复变函数与积分变换复习题去答题

合集下载

复变函数及积分变换复习题去答题

复变函数及积分变换复习题去答题

第一章 一、选择题1. 一个向量顺时针旋转3π,向右平移3个单位,再向下平移1个单位,对应的复数为1,则原向量对应的复数是(A ) A. 2B. 1C.i D.i2. 设z 为复数,则方程2z z i +=+的解是(B ) A. 34i -+ B. 34i + C. 34i - D. 34i -- 3.方程23z i +-= C )A. 中心为23i -的圆周 B. 中心为23i -+,半径为2的圆周 C. 中心为23i -+D. 中心为23i -,半径为2的圆周 4. 15()1, 23, 5f z z z i z i =-=+=-则 12()f z z -=(C ) A. 44i -- B. 44i + C. 44i - D. 44i -+5. 设z C ∈,且1z =,则函数21()z z f z z-+=的最小值是(A )A. -3B. -2C. -1D. 1 二、填空题1.不等式225z z -++<所表示的区域是曲线_________________的内部。

(椭圆2222153()()22x y +=) 2. 复数22(cos5sin 5)(cos3sin 3)θθθθ+-的指数表示式为_______________.(16ieθ)3. 方程2112(1)z ii z--=--所表示曲线的直角坐标方程为__________________.(221x y +=)4. 满足5|2||2|≤-++z z 的点集所形成的平面图形为, 以±2为焦点 ,长半轴为25的椭圆,该图形是否为区域 否 .5.复数()i i z --=1132的模为_________,辐角为____________.(5/12π-)6. 曲线()2z i t =+在映射2w z =下的象曲线为____________.(43v u =)三、对于映射12()w z z=+,求出圆周4z =的像。

表示平面上的椭圆2222u v +=11715()()22一、选择题1.下列函数中,为解析函数的是(C )A. 222x y xyi -- B. 2x xyi + C. 222(1)(2)x y i y x x -+-+ D. 33x iy + 2. 若函数2222()2()f z x xy y i y axy x =+-++-在复平面内处处解析,那么实常数a=(C ) A. 0 B. 1 C. 2 D. -23. 函数2()ln()f z z z =在0z =处的导数(A ) A. 0 B. 1 C. -1 D. 不存在 4. 22()f z x iy =+则 (1)f i '+=(A ) A. 2 B. 2i C. 1+I D. 2+2i 5. ii 的主值为(D ) A. 0 B. 1 C. 2e πD. 2eπ-6.设()sin f z z =,则下列命题中,不正确是(C )A. ()f z 在复平面B. ()f z 以为周期C. ()2iz ize ef z --= D. ()f z 是无界7. 设α是复数则(C )A. z α是在复平面上处处解析B. z α的模为 zαC. z α一般是多值函数 D . z α的幅角为z 的幅角的α倍 二、填空题1.设(0)1, (0)1f f i '==+,0()1lim z f z z→-=______________(1+i)2. 3322()f z x y ix y =++ 则 33 ()22f i '-+=______________(272748i -)3.复数1i 的模为______________(2(0,1)k e k π-=±)4.方程10ze--=的全部解为______________(2(0,1)k i k π=±)5.i i -+1)1(的值为,1,0)],2ln 4sin()2ln 4[cos(224±=-+-+k i e k ππππ;主值为)]2ln 4sin()2ln 4[cos(24-+-πππi e .三、设i y x y x z f 22332)(+-=,问)(z f 在何处可导?何处解析?并在可导处求出)1(1627)4343()43,43()43,43(i xv ixu i f +=∂∂+∂∂=+' (2分)四、解方程:sin cos 4z i z i +=一、选择题1. 设C 为从原点沿2y x =至1+i 的弧段,则2()cx iy dz +=⎰()DA.1566i - B. 1566i -+ C. 1566i -- D. 1566i + 2. 设C 为不经过点1与-1的正向简单闭曲线,则(1)(1)c zdz z z -+⎰为()DA.2i π B. 2i π-C. 0D. A,B,C 都有可能二、1..解析函数在圆心处的值等于它在圆周上的________(平均值)2. 积分⎰=1||z zdz z e 的值为i π2,⎰==-2||2)2(sin z dz z zπ 0 .3. 设()2sin2f z d zξπξξξ==-⎰,其中2z ≠,则()1f '=_______.(0)三、计算26(1)(2)z R zdz z z =-+⎰,其中0 1 R R >≠,,且2R ≠。

复变函数积分变换复习卷及答案

复变函数积分变换复习卷及答案

复变函数复习卷及参考答案一、填空题1、复数1z i =+的三角表示式=2(cossin )44i pp+;复指数表示式=42ie p 。

2、复数()13z i =+的z =2;23Argz k pp =+;arg 3z p=;13z i =-。

3、62111i i i -æö==-ç÷+èø。

10125212131i i i i i +-=+-=-。

4、()()31123513253x y i x i y i x y +=ì++-=-Þí-=-î,求解方程组可得,45,1111x y -==。

5、()()231,f z z z =-+则()61f i i ¢-=--。

6、()n3L i -ln 226i k i pp =-+;ln()ie 12i p=+。

7、()(2)1321,(13)2ik i iiee i p p p -++==+。

8、32282(cossin)33k k i p pp p++-=+;0,1,2k =。

1224(4)2i i -==±。

9、1sin 2e e i i --=;221cos ()22i e e pp p -=+;10 、21024z dzz z ==++ò ;1212z dz i z p ==-ò 。

11、设31cos ()zf z z -=,则0z =是(一级极点);31cos 1Re [,0]2z s z -=。

1()s i n f z z=,0z =是本性奇点。

二、判断下列函数在何处可导?何处解析?在可导处求出导数。

(1)()22f z x iy=+;解:22,,2,0,0,2u u v v u x v y x y xyxy¶¶¶¶======¶¶¶¶,一阶偏导连续,因此当,x y y x u v u v ==-时,即x y =时可导,在z 平面处处不解析。

