锚杆计算书
抗浮锚杆计算书
抗浮锚杆设计计算书一、工程质地情况:地下水位标高-1.00 m地下室底板标高-6.52 m浮力55.2 kN/m2二、抗浮验算特征点受力分析:1.原底板砂垫层厚0.10m自重0.10X20=2kN/m22.原砼底板厚0.40m:自重0.4X25=10 kN/m23.新加砼配重层厚0.30m自重0.3X25=7.5 kN/m2抗浮计算55.20-19.50=35.70 kN/m2三、锚杆体计算过程由受力情况,将锚杆分为A、B、C三类,A类为图中○A轴至○E轴区域,地面与中风化板岩之间有8米粘性土层;B类为有○E轴至○L轴区域,地面与中风化板岩之间有4米粘性土层;C类为图中○L轴至○Q轴区域,地面与中风化板岩之间无粘性土层。
锚杆间距取3m×3m。
1.锚杆杆体的截面面积计算:yk tt s f NKA总计19.5 kN/m2tK ——锚杆杆体的抗拉安全系数,取1.05; t N ——锚杆的轴向拉力设计值(kN ),锚杆的拉力设计值=特征值×1.3,A 类锚杆取35.70×3.0×3.0×1.3=438.75kN 。
yk f ——钢筋的抗拉强度标准值(kPa ),HRB400取400 kPa 。
As ≥fyk KtNt =4001075.43805.13⨯⨯=11512mm选取两根HRB400 直径28mm 钢筋,钢筋截面积满足规范要求2. 锚杆锚固长度锚杆锚固长度按下式估算,并取其中较大者:ψπmg ta Df KN L >ψπεms ta df n KN L >式中:K ——锚杆锚固体的抗拔安全系数,取1.05;tN ——锚杆的轴向拉力设计值(kN ),取438.75kN ; a L ——锚杆锚固段长度(m );mgf ——锚固段注浆体与地层间的粘结强度标准值(kPa ),按表7.5.1-1取粘性土层65kpa ,中风化板岩层0.25Mpa ;ms f ——锚固段注浆体与筋体间的粘结强度标准值(kPa ),按表7.5.1-3取2.5MPa ;D ——锚杆锚固段的钻孔直径(m ),取0.15md ——钢筋的直径(m );ε——采用2根以上钢筋时,界面的粘结强度降低系数,取0.6~0.85,本例取0.7;ψ——锚固长度对粘结强度的影响系数,按表7.5.2取1.0;n ——钢筋根数。
锚杆计算书
2.危岩加固检算
依据勘查报告,危岩总方量:263.3m3,破坏模式为坠落式;
考虑今后裂隙完全贯通,则危岩总重即为下滑力,为F5=263.3×25.5=6714.15kN;所须2φ16钢丝绳根数:n=F5/F4=6714.15/263.76=25.45根。设计取28根满足要求。
计算书
计算:
复核:
审核:
项目负责人:
1.钢丝绳锚固力检算
(1)基本参数
锚孔直径φ=70mm,2Ф16镀锌钢丝绳,M30水泥砂浆。
(2)力学参数
2Ф16镀锌钢丝绳标准强度取1720MPa,钢丝绳与砂浆体的握裹力取1.2MPa,砂浆体与砂岩孔壁间的极限粘着强度μ取600kPa。
(3)钢丝绳锚杆锚固力
受以下3种条件控制,取其中小值作为设计用锚固力:
1)钢丝绳极限拉力F1:
F1=1720000×A×N1
2Ф16钢丝绳的截面积A=0.0004m2,安金系数N1取0.69。
则F1=474.72kN。
2)砂浆体对钢丝绳的握裹力F2:
1m长砂浆体对2φ16钢丝绳的握裹F2=0.016π1200×2=120.60kN。
3)砂浆体与孔壁间的粘着力F3:
1m长φ70砂浆体与孔壁间的粘着力F3=0.07π600/2(安全系数)=65.94kN。
抗浮锚杆设计计算书
地下室抗浮锚杆设计计算书一.设计依据:《岩土锚杆(索)技术规程》CECS 22:2005《建筑地基基础设计规范》GB50007-2011广东省《建筑地基基础设计规范》DBJ 15-31-2003《建筑边坡工程技术规范》GB 50330-2013二.设计条件:室内地面标高为H=0.000(绝对标高为27.40m),室外地面标高为H=26.100~28.00,抗浮水位1a轴至5轴抗浮设计水位取为26.00,5轴至12轴抗浮设计水位取为27.00(即相对标高为-0.400m)。
底板面标高-5.500(绝对标高为21.90m),消防水池处底板面标高-6.000(绝对标高为21.40m),主楼处筏板厚度1100mm,筏板以外区域底板厚度400mm。
底板板底水浮力:筏板处:Fw1=(H-Hw1)×10=(27.00-21.90+1.100)×10=62.00 kN/m或Fw1=(H-Hw1)×10=(26.00-21.90+1.100)×10=52.00 kN/m其余部位:Fw2=(H-Hw2)×10=(27.00-21.90+0.400)×10=55.00 kN/m或Fw3=(H-Hw2)×10=(26.00-21.90+0.400)×10=45.00 kN/m三.抗浮板受力计算:1、计算水反力(模型按负值输入不重复计算板自重),用于抗浮锚杆设计。
筏板处:62×1.05-2(建筑面层做法)=63.1 kN/m或52×1.05-2(建筑面层做法)=53.1 kN/m其余部位:55×1.05-2(建筑面层做法)=55.75 kN/m或45×1.05-2(建筑面层做法)=45.75 kN/m不考虑活载及砖墙荷载2、计算水浮力作用下底板配筋时,模型采用倒楼盖法按正向力输入,且扣除板自重,勾选不自动计算现浇板自重。
锚杆挡墙(新规范)计算书
锚杆肋柱验算(依据《混凝土结构设计规范GB50010-2010》计算)参数项及单位数值说明侧向岩土压力水平分力强度标准值ehk(kPa)120.0锚杆水平间距Sxj(m) 2.5均布荷载q(kN/m)300锚杆垂直间距Syj(m) 2.0肋柱宽度b(mm)400肋柱高度h(mm)600肋柱混凝土强度fc(N/mm^2)16.7C35砼纵筋强度fy(N/mm^2)360HRB400混凝土轴心抗拉强度设计值ft(N/mm^2) 1.57C35砼箍筋抗拉强度设计值fyv(N/mm^2)270HPB300弯矩设计值M(kN.m)223.3M=1.35×1/8×qL²剪力设计值V(kN)405.0有效高度h0(mm)555h0=h-45截面弹塑性抵抗矩系数αs0.1085相对界限受压区高度ξ0.115肋柱纵筋计算值As1(mm^2)1186肋柱纵筋受拉实配钢筋直径(mm)20肋柱纵筋受拉实配钢筋根数4肋柱纵筋受拉实配钢筋面积AS2(mm^2)1257肋柱抗弯配筋验算结论:配筋满足。
AS2>AS1检验配筋率ρ0.52%max(0.20%,45ft/fy)hw/b 1.390.25(0.20)βcfcbh0926.85验算截面限值条件结论:满足。
肋柱混凝土抗剪力Vc=244肋柱箍筋计算值Asv/s 1.075肋柱箍筋直径(mm)10肋柱箍筋双肢截面积(mm^2)157.1肋柱箍筋间距(mm)100.0肋柱箍筋实配值Asv/s 1.571肋柱抗弯配筋验算结论:配筋满足。
配筋率ρsv0.39%最小配筋率ρsv,min0.14%配筋率验算结论:满足最小配筋率ρsv>ρsv,min。
锚杆计算书
计算书
计算:
复核:
审核:
项目负责人:
1. 钢丝绳锚固力检算
(1)基本参数
锚孔直径φ=70mm,2Ф16镀锌钢丝绳,M30水泥砂浆。
(2)力学参数
2Ф16镀锌钢丝绳标准强度取1720MPa,钢丝绳与砂浆体的握裹力取 1.2MPa,砂浆体与砂岩孔壁间的极限粘着强度μ取600k Pa。
(3)钢丝绳锚杆锚固力
受以下3种条件控制,取其中小值作为设计用锚固力:
1) 钢丝绳极限拉力F1:
F1=1720000×A×N1
2Ф16钢丝绳的截面积A=0.0004m2,安金系数N1取0.69。
则F1=474.72k N。
2) 砂浆体对钢丝绳的握裹力F2:
1m长砂浆体对2φ16钢丝绳的握裹F2=0.016π1200×
2=120.60k N。
3) 砂浆体与孔壁间的粘着力F3:
1m长φ70砂浆体与孔壁间的粘着力F3=0.07π600/2(安全系数)=65.94k N。
