本科毕业设计---基于直方图的图像增强技术的研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
包头师范学院
本科毕业论文
题目:基于直方图的图像增强技术的研究学生姓名:赵良良
学院:信息科学与技术院系
专业:电子信息科学与技术
班级:07级本科
指导教师:刘晓虹
二〇一一年五月
摘要
图像增强是数字图像处理过程中经常采用的一种方法,图像增强的主要目的就是要使增强后的图像具有更好的视觉效果,更合适于对图像进行后续的分析和处理。灰度直方图概括了图像中各灰度级的含量,提供了原图的灰度值分布情况,灰度直方图是图像增强的最好的研究内容。通过采取适当的增强处理可以将原本模糊不清甚至根本无法分辨的原始图片处理成清楚、明晰的富含大量有用信息的可使用图像。本文主要研究了在MATLAB环境下,通过直方图的均衡化对图像进行增强处理。
关键词:图像增强;直方图;MATLAB
ABSTRACT
Image enhancement is a kind of method in the digital image processing,its purpose is that visual effects of enhancement image is better and appropriate to continue analyzing and processing image. Histogram shows all gray scales of image and distribution of image. Histogram is the best contents of image enhancement for study. The blurry and undistinguished image can be processed to clear and useful image. This paper studies image enhancement by histogram balance in MATLAB.
Key words:Image enhancement; Image Histogram; MATLAB
目录
摘要 (2)
ABSTRACT (3)
目录 (1)
1 绪论 (3)
1.1课题背景与意义 (3)
1.2研究现状 (4)
1.3本文的结构 (6)
2 图像增强的基本理论 (7)
2.1数字图像的表示 (7)
2.2主要的图像增强技术 (7)
3 基于直方图的图像增强 (9)
3.1直方图 (9)
3.1.1 直方图的定义及性质 (9)
3.2直方图变换 (10)
3.2.1 直方图修正基础 (10)
3.2.2 直方图均衡化 (11)
3.3直方图使用中的常见问题 (13)
4 图像直方图均衡化 (14)
4.1直方图均衡化的实现 (14)
4.1.1 系统实现的功能分析 (14)
4.2.1 直方图均衡化 (14)
5 结论 (16)
参考文献 (17)
致谢 (18)
1 绪论
人们从外界获得的信息约有75%来自图像,也就是说人类的大部分信息都是从图像中获得的。利用计算机对图像进行各种形式的处理,促进了图像处理技术的发展。图像增强本身就是图像处理中最具有吸引力的领域之一。
1.1 课题背景与意义
随着电子计算机技术的进步,计算机图像处理近年来得到飞跃的发展,己经成功的应用于几乎所有与成像有关的领域,并正发挥着相当重要的作用。它利用计算机对数字图像进行系列操作,从而获得某种预期的结果。对图像进行处理时,经常运用图像增强技术以改善图像的质量。
在一般情况下,经过图像的传送和转换,如成像、复制、扫描、传输和显示等,经常会造成图像质量的下降。在摄影时由于光照条件不足或过度,会使图像过暗或过亮;光学系统的失真、相对运动、大气流动等都会使图像模糊;传输过程中会引入各种类型的噪声。总之输入的图像在视觉效果和识别方便性等方面可能存在诸多问题,这类问题不妨统称为质量问题。尽管由于目的、观点、爱好等的不同,图像质量很难有统一的定义和标准,但是根据应用要求改善图像质量却是一个共同的目标。图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息[1]。从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚至根本无法分辨的原始图像处理成清晰的富含大量有用信息的可使用图像,有效地去除图像中的噪声、增强图像中的边缘或其他感兴趣的区域,从而更加容易对图像中感兴趣的目标进行检测和测量。处理后的图像是否保持原状已经是无关紧要的了,不会因为考虑到图像的一些理想形式而去有意识的努力重现图像的真实度。
图像增强的目的是增强图像的视觉效果,将原图像转换成一种更适合于人眼观察和计算机分析处理的形式。它一般要借助人眼的视觉特性,以取得看起来较好地视觉效果,很少涉及客观和统一的评价标准。增强的效果通常都与具体的图像有关系,靠人的主观感觉加以评价。
目前图像增强处理的应用已经渗透到医学诊断、航空航天、军事侦察、指纹识别、无损探伤、卫星图片的处理等领域。如对 X 射线图片、 CT 影像、内窥镜图像进行增强,使医生更容易从中确定病变区域,从图像细节区域中发现问题:对不同时间拍摄的同一地区的遥感图片进行增强处理,侦查是否有敌人军事调动或军事装备及建筑出现;在煤矿工业电视系统中采用增强处理来提高工业电视图像的清晰度,克服因光线不足、灰尘等原因带来的图像模糊、偏差等现象,减少电视系统维护的量。图像增强技术的快速发展同它的广泛应用是分不开的,发展的动力来自稳定涌现的新的应用,
我们可以预料,在未来社会中图像增强技术将会发挥更为重要的作用。
在图像处理过程中,图像增强是十分重要的一个环节。本文的主要内容就是围绕图像增强部分的一些基本理论和算法而展开。
1.2 研究现状
计算机图像处理的发展历史不长,但已经引起了人们的重视。图像处理技术始于20世纪60年代,由于当时图像存储成本高,处理设备造价高,因而其应用面很窄。 1964 年美国加州理工学院的喷气推进实验室,首次对徘徊者 7 号太空飞船发回的月球照片进行了处理,得到了前所未有的清晰图像,这标志着图像处理技术开始得到实际应用。70年代进入发展期,出现了cT和卫星遥感图像,对图像处理的发展起到了很好的促进作用。 80年代进入普及期,此时微机已经能够承担起图形图像处理的任务。VLSI 的出现更使得处理速度大大提高,其造价也进一步降低,极大的促进了图像处理系统的普及和应用。90年代是图像处理技术实用化时期,图像处理的信息量巨大,对处理的速度要求极高。21世纪的图像处理技术要向高质量化方面发展,实现图像的实时处理,采用数字全息技术使图像包含最为完整和丰富的信息,实现图像的智能生成、处理、理解和识别。
图像增强作为图像处理的重要组成部分,传统的图像增强方法对于改善图像质量发挥了重要作用。随着对图像增强技术研究的不断深入,新的图像增强方法不断出现。目前主要分为如下几类
1.传统的图像增强方法
传统的图像增强的处理方法基本可以分为空域图像增强和频域图像增强两大类。空域是指组成图像的像素的集合,空域图像增强直接对图像中像素灰度值进行运算处理,如灰度变换、直方图均衡化等。频域图像增强是对图像经傅立叶变换后的频谱成分进行操作,然后逆傅立叶变换获得所需结果,如低通滤波技术、高通滤波器技术、带通和带阻滤波等。
2.多尺度分析的图像增强方法
多尺度分析又称为多分辨率分析,它是由Mallat于1989 年首先提出的。以小波变换为代表的多尺度分析方法,被认为是分析工具及方法上的重大突破。小波分析在时域或频域上都具有良好的局部特性,而且由于对高频信号采取逐步精细的时域或空域步长,从而可以聚焦到分析对象的任意细节。随后取得了许多研究成果,如 Sattar etal 提出了一种非线性的多尺度增强方法、杨煊提出了一种基于方向信息的多尺度边缘检测和图像去噪的方法等。
3.数学形态学增强方法
数学形态学是用具有一定形态的结构元素去量度和提取图像中的对应形状,以达