周6900元,付给23个人,平均每人得300元,对吗?”“对,对,你是对的,每人的平均工资是每周300元.可你还是骗了我.”小王生气地说.刘木头拍着小王的肩膀说:“这我可不同意,你自己算的结果也表明我没骗你呀!小兄弟,你根本不懂得平均数的含义,怪不得别人哟!”同学们,你能当个小法官来判一下谁说的对吗?[设计意图]让学生明确数学问题来源于生活实践,同时数学又指导生活实践,从而达到激发学生思考问题、探究新知的强烈欲望及引入新课的目的.导入二:农科院为了选出适合某地种植的甜玉米种子,对甲、乙两个品种各用10块试验田进行试验,得到各试验田每公顷的产量(见下表),根据这些数据,应为农科院选择甜玉米种子提出怎样的建议呢?品各试验田每公顷产量种(单位:吨)甲7.657.57.627.597.65 7.647.57.47.417.41乙7.557.567.537.447.49 7.527.587.467.537.49提问:如何考察一种玉米的产量和产量的稳定性?学生随意说出自己的一些想法后,教师说明本章学习的知识内容:(1)平均数、中位数、众数和方差等概念;(2)用样本的平均数和方差估计总体的平均数和方差;(3)课题学习,解决实际问题.[设计意图]问题的提出,学生难以用已学到的平均数的公式解决这个问题,需要研究新的方法,学习新的知识,让学生了解本章研究的基本知识内容,培养学生用样本估计总体的基本思想.[过渡语]前面我们学过算术平均数的计算,我们一起来探究加权平均数.1.加权平均数思路一问题:某市三个郊县的人数及人均耕地面积如下表:郊县人数/万人均耕地面积/公顷A15 0.15 B7 0.21 C10 0.18这个市郊县的人均耕地面积是多少?(精确到0.01公顷)问题1小明求得这个市郊县的人均耕地面积为:= =0.18(公顷).你认为小明的做法有道理吗?为什么?组织学生讨论,教师参与,并适时指导:(1)对“平均数”和“人均耕地面积”的准确理解;(2)三个郊县人数的多少对人均耕地面积有无影响,分析小明同学的计算错误.问题2这个市郊县的总耕地面积是多少?总人口是多少?你能算出这个市郊县的人均耕地面积是多少吗?引导学生列出正确算式,即这个市郊县的人均耕地面积为:≈0.17(公顷).问题3三个郊县的人数(单位:万)15,7,10在计算人均耕地面积时有何作用?教师指出:上面的平均数0.17称为三个数0.15,0.21,0.18的加权平均数.三个郊县的人数(单位:万)15,7,10分别为三个数据的权.追问:你能正确理解数据的权和三个数的加权平均数吗?在活动中教师应重点关注学生对数据的权及加权平均数的理解.问题4若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则这n个数的加权平均数是多少?教师引导学生从三个数据的加权平均数的计算方法中,归纳得出n 个数的加权平均数的计算公式.学生思考、总结归纳:若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则叫做这n个数的加权平均数.[设计意图]通过讨论、分析、思考认识到用已学过的平均数的计算方法来计算这个市郊县的人均耕地面积是根本行不通的,使学生意识到需要学习新知识、新方法,激发学生去探究.通过大胆猜想,培养学生的探究意识,通过教师的有效引导,让学生体会数学的归纳思想方法,理解n个数的加权平均数的计算公式及其结构特征,认识数据的权的作用.思路二问题1一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试听说读写者甲85 83 78 75乙73 80 85 82提问:如果这家公司想招一名综合能力较强的翻译,计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?录用依据是什么?学生提出评判依据,若学生提出以总分作为依据,教师要引导学生思考:已学过的哪个统计量可反映数据的集中趋势?学生计算平均数,解决问题.追问:这家公司在招聘英文翻译的过程中,对甲、乙两名应试者进行了哪几个方面的英语水平测试?成绩分别为多少?学生同桌讨论,计算后提出自己的意见.问题2如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶1∶3∶4的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?引导学生讨论:招聘口语能力或笔译能力较强的翻译时,听、说、读、写四项成绩的重要程度是否相同,公司侧重哪两个方面的成绩?从给出的比值是否体现这两方面更加“重要”?根据算术平均数的计算公式,让学生依据题目要求,分别计算出甲、乙两名应试者的成绩,教师引导写出解答过程.问题3在问题2中,各个数据的重要程度不同(权不同),这种计算平均数的方法能否推广到一般?追问:若n个数据x1,x2,…,x n的权分别为w1,w2,…,w n,这n个数据的平均数该如何计算?教师引导学生思考归纳得出n个数的加权平均数的计算公式:若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则叫做这n个数的加权平均数.问题4如果这家公司想招一名口语能力较强的翻译,应该侧重哪些分项成绩?如果听、说、读、写成绩按照3∶3∶2∶2的比确定两人的测试成绩,那么谁将被录取?与问题2相比较,你能体会到权的作用吗?学生独立完成计算过程,体会权的改变对加权平均数的影响.追问:你认为问题1中各数据的权有什么关系?通过上述问题的解决,说说你对权的认识.师生活动:引导学生分析加权平均数公式,发现问题1中各数可看作是权相同的,教师指出两种平均数之间的联系.[设计意图]回顾学过的平均数的意义,为引入加权平均数作铺垫.通过讨论,让学生充分发表自己的见解,同时接纳和吸引别人的正确意见,相互交流、相互探讨,培养学生的合作意识.通过改变同一个问题背景中数据的权,得到不同的结果,从而进一步体会权的意义与作用.[知识拓展](1)当所给的数据在一常数a上下波动时,一般选用='+a.一组数据x1,x2,…,x n的各个数据比较大的时候,我们可以把各个数据同时减去一个适当的常数a,得x'1=x1-a,x'2=x2-a,…,x'n=x n-a.于是x1=x'1+a,x2=x'2+a,…,x n=x'n+a.因此=(x1+x2+…+x n)=(x1'+x2'+…+x n')+·na='+a;(2)平均数的大小与每个数据都有关系,它反映一组数据的集中趋势,是一组数据的“重心”,也是度量一组数据波动大小的基准;(3)加权平均数是算术平均数的特例.加权平均数的实质就是考虑不同权重的平均数,当加权平均数的各项权相等时,就变成了算术平均数.2.例题讲解一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各个成绩均按百分制,再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例,计算选手的综合成绩(百分制),进入决赛的前两名选手的单项成绩如下表所示:(单位:分)选手演讲内容演讲能力演讲效果A85 95 95B95 85 95请确定两人的名次.教师出示例题并指导学生阅读分析:这个问题可以看成是求两名选手三项成绩的加权平均数,50%,40%,10%说明演讲内容、演讲能力、演讲效果三项成绩在总成绩中的重要程度,是三项成绩的权.学生在阅读过程中明确下列问题:(1)演讲内容、演讲能力、演讲效果三项成绩在总成绩中的重要程度用什么数据说明?(2)要想决出两人的名次,必须求两人的总成绩,实质上是求这两名选手三项成绩的加权平均数.学生根据加权平均数的计算公式先分别计算出两名选手的总成绩,教师进一步引导写出解答过程.解:选手A的最后得分是=90,选手B的最后得分是=91.由上可知选手B获得第一名,选手A获得第二名.[设计意图]让学生掌握自学的方法,提高学生独立分析问题、解决问题的能力.