(4)结论:
当锚固段长度取4m,锚固力由F3控制,每根为F4=/65.94×4=263.76k N;
2. 危岩加固检算
依据勘查报告,危岩总方量:263.3m3,破坏模式为坠落式;
考虑今后裂隙完全贯通,则危岩总重即为下滑力,为F5=263.3×25.5=6714.15k N;所须2φ16钢丝绳根数:n=F5/F4=6714.15/263.76=25.45根。
设计取28根满足要求。
锚杆计算书
锚杆设计计算书1.抗浮锚杆设计依据本工程抗浮锚杆设计依据为:(1)《高层建筑岩土工程勘察规程》(JGJ72-2004);(2)《建筑边坡工程技术规范》(GB50330-2002);(3)《建筑地基基础设计规范》(GB50007-2002);(4)《岩土锚杆(索)技术规程》(CECS22-2005);(5)《建筑地基基础设计规范》(DBJ 15-31-2003)。
2.抗浮锚杆设计2.1抗浮设计要求锚杆的抗拔力根据设计给定的地下室抗浮力标准进行计算。
结合建筑的性质以及场地条件,浮力设计值中取荷载分项系数为1.25。
2.2锚杆抗拔力计算抗浮锚杆主要依靠锚杆锚固体与土体的粘结力(抗剪强度)来抵抗(水体对基础或底板的浮力)上拔力。
根据《岩土锚杆(索)设计与施工规范》(CECS22-2005)规定,非粘性土中圆柱型锚杆锚固段长度按下列公式进行估算,并取其中较大值:L a>K·N t/πDf mgψ(7.5.1-1)L a> K·N t/nπDf msψ(7.5.1-2)锚杆杆体的截面公式:A s≥K t N t/f yk锚杆杆体的截面面积公式:As上述公式中:La——锚杆锚固段长度(m);Kt——锚杆锚固体的抗拔安全系数,永久锚杆,取2.2(K值已考虑群锚效应);Nt——锚杆的轴向拉力设计值(KN);D ——锚固体的直径150mm;f mg——锚固段注浆体与地层间的粘结强度标准值,取f mg=200kPa(CECS22-2005保守取底值);f ms——锚固段注浆体与钢筋间的粘结强度标准值,取f ms=2000kPa;——采用钢筋数量≥2根时,界面的粘结强度降低系数,取0.85~0.6;——锚固长度对粘结强度的影响系数,取1.0~1.3,计算取值1.1;f yt——钢筋抗拉强度标准值,当采用Ⅲ级热轧钢筋时,其抗拉强度标准值为f yt=400N/mm2;As——锚杆钢筋的截面积(mm2);A ——单根Ⅲ级热轧钢筋的截面积;Kt——锚杆杆体的抗拉安全系数,永久锚杆取1.6;N ——钢筋根数;由于单根锚杆的轴向拉力值Nt和锚固段长度La都是未知数,类比其它工程实践数据,通常先行确定锚固段长度La,再来计算校核单根锚杆的轴向拉力值Nt。
边坡锚杆设计计算书
档计算项目:2#工况整体稳定 [计算简图] [计算条件]圆弧稳定分析方法:瑞典条分法 土条重切向分力与滑动方向反向时 :当下滑力对待稳定计算目标:自动搜索最危险滑裂面条分法的土条宽度:1.000(m) 搜索时的圆心步长:1.000(m) 搜索时的半径步长:0.500(m) 最不利滑动面:滑动圆心 =(1.320,20.340)(m)滑动半径=12.038(m)滑动安全系数 =0.807起始x 终止xli Ci謎 条实重 浮力地震力 渗透力附加力X 附加力丫下滑力抗滑力(m) (m)( 度)(m) (kPa)(度)(kN) (kN) (kN)(kN) (kN) (kN)(kN)计算结果(kN)[坡面信息]坡面线段数4坡面线号 水平投影 (m) 竖直投影(m) 1 1.200 8.300 02 1.500 0.000 03 7.300 9.200 04 20.000 0.000 1 [控制参数]: 采用规范: 通用方法 计算目标: 安全系数计算 滑裂面形状:圆弧滑动法 不考虑地震 超载1 距离8.000(m)超载数2.7713.675 9.104 0.92 10.00 17.50 8.08 0.00 0.00 0.00 0.00 0.001.28 11.67 宽 12.000(m) 荷载(20.00--20.00kPa) 270.00( [土层信息] 上部土层数2 层号 定位高 十字板羲 强度增长系 重度 饱和重度 层底线倾全孔压 度(m) 值(kPa) 数水下值 1 7.543 18.000 ..................... 7.000 --■ 2 17.500 18.000 ............. 0.000 … 下部土层数2 层号 定位深 十字板羲 强度增长系(kN/m3) (kN/m3) (kPa)( 角(度)系数 47.400 23.300 -- 10.000 17.500 --- 重度 饱和重度 层顶线倾 全孔压 粘聚力 内摩擦角 水下粘聚 水下内摩 十字板 强度增 度) 力(kPa) 擦角(度)(kPa) 长系数 下 度(m) 值(kPa) 数水下值 1 1.069 18.000 (kN/m3) (kN/m3) (kPa)( 角(度) 系数 ---47.400 23.300 --- 粘聚力 内摩擦角 水下粘聚 水下内摩 十字板 强度增度)力(kPa) 擦角(度)(kPa) 长系数 下-11.000 --- 2 8.636 18.200 --- 35.200 24.600 --- 0.000 ---不考虑水的作用 3.6754.579 13.494 0.93 10.00 17.50 23.66 0.00 0.00 0.00 0.00 0.005.52 16.554.5795.482 17.967 0.95 10.00 17.50 38.04 0.00 0.00 0.00 0.00 0.0011.73 20.915.4826.386 22.557 0.98 10.00 17.50 51.12 0.00 0.00 0.00 0.00 0.0019.61 24.676.3867.289 27.307 1.02 10.00 17.50 62.80 0.00 0.00 0.00 0.00 0.0028.81 27.777.289 8.193 32.272 1.07 10.00 17.50 72.89 0.00 0.00 0.00 0.00 0.0038.92 30.128.193 9.096 37.528 1.14 10.0017.50 81.12 0.00 0.00 0.00 0.00 0.0049.42 31.689.096 10.000 43.1921.24 10.00 17.50 87.10 0.00 0.00 0.00 0.000.0059.62 32.4210.000 110.754 48.873 1.15 10.00 17.50 68.84 0.00 0.00 0.00 0.00 0.00 51.85 25.7510.754 -11.509 54.714 1.31 10.00 17.50 55.73 0.00 0.00 0.00 0.00 0.00 45.49 23.2211.509 i 12.263 61.602 1.59 10.00 17.50 39.01 0.00 0.00 0.00 0.00 0.00 34.32 21.7312.263 ;70.867 2.31 10.00 17.50 14.77 0.00 0.00 0.00 0.00 0.0013.95 24.58总的下滑力总的抗滑力=360.515(kN) =291.069(kN)档土体部分下滑力=360.515(kN) 土体部分抗滑力=291.069(kN) 筋带在滑弧切向产生的抗滑力筋带在滑弧法向产生的抗滑力=O.OOO(kN)=O.OOO(kN档档:=0;、=0.5 i ;1=17.5 ;? =-48代入得K ai=0.28 ;素填土::二 a0 = ~2C1 K a1=-2 10 、0.28 - - - 10.68 Kpa (设计值取0)二al = 1^心1 -25. K a1=18.0 9.11 0.28- 2 10 0.2^ 36.15 Kpa1 ‘土压力合力的水平分力:E hk1 0 (二a0 ;「a1)= 0.5 7.031 36.15= 127.08KN2侧向岩土压力合力的水平分力标准值:E hk = E h© = 127.08 KN考虑到土钉、锚杆(索)的约束作用,边坡土应力分布:其中1.2e hk =1.2E hk/0.875H =1.2 127.08/(0.875 9.11)= 19.13Kpa -10. 