复变函数与积分变换试题和答案

复变函数与积分变换试题和答案

复变函数与积分变换试题(一)一、填空(3分×10)1.得模ﻩﻩ、幅角ﻩ。

2.-8i得三个单根分别为:、、。

3.Lnz在得区域内连续。

4.得解极域为:ﻩﻩﻩﻩﻩ。

5.得导数ﻩﻩﻩﻩﻩ。

6. ﻩﻩ。

7.指数函数得映照特点就是:ﻩﻩﻩﻩﻩﻩﻩﻩﻩ。

8.幂函数得映照特点就是: ﻩﻩﻩﻩﻩﻩﻩ。

9.若=F [f(t)]、则= F ﻩﻩﻩﻩ。

10.若f(t)满足拉氏积分存在条件、则L [f(t)]= ﻩﻩﻩ。

二、(10分)已知、求函数使函数为解析函数、且f(0)=0。

三、(10分)应用留数得相关定理计算四、计算积分(5分×2)1.2.C:绕点i一周正向任意简单闭曲线。

五、(10分)求函数在以下各圆环内得罗朗展式。

1.2.六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。

(2)七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0得解y (t )。

八、(10分)就书中内容、函数在某区域内解析得具体判别方法有哪几种。

复变函数与积分变换试题答案(一)一、1.ﻩﻩ、ﻩ ﻩ2、ﻩ-i ﻩﻩ2iﻩ-i ﻩ3、ﻩZ 不取原点与负实轴 4、 空集5、ﻩ2z ﻩ6.0 7、将常形域映为角形域ﻩ8、 角形域映为角形域 9、ﻩ ﻩ10、 二、解:∵ﻩ ∴ ﻩ(5分)∵f (0)=0ﻩﻩﻩﻩc =0(3分)∴ﻩﻩ(2分)三、解:原式=(2分)ﻩ(2分)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) =四、1.解:原式ﻩ(3分) z 1=0 ﻩz2=1ﻩ=0ﻩﻩ(2分)2.解:原式=五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)( ﻩﻩ(2分) ﻩ2.解: (1分)ﻩ(2分)六、1.解:∵ﻩ(3分)ﻩ∴结论成立 (2)解:∵ﻩ(2分)ﻩ ∴与1构成傅氏对∴(2分)七、解:∵ﻩﻩ(3分)S (2)-(1):∴ (3分)∴八、解:①定义;②C-R 充要条件Th ; ③v 为u 得共扼函数ﻩ10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导就是f(z)在D 内解析得(ﻩ ﻩ)条件。

复变函数与积分变换五套试题及答案

复变函数与积分变换五套试题及答案

复变函数与积分变换试题(一)一、填空(3分×10)1.的模 ,幅角 。

)31ln(i --2.-8i 的三个单根分别为: ,,。

3.Ln z 在 的区域内连续。

4.的解极域为:。

z z f =)(5.的导数。

xyi y x z f 2)(22+-==')(z f 6.。

=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s 7.指数函数的映照特点是:。

8.幂函数的映照特点是:。

9.若=F [f (t )],则= F 。

)(ωF )(t f )][(1ω-f 10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。

二、(10分)已知,求函数使函数为解析函222121),(y x y x v +-=),(y x u ),(),()(y x iv y x u z f +=数,且f (0)=0。

三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2)1.⎰=-2||)1(z z z dz2. C :绕点i 一周正向任意简单闭曲线。

⎰-c i z z3)(cos 五、(10分)求函数在以下各圆环内的罗朗展式。

)(1)(i z z z f -=1.1||0<-<i z 2.+∞<-<||1i z 六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。

)(0t t -δo iwt e -(2))(2ωπδ=⎰∞+∞-ω-dt e t i 七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0的解y (t )。

⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。

复变函数与积分变换试题答案(一)一、1., 2.-i 2i -i22942ln π+ππk arctg 22ln 32+-333.Z 不取原点和负实轴 4. 空集5.2z 6.07.将常形域映为角形域8.角形域映为角形域9.10.⎰∞+∞-ωωπωωd e F i )(21⎰∞+-0)(dte tf st 二、解:∵∴(5分)yu x x v ∂∂-=-=∂∂xuy y v ∂∂==∂∂c xy u +=cxy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴(2分)222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--=三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z (2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π33=z ∞=4z 2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s =0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(∴原式=(2分) =23126⨯⨯i πi 63π-四、1.解:原式(3分)z 1=0z 2=1⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221=0(2分)]11[2+-=i π2.解:原式=iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-=1ich π-五、1.解:ni z z f ∑∞⎪⎫⎛--⋅=⋅⋅=⋅=1111111111)(分)(分)(分)((2分)11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)(2分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i 六、1.解:∵(3分)∴结论成立0)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(2)解:∵(2分)1)(2210==ωπδπ=ωω-ω-∞+∞-⎰t i t i e dw e ∴与1构成傅氏对)(2w πδ∴(2分))(2ωπδω=-∞+∞-⎰dt e t i 七、解:∵(3分)⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX S (2)-(1):∴(3分)⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s ∴cht e e t Y t t -=--=-121211)(八、解:①定义;②C-R 充要条件Th ;③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。

复变函数与积分变换习题册(含答案)

复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。

2、k 为任意整数,则34+k 的值为 。

3、复数i i (1)-的指数形式为 。

4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。

(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。

复变函数与积分变换试题及解答

复变函数与积分变换试题及解答

复变函数与积分变换试题系别班级学号姓名得分评卷人-------------- 一、填空(每题3分,共24分)1.(上£1严的实部是 _______ ,虚部是________ ,辐角主值是______1-V3/2.满足lz + 21 + lz-2K5的点集所形成的平面图形为,该图形是否为区域—.3. 7(z)在福处可展成Taylor级数与/(%)在处解析是否等价? .4. (l + i)i的值为______________________________________________主值为.5.积分,的值为 _____________ ,f '—dz. = ________ .Juw z J izi=2 4)a--)"1 -L6.函数J (z)=——7"-3在Z =。