通过问题的解决,让学生进一步体会数据的权的作用,体验参与数学活动的乐趣.(1)加权平均数的意义:在一组数据中,由于每个数据的权不同,所以计算平均数时,用加权平均数,才符合实际.(2)数据的权的意义:数据的权能够反映数据的相对“重要程度”.(3)加权平均数公式:=.1.晨光中学规定学生的学期体育成绩满分为100分,其中平时体育活动评估成绩占20%,期中成绩占30%,期末成绩占50%.则平时体育活动评估成绩、期中成绩、期末成绩的权分别为、和.解析:根据权的概念解决即可.答案:20%30%50%2.学校把学生学科的期中、期末两次成绩分别按40%,60%的比例计入学期学科总成绩.小明期中数学成绩是85分,期末数学成绩是90分,那么他的学期数学总成绩是()A.85分B.87.5分C.88分D.90分解析:根据学期数学成绩=期中数学成绩×所占的百分比+期末数学成绩×所占的百分比即可求得学期总成绩.故选C.3.一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩的20%,面试占30%,实习成绩占50%,各项成绩如下表所示:(单位:分)应聘笔试面试实习者甲85 83 9080 85 92试判断谁会被公司录用,为什么?解:甲的平均成绩为=86.9,乙的平均成绩为=87.5.因此,乙会被公司录用.4.某单位欲招聘一名技术部门负责人,对甲、乙、丙三位候选人进行了三项能力测试,且各项测试成绩满分均为100分,根据结果择优录取,三位候选人的各项测试成绩如下表所示:(单位:分)测试项目测试成绩甲乙丙沟通能力85 73 73 科研能70 71 65组织能64 72 84力(1)如果根据三项测试的平均成绩,谁将被录用?说明理由.(2)根据实际需要,该单位将沟通能力、科研能力和组织能力三项测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用?说明理由.解:(1)甲的平均成绩为(85+70+64)÷3=73,乙的平均成绩为(73+71+72)÷3=72,丙的平均成绩为(73+65+84)÷3=74,因此,丙的平均成绩最高,丙将被录用.(2)甲的成绩为=76.3,乙的成绩为=72.2,丙的成绩为=72.8.因此,甲的成绩最高,甲将被录用.第1课时1.加权平均数2.例题讲解例题一、教材作业【必做题】教材第113页练习第1,2题;教材第121页习题20.1第1题.【选做题】教材第122页习题20.1第5题.二、课后作业【基础巩固】1.在中国好声音选秀节目中,四位参赛选手的各项得分如下表,如果将专业、形象、人气这三项得分按3∶2∶1的比例确定最终得分,最终得分最高的进入下一轮比赛,则进入下一轮比赛的是()(每项按10分制)测试内测试成绩容小赵小王小李小黄专业素6 7 8 8质形象表8 7 6 9现人气指8 10 9 6数A.小赵B.小王C.小李D.小黄2.学校广播站要招聘1名记者,小明、小亮和小丽报名参加了3项素质测试,成绩如下:采访写计算机创意设作计小70分60分86分明小90分75分51分亮小60分84分72分丽现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权重比由3∶5∶2变成5∶3∶2,成绩变化情况是() A.小明增加最多 B.小亮增加最多C.小丽增加最多D.三人的成绩都增加3.希望中学一个学期的数学总平均分是按下图进行计算的.该校李飞同学这个学期的数学成绩如下:(单位:分)李飞平时作业期中考试期末考试90 8588则李飞这个学期数学总平均分为.4.某商场用加权平均数来确定什锦糖的单价,由单价为15元/千克的甲种糖果10千克,单价为12元/千克的乙种糖果20千克,单价为10元/千克的丙种糖果30千克混合成的什锦糖果的单价应定为.【能力提升】5.学生的学科期末成绩由期考分数、作业分数、课堂参与分数三部分组成,按各占30%,30%,40%的比例确定.已知晓明的数学期考80分,作业90分,课堂参与85分,则他的数学期末成绩为分.6.小丽家上个月吃饭费用为500元,教育费用为200元,其他费用为500元.本月小丽家这三项费用分别增长了10%,30%和5%.小丽家本月的总费用比上个月增长的百分数是多少?7.小李同学七年级第二学期的数学成绩如下表所示:测验类别平时期中考试期末考试测验1测验2测验3测验4成绩88 92 94 90 92 89如果学期的总评成绩是根据如图所示的权重计算,那么小李同学该学期的总评成绩为多少分?(四舍五入精确到1分)8.老师在计算学期总平均分的时候按如下标准:作业占10%,测验占20%,期中考试占35%,期末考试占35%,小关和小兵的成绩如下表:学生作业测验期中考试期末考试小关80 75 71 88 小76 80 68 90分别算出小关和小兵的总平均分.【拓展探究】9.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试成绩(单位:分)测试项甲乙丙目笔试75 80 90面试93 7068根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4∶3∶3的比例确定个人成绩,那么谁将被录用?【答案与解析】1.D(解析:将四个人的测试成绩按比例求出最终成绩,找出成绩最高的即可.)2.B(解析:根据加权平均数的概念分别计算出3人的各自成绩.先求出采访写作、计算机和创意设计这三项的权重比是3∶5∶2各自的成绩,再求出这三项的权重比是5∶3∶2各自的成绩,进行比较.)3.87.5(解析:先从统计图得到相应数据的权重,再利用加权平均数的计算方法求解.)4.11.5元/千克(解析:将三种糖果的总价算出,再除以60即可.)5.85(解析:根据加权平均数的计算公式计算即可.)6.解:500×10%+200×30%+500×5%=135(元),135÷(500+200+500)×100% =11.25%.7.解:平时平均成绩为=91(分),总评成绩为=90.1≈90(分).8.解:小关的学期总平均分为=80×10%+75×20%+71×35%+88×35%=78.65(分),小兵的学期总平均分为'=76×10%+80×20%+68×35%+90×35%=78.9(分).9.解:(1)甲、乙、丙三人的民主评议得分分别为:200×25%=50(分),200×40%=80(分),200×35%=70(分).(2)甲的平均成绩为≈72.67(分),乙的平均成绩为≈76.67(分),丙的平均成绩为=76.00(分).由于76.67>76>72.67,所以候选人乙将被录用.(3)甲的个人成绩为=72.9(分);乙的个人成绩为=77(分);丙的个人成绩为=77.4(分).由于丙的个人成绩最高,所以候选人丙将被录用.本节课把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.平均数是统计中的一个重要概念,新教材注重了学生在经历统计活动的过程中体会平均数的本质内涵,理解平均数的意义,发展学生的统计观念.基于以上认识,我在设计中突出了让学生在具体情境中体会为什么要学习平均数,注重引导学生在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决实际问题,了解它的价值,努力做到由传统的数学课堂向实验课堂转变.在教学过程中,高估了学生理解加权平均数的能力,主要困难在于一些学生不能对权的含义理解透彻.适当增加学生熟知的一些实例,通过计算平均数,深刻理解权的含义及对平均数的影响.练习(教材第113页)1.解:(1)甲:=88(分),乙:=87.5(分),故甲将被录取.(2)甲:=87.6(分),乙:=88.4(分),故乙将被录取.2.解:=88.5(分).故小桐这学期的体育成绩是88.5分.学生在第二学段已学过平均数,初步了解了平均数的实际意义,这个课时将在此基础上,在研究数据集中趋势的大背景下,学习加权平。