68KN/w主动土压力标准值边坡土应力分布层的主动土压力水平分力标准值计算:动土压力系数K a = -----------------aCOS2 PcOS(P+6) 1 +. ~ ------------- -- rr-|_ Y COS® + P)*COS(P— P)为墙背倾角,即墙背与沿垂线之间夹角,俯斜为正,仰斜为负「一岩土体内摩擦角:—墙背与土体之间的摩擦角 -—坡顶表面倾角C=10. OKpii*=17. 5"心& 0KW —鈔2#剖面计算简图■岩2-2截面锚杆受力计算及截面、配置长度设计2-2截面 锚杆的抗拔能力计算d —— 锚杆钢筋直径dh—— 钻孔直径lei -----有效锚固长度fy 锚杆抗拉强度设计值,取 fy=1320MPa 1320f rb—— 砂浆与孔壁土层的粘结强度f rbf b ——砂浆与锚杆的粘结强度,取fb=2750KPa2750丫0建筑边坡重要性系数1.10El —— 砂浆与孔壁土粘结工作条件系数 取1.00 1.00E----锚杆抗拉工作条件系数 取0.69 0.692-2截面锚杆与砂浆粘结工作条件系数 取0.60.60四、加锚杆支护后边坡稳定计算破裂面与水平面的夹角锚索的水平间距土层内摩擦角标准值 土体的粘聚力标准值 土条沿破裂面的长度 锚索与水平面夹角a i Sx ci liB iP i25锚索的锚固力(取计算抗拔能力最小值)计算项目:2#1次加筋后稳定[计算简图]控制参数]:采用规范:通用方法计算目标:安全系数计算滑裂面形状:圆弧滑动法不考虑地震坡面信息]坡面线段数4 坡面线号水平投影(m)竖直投m)1 1.2008.300 02 1.5000.000 03 7.3009.200 04 20.000 0.000 1超载数超载 1 距离8.000(m) 宽12.000(m)土层信息]上部土层数2荷载(20.00--20.00kPa) 270.00( 度)层号定位高重度饱和重度字板冰强度增长系层底线倾全孔压粘聚力内摩擦角水下粘聚水下内摩十字板T 强度增度(m) (kN/m3) (kN/m3) (kPa)(kPa) 数水下值角(度)系数1 7.543 18.000 --- 47.400 23.300 ---............... 7.000 -- 2 17.500 18.000 --- 10.000 17.500 --- ....... 0.000 --- 下部土层数2 --- --■度)力(kPa) 擦角(度)(kPa) 长系数下层号定位深重度饱和重度字板冰强度增长系层顶线倾全孔压粘聚力内摩擦角水下粘聚水下内摩十字板T 强度增度(m) (kN/m3) (kN/m3) (kPa)(值(kPa) 数水下值角(度)系数1 1.069 18.000 --- 47.400 23.300 ---.................... 11.000 --2 8.636 18.200 --- 35.200 24.600 ---............. 0.000 ---不考虑水的作用--- --■度)力(kPa) 擦角(度)(kPa) 长系数[筋带信息]采用锚杆锚杆道数:4筋带力调整系数:1.000筋带号距地面水平间距总长度倾角材料抗拉锚固段锚固段粘结强法向力发高度(m) (m) (m) ( 度)力(kN) 长度(m)周长(m) 度(kPa)挥系数1 16.00 2.50 25.00 25.00 347.80 20.00 0.40 32.00 1.002 13.50 2.50 25.00 25.00 347.80 20.00 0.40 32.00 1.003 11.00 2.50 25.00 25.00 347.80 20.00 0.40 32.00 1.004 8.50 2.50 25.00 25.00 347.80 20.00 0.40 32.00 1.00[计算条件]圆弧稳定分析方法:瑞典条分法土条重切向分力与滑动方向反向时:当下滑力对待稳定计算目标:自动搜索最危险滑裂面条分法的土条宽度:1.000(m)搜索时的圆心步长:1.000(m)搜索时的半径步长:0.500(m)计算结果最不利滑动面:滑动圆心=(3.360,18.540)(m)滑动半径=10.052(m)滑动安全系数=1.307起始x 终止x a li Ci ①i 条实重浮力地震力渗透力附加力X附加力丫下滑力抗滑力(m) (m)( 度)(m) (kPa)( 度)(kN) (kN) (kN) (kN) (kN) (kN) (kN)(kN)2.8593.752 -0.312 0.89 10.00 17.50 9.08 0.00 0.00 0.00 0.00 0.00-0.05 11.793.7524.644 4.787 0.90 10.00 17.50 26.59 0.00 0.00 0.00 0.00 0.002.22 17.314.6445.537 9.924 0.91 10.00 17.50 42.81 0.00 0.00 0.00 0.00 0.007.38 22.365.5376.430 15.144 0.93 10.00 17.50 57.69 0.00 0.00 0.00 0.00 0.0015.07 26.816.4307.322 20.497 0.95 10.00 17.50 71.14 0.00 0.00 0.00 0.00 0.0024.91 30.547.322 8.215 26.047 0.99 10.00 17.50 83.03 0.00 0.00 0.00 0.00 0.00 36.46 33.468.215 9.107 31.876 1.05 10.00 17.50 93.14 0.00 0.00 0.00 0.00 0.00 49.19 35.459.107 10.000 38.108 1.14 10.00 17.50 101.13 0.00 0.00 0.00.00.0062.41 36.44000 10.840 44.712 1.18 10.00 17.50 92.05 0.00 0.00 0.00 0.00 0.0076 32.44840 11.679 51.9671.36 10.00 17.50 77.66 0.00 0.00 0.00 0.00 0.0017 28.72679 12.519 60.7561.72 10.00 17.50 58.22 0.00 0.00 0.00 0.00 0.0080 26.17519 13.358 74.861 3.23 10.00 17.50 23.44 0.00 0.00 0.00 0.00 0.0022.63 34.21102.400 139.120 抗拔力 20.000 90.007 0.000 102.400 102.400 139.120 抗抜力 20.000 72.020 31.610 97.399 102.400 139.120 抗抜力 20.000 51.866 63.232 80.545 0.0000.000抗拉力 0.000 0.000 0.000 0.000总的下滑力 =396.941(kN) 总的抗滑力=518.959(kN)土体部分下滑力 =396.941(kN) 土体部分抗滑力 =335.726(kN) 筋带在滑弧切向产生的抗滑力 =94.842(kN) 筋带在滑弧法向产生的抗滑力=88.392(kN)锚固抗拔力(kN)材料抗拉 力(kN) 计算采用 有效锚固 滑面角 切向抗 法向抗值 长度(m) 度(度) 力(kN) 力(kN)档1 42!11C4 1 I I t 34W[碣1E7?1 01 El-2砂?ir1 CE LIB I.S^I.JEi I.