处Taylor展开式的收敛半径是 ______ .z-l7.设F [<(。

]=Z3), F 则F [/1(0*/2(r)]=,其中力⑺* /2(0定义为.8.函数/(外=任的有限孤立奇点z°=_,Z。

是何种类型的奇点? .Z得分评卷人二、(6分)设/仁)=/一丫3+2//〃问/仁)在何处可导?何处解析?并在可导处求出导数值.三、(8分)设i ,= eXsiny,求p 的值使P 为调和函数,并求出解析函数 f(z) = u + iv.四、(10分)将函数〃z) = "—在有限孤立奇点处展开为 2z~ — 3z+1Laurent 级数.得分评卷人 -------------- 五、计算下列各题(每小题6分,共24分)1. /(z) = f求/(1 + )J 图7 4-z2. 求出/(z) = eV 在所有孤立奇点处的留数3. L(f 32产(”。

)4. 尸——二~<公J 。

1 + sin- x六、(6分)求上半单位圆域{2:1[1<1,11]12>0}在映射卬=22下的象.七、(8分)求一映射’将半带形域-恭,<”,>。

复变函数与积分变换(习题)

复变函数与积分变换(习题)

1. 设t 是实参数,则下列方程中表示圆周的是( )A 、(1)z i t =+B 、cos sin (0,0,)z a t b t a b a b =+>>≠C 、i z t t=+ D 、(0)it z a e b a =+≠2. i i 的辐角主值是( )A 、0B 、2π C 、2π- D 、π 3. 设210z z ++=,则1173z z z ++=( )A 、0B 、iC 、i -D 、1 4. 11(1)n i nn ∞=+∑的敛散性为( ) A .发散 B .条件收敛 C .绝对收敛 D . 无法确定5.设C 是任意实常数,那么由调和函数22(,)v x y x xy y =+-确定的解析函数()f z u iv =+是( )A 、2122i z C ++B 、2122i z iC ++ C 、222i z C -+ D 、222i z iC -+ 6.(- )A 、无定义 B、等于3 C、是复数,其实部等于3 D、是复数,其模等于37. 若曲线C 为|z|=1的正向圆周,5()C dz z i π=-⎰( ) A .i 12π B .1 C .0 D .π1. 在复数范围内,方程30z z +=的根的个数是 .2. 31z =的全部解是: , , .3. 复数()1Ln -的主值为 .4. ()()()()20142015201320142013201420152014i i z i i +-=+-,则=z _________ . 5. 若曲线C 为|z|=1的正向圆周,则3(2)C dz z =-⎰________. 6. 级数212!!n z z z n +++++在|z |<1时的和函数是________.7.若221()(1)f z z z =-,则Re [(),0]s f z =________. 1. 3232()m ()f z y nx y i x lxy =+++在全平面解析,求m n l 、、.(7分)2.计算积分arg CI zdz =⎰,其中C :从原点到1+i 的直线段.(6分) 3. dz z ze z z⎰=-2||21(积分沿正向圆周进行).(6分) 4. 3sin C z dz z ⎰(其中C 为正向圆周|z|=1).(6分) 5. 求函数(,)2v x y xy =的共轭调和函数(,)u x y 和由它们构成的解析函数()f z ,使(0)1f =.(6分)1. 求函数0()sin f t t ω=的傅里叶变换.2. 在圆环1||z <<∞内将函数1()(1)f z z z =-展为洛朗级数.。

复变函数与积分变换习题册(含答案)

复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。

2、k 为任意整数,则34+k 的值为 。

3、复数i i (1)-的指数形式为 。

4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。

(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。

复变函数与积分变换试题14

复变函数与积分变换试题14

复变函数与积分变换 试题一、填空、判断题(共24分)(a ) 填空 (每空2分)1、,=+8)1(i , ln (-3 i )=2、把点z = 1,i ,-1 分别映照成点w = 1,0,-1 的分式线性映照 w = f (z) 把单位圆 |z| < 1 映照成 。

3、4sinz )(z z f =的孤立奇点的类型是 ,奇点处的留数是 。

4、积分dz )z 1cosz e (2|z |z ⎰=-+π= 。

(b )判断题 (每题3分,请在正确的题后打“√”,错误的题后打“×”) 1、arg z 1z 2 = arg z 1 + arg z 2 ( )2.若()f z 在0z 解析,则()()n f z 也在0z 解析。

( )3、若(,)u x y 与(,)v x y 都是调和函数, 则()(,)i (,)f z u x y v x y =+是解析函( ) 4.因为|sin |1z ≤,所以在复平面上f (z) = sin z 有界。

( ) 二、解答题( )1、设 1i 11e r z θ= , 2i 22e r z θ= 证明: ( a ) |z ||z ||z z |2121= ( b ) 2121z z )z z (=2、设 )pxy x (i y n my )(2323+++=x z f 是解析函数,试确定 m , n , p 的值。

3、将 )z 2)(1(1)(--=z z f 在 0 < | z - 1 | < 1 上展开成罗朗级数。

三、计算题(8分+12分=20分)1、计算⎰+cdz iy x )(2,其中 C 是沿曲线 2x y = 由点 0=z 到点 i z +=12、用两种方法(含留数方法)计算积分⎰-+cz z dz )2)(1(z 的值。

其中 C :| z | = 3 。

3、求 方程 01z 4=+ 的全部根 4、求把上半平面Im ( z ) >0 ,保形映照到单位圆 | w | < 1内, 且满足f (i )=0,0)i (arg ='f的分式线性映照。