人教版八年级数学下册第二十章 数据的分析导学案

人教版八年级数学下册第二十章  数据的分析导学案

课题:20.1.1平均数(1)课型:新课型课时:一课时授课人:班级:授课时间:【学习目标】1.使学生理解数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.3.通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

【重点难点预测】重点:会求加权平均数.难点:对“权”的理解.【学法指导】类比延伸【学习流程】一、自主学习、预习交流(约10分钟)目标、任务1.理解数据的权和加权平均数的概念掌握加权平均数的计算方法.2.描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

练习:1、一组数据88,72,86,90,75的平均数是;2、一组数据12,12,12,12, 4,4,4,4,4,13,的平均数是;3、一组数据有5个20,4个30,3个40,8个50,则这20个数的平均数为 .二、合作探究、展示提升(约20分钟)某市三个郊县的人数及人均耕地面积如下表:郊县人数(万)人均耕地面积(公顷)A 15 0.15B 7 0.21C 10 0.18求这个市郊县的人均耕地面积是多少?(精确到0.01公顷)(分析:人均耕地面积=总耕地面积总人口)讨论:1.总耕地面积= .2.总人口= .3.人均耕地面积= .4.这个问题中,哪些是数据?哪些是权?教师复备(学生笔记)三、练习巩固、达标测评(约10分钟)1.一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试者 听 说 读 写甲 85 83 78 75 乙73808582(1)如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照3∶3∶2∶2的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?讨论:将所占比例看作它们各自的权,即听占有3份,说占 份,读占 份,写占 份,合计 份。

)(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶2∶3∶3的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?2.一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各个成绩均按百分制,然后再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例,计算选手的综合成绩(百分制),进入决赛的前两名选手的单项成绩如下表所示:选手 演讲内容 演讲能力 演讲效果 A 85 95 95 B958595请决出两人的名次。

新课标人教版 初中初二 八年级数学 下册第二学期(导学案)第二十章 数据的分析 (第20章全单元 导学案)

新课标人教版  初中初二 八年级数学 下册第二学期(导学案)第二十章 数据的分析 (第20章全单元 导学案)

第二十章数据的分析20.1 数据的集中趋势20.1.1 平均数第1课时平均数和加权平均数【学习目标】1.使学生理解数据的权和加权平均数的概念;2.使学生掌握加权平均数的计算方法.【重、难点】重点:会求加权平均数.难点:对“权”的理解.【预习作业】:1.(1)数据:4,5,6,7,8的平均数是。