^C! 41511251E22i rac-IJCJ2 312J l»D1I.21-1IM I.JK-I.Jffl i -P3l鱼1IKI i.血 1.119I J HI]ITl®1 <4I.S3I.S5 1.351IM•<r.15S1631 2.⑹「祁1I.I77I.3E7 1.331I M 1 .宾i if£?1E4=i曲1测J丑7 M?计算项目:2#1次加筋最大滑动面稳定 力(kPa) 擦角(度)(kPa) 长系数 下[计算简图] 值(kPa) 数水下值 角(度)系数 1 1.069 18.000 ---47.400 23.300 --- --■ --11.000 ---2 8.636 18.200---35.200 24.600--- --■ - 0.000 ---不考虑水的作用十字板冰 强度增长系 层顶线倾全孔压度(m) (kN/m3) (kN/m3) (kPa)([筋带信息] 采用锚杆锚杆道数: 4筋带力调整系数: 1.000筋带号 距地面水平间距 总长度倾角 材料抗拉 锚固段 锚固段 粘结强 法向力发高度(m) (m) (m) (度)力(kN) 长度(m) 周长(m) 度(kPa)挥系数1 16.00 2.50 18.00 25.00 347.80 10.00 0.40 32.00 1.002 13.50 2.50 18.00 25.00 347.80 10.00 0.40 32.00 1.003 11.00 2.50 18.00 25.00 347.80 10.00 0.40 32.00 1.004 8.50 2.50 18.00 25.00 347.80 10.00 0.4032.00 1.00[控制参数]: 采用规范: 通用方法计算目标: 安全系数计算 滑裂面形状:圆弧滑动法 不考虑地震 [坡面信息]坡面线段数4 坡面线号 1 1.200 2 1.500 水平投影(m)竖直投影(m)8.300 0 0.000 0 3 7.300 9.200 4 20.000 0.000 超载数 [计算条件]圆弧稳定分析方法:瑞典条分法 土条重切向分力与滑动方向反向时 稳定计算目标:(null)条分法的土条宽度: 1.000(m) 圆弧入口起点x 坐标 :10.000(m) 圆弧入口终点x 坐标 :18.000(m) 圆弧出口起点x 坐标 :-5.000(m) 圆弧岀口终点x 坐标 :0.000(m) 搜索时的圆心步长: 1.000(m) 入口搜索步长:1.000(m) 岀口搜索步长:1.000(m)搜索圆弧底的上限: 1000.000(m)搜索圆弧底的下限: -1000.000(m)圆弧限制最小弓高: 1.000(m)当下滑力对待宽 12.000(m) 荷载(20.00--20.00kPa) 270.00( [土层信息]上部土层数2层号 定位高 重度 饱和重度 十字板冰 强度增长系 层底线倾 全孔压 超载1 距离8.000(m) 粘聚力 内摩擦角 水下粘聚 水下内摩 十字板T 强度增度) 力(kPa) 擦角(度)(kPa) 长系数 下 值(kPa) 数水下值 角(度)系数 1 7.543 18.000 ---47.400 23.300 - .................... 7.000 ---2 17.500 18.000 --- 10.000 17.500............ 0.000 ---下部土层数2 层号 定位深重度饱和重度度(m) (kN/m3) (kN/m3) (kPa)( 最不利滑动面:滑动圆心 =(-0.390,16.415)(m)滑动半径=16.426(m)滑动安全系数 =1.352起始x 终止xali Ci①i 条实重 浮力地震力 渗透力附加力X 附加力丫下滑力抗滑力(m)(m)(度)(m) (kPa)( 度)(kN) (kN) (kN)(kN) (kN) (kN)(kN)计算结果(kN)粘聚力 内摩擦角水下粘聚 水下内摩十字板T 强度增-1.000 -0.500 -1.256 0.50 47.40 23.30 0.05 0.00 0.00 0.00 0.00 0.00-0.00 23.73-0.500 0.000 0.489 0.50 47.40 23.30 0.08 0.00 0.00 0.00 0.00 0.000.00 23.740.000 0.220 1.744 0.22 47.40 23.30 3.02 0.00 0.00 0.00 0.00 0.00 0.09 11.730.220 1.091 3.650 0.87 47.40 23.30 70.59 0.00 | 0.00 1 0.00 1 0.00 1 0.00 4.49 71.701.091 1.200 5.363 0.11 47.40 23.30 15.49 0.00 | 0.00 1 0.00 1 0.00 1 0.00 1.45 11.851.200 1.950 6.873 0.76 47.40 23.30 110.55 0.00 0.00 0.00 0.00 0.00 13.23 83.081.9502.700 9.517 0.76 47.40 23.30 109.09 0.00 0.00 0.00 0.00 0.00 18.04 82.392.7003.613 12.473 0.93 47.40 23.30 139.48 0.00 0.00 0.00 0.00 0.00 30.13 102.963.6134.525 15.757 0.95 47.40 23.30 154.60 0.00 0.00 0.00 0.00 0.00 41.98 109.034.5255.438 19.095 0.97 47.40 23.30 168.78 0.00 0.00 0.00 0.00 0.00 55.22 114.475.4386.350 22.503 0.99 47.40 23.30 181.97 0.00 0.00 0.00 0.00 0.00 69.64 119.236.3507.262 25.996 1.02 47.40 23.30 194.10 0.00 0.00 0.00 0.00 0.00 85.08 123.267.262 8.175 29.598 1.05 47.40 23.30 205.08 0.00 0.00 0.00 0.00 0.00 101.29 126.558.175 9.088 33.334 1.09 47.40 23.30 214.78 0.00 0.00 0.00 0.00 0.00 118.03 129.069.088 10.000 37.238 1.15 47.40 23.30 223.04 0.00 0.00 0.00 0.00 0.00 134.97 130.8110.000 10.871 41.258 1.16 47.40 23.30 210.38 0.00 0.00 0.00 0.00 0.00138.73 123.0110.871 11.741 45.442 1.24 47.40 23.30 197.47 0.00 0.00 0.00 0.00 0.00140.70 118.4911.741 12.612 49.968 1.35 47.40 23.30 182.42 0.00 0.00 0.00 0.00 0.00139.68 114.7012.612 13.482 54.975 1.52 47.40 23.30 164.57 0.00 0.00 0.00 0.00 0.00134.77 112.6013.482 14.353 60.728 1.78 47.40 23.30 142.67 0.00 0.00 0.00 0.00 0.00124.45 114.4714.353 15.194 67.707 2.22 10.00 17.50 110.62 0.00 0.00 0.00 0.00 0.00102.36 35.4315.194 16.036 80.790 5.28 10.00 17.50 55.76 0.00 0.00 0.00 0.00 0.0055.04 55.62筋带号锚固抗拔材料抗拉计算采用有效锚固滑面角切向抗法向抗力(kN) 力(kN) 值长度(m) 度(度)力(kN) 力(kN) 4 45.678 139.120 抗拔力8.921 69.323 16.129 42.735总的下滑力=1509.363(kN)总的抗滑力=2040.771(kN)土体部分下滑力=1509.363(kN)土体部分抗滑力=1948.758(kN)筋带在滑弧切向产生的抗滑力=23.547(kN)筋带在滑弧法向产生的抗滑力=68.466(kN)1 51.200 139.120 抗拔力10.000 102.346 0.000 50.0162 47.877 139.120 抗抜力9.351 91.424 0.000 47.8623 45.196 139.120 抗抜力8.827 80.553 7.418 44.5832-9. 