吉林师范成人教育《复变函数与积分变换试题》期末考试复习题及参考答案

吉林师范成人教育《复变函数与积分变换试题》期末考试复习题及参考答案

吉林师范成人教育期末考试试卷《复变函数与积分变换》A 卷年级 专业 姓名 分数一、填空题(每空2分,共16分)1.复数-2是复数________的一个平方根。

2.设y 是实数,则sin(iy)的模为________。

3.设a>0,则Lna=________。

4.记号Res z=af(z)表示________。

5.设f(z)=u(x,y)+iv(x,y),如果________,则称f(z)满足柯西—黎曼条件。

6.方程z=t+i t(t 是实参数)给出的曲线为________。

7.设幂级数∑c z a n n n ()-=+∞∑0,在圆K:|z-a|<R 上收敛于f(z),则c n =______(n=0,1,…)。

8.cosz 在z=0的幂级数展式为________。

二、判断题(判断下列各题,正确的在题干后面的括号内打“√”,错误的打“×”。

每小题2分,共14分)1.lim z 0→e z =∞.( ) 2.设z 0为围线C 内部的一点,则∫c dz z z -0=2πi.( ) 3.若函数f(z)在围线C 上解析,则∫c f(z)dz=0.( )4.z=0是函数124-e z x的4级极点。

( )5.若z 0是f(z)的本性奇点,则z 0是f(z)的孤立奇点。

( )6.若f(z)在|z|≤1上连续,在|z|<1内解析,而在|z|=1上取值为1,则当|z|≤1时f(z)≡1.( )7.若f(z)与f(z)都在区域D 内解析,则f(z)在D 内必为常数。

( )三、完成下列各题(每小题5分,共30分)1.求复数z=1-i 1+i的实部、虚部、模和辐角。

2.试证:复平面上三点a+bi,0,1-a +bi 共直线。

3.计算积分∫c (x-y+ix 2)dz,积分路径C 是连接由0到1+i 的直线段。

4.说明函数f(z)=|z|在z 平面上任何点都不解析。

5.将函数z +1z (z -1)2在圆环1<|z|<+∞内展为罗朗级数。

大学复变函数复习题+答案

大学复变函数复习题+答案

《复变函数和积分变换》一.(本题30分,其每小题各3分)1. 方程()t i 1z +=(t 为实参数)给出的曲线是 ;2. 复数3i 1+的指数形式是 ____3. 计算34-________4.函数()224z z 1z +-,z=0为 级极点,2i z ±=为 级极点5. 若∑==0n n n 2nz )(z f ,则其收敛半径 ; 6.计算留数:⎪⎭⎫⎝⎛0,z cosz Res 3 ;7. 函数()()()y ,x iv y ,x u z f +=在()y ,x z =可微的充要条件为 _____8. 曲线y x :=C 在映射z1)(=z f 下的像是_______ 9. C 为以a 为圆心,r 为半径的圆周,计算()⎰-Cna z dz(n 为正整数) ;10. 判断n1n 25i 1∑∞=⎪⎭⎫⎝⎛+的敛散性 .二、计算题(25分,每小题各5分)(1)、计算积分⎰CRezdz 其中积分路径C 为: ①连接由原点到1+i 的直线段;②连接由原点到点1的直线段及连接由点1到点1+i 的直线段所组成的折线.(2)、已知:()()3z e 1zsinzz f -=求:]0),z (f [Re s(3)、计算()()10dz z 1ln rz <<+⎰=r 4)、计算()()dz i z z 9zC2⎰+-,其中2||=z C 为正向圆周:。

(5)计算dz e 1z z 12⎰=.三、求积分()dz 1z z e 4z 22z⎰=-(7分)四、求解析函数),(),()(y x v y x u z f +=,已知()233x y x y ,x u -= ,且()i 0f =. (7分)五、验证()()0x xyarctgy ,x v >=在右半z 平面内满足Laplace 方程,即0,0=∆=∆ψϕ;其中22yx ∂∂+∂∂=∆, 并求以此为虚部的解析函数()z f .(8分六、(8分)求函数()()()2z 1z 1z f --=分别在如下区域展成洛朗展式(1).1|1|0<-<z (2)0<2z -<1.七、求实轴在映射iz 2i+=ω下的象曲线(8分)八、求函数()()0t 0,t 1,t f >⎪⎩⎪⎨⎧>≤=δδδ的傅立叶变换(7分)答案一、(1)直线y=x (2)i32k 2e⎪⎭⎫ ⎝⎛+ππ (3)一;二 (4)()()3i 12;2;3i 12313231--+--(5)2 (6)21- (7)①函数u(x,y),v(x,y)在(x,y)可微 ②u(x,y),v(x,y)在(x,y)满足C.-R.条件.即x y y x v u ,v u -==. (8)x=-y (9)⎩⎨⎧>=1n ,01n ,i 2π (10发散二、(1) ①连接原点到点1+i 的直线段的参数方程为: z=(1+i)t 1)t (0≤≤故 ⎰CRezdz =()[]{}()dt i 1t i 1Re 10++⎰ =()⎰+1tdt i 1=2i 1+ ②连接由原点到点1的直线段的参数方程为: z=t 1)t (0≤≤,连接由点1到点1+i 的直线段参数方程为: z=(1-t)+(1+i)t 1)t (0≤≤,即 z=1+it 1)t (0≤≤,故 ⎰C Rezdz =()[]⎰⎰++101idt it 1Re Retdt =⎰⎰+110dt i tdt =i 21+ (2)由题可知被积函数只有z=0一个奇点。