(2)2、8、7、2、7、7、8、7、6的算术平均数为。

(3)一组数据中有3个x1和8个x2,这组数据中共有个数据;它们的平均数为。

小学所学平均数的计算公式是2.某次考试A、B、C、D、E这5名学生的平均分为62分,若学生A除外,其余学生的平均得分为60分,那么学生A的得分是____ ___.3. 加权平均数:(预习新知)(1)n个数据:f1个a1,f2个a2,…,f n个a n(f1+f2+…+fn=n)它的加权平均数为x(2)权反映的是二.合作探究,生成总结练一练:1.在一组数据中,2出现了3次,3出现了2次,4出现了5次,则2的权为,3的权为,4的权为;这组数据的平均数为.2.某人打靶,有1次中10环,2次中7环,3次中5环,则平均每次中靶环.3.在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。

已知该班平均成绩为80分,则该班有人.4.在一个样本中,2出现了x1次,3出现了x2次,4出现了x3次,5出现了x4次,则这个样本的平均数为.5.某人打靶有a次打中x环,b次打中y环,则此人平均每次中靶环。

探讨2.一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩(注:权能够反映数据的相对)练一练:1、老师在计算学期总平均分的时候按如下标准:作业占100%、测验占30%、期中占35%、期末考试占35%,小关和小兵的成绩如下表:求两人的平均成绩个是多少?知识点小结:本节课我们学习了……..三.达标测评,分层巩固基础训练题:1.为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行测量,结果如下表:(单位:小时)2.数学期末总评成绩由作业分数,课堂参与分数,期考分数三部分组成,并按3:3:4的比例确定。

第二十章__数据的分析导学案.word

第二十章__数据的分析导学案.word

第二十章 数据的分析20.1.1 平均数(第一课时)【学习内容】课本P 111-113【学习目标】1. 认识和理解数据的权及其作用。

2. 通过实例了解加权平均数的意义,会根据加权平均数的计算公式进行有关计算。

【学习重难点】重点:加权平均数的概念以及运用加权平均数解决实际问题。

难点:对数据的权及其作用的理解。

【学习过程】探 究 案知识回顾1.求下列数据的平均数:3,0,-1,4,-22.求下列数据的平均数:x 1, x 2, x 3,…,x n3.若4,6,8,x 的平均数是8,且4,6,8,x ,y 的平均数是9,求x ,y 的值。

探究活动1.同学们,认真阅读教材P 111-113,细心体会一下,谈一谈你所理解的加权平均数的含义。

“权”的含义是什么2. 问题1:一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:(1)如果这家公司想招一名综合能力较强的翻译,计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁(2)如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照2∶1∶3∶4的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁(3)归纳:n个数的加权平均数.若n个数x1,x2,…xn的权分别是w1,w2…wn,则这n个数的加权平均数是多少(4)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶2∶3∶3的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁与上述问题中的(1)(2)相比较,你能体会到权的作用吗例1.一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各个成绩均按百分制,然后再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例,计算选手的综合成绩(百分制),进入决赛的前两名选手的单项成绩如下表所示:请决出两人的名次。

训练案1、某次数学测验的成绩分三部分计算,卷面成绩占总成绩的70%,作业占总成绩的20%,课堂占总成绩的10%。

人教版数学八年级下《第二十章数据的分析》导学案

人教版数学八年级下《第二十章数据的分析》导学案

20.1 数据的代表学习目标、重点、难点【学习目标】1、掌握平均数、中位数、众数等数据代表的概念,能根据所给信息求出相应的数据代表.2、掌握加权平均数的计算方法. 【重点难点】1、掌握中位数、众数等数据代表的概念.2、选择恰当的数据代表对数据做出判断.知识概览图某中学举行歌咏比赛,六名评委给某选手打分如下:78分,77分,82分,95分,83分,75分,去掉一个最高分,去掉一个最低分,再统计平均分作为该选手的最后得分.根据打分规则,选手的得分是:14×(78+77+82+83)=14×320=80(分),除了用平均数来衡量选手的得分外,是否还有其他的方法呢? 教材精华知识点1 平均数的概念 算术平均数.1)n k x x f n+++++…+f k )一般地,对于n 个数1x ,2x , ,…,n x ,我们把1n(1x +2x +3x +…n x )叫做这n 个数的算术平均数,简称平均数,记为x ,则x =1n(1x +2x +3x +…n x ).新数据法.当所给数据都在某一常数a 的上下波动时,一般选用简化公式:x =x '+a.其中a 通常取接近于这组数据的平均数较“整”的数,1x '=1x -a ·2x '=2x -a,…,n x '=n x - a, x '=1n(1x '+2x '+…+nx ')是新数据的平均数. 加权平均数.在求n 个数的算术平均数时,如果1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里1f +2f +…+k f =n ),则这n 个数的算术平均数x =1122k kx f x f x f n+++也叫做12,,k x x x ,这k个数的加权平均数,其中12,,,k f f f 分别叫做12,,k x x x 的权.总结:如果1231(),n x x x x x n=++++1231(),n y y y y y n=++++则有下列结论:①112233,,,,,n n x y x y x y x y ±±±±的平均数为x y ±; ②112,233,,,,,,n n x y x y x y x y 的平均数为2x y+; ③123,,,,n ax b ax b ax b ax b ++++的平均数为ax b +. 知识点2 总体、个体、样本调查中,所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体. 例如,某班10名女生的考试成绩是总体,每一名女生的考试成绩是个体.从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本.例如,要调查全县农村中学生学生平均每周每人的零花钱数,由于人数较多(一般涉与几万人),我们从中抽取500名学生进行调查,就是抽样调查,这500名学生平均每周每人的零花钱数,就是总体的一个样本.知识点3 中位数的概念将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数称为这组数据的中位数.知识点4 众数的概念一组数据中出现次数最多的数据就是这组数据的众数.例如:求一组数据3,2,3,5,3,1的众数.解:这组数据中3出现3次,2,5,1均出现1次.所以3是这组数据的众数.又如:求一组数据2,3,5,2,3,6的众数.解:这组数据中2出现2次,3出现2次,5,6各出现1次.所以这组数据的众数是2和3.【规律方法小结】(1)平均数、中位数、众数都是描述一组数据集中趋势的量.(2)平均数反映一组数据的平均水平,与这组数据中的每个数据都有关,是最为重要的量.(3)中位数不受个别偏大或偏小数据的影响,当一组数据中的个别数据变动较大时,一般用它来描述集中趋势.(4)众数只与数据出现的频数有关,不受个别数据影响,有时是我们最为关心的统计数据.探究交流1、一组数据的中位数一定是这组数据中的一个,这句话对吗?为什么?解析:不对,一组数据的中位数不一定是这组数据中的一个,当这组数据有偶数个时,中位数由中间两个数的平均数决定,若中间两数相等,则这组数据的中位数在这组数据之中,反之,中位数不在这组数据之中.总结:(1)中位数在一组数据中是唯一的,可能是这组数据中的一个,也可能不是这组数据中的数据.(2)求中位数时,先将数据按由小到大的顺序排列(或按由大到小的顺序排列).若这组数据是奇数个,则最中间的数据是中位数;若这组数据是偶数个,则最中间的两个数据的平均数是中位数。