51KN/n各层土层的主动土压力水平分力标准值计算:COS 2^ P)C=10, OKpa tb=17,5' ¥=18, OKN/n 3P =48047.4Kpa 彷=2生 3° P =8 v =18, OKN/B }CMhhi z ha hj2#剖面计算简图主动土用力标准值边坡土应力分布主动土压力系数K a 二aC=1O. OKpa¥ = 18. OKN/m档22sin(:)*sin(: _ :)cos : cosC 、)1Lcose : ) * COS( - -)1 , 土压力合力的水平分力: E hk1m (6。
预应力锚杆设计计算书
预应力锚杆设计计算书依据《建筑边坡工程技术规范》(GB 50330-2002)一. 参数信息锚杆(索)为拉力型锚杆,适用于岩质边坡、土质边坡、岩石基坑以及建(构)筑物锚固的设计、施工和试验。
锚固的型式应根据锚杆锚固段所处部位的岩土层类型、工程特征、锚杆承载力大小、锚杆材料和长度、施工工艺等条件,按下表进行选择:锚杆选型———————————————————————————————————————锚杆特征材料锚杆承载力设计值锚杆长度应力状况备注———————————————————————————————————————土层锚杆钢筋(Ⅱ、Ⅲ级) < 450 kN < 16 m 非预应力锚杆超长时,施工安装难度较大钢绞线、高强钢丝 450 ~ 800 > 10 m 预应力锚杆超长时施工方便精轧螺纹钢筋 400 ~ 800 > 10 m 预应力杆体防腐性好,施工安装方便———————————————————————————————————————岩层锚杆钢筋(Ⅱ、Ⅲ级) < 450 kN < 16 m 非预应力锚杆超长时,施工安装难度较大钢绞线、高强钢丝 500 ~ 3000 > 10 m 预应力锚杆超长时施工方便精轧螺纹钢筋 400 ~ 1100 > 10 m 预应力或非预应力杆体防腐性好,施工安装方便———————————————————————————————————————1. 基本计算参数:边坡土体类型为:粘性土;边坡工程安全等级:三级边坡(1.25);边坡土体重度为:24.50kN/m3;边坡土体内聚力为:.00kPa;边坡土体内摩擦角:.00°;边坡高度为:3.20m;边坡斜面倾角为:52.40°;边坡顶部均布荷载:43.54kN/m2。
2. 锚杆设计参数:———————————————————————————————————————序号水平拉力(kN)标高(m) 锚孔直径(m)锚固角度(°)锚杆间距(m)锚杆材料杆体直径(mm)安全系数1 15.00 5.13 0.04 15.00 1.50 HRB400 221.302 15.00 5.92 0.04 15.00 1.50 HRB400 221.303 15.00 6.71 0.04 15.00 1.50 HRB400 221.304 15.00 7.50 0.04 15.00 1.50 RRB400 221.30 ———————————————————————————————————————二. 预应力锚杆设计计算第1层锚杆的计算:1.锚杆的轴向拉力承载力标准值和设计值可按下式计算:其中 N ak——锚杆轴向拉力标准值(kN);N a——锚杆轴向拉力设计值(kN);H tk——锚杆所受水平拉力标准值(kN);α——锚杆与水平面的倾角 (°);γQ——荷载分项系数。
抗浮锚杆计算书
取锚杆长度L=10m。
抗浮锚杆计算书执行规范:《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》《建筑地基基础设计规范》(GB 50007-2011), 本文简称《地基规范》《岩土锚杆(索)技术规程》(CECS22 2005)《建筑边坡工程技术规范》(GB 50330—2013)地勘资料1 设计资料:1.1已知条件:锚杆轴向拉力标准值:86x1.682=242.7kN;锚杆轴向拉力设计值:1.25x242.7=303.3kN锚杆锚固体直径:D=230mm;强风化泥岩或卵石层段锚杆长度取值:3m岩石与锚固体极限粘贴强度标准值:强风化泥岩段50kpa(卵石层按强风化泥岩段取)、中风化泥岩段140kpa钢筋:HRB400,fy=360,fyk=400;锚杆间距:1.68mx1.68m1.2所求内容:锚杆钢筋面积、锚固体锚固段长度。
2 计算过程和计算结果:2.1锚杆钢筋面积a.按《建筑边坡工程技术规范》8.2.2-1As≥KbNak/fyKb=2.0,Nak=242.7kN, As≥2.0x242700/360=1348mm2.b.按《岩土锚杆(索)技术规程》8.2.2-1As≥KtNt/fykKt=1.6As≥1.6x303.3x1000/400=1213.2m m2取2 25+1 28,As=1597 m m2.2.2锚固体锚固段长度a.按《建筑边坡工程技术规范》8.2.2-1la≥KNak/(π·D ·frbk)K=2.4,frbk=140kpa强风化泥岩段:3x50x3.14x0.23=108.3kNla≥2.4x(242.7-108.3) x1000/(3.14x0.230x140x1000)+3=6.19m.b.按《岩土锚杆(索)技术规程》8.2.2-1la≥KNt/(π·D ·fmg·φ)K=2.0, fmg=140ka, φ=0.7la≥2.0x(242.7 x1.25-108.3x0.7) x1000/(3.14x0.23x140x1000x0.7)+3.0=9.43。
预应力锚杆张拉力计算书
预应力锚杆张拉力计算书一、工程概述本次预应力锚杆工程位于具体工程地点,主要用于工程的具体用途,如边坡加固、基坑支护等。
该工程地质条件复杂,需要通过合理的预应力锚杆设计和施工来确保工程的稳定性和安全性。
二、预应力锚杆设计参数1、锚杆长度:具体长度2、锚杆直径:具体直径3、锚杆间距:横向间距和纵向间距4、锚杆倾角:具体角度5、预应力值:设计要求的预应力值三、预应力锚杆张拉力计算原理预应力锚杆的张拉力计算主要基于锚杆与周围岩土体之间的相互作用关系。
通过施加一定的预应力,使锚杆能够有效地限制岩土体的变形,提高岩土体的稳定性。
在计算张拉力时,需要考虑以下几个因素:1、岩土体的性质:包括岩土体的强度、变形模量、内摩擦角等参数,这些参数直接影响锚杆与岩土体之间的摩擦力和锚固力。
2、锚杆的布置形式:锚杆的间距、倾角等布置参数会影响锚杆的受力分布和整体锚固效果。
3、预应力损失:在预应力施加过程中,由于各种因素的影响,如锚杆的松弛、锚具的变形、岩土体的徐变等,会导致预应力的损失,因此在计算张拉力时需要考虑预应力损失的影响。
四、预应力损失计算1、锚具变形损失锚具变形损失通常根据锚具的类型和试验数据确定。
一般来说,对于常见的锚具,其变形损失可以按照具体的计算公式或经验值进行计算。