复变函数与积分变换试题和答案

复变函数与积分变换试题和答案

复变函数与积分变换试题(一)1.一、填空(3 分×10)1.ln(-1- 3 i ) 的模 .幅角 。

2.-8i 的三个单根分别为: . . 。

3.Ln z 在的区域内连续。

4. f ( z ) = z 的解极域为: 。

5. f (z ) = x 2 - y 2 + 2xyi 的导数 f (z ) =。

7.指数函数的映照特点是: 。

8.幂函数的映照特点是: 。

9.若F () =F [f (t )].则 f (t )= F -1 f [()] 。

10.若f (t )满足拉氏积分存在条件.则 L [f (t )]=二、(10 分)-1x 2+ 1 y 2.求函数u (x ,y )使函数f (z )=u (x ,y )+iv (x ,y )为解析函数.且 f (0)=0。

、(10 分)应用留数的相关定理计算dz|z |=2 z 6(z -1)(z -3)四、计算积分(5 分×2)dz |z |=2 z ( z - 1)6. Re ssin 3z ,0 z 3已知v (x , y ) =2.c(z co-s i z)3 C:绕点i一周正向任意简单闭曲线。

五、(10 分)求函数f ( z) =z(z1-i)在以下各圆环内的罗朗展式。

1.0 | z - i | 12.1 | z - i | +六、证明以下命题:(5 分×2)(1)(t - t )与e-iwt o构成一对傅氏变换对。

+(2)+e-i t dt=2()-x + y + z = 1七、(10分)应用拉氏变换求方程组x + y+z = 0满足x(0)=y(0)=z(0)=0的解y + 4z = 0y(t)。

八、(10 分)就书中内容.函数在某区域内解析的具体判别方法有哪几种。

复变函数与积分变换试题答案(一)= 2i [-1+1] =02 分)一、1. 3. 8.二、解: 2 4 - ln 2 2 + 2. arctg 3 + 2k9 ln 2Z 不取原点和负实轴 角形域映为角形域 v u = - x = - x y 2. 2i 3 -i 、解: 四、 4. 空集 5. 2z 6. 1 +9. 1 +F ()e i d 2 -v =y =y f (z )=i - x + y +xy +c 7.将常形域映为角形域 10. 0+f (t )e -st dt ∵f (0)=0 c =0 ∴ f (z ) = xy - ( x - y ) = - ( x 2原式=(2 分) 2i Re s k =1 42 分)= -2i Re s k =3 Re sRe s,3z 6(z -1)(z -3),z 6(z -1)(z -3)u ∴ u = xy + c x 3 分) - y + 2xyi ) = z 6(z -1)(z -3) kz 6(z -1)(z -3) k(2分)3612= (2分)Re s 5 分) -2i z 2 2 分)z 3 z 1 = 0 z 2 =3 z 4 =1 = 1∴原式=(2分) 2i3 62=-36 i21.解:原式 = 2i Re s k =11 z (z -1),zk16(1-1)(1-3)z 2,0 z6 z z3 分) z 1=0z 2=1=0八、解:①定义; ②C-R 充要条件 Th ; ③v 为 u 的共扼函数 10 分1 +2)解:∵ 1+2()e -i t dw =e -i t2 -S (2)-(1):∴Y (t )=1-12e t -12e -t =1-cht2.解: 原式 = cos z 2! z =i = i (- cos z ) = -i cos i = -ich 1 五、1.解:f ( z ) (1分)( z - i ) z - i + i 1分)(z 1-i ) 11 i 1+ z-iin =01分)z1- i1in - 1n = i (z -i )n -1 = i (z -i )n2 分)n =0 n =-12. 解: f (z )1分)=(z 1- i )i + ( z - i )1分)11+1 分)1 (z - i )2n =01 1=1n (z -1i )n +2n =0 i n -i n (z -i )n -2 (2 分) n =0六、1.+ +(t -t )e -i tdt = e--i t t =t =e -it3 分) ∴结论成立++e -i t dt = 2() -(2 分)sX (s )+Y (s )+sZ (s )= 1S (1)X (s )+sY (s )+Z (s ) = 0 (2) (3 分) Y (s )+4sZ (s ) = 0(3)∴ 2( w ) 与 1 构成傅氏对七、解:∵∴Y (s )=s21-1s 2 -1= s - 2s -1+ s +13 分)=1=02 分)复变函数与积分变换试题(二)一、填空(3 分×10)7.若 z 0为 f (z )的 m 级极点.则Re s [ f (z ),z ]=( )。

复变函数与积分变换复习题(专升本)

复变函数与积分变换复习题(专升本)

《 复变函数与积分变换 》复习题(专升本)一、判断题1、cos z与sin z 在复平面内有界.( ) 2、若{}n z 收敛,则{Re }n z 与{Im }n z 都收敛.( )3、若函数()f z 在0z 处解析,则它在该点的某个邻域内可以展开为幂级数. ( )4、若()f z 在区域D 内解析,且'()0f z ,则()f z C (常数). ( ) 5、若()f z 在区域D 内解析, 则对D 内任一简单闭曲线C ()0Cf z dz . ( )6、若()f z 在0z 的某个邻域内可导,则函数()f z 在0z 解析. ( )7、若{}n z 收敛,则{Re }n z 与{Im }n z 都收敛. ( )8、若()f z 在区域D 内解析,且'()0f z ,则()f z C (常数). ( )9、若0z 是()f z 的m 阶零点,则0z 是1/()f z 的m 阶极点. ( ) 10、若0lim ()zz f z 存在且有限,则0z 是函数()f z 的可去奇点. ( )二、选择题 1.arg 13i ( )A.-3π B.3πC.32π D.3n 2π+2 2.2z 在0z 复平面上( )A.不连续B.可导C.不可导D.解析3.设z xyi ,则下列函数为解析函数的是( )A.22()2f z x y xyB.()f z x iyC. ()2f z x i yD.()2f z xiy4.0z 是3sin zz的极点,其阶数为( ) A.1 B.2 C.3D.45.整数0k 则Res[cot ,]z =( )A.1kB.0C.1kD.k6、设复数1cossin33z i ,则arg z( )A.-3B.6C.3D.237、2w z 将z 平面上的实轴映射为w 平面的( )A.非负实轴B.实轴C.上半虚轴D.虚轴8、下列说法正确的是( )A.ln z 的定义域为0zB.|sin |1zC.0zeD.3z 的定义域为全平面9、设C 为正向圆周||1z ,sin n Czdz z=2i ,则整数n 为( ) A.-1 B. 0 C. 1 D. 210、设nn n a z 0n n n b z 和()n n n n a b z 的收敛半径分别为R 1,R 2和R ,则( )A. 1R RB.12min{R ,R }RC. 2R RD.12min{R ,R }R三、填空题1、设11zi,则Im z__________。