数据的分析(全章)导学案【精品】

数据的分析(全章)导学案【精品】

《课题:20.1.1平均数》导学案【学习目标】1.掌握算术平均数、加权平均数的概念.(重点)2.理解数据的权,体会权的作用,会求一组数据的算术平均数和加权平均数.(重点、难点)一:算术平均数2.你归纳出算术平均数的概念吗?【归纳】一般地,对于n 个数x 1, x 2, …, x n ,我们把12...nn x x x x +++=叫做这n 个数的算术平均数,简称平均数.练习:某次考试,5名学生的平均分是82,除甲外,其余4名学生的平均分是80,那么甲的得分是( )A .84B .86 C .88 D .90二:加权平均数问题2 一家公司打算招聘一名英文翻译。

对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(百分制)如下表所示: (1)如果公司想招一名综合能力较强的翻译,请计算两名应试者的平均成绩,应该录用谁?(2)如果公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2:1:3:4的比确定,计算两名应试者的平均成绩。

从他们的成绩来看,应该录取谁?【归纳】一般地,若n 个数x 1,x 2,…,x n 的权分别是w 1,w 2,…,w n ,则112212n nnx w x w x w x w w w L L +++=+++ 叫做这n 个数的加权平均数.【例1】一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分.各项成绩均按百分制,然后再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例,计算选手的综合成绩(百分制).进入决赛的前两名选思考(1)你认为在计算选手的综合成绩时侧重于哪个方面的成绩?三项成绩的权分别是多少?(2)两名选手的单项成绩都是两个95分与一个85分,为什么他们的最后得分不同?从中你能体会到权的作用吗?三:算数平均数与加权平均数的区别和联系(1)算术平均数是加权平均数的一种特殊情况(它特殊在各项的权相等);(2)在实际问题中,各项权不相等时,计算平均数时就要采用加权平均数,当各项权相等时,计算平均数就要采用算术平均数.权的常见形式:①数据出现的次数形式.如 10、2、8;②比的形式.如 3:3:2:2;③百分比形式.如 50%、40% 、10%.四:做一做,你会成功!1、已知x1+1,x2+2,x3+3的平均数是6,则x1, x2,x3的平均数是( )A.6B.3C.4D.122、如果一组数x1,x2,x3,x4的平均数是x,则另一组数x1+1,x2+2,x3+3,x4+4的平均数是( )A.xB.x + 2C.x + 2.5D.x + 103.某中学规定学期总评成绩评定标准为:平时30%,期中30%,期末40%,小明平时成绩为95分,期中成绩为85分,期末成绩为95分,则小明的学期总评成绩为分.4.我校生物小组11人到校外采集植物标本,其中2人每人采集到6件,4人每人采集到3件,5人每人采集到4件,则这个小组平均每人采集标本是( ) A.3件 B.4件 C.5件 D.6件5.课本113页1题,2题五:谈谈收获:一个“权”的意义:各个数据的“重要程度”.两种平均数的求法:算术平均数,加权平均数.加权平均数中的“权”的三种表现形式:(1)频数 (2)百分比 (3)比例.《课题:20.1.1利用组中值求加权平均数》导学案【学习目标】1.加深对K个数的加权平均数的理解.2.理解组中值的意义,能利用组中值求加权平均数.(重点、难点)3.了解使用计算器求加权平均数.一:K个数的加权平均数问题1 在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如表所示:这8名同学捐款的平均金额约为( )A.6.5元 B.6元 C.3.5元 D.7元【归纳总结】加权平均数的另一定义形式:在求n个数的算术平均数时,如果x1出现f1次,x2出现f2次,…,xk出现f k 次(这里f1+f2+…+fk=n)那么这n个数的算术平均数nfxfxfxx kk+⋅⋅⋅++=2211也叫做x1,x2,…,xk这k个数的加权平均数,其中f1,f2,…,fk分别叫做x1,x2,…,xk的权.【例1】某跳水队为了解运动员的年龄情况,作了一次年龄调查,结果如下:13岁8人,14岁16人,15岁24人,16岁2人。

人教版数学八下第二十章数据的分析全章教案

人教版数学八下第二十章数据的分析全章教案

第二十章数据的分析数据的代表平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

二、重点、难点和难点突破的方法:1、重点:会求加权平均数2、难点:对“权”的理解1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值第二十章数据的分析课题数据的代表课时:六课时第一课时平均数【学习目标】1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