2、锚杆松弛损失锚杆在长期受力过程中会发生松弛现象,导致预应力的损失。
锚杆松弛损失的计算可以采用相应的计算公式或经验方法,考虑锚杆的材料特性、长度等因素。
3、岩土体徐变损失岩土体在长期荷载作用下会发生徐变变形,从而引起预应力的损失。
岩土体徐变损失的计算需要根据岩土体的性质和工程经验进行估算,通常可以采用具体的计算方法或参考值。
4、摩擦损失在预应力锚杆的张拉过程中,由于锚杆与孔壁之间的摩擦力,会导致预应力的损失。
摩擦损失的计算可以根据锚杆与孔壁之间的摩擦系数、锚杆的长度和直径等参数进行计算,一般采用相应的计算公式。
五、张拉力计算方法1、按照岩土体的极限平衡理论计算根据岩土体的极限平衡条件,考虑锚杆所承担的下滑力和抗滑力,计算出所需的预应力锚杆张拉力。
抗浮锚杆计算书
锚杆轴向拉力
单位面积抗浮力为51kN/m2,本次设计锚杆间距按X正方形网格 布置,锚杆布置详见《抗浮锚杆平面布置图》。
单根锚杆轴向拉力标准值Nak
2
Nak=51kN/mXX =204kN
单锚杆轴向拉力设计值N:
Nt=2Nk
式中:r——荷载分项系数,可取;
经计算:N=X204kN=o取N=266kN计算
fmg锚固段注浆体与地层间的粘结强度标准值
(kPa),基底地层主要为卵石层,参考地勘报告及相关规范结合乐山
地区施工经验,取120kPa。
书— 锚固长度对粘结强度的影响系数,根据规范取
la>KNt《岩土锚杆(索)技术规程》(CECS222005)中
nn fms0
式
式中K锚杆锚固体的抗拔安全系数,取
N——锚杆的轴向拉力设计值266kN
n――钢筋根数,取3根
d——钢筋直径(mr)取①22III级螺纹钢筋
&――多钢筋界面的粘结强度降低系数,根据规范取
fms锚固段注浆体与筋体间的粘结强度标准值
(kPa),取2000
中 锚固长度对粘结强度的影响系数,根据规范取
根据计算公式,计算如下:
fyk
>1.6X266X1000》1064mm
取3根①22III级螺纹钢筋,3A2=1140mr^ 1064ml2]满足要
求。
锚杆长度
la> 回 《岩土锚杆(索)技术规程》(CECS222005)中Qfmg
式
式中K锚杆锚固体的抗拔安全系数,取
N——锚杆的轴向拉力设计值266kN
D锚杆锚固段的钻孔直径146mm
锚杆杆体截面面积
空 《岩土锚杆(索)技术规程》(CECS22 2005)fyk
预应力锚杆支护设计计算书
预应力锚杆支护设计计算书范本一:【正文】一、设计基础1.1 工程概述工程名称:工程地点:工程规模:设计单位:施工单位:1.2 技术要求(详细描述预应力锚杆支护设计的技术要求)二、设计参数2.1 地质条件地层结构:岩土性质:2.2 结构参数(列出预应力锚杆支护的结构参数,包括锚杆长度、直径、材料等)三、锚杆支护计算3.1 预应力锚杆计算(详细描述预应力锚杆的计算方法,包括锚杆受力分析、抗拉能力计算等)3.2 锚杆-锚固体接触层计算(详细描述锚杆与锚固体接触层的计算方法,包括界面磨擦力计算、剪切传力计算等)3.3 锚杆-土体接触层计算(详细描述锚杆与土体接触层的计算方法,包括土体抗剪强度计算、锚杆与土体界面磨擦力计算等)四、设计结果4.1 锚杆布置方案(给出锚杆的布置方案图,包括锚杆的位置、间距等)4.2 锚固设计(给出锚固设计图,包括锚杆的固定方式、固定长度等)4.3 锚杆支护设计验算(给出锚杆支护设计的验算结果,包括锚杆的受力分析、抗拉能力验证等)五、安全措施(列出设计过程中需要注意的安全事项,以及预防措施)【附件】附件:1. 工程平面图2. 预应力锚杆施工图3. 锚杆支护设计验算表格【法律名词及注释】(列出本文所涉及的法律名词并进行注释和解释)范本二:【正文】一、设计基础1.1 工程概述工程名称:工程地点:工程规模:设计单位:施工单位:1.2 技术要求(详细描述预应力锚杆支护设计的技术要求)二、设计参数2.1 地质条件地层结构:岩土性质:2.2 结构参数(列出预应力锚杆支护的结构参数,包括锚杆长度、直径、材料等)三、锚杆支护计算3.1 预应力锚杆计算(详细描述预应力锚杆的计算方法,包括锚杆受力分析、抗拉能力计算等)3.2 锚杆支护计算(详细描述锚杆支护的计算方法,包括锚杆支护的荷载计算、变形计算等)3.3 锚杆锚固设计(详细描述锚杆锚固的设计方法,包括锚固长度的计算、锚具选型等)四、设计结果4.1 锚杆布置方案(给出锚杆的布置方案图,包括锚杆的位置、间距等)4.2 锚固设计(给出锚固设计图,包括锚杆的固定方式、固定长度等)4.3 内力验算(给出锚杆支护设计的内力验算结果,包括锚杆受力分析、剪切承载力验算等)五、安全措施(列出设计过程中需要注意的安全事项,以及预防措施)【附件】附件:1. 工程平面图2. 预应力锚杆施工图3. 锚杆支护设计验算表格【法律名词及注释】(列出本文所涉及的法律名词并进行注释和解释)。
抗浮锚杆设计计算书(图文)
抗浮锚杆设计计算书一、工程质地情况:地下水位标高(黄海高程) 7.6 m地下室底板底标高-1.5 m浮力91 kN/m2二、抗浮受力计算:1.裙房三层顶板:板自重3×0.12×25=9.0 kN/m2梁自重(折算均布荷载) 3×0.06×25=4.5 kN/m2 一层板:板自重0.18×25=4.5 kN/m2梁自重(折算均布荷载) 0.07×25=1.7 kN/m2 地下一层板:板自重(等效板厚190) 0.19×25=4.8 kN/m2 底板底板自重0.4×25=10 kN/m2底板覆土 1.0×18=18 kN/m2总计52.5 kN/m2抗浮验算91-52.5×0.9=43.75 kN/m22.有0.7m覆土的两层地下室一层顶板:覆土层0.7×18=12.6 kN/m2板自重(等效板厚290) 0.29×25=7.3 kN/m2 地下一层板:板自重(等效板厚190) 0.19×25=4.8 kN/m2 底板底板自重0.4×25=10 kN/m2底板覆土 1.0×18=18 kN/m2总计52.7 kN/m2抗浮验算91-52.7×0.9=43.57 kN/m23.无顶板覆土的车道两层板:顶板自重2×0.16×25=4.0 kN/m2梁自重(折算均布荷载) 2×0.06×25=3.0 kN/m2底板底板自重0.4×25=10 kN/m2底板覆土 1.0×18=18 kN/m2总计35.0 kN/m2抗浮验算91-35×0.9=59.5 kN/m2三、计算结果经初步验算计算,锚杆孔径为200mm。
其中:锚杆均采用3根Ф25的HRB400钢筋,锚固段长度为4m;按2100mm×2100mm布置。
锚杆计算书
锚杆计算书本工程采用直径为150mm的锚杆,其抗拔承载力取为550KN;锚杆入岩深度按《建筑地基基础设计规范》(DBJ15-31-2016)中11.2.1-3式计算:Rt≤0.8πd1Σlifi式中fi为砂浆与第i层岩石间的粘结强度特征值,本工程中fi按勘察报告及《建筑地基基础设计规范》(DBJ15-31-2016)取值,锚杆抗拔承载力配筋计算,由《建筑地基基础设计规范》(DBJ15-31-2016)中11.2.2条,锚杆配筋验算:极限承载力为2Ra。
232+228由以上计算得出,MG1、MG2抗拔承载力特征值为550kN最小锚杆长度按抗拔承载力计算得出,且不小于抗拔承载力除以相应区域锚杆岩石自重得出的长度。