复变函数及积分变换试题及答案

复变函数及积分变换试题及答案

第一套第一套一、选择题(每小题3分,共21分)1. 若( ),则复函数()(,)(,)f z u x y iv x y =+是区域D 内的连续函数。

A. (,)u x y 、(,)v x y 在区域D 内连续; B. (,)u x y 在区域D 内连续; C. (,)u x y 、(,)v x y 至少有一个在区域D 内连续; D. 以上都不对。

2. 解析函数()f z 的实部为sin x u e y =,根据柯西-黎曼方程求出其虚部为( )。

A.cos x e y C -+; B cos x e y C -+; C sin x e y C -+; D cos x e y C +3.2|2|1(2)z dzz -==-⎰( )。

A. i π2; B. 0; C. i π4; D. 以上都不对. 4. 函数()f z 以0z 为中心的洛朗展开系数公式为( )。

A. 101()2()n n f d c iz ξξπξ+=-⎰ B. 0()!n n f z c n =C. 201()2n k f d c iz ξξπξ=-⎰D. 210!()2()n n k n f d c iz ξξπξ+=-⎰5. z=0是函数zz sin 2的( )。

A.本性奇点B.极点C. 连续点D.可去奇点6. 将点∞,0,1分别映射成点0,1,∞的分式线性映射是( )。

A.1z zw -=B. z 1z w -=C. zz 1w -= D. z11w -=7. sin kt =()L ( ),(()Re 0s >)。

A.22k s k +; B.22k s s +; C. k s -1; D. ks 1.二、填空题(每小题3分,共18分)1.23(1)i += [1] ;----------------------------------------装--------------------------------------订-------------------------------------线----------------------------------------------------2. 幂级数∑∞=1n nn z !收敛于 [2] ;3. 设0Z 为复函数)(z f 的可去奇点,则)(z f 在该点处的留数为 [3] . ;4. 通过分式线性映射z kz λωλ-=-(k 为待定复常数)可将 [4] 映射成单位圆内部1ω<;5. 一个一般形式的分式线性映射可由z b ω=+、az ω=、1zω=三种特殊形式的映射复合而成,分别将ω平面看成z 平面的平移映射、旋转与伸缩映射、 [5] ; 6. 求积分()i x e x dx ωδ∞--∞=⎰[6] ;三、判断题 (每小题2分,共10分)1. 平面点集D 称为一个区域,如果D 中任何两点都可以用完全属于D 的一条折线连接起来,这样的集合称为连通集。

复变函数与积分变换期末考试复习题及参考答案-高起本

复变函数与积分变换期末考试复习题及参考答案-高起本

《复变函数与积分变换》复习题一、判断题1、cos z 与sin z 在复平面内有界. ( )2、若{}n z 收敛,则{Re }n z 与{Im }n z 都收敛. ( )3、若函数()f z 在0z 处解析,则它在该点的某个邻域内可以展开为幂级数. ( )4、若()f z 在区域D 内解析,且'()0f z ,则()f z C (常数).( )5、若()f z 在区域D 内解析, 则对D 内任一简单闭曲线C ()0Cf z dz .( )6、若()f z 在0z 的某个邻域内可导,则函数()f z 在0z 解析. ( )7、若{}n z 收敛,则{Re }n z 与{Im }n z 都收敛. ( )8、若()f z 在区域D 内解析,且'()0f z ,则()f z C (常数).( )9、若0z 是()f z 的m 阶零点,则0z 是1/()f z 的m 阶极点. ( )10、若0lim ()zz f z 存在且有限,则0z 是函数()f z 的可去奇点.( )二、选择题 1.arg13i ( )A.-3π B.3πC.32πD.3n 2π+2 2.2z 在0z 复平面上( )A.不连续B.可导C.不可导D.解析3.设z xyi ,则下列函数为解析函数的是( )A.22()2f z x y xyB.()f z x iyC. ()2f z x i yD.()2f z xiy7.0z 是3sin zz 的极点,其阶数为( ) A.1 B.2 C.3 D.410.整数0k 则Res[cot ,]z =( )A.1kB.0C.1kD.k11、设复数1cossin33z i ,则arg z ( )A.-3B.6C.3D.2312、2w z 将z 平面上的实轴映射为w 平面的( )A.非负实轴B.实轴C.上半虚轴D.虚轴13、下列说法正确的是( )。

总复习题(复变)

总复习题(复变)

《复变函数与积分变换》总复习题一、填空1.=+-4)i1i 1( 。

2. 2z 1lim 1+z →∞= 。

3. 已知虚数8z 3=,则=+++22z z z 23 。

4. i 31z 1+-=,i 1z 2+-=,=21z argz 。

5.=+3)i 31( 。

6. 区域就是 。

7.函数)y ,x (iv )y ,x (u )z (f +=在区域D 内解析的充分必要条件是:)y ,x (u 和)y ,x (v 在D 内任一点iy x z +=可微,而且满足柯西—黎曼方程即 。