【重点难点】重点:会求加权平均数难点:对“权”的理解【导学指导】学习教材P124-P127相关内容,思考、讨论、合作交流后完成下列问题:1.你认为P124“思考”中小明的做法有道理吗?为什么?2.正确的解法应是怎样的?请谈谈你的看法。

3.什么是加权平均数?4.P125“例1”中,所求的结果已不再是各人听说读写成绩的简单平均,而是听说读写成绩的加权平均数,它们的权分别是多少?5.P126“例2”中,两名选手的单项成绩都是两个95分与一个85分,为什么他们的最后得分不同呢?谈谈你对权的作用的体会。

【课堂练习】1.教材P127练习第1,2题。

2、在一个样本中,2出现了x1次,3出现了x2次,4出现了x3次,5出现了x4次,则这个样本的平均数为.3、某人打靶,有a次打中x环,b次打中y环,则这个人平均每次中靶环。

4、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示:试判断谁会被公司录取,为什么?5、在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。

人教版八年级下数学 第二十章 数据的分析全章设计教学设计

人教版八年级下数学 第二十章 数据的分析全章设计教学设计

第二十章数据的分析
教学过程
个数的平均数,
这样求得的平均数叫做加权平均数,其中f1,为15,那么由此求出的平均数与实际平均数的差是______。

解:由一组数据的平均数定义知
实际平均数: x=(x1+x2+……+x29+105)
求出的平均数:x错=(x1+x2+……+x29+15)
错-==-3
例3:设两组数a1,a2,a3……a n和b1,b2,b3……b n的平均数为和,那么新的一组数a1+b1,a2+b2,a3+b3……a n+b n的平均数是[]
A.(+)
B. +
C.(+)
D.以上都不对
20.1.1平均数(二)
教学过程
20.1 数据的代表
20.1.2 中位数和众数(一)
教学过程
据求平均数公式可列出该数据组的平均数为
平均数:=
,其中位数为若=9
=
其中位数为
若=10,
20.1.2 中位数和众数(二)
教学过程
20.2数据的波动
20.2.1极差
教学过程
20.2.2 方差
教学过程
复习与交流
教学过程
名学生的比赛数据(单位:个)经统计发现两班总分相等,此时有学生建议,可通过考查数据中的其他信息作为参
次,每次射靶的成绩情况如图所示:
进行分析:①从平均数和方差结合看;(分析谁的成绩好些);
八年级下册教案与试卷。

2019年第二十章数据的分析全章导学案.doc

2019年第二十章数据的分析全章导学案.doc

第1课时 平均数(1)【导学目标】1.使学生理解数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.3.通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

【导学重点】会求加权平均数.【导学难点】对“权”的理解. 【学法指导】类比延伸.【课前准备】查资料理解“权”. 【导学流程】一、呈现目标、明确任务1.理解数据的权和加权平均数的概念掌握加权平均数的计算方法.2.描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

二、检查预习、自主学习一组数据88,72,86,90,75的平均数是 ;一组数据12,12,12,12, 4,4,4,4,4,13,的平均数是 ;一组数据有5个20,4个30,3个40,8个50,则这20个数的平均数为 . 三、教师引导某市三个郊县的人数及人均耕地面积如下表:求这个市郊县的人均耕地面积是多少?(精确到0.01公顷) (分析:人均耕地面积=总耕地面积总人口)讨论:1.总耕地面积= .2.总人口= .3.人均耕地面积= .4.这个问题中,哪些是数据?哪些是权? 四、问题导学、展示交流1.一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成(1)如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照3∶3∶2∶2的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?讨论:将所占比例看作它们各自的权,即听占有3份,说占 份,读占 份,写占 份,合计 份。

)(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶2∶3∶3的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?2.一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各个成绩均按百分制,然后再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例,计算选手的综合成绩(百分制),进入决赛的前请决出两人的名次。

人教版八年级下册第二十章数据的分析全章复习教学设计

人教版八年级下册第二十章数据的分析全章复习教学设计
3.重点:培养学生的数据伦理观念,让他们认识到数据的重要性和敏感性。
难点:引导学生正确处理个人隐私和公共数据之间的关系,以及在数据分析过程中遵循法律法规。
(二)教学设想
1.创设情境:结合生活实际,设计具有趣味性、挑战性的问题情境,让学生在实际问题中感受数据分析的重要性,激发学习兴趣。
教学策略:案例教学法、问题驱动法、小组合作法。
2.运用案例教学法,让学生在实际问题中感受数据分析的过程和方法,提高学生的数据分析能力。
3.引导学生运用信息技术手段,如电子表格软件、统计软件等,辅助数据分析,提高数据处理和分析的效率。
4.设计丰富的实践活动,让学生在实践中掌握数据分析的方法,培养学生的动手操作能力和创新思维。
5.通过评价和反馈,帮助学生了解自己的学习进度和不足,激发学生的学习兴趣和自信心。
(三)情感态度与价值观
1.培养学生对数据的敏感性和好奇心,使他们对数据充满兴趣,愿意主动去发现和探索数据背后的规律。
2.培养学生严谨、客观、理性的数据分析态度,让他们认识到数据分析在决策、解决问题等方面的重要性。
3.培养学生的团队合作精神,使他们学会倾听、尊重、沟通、协作,共同完成数据分析任务。
4.培养学生的数据伦理观念,让他们明白数据的重要性和敏感性,遵循数据保护的法律法规,尊重个人隐私。
1.重点:培养学生熟练运用数据分析的基本方法,解决实际问题,并能够对数据进行合理的解释和分析。
难点:让学生理解数据分析在不同情境下的灵活运用,以及如何处理和分析大量复杂数据。
2.重点:提高学生对数据分析结果的评价和推断能力,使他们能够根据数据做出合理的预测。
难点:培养学生运用线性回归方程进行数据拟合和预测的能力,以及对方差、标准差等统计量的深入理解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十章数据的分析平均数(1)主备人:初审人:终审人:【导学目标】1.使学生理解数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.3.通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