1受冲切承载力计算: Z-11.1基本资料1.1.1工程名称:工程一1.1.2集中反力作用下不配置箍筋或弯起钢筋的板1.1.3板的厚度 h = 750mm,截面有效高度 h0= h - a s= 750-32 = 718mm1.1.4作用面的形状为圆形,作用面的直径 d = 150mm;对中柱,柱位置影响系数αs= 40 1.1.5轴向压力设计值 N = 742kN,板上荷载设计值 q = 185kN/m21.1.6混凝土强度等级为 C35, f t= 1.575N/mm21.2计算结果1.2.1冲切破坏锥体的底面面积 A b=π·(d + 2h0)2 / 4 =π*(0.15+2*0.718)2/4= 1.2989m21.2.2局部荷载设计值 F l= N - q·A b= 742-185*1.2989 = 501.7kN4-冲切破坏锥体的底面线2-临界截面;3-临界截面的周长;1-冲切破坏锥体的斜截面;q1.2.3计算截面的周长 u m=π·(d + h0) =π*(150+718) = 2255.7mm1.2.4影响系数η1.2.4.1作用面积形状的影响系数η1= 0.4 + 1.2 / βs= 0.4+1.2/2 = 1 1.2.4.2计算截面周长与板截面有效高度之比的影响系数η2η2= 0.5 + αs·h0 / 4u m= 0.5+40*668/(4*2255.7) = 3.0181.2.4.3影响系数η = Min{η1, η2} = Min{1, 3.018} = 11.2.5不配置箍筋或弯起钢筋的板,其受冲切承载力应符合下列规定:F l≤ 0.7·βh·f t·η·u m·h0(混凝土规范式 6.5.1-1)R = 0.7·βh·f t·η·u m·h0= 0.7*1*1575*1*2.2557*0.718= 1412.2kN ≥ F l= 501.7kN,满足要求。
抗浮锚杆计算书
抗浮锚杆计算书Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】锚杆设计计算锚杆轴向拉力单位面积抗浮力为51kN/m 2,本次设计锚杆间距按×正方形网格布置,锚杆布置详见《抗浮锚杆平面布置图》。
单根锚杆轴向拉力标准值Nak : N ak =51kN/m 2××=204kN 单锚杆轴向拉力设计值N t : N t =r Q N ak式中:r Q ——荷载分项系数,可取; 经计算:N t =×204kN=。
取N t =266kN 计算。
锚杆杆体截面面积 A s ≥yktt f N K 式中 A s ----锚杆杆体截面面积 K t ------锚杆杆体的抗拉安全系数,取N t ----锚杆的轴向拉力设计值,取266kNf yk ----钢筋的抗拉强度标准值400N/mm 2(III 级钢筋抗拉强度标准值)根据计算公式,计算如下:A s ≥yktt f N K ≥4002666.1××1000≥1064mm 2 取3根Φ22III 级螺纹钢筋,3A 22=1140mm 2>1064mm 2,满足要求。
锚杆长度 l a >ψπmg tDf KN 式中 K ——锚杆锚固体的抗拔安全系数,取N t ——锚杆的轴向拉力设计值266kN D ——锚杆锚固段的钻孔直径146mmf mg ——锚固段注浆体与地层间的粘结强度标准值(kPa ),基底地层主要为卵石层,参考地勘报告及相关规范结合乐山地区施工经验,取120kPa 。
ψ----锚固长度对粘结强度的影响系数,根据规范取l a >ψεπms tf d n KN式中 K ——锚杆锚固体的抗拔安全系数,取N t ——锚杆的轴向拉力设计值266kN n ——钢筋根数,取3根d ——钢筋直径(mm ),取Φ22III 级螺纹钢筋ε——多钢筋界面的粘结强度降低系数,根据规范取f ms ——锚固段注浆体与筋体间的粘结强度标准值(kPa ),取2000ψ——锚固长度对粘结强度的影响系数,根据规范取根据计算公式,计算如下: l a >ψπmg tDf KN >2.112014614.32660.2×××××1000>l a >ψεπms tf d n KN>2.120008.02214.332660.2×××××××1000>取两式中大值,取锚杆锚固长度为,建议取。
锚杆计算书
锚杆计算书锚杆计算书本计算依据《建筑基坑支护技术规程》(JGJ120-99)。
1.地质勘探数据如下:—————————————————————————————————————序号h(m) (kN/m3) C(kPa) (°) 计算方法土类型1 5.00 19.00 10.00 12.00 水土合算填土2 5.00 19.20 27.30 23.70 水土合算填土3 5.00 19.00 16.00 27.00 水土合算填土4 5.00 19.20 12.00 32.00 水土合算填土5 5.00 20.40 89.00 19.00 水土合算填土—————————————————————————————————————表中:h为土层厚度(m), 为土重度(kN/m3),C为内聚力(kPa), 为内摩擦角(°)。
基坑外侧水标高-0.50m,基坑内侧水标高-10.30m。
2.基本计算参数:地面标高0.00m,基坑坑底标高-9.30m,支撑分别设置在标高-2.00m、-5.00m处,计算标高分别为-2.50m、-5.50m、-9.30m处。
侧壁重要性系数1.00。
3.地面超载:—————————————————————————————————————————序号布置方式作用区域标高m 荷载值kPa 距基坑边线m 作用宽度m —————————————————————————————————————————4.锚杆设计参数:—————————————————————————————————————————序号水平拉力(kN)标高(m) 锚孔直径(m) 锚固角度(°)锚杆间距(m) 安全系数1 63.00 -2.00 0.15 15.00 1.50 1.502 80.00 -5.00 0.15 15.00 1.50 1.50—————————————————————————————————————————一、第一阶段,第1层拉锚的计算:参照规范要求,锚杆的拉力设计值取支点计算力乘以侧壁重要系数的1.25倍。
锚杆承载力计算书
mm 2
La1
≔
―― K ⋅― Nt ―= π ⋅ D ⋅ fmg ⋅ ψ
10.94
m
La2
≔
ห้องสมุดไป่ตู้
――K―⋅ N― t ――= 0.66 n ⋅ π ⋅ d ⋅ ε ⋅ fms ⋅ ψ
m
锚杆锚固段长度取值:
La ≔ max ⎛⎝La1 , La2⎞⎠ = 10.94 m
锚杆承载力计算书
1. 规范依据 《建筑地基基础设计规范》(GB50007-2011)以下简称基础规范 广东省标准《建筑地基基础设计规范》(DBJ15-31-2016) 以下简称广东省基础规范 《建筑工程抗浮技术标准》(JGJ 476-2019)以下简称抗浮标准 《岩土锚杆(索)技术规程》(CECS 22:2005)以下简称锚杆规程 《岩土工程地质勘察报告》 以下简称地勘报告
d ≔ 200 mm D ≔ d = 200 mm ψ ≔ 0.8 fms ≔ 2000 kPa K ≔ 2.2 Nt ≔ 300 kN fyk ≔ 400 MPa n≔1 ε≔1
锚杆杆体抗拉安全系数: 锚杆杆体截面面积:
锚杆锚固段长度计算:
Kt ≔ 1.8
As
≔
― Kt ⋅― Nt― = 1350 fyk
2.计算过程
锚固段注浆体与地层粘结强度标准值(查表或地勘报 告):
fmg ≔ 120 kPa
锚杆直径: 锚杆锚固段的钻孔直径: 锚固长度对粘结强度的影响系数: 锚固段主讲体与筋体间粘结强度标准值: 锚杆抗拔安全系数: 锚杆轴向拉力设计值: 钢筋屈服强度标准值: 钢筋根数: 多根钢筋粘结强度降低系数:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从几种规范来探讨全长粘结岩石锚杆承载力的计算
关键词:全长粘结岩石锚杆;承载力;计算
摘要:全长粘结岩石锚杆是岩土工程中常采用的工程措施。
各行业的设计规范对全长粘结岩石锚杆的设计计算均有相关规定。
由于出发点的差异,各种规范对全长粘结岩石锚杆计算的内容和要求也不尽相同。
本文试从现行各规范对全长粘结岩石锚杆计算的规定出发,对比分析各行业对全长粘结岩石锚杆承载力验算的一般要求,总结和探讨全长粘结岩石锚杆承载力验算的一般方法。
1、引言
锚杆是岩土工程中常见的工程处理措施,在建筑、水利、公路、铁道、港口等岩土工程中经常使用,其中全长粘结岩石锚杆是常见的一种锚杆形式。