8. 如果函数)z (f 在0z 及其邻域内处处可导,则称)z (f 在0z 。

9.没有重点的连续曲线C ,称为 曲线(或若尔当曲线)。

10. 复平面加上无穷远点称为 。

11. 若()f z 在0z 不解析,则称0z 为()f z 的 。

12. 如果函数()f z 在单连通域D 内处处解析,那么()f z 沿D 内的任意一条封闭曲线C 的积分()Cf z dz =⎰Ñ 。

13.+=lnz Lnz 。

14. 如果二元实函数)y ,x (ϕ在区域D 内有二阶连续偏导数,且满足二维拉普拉斯方程0yx 2222=∂∂+∂∂ϕϕ,则称)y ,x (ϕ为区域D 内的 。

15. 复变函数)y ,x (iv )y ,x (u )z (f +=在区域D 内解析的充要条件为:在区域D 内,)z (f 的虚部)y ,x (v 是实部)y ,x (u 的 。

16. 3i2e-的辐角主值为 。

17. 一个解析函数在圆心处的值等于它在 上的平均值。

18. 如果函数)z (f 在单连通域B 内处处解析,那么函数)z (f 沿B 内的任何一条封闭曲线C 的积分为_____________________。

19. 设函数)z (f 在区域D 内解析,且)z (f 不是常数,则在D 内)z (f 最大值。

20. 在区域D 内解析的函数,若其模在D 的内点达到最大值,则此函数必恒为 。

复变函数及积分变换试卷及答案

复变函数及积分变换试卷及答案

«复变函数与积分变换»期末试题〔A〕一.填空题〔每题3分,共计15分〕1.231i-的幅角是〔〕;2.)1(iLn+-的主值是〔〕;3.211)(zzf+=,=)0()5(f〔〕;4.0=z是4sinzzz-的〔〕极点;5.zzf1)(=,=∞]),([Re zf s〔〕;二.选择题〔每题3分,共计15分〕1.解析函数),(),()(yxivyxuzf+=的导函数为〔〕;〔A〕yxiuuzf+=')(;〔B〕yxiuuzf-=')(;〔C〕yxivuzf+=')(;〔D〕xyivuzf+=')(.2.C是正向圆周3=z,如果函数=)(zf〔〕,那么0d)(=⎰C zzf.〔A〕23-z;〔B〕2)1(3--zz;〔C〕2)2()1(3--zz;〔D〕2)2(3-z. 3.如果级数∑∞=1nnnzc在2=z点收敛,那么级数在〔A 〕2-=z 点条件收敛 ; 〔B 〕i z 2=点绝对收敛;〔C 〕i z+=1点绝对收敛; 〔D 〕i z 21+=点一定发散.4.以下结论正确的选项是( )〔A 〕如果函数)(z f 在0z 点可导,那么)(z f 在0z 点一定解析; (B)如果)(z f 在C 所围成的区域解析,那么0)(=⎰Cdz z f〔C 〕如果0)(=⎰Cdz z f ,那么函数)(z f 在C 所围成的区域一定解析;〔D 〕函数),(),()(y x iv y x u z f +=在区域解析的充分必要条件是),(y x u 、),(y x v 在该区域均为调和函数.5.以下结论不正确的选项是〔 〕.(A) 的可去奇点;为z1sin ∞(B) 的本性奇点;为z sin ∞(C) ;1sin 1的孤立奇点为z∞(D) .sin 1的孤立奇点为z ∞三.按要求完成以下各题〔每题10分,共计40分〕〔1〕设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a〔2〕.计算⎰-Czz z z e d )1(2其中C 是正向圆周:2=z ;〔3〕计算⎰=++3342215d )2()1(z z z z z〔4〕函数3232)(sin )3()2)(1()(z z z z z z f π-+-=在扩大复平面上有什么类型的奇点?,如果有极点,请指出它的级.四、〔此题14分〕将函数)1(1)(2-=z z z f 在以下区域展开成罗朗级数; 〔1〕110<-<z ,〔2〕10<<z ,〔3〕∞<<z 1五.〔此题10分〕用Laplace 变换求解常微分方程定解问题⎩⎨⎧='==+'-''-1)0()0()(4)(5)(y y e x y x y x y x六、〔此题6分〕求)()(0>=-ββtet f 的傅立叶变换,并由此证明:te d t ββπωωβω-+∞=+⎰2022cos«复变函数与积分变换»期末试题〔A 〕答案及评分标准一.填空题〔每题3分,共计15分〕1.231i -的幅角是〔 2,1,0,23±±=+-k k ππ〕;2.)1(i Ln +-的主值是〔 i 432ln 21π+ 〕; 3.211)(z z f +=,=)0()5(f 〔 0 〕,4.0=z 是4sin z zz -的〔 一级 〕极点;5. zz f 1)(=,=∞]),([Re z f s 〔-1 〕; 二.选择题〔每题4分,共24分〕1.解析函数),(),()(y x iv y x u z f +=的导函数为〔B 〕;〔A 〕 y x iu u z f +=')(; 〔B 〕y x iu u z f -=')(;〔C 〕y x iv u z f +=')(; 〔D 〕x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f 〔 D 〕,那么0d )(=⎰Cz z f .〔A 〕23-z ; 〔B 〕2)1(3--z z ; 〔C 〕2)2()1(3--z z ; 〔D 〕2)2(3-z . 3.如果级数∑∞=1n nnz c 在2=z 点收敛,那么级数在〔C 〕〔A 〕2-=z 点条件收敛 ; 〔B 〕i z 2=点绝对收敛;〔C 〕i z+=1点绝对收敛; 〔D 〕i z 21+=点一定发散.4.以下结论正确的选项是( B )〔A 〕如果函数)(z f 在0z 点可导,那么)(z f 在0z 点一定解析; (B)如果)(z f 在C 所围成的区域解析,那么0)(=⎰Cdz z f〔C 〕如果0)(=⎰Cdz z f ,那么函数)(z f 在C 所围成的区域一定解析;〔D 〕函数),(),()(y x iv y x u z f +=在区域解析的充分必要条件是),(y x u 、),(y x v 在该区域均为调和函数.5.以下结论不正确的选项是〔 D 〕.的可去奇点;为、zA 1sin )(∞的本性奇点;为、z B sin )(∞.sin )(的孤立奇点为、zC 11∞的孤立奇点;为、z D sin )(1∞ 三.按要求完成以下各题〔每题10分,共40分〕〔1〕.设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂xv y u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。