【导学重点】会求加权平均数.【导学难点】对“权”的理解.【学法指导】类比延伸.【课前准备】查资料理解“权”.【导学流程】一、呈现目标、明确任务1.理解数据的权和加权平均数的概念掌握加权平均数的计算方法.2.描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

二、检查预习、自主学习一组数据88,72,86,90,75的平均数是;一组数据12,12,12,12, 4,4,4,4,4,13,的平均数是;一组数据有5个20,4个30,3个40,8个50,则这20个数的平均数为 .三、教师引导某市三个郊县的人数及人均耕地面积如下表:求这个市郊县的人均耕地面积是多少?(精确到0.01公顷)(分析:人均耕地面积=总耕地面积总人口)讨论:1.总耕地面积= .2.总人口= .3.人均耕地面积= .4.这个问题中,哪些是数据?哪些是权?四、问题导学、展示交流1.一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?讨论:将所占比例看作它们各自的权,即听占有3份,说占 份,读占 份,写占 份,合计 份。

) (2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶2∶3∶3的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?2.一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各个成绩均按百分制,然后再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例,计算选手的综合成绩(百分制),进入决赛的前两名选手的单项成绩如下表所示:五、点拨升华、当堂达标1.一般说来,如果在n 个数中,1x 出现1f ,2x 出现2f 次,…,k x 出现k f 次,则kkk ff f f x f x f x x ..................212211+++++=,其中1f ,2f …k f 叫做权。

2.完成练习1题.3.完成习题20.1中1题.六、布置预习预习下一节,完成练习1题.平均数(2)主备人: 初审人: 终审人:【导学目标】1、加深对加权平均数的理解.2、会根据频数分布表求加权平均数,从而解决一些实际问题. 3.会用计算器求加权平均数. 【导学重点】根据频数分布表求加权平均数. 【导学难点】根据频数分布表求加权平均数. 【学法指导】数形结合.【课前准备】频数直方分布图的理解.【导学流程】一、呈现目标、明确任务会根据频数分布表求加权平均数.二、检查预习、自主学习交流预习成果,说说每个数据的权是多少.三、教师引导1.探究课本P128页“探究”.(1)依据统计表可以读出哪些信息?(2)这里的组中值指什么,它是怎样确定的?(3)第二组数据的频数5指什么呢?(4)如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系.(5)计算平均载客量.四、问题导学、展示交流五、点拨升华、当堂达标1.阅读课本P128页下面的内容,尝试用计算器求加权平均数.2.完成P129页练习2题和P130页练习题.六、布置预习预习《配套练习》“数据的代表(2)”中1,2,3,5题.练习课主备人:初审人:终审人:【导学目标】1.复习加权平均数的计算.2.复习根据频数分布直方图求加权平均数.【导学重点】做练习.【导学难点】识别数据与权.【学法指导】类比.【课前准备】加权平均数.【导学流程】一、呈现目标、明确任务1.加权平均数.2.频数分布直方图中求加权平均数.二、检查预习、自主学习展示预习成果.这些题都与加权平均数有关,要分清数据和它的权.三、教师引导为了从甲、乙两名同学中选拔一人参加射击比赛,在同等条件下,教练给两名同学安排了一次射击试验,每人打10发子弹.下面是两名同学各自的射击情况记录(其中乙射中7、10环的记录被污染,但教练得这两个数均不为0发).(1)求甲同学在这次测验中的平均数.(2)根据这次测验,你认为选谁参加比赛较合适?说明理由.四、问题导学、展示交流讨论上面的问题.第(2)题,先想想乙射中7环和10环的次数可能分别为多少,再计算这两种情况下乙的加权平均数,然后与甲比较.五、点拨升华、当堂达标1.完成《配套练习》“数据的代表(2)”中6,7题.六、布置预习预习下一节,弄懂中位数和众数的概念,完成P131页练习题.【教后反思】中位数和众数(1)主备人:初审人:终审人:【导学目标】1.认识中位数和众数,并会求出一组数据中的众数和中位数。

2.理解中位数和众数的意义和作用。

它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。

3.会利用中位数、众数分析数据信息做出决策。

【导学重点】认识中位数、众数这两种数据代表.【导学难点】利用中位数、众数分析数据信息做出决策.【课前准备】中位数、众数的相关资料.【导学流程】一、呈现目标、明确任务1.会求出一组数据中的众数和中位数。

2.会利用中位数、众数分析数据信息做出决策。

二、检查预习、自主学习1.数据8、9、9、8、10、8、99、8、10、7、9、9、8的中位数是,众数是 .2.一组数据23、27、20、18、X、12,它的中位数是21,则X的值是 .3.数据92、96、98、100、X的众数是96,则其中位数和平均数分别是、 .三、教师引导1.在一次男子马拉松长跑比赛中,抽得12名选手的成绩(单位:分)如下:136 140 129 180 124 165146 145 158 175 165 148(1)样本数据(12名选手的成绩)的中位数是多少?(2)一名选手的成绩是142分,她的成绩如何?2. 一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表所示:四、问题导学、展示交流讨论上面的问题.五、点拨升华、当堂达标1.完成P131和132页练习题.2.某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件):1800 510 250 250 210210 150 210 150 120120 210210 150(1)求这15个销售员该月销量的中位数和众数.(2)假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。