为规范锚杆工程的设计,建筑、公路、铁道、水利等行业的设计规范对锚杆的设计计算作了相关的规定。
但由于各规范的出发点不同,对锚杆计算的内容和要求也不尽相同。
本文试从现行各规范对全长粘结岩石锚杆计算的规定出发,对比分析各行业对全长粘结岩石锚杆承载力验算的要求,总结全长粘结岩石锚杆承载力验算的一般规定,并进一步探讨全长粘结岩石锚杆承载力验算的一般方法。
2、各种规范对全长粘结岩石锚杆承载力计算的规定:
对全长粘结岩石锚杆承载力计算在很多规范中均有规定,笔者摘录如下: (1)、《建筑地基基础设计规范》(GB50007—2002)8.6.3条:
对设计等级为甲级的建筑物,单根锚筋承载力特征值t R 应通过现场实验确定;对于其它建筑物可按下式计算:
lf
d R t 18.0π≤……………(8.6.3)
式中:
f
—砂浆与岩石间的粘结强度特征值;
1d —锚杆孔直径;
l
—锚杆的有效锚固长度;
(2)、《建筑边坡工程技术规范》(GB50330—2002)7.2.2条~7.2.3条: 锚杆钢筋截面面积应满足下式的要求:
y
a s f N A 20ξγ≥
……………(7.2.2)
锚筋锚固体与地层的锚固长度应满足下式要求:
rb
ak
a Df
N l πξ1≥
……………(7.2.3)
锚杆钢筋与锚固砂浆间的锚固长度应满足下式要求:
b
a a df n N l πξγ30≥
……………(7.2.4)
式中:
s
A —锚杆钢筋截面面积;
0γ—边坡工程重要性系数;
a N —锚杆轴向拉力设计值;
2ξ—锚筋抗拉工作条件系数,永久性锚杆取为0.69,临时性锚杆取为0.92。
y
f —锚筋抗拉强度设计值;
a l —锚固段长度;
ak
N —锚杆轴向拉力标准值;
1ξ—锚固体与地层粘结工作条件系数,对永久性锚杆取1.00,对临时性锚杆取1.33;
rb
f —地层与锚固体强度特征值;
3ξ—锚筋与砂浆粘结工作条件系数,对永久性锚杆取0.6,对临时性锚杆取
0.72;
n —钢筋(钢铰线)根数;
d
—钢杆钢筋直径;
b f —钢筋与锚固砂浆间的粘结强度设计值;
(3)、《公路路基设计规范》(JTJ D30—2004)5.5.7条: 全长粘结型锚杆设计应遵守下列规定:
a 、锚杆应按轴心受拉构件设计,其所需锚筋面积应按(5.5.7—1)计算:
y
t s f N K
A =……………(5.5.7—1)
式中:
K —荷载安全系数,可采用2.0;
t N —锚杆轴向拉力设计值;
b 、锚杆长度包括非锚固长度和有效锚固长度。
非锚固长度应根据边坡滑裂面的实际距离确定。
有效锚固长度应根据锚杆的拉力,按公式(5.5.7—2)计算,对采用粘结料的粘结型锚杆,还应根据公式(5.5.7—3)验算锚杆与粘结料间的容许粘结力。
有效锚固长度不宜小于2.0m ,也不宜大于10.0m 。
rb
t
df KN
L π=
……………(5.5.7—2) b
s t
f d n KN
L βπ=
…………(5.5.7—3)
式中:
L
—锚杆有效锚固长度; K
—安全系数,可采用2.5;
t N —锚杆轴向拉力设计值; d
—锚孔直径;
s d —锚杆钢筋直径;
β—考虑成束钢筋系数,对于单根钢筋β=1.0,两根一束β=0.85,三根一
束β=0.7。
(4)、《铁路路基支挡结构设计规范》(TB10025—2001 J127—2001)6.2.6条:
锚杆的截面及长度应按下列规定设计计算:
a 、锚杆应按轴心受拉构件设计,其所需钢筋面积,应按下式计算:
y
s f KN A =
…………(6.2.6—1)
式中:
K —荷载安全系数,可采用2.0; N
—锚杆轴向拉力;
b 、锚杆长度包括非锚固长度和有效锚固长度。
非锚固长度应根据肋柱与主动破裂角或滑动面的实际距离确定。
有效锚固长度应根据锚杆的拉力,按式(6.2.6—2)计算,并按式(6.2.6—4)验算锚杆与砂浆之间的容许粘结力。
有效锚固长度,在岩层中不宜小于4.0m ,但也不宜大于10m 。
][τπD N
L ≥
…………(6.2.6—2)
K
τ
τ=
][…………(6.2.6—3)
]
[c d n N
L βπ=
…………(6.2.6—4)
式中:
D
—锚孔孔径;
][τ—锚孔壁对砂浆的容许剪应力;
τ—锚孔壁对砂浆的极限剪应力;
K
—安全系数,可采用2.5;
n —锚杆钢筋根数;
d
—锚杆钢筋直径;
][c —砂浆与锚杆间的容许粘结力;
(5)、《溢洪道设计规范》(SL2003—2000) 附录C10:
锚固地基的有效重可按下列公式计算:
TA
P R /
3γ=…………(C.10—1)
d
L S T 303
--
=…………(C.10—2)
式中:
3P —锚固地基的有效重量;
/
R γ—岩石浮容重;
A
—n 根钢筋护坦的计算面积; T —锚固地基的有效深度; d
—钢筋直径; L —锚筋间距;
S
—锚筋锚入岩石的深度;
3、各行业规范中对全长粘结岩石锚杆承载力计算规定的对比
上述五种规范对全长粘结岩石锚杆承载力计算的规定主要是依据钢筋承载
力、钢筋与砂浆的粘结力、砂浆与岩体间的粘结力、锚固地基的有效重四个方面来确定的,详见表1。
五种规范对全长粘结岩石锚杆承载力验算规定汇总表表1
《建筑边坡工程技术规范》、《公路路基设计规范》、《铁路路基支挡结构设计规范》对于全长粘结岩石锚杆承载力计算的规定是针对于不稳定岩石边坡的加固处理,需验算钢筋承载力、钢筋与砂浆的粘结力、砂浆与岩体间的粘结力。
《建筑地基基础设计规范》和《溢洪道设计规范》则是通过锚杆的作用由岩体向建筑物提供拉力;《建筑地基基础设计规范》指出应验算砂浆与岩体间的粘结力,对设计等级为甲级的建筑物还应通过现场实验确定;《溢洪道设计规范》则在4.1.5条指出,设置锚筋时应经计算并参照类似工程经验确定,必要时应进行锚筋抗拔试验,此外还给出了锚固地基的有效重的具体公式。
4、对全长粘结岩石锚杆承载力计算的进一步探讨
对于岩石边坡的锚杆加固处理,锚杆、岩体及其它加固体共同形成整体结构体,由于内力的平衡作用,不存在结构体整体向上拔出的问题,故只需验算钢筋承载力、钢筋与砂浆的粘结力、砂浆与岩体间的粘结力。
对于建筑物与地基基础连接的锚杆,往往需要将建筑部传来的局部拉力传递给地基,不仅可能发生钢筋断裂、砂浆沿钢筋表面剪切破坏、砂浆和岩体之间剪切破坏的情况,还可以发生锚杆连同锚固着的破碎岩体一起整体拔出破坏的特殊形式,因此对于完整性较差岩体上的锚杆除应验算钢筋承载力、钢筋与砂浆的粘结力、砂浆与岩体间的粘结力外,还应验算锚固地基的有效重。
《溢洪道设计规
范》给出了一个计算锚固地基的有效重的公式,但这个公式仅能计算密集锚杆群锚固的有效重,不能计算疏松锚杆群和单根锚杆锚固的有效重,同时该公式也没有考虑锚杆群布置方式对锚固有效重的影响,精度较低。
对于单根锚杆锚固地基的有效重,笔者建议按下式计算:
3
33
1T P R πγ=
d
S T 30-=
式中:
R γ—岩石容重,水下为浮容重,水上为湿容重;
对锚杆群的锚固地基有效重,笔者建议按下式计算: 形成密集锚杆群时(即d S L 30-≤β):
TA
P R γ=3
d
L S T 30--=α
形成疏松锚杆群时(d S L 30->β):
3
331T
n P R πγ=
d
S T 30-=
式中:
α—系数,锚杆群正方形布置为0.376,正三角形布置为0.348;
n —锚筋根数;
β—系数,锚杆群正方形布置为0.564,正三角形布置为0.522;
5、结语
全长粘结岩石锚杆在岩土工程中应用十分广泛,对于不同的岩土工程类型,计算内容也是不尽相同的。
对于岩石边坡加固,一般可以只需验算钢筋承载力、钢筋与砂浆的粘结力、砂浆与岩体间的粘结力。
对于存在整体上拔可能的锚杆,除必须验算钢筋承载力、钢筋与砂浆的粘结力、砂浆与岩体间的粘结力外,还需要验算锚固地基的有效重,以防止发生锚杆及锚固在锚杆上的岩体整体拔出破坏的可能。
作者:周斌。