3.某商店3、4月份出售某一品牌各种规格的空调,销售台数如表所示:根据表格回答问题:(1)商店出售的各种规格空调中,众数是多少?(2)假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定?4.完成P132页练习1题.六、布置预习1.完成练习2题,下节课前展示在小黑板上.2.预习下一节,弄懂例题,把不懂的问题出示在小黑板上.【教后反思】中位数和众数(2)主备人:初审人:终审人:【导学目标】1.进一步认识平均数、众数、中位数都是数据的代表。

2.通过本节课的学习还应了解平均数、中位数、众数在描述数据时的差异。

3.能灵活应用这三个数据代表解决实际问题。

【导学重点】了解平均数、中位数、众数之间的差异.【导学难点】灵活运用这三个数据代表解决问题.【学法指导】数据统计.【课前准备】社会调查.【导学流程】一、呈现目标、明确任务1.了解平均数、中位数、众数在描述数据时的差异。

2.能灵活应用这三个数据代表解决实际问题。

二、检查预习、自主学习展示预习成果。

1.第(1)题的三小问,分别考查哪个代表性数据?2.哪个数据作为目标,才是较高的?3.大约一半人的销售额在哪个代表性数据以上?4.课本中为什么要进行数据的整理?三、教师引导1.阅读P134页“归纳”,回答气泡图中的问题.2.平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大.众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少也不受极端值的影响.平均数的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应引起平均数的变动.中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.四、问题导学、展示交流1.公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁)甲群:13 13 14 15 15 15 16 17 17乙群:3 4 4 5 5 6 6 54 57 (1)甲群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好反映甲群游客年龄特征的是。

(2)乙群游客的平均年龄是岁,中位数是岁,众数是岁。

其中能较好反映乙群游客年龄特征的是。

2.在一次环保知识竞赛中,某班50名学生成绩如下表所示:得分50 60 70 80 90 100 110 120人数 2 3 6 14 15 5 4 1分别求出这些学生成绩的众数、中位数和平均数.五、点拨升华、当堂达标1.判断题:(正确的打“√”,不正确的打“³”)⑴给定一组数据,这组数据的平均数一定只有一个.()⑵给定一组数据,这组数据的中位数一定只有一个.()⑶给定一组数据,这组数据的众数一定只有一个.()⑶给定一组数据,这组数据的平均数一定位于最大值和最小值之间.()⑸给定一组数据,这组数据的中位数一定等于最小值和最大值的算术平均数. ()⑹给定一组数据,如果找不到众数,那么众数一定就是0.()2.右面的扇形图描述了某种运动服的S号,M号,L号,XL号,XXL号在一家商场的销售情况,请你为这家商场提出进货建议。

六、布置预习预习习题20.1中1—3题.练习课主备人:初审人:终审人:【导学目标】1.复习众数和中位数.2.用平均数、众数、中位数的知识解决实际问题.【导学重点】做练习.【导学难点】灵活运用所学知识解决实际问题.【学法指导】类比.【课前准备】平均数、众数、中位数.【导学流程】一、呈现目标、明确任务 解决实际问题.二、检查预习、自主学习展示预习成果.重点说说数据和它的权. 三、教师引导上面的条形图描述了某车间工人日加工零件数的情况:请找出这些工人日加工零件数的平均数、中位数和众数,并解释它们的含义.四、问题导学、展示交流 独立完成习题20.1中4题. 五、点拨升华、当堂达标1.完成5,6题.主要思考这些问题考查了哪些特征数,再解决问题.2.完成7题.这是一个开放性问题,可以从平均数、众数和中位数等角度进行研究,些外可以研究其它的相关数量.3.某饮食公司为一学校提供午餐,有3元、4元和5元三种价格的饭菜供师生选择(每人限定一份).右图是5月份的销售情况统计图,这个月一共销售了10400份饭菜,那么师生购买午餐费用的平均数、中位数和众数各是多少?六、布置预习1.分组完成8题.2.预习下一节,弄懂极差,完成练习,展示在小黑板上. 【教后反思】极差主备人: 初审人: 终审人:【导学目标】1.理解极差的定义,知道极差是用来反映数据波动范围的一个量.2.会求一组数据的极差. 【导学重点】会求一组数据的极差. 【导学难点】本节课内容较容易接受,不存在难点. 【课前准备】查阅极差. 【导学流程】一、呈现目标、明确任务(第10题)求极差.二、检查预习、自主学习1.极差的定义,它反映的平均水平还是波动情况?2.一组数据3、-1、0、2、x 的极差是5,且x 为自然数,则x = .3.下列几个常见统计量中能够反映一组数据波动范围的是( )A.平均数B.中位数C.众数D.极差三、问题导学、展示交流1.一组数据:473,865,368,774,539,474的极差是 ,一组数据1736,1350,-2114,-1736的极差是 .2.一组数据1x ,2x …n x 的极差是8,则另一组数据21x +1、22x +1…,2n x +1的极差是 .四、点拨升华、当堂达标1.完成练习题.2.已知样本9.9,10.3,10.3,9.9,10.1,则样本极差是 .3.在一次数学考试中,第一小组14名学生的成绩与全组平均分的差是2,3,5,10,12,8,2,-1,4,-10,-2,5,5,-5,那么这个小组的平均成绩是 .3.已知一组数据2.1,1.9,1.8,X ,2.2的平均数为2,则极差是 .4.若10个数的平均数是3,极差是4,则将这10个数都扩大10倍,则这组数据的平均数是 ,极差是 .5某活动小组为使全小组成员的成绩都要达到优秀,打算实施“以优帮困”计划,为此统计了上次测试各成员的成绩(单位:分)90,95,87,92,63,54,82,76,55,100,45,80计算这组数据的极差.这个极差说明什么问题? 五、布置预习1.完成《配套练习》“数据的波动(1)”中的题目.2.预习方差,弄懂计算公式,完成练习1题.方差(1)主备人: 初审人: 终审人:【导学目标】1.了解方差的定义和计算公式。

相关文档
最新文档