复变函数与积分变换期末试题及答案

复变函数与积分变换期末试题及答案

复变函数与积分变换试题与答案一、填空题:(每题3分)1.i 31--的三角表达形式: ; 指数表达形式: ; 几何表达形式: . 2.=-i 2)3( ;3. 设Max =M {}C z z f ∈|)(|,L 为曲线C 的长度,则≤⎰z z f C d )( . 4.级数21n z z z +++++的和函数的解析域是 。

5. 分式线性函数、指数函数、幂函数的映照特点各是 二、解答题(每题8分)1.设22()i f z xy x y =+,则()f z 在何处可导?何处解析?2.已知f (z )的虚部为222121),(y x y x v +-=,求解析函数0)0()(=+=f iv u z f 且.3.求积分 ,C I zdz =⎰ C 为沿单位圆(||1)z =的逆时针一周的曲线。

4.求sin d (1)Czz z z -⎰,其中C 为||2z =。

5.求e d cos zCz z⎰,其中C 为||2z =。

6.把函数)2)(1(12-+z z 在2||1<<z 内展开成罗朗级数。

7.指出 6sin )(z zz z f -= 在有限复平面上的孤立奇点及类型,并求奇点处的留数。

8.求将单位圆 | z | < 1内保形映照到单位圆 | w | < 1内, 且满足0)21(=f ,2)21(arg π='f 的分式线性映照。

四、利用拉氏变换求解微分方程(6分)⎩⎨⎧='==+'+''-1)0()0(34y y e y y y t (提示:1[]1t L e s -=+)试题答案一、填空题:(每题3分) 1.i 31--的三角表达形式:222[cos(2)sin(2)]33k i k ππππ-++-+; 指数表达形式:2(2)32k i eππ-+ ;几何表达形式:|12,-=2(1(2)3Arg k ππ-=-+. 2.=-i 2)3(222ln3k ieππ--+;3. 设Max =M {}C z z f ∈|)(|,L 为曲线C 的长度,则()d Cf z z ML ≤⎰.4.级数21n z z z +++++的和函数的解析域是||1z <。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 一、选择题
1. 一个向量顺时针旋转
3
π,向右平移3个单位,再向下平移1个单位,
对应的复数为1,则原向量对应的复数是(A ) A. 2
B. 1
C.
i D.
i
2. 设z 为复数,则方程2z z i +=+的解是(B ) A. 34i -
+ B. 34i + C. 34
i - D. 34i -- 3.
方程23z i +-= C )
A. 中心为23i -
B. 中心为23i -+,半径为2的圆周
C. 中心为23i -+
D. 中心为23i -,半径为2的圆周 4. 15()1, 23, 5f z z z i z i =-=+=-则 12()f z z -=(C ) A. 44i -- B. 44i + C. 44i - D. 44i -+
5. 设z C ∈,且1z =,则函数21()z z f z z
-+=的最小值是(A )
A. -3
B. -2
C. -1
D. 1 二、填空题
1.不等式225z z -++<所表示的区域是曲线_________________的内部。

(椭圆
22
22153()()22
x y +=) 2. 复数
2
2
(cos5sin5)
(cos3sin3)θθθθ+-的指数表示式为_______________.(
16i
e
θ)
3. 方程
2112(1)z i
i z
--=--所表示曲线的直角坐标方程为__________________.(221x y +=)
4. 满足5|2||2|≤-++z z 的点集所形成的平面图形为, 以±2为焦点 ,长半轴
为25
的椭圆,该图形是否为区域 否 .
5.复数
(
)
i i z --=
11
32
的模为_________,辐角为____________.
(5/12π-

6. 曲线()2z i t =+在映射2
w z =下的象曲线为____________.(
43v u =

三、对于映射12()w z z
=+,求出圆周4z =的像。

表示平面上的椭圆
22
22u v +=11715()()22
一、选择题
1.下列函数中,为解析函数的是(C )
A. 222x y xyi --
B. 2x xyi +
C. 222(1)(2)x y i y x x -+-+
D. 33x iy + 2. 若函数2222()2()f z x xy y i y axy x =+-++-在复平面内处处解析,那么实常数a=(C ) A. 0 B. 1 C. 2 D. -2
3. 函数2()ln()f z z z =在0z =处的导数(A ) A. 0 B. 1 C. -1 D. 不存在
4. 22()f z x iy =+则 (1)f i '+=(A ) A. 2 B. 2i C. 1+I D. 2+2i
5. i
i 的主值为(D ) A. 0 B. 1 C. 2
e π
D. 2
e
π-
6.设()sin f z z =,则下列命题中,不正确是(C )
A. ()f z 在复平面
B. ()f z 以为周期
C. ()2
iz iz
e e
f z --= D. ()f z 是无界
7. 设α是复数则(C )
A. z α是在复平面上处处解析
B. z α
的模为 z
α
C. z α
一般是多值函数 D . z α
的幅角为z 的幅角的α倍 二、填空题
1.设(0)1, (0)1f f i '==+,0()1
lim z f z z
→-=______________(1+i)
2. 3322
()f z x y ix y =++ 则 33 ()22f i '-+=______________(
272748
i -) 3.复数1i
的模为______________(2(0,1)k e k π
-=± )
4.方程10z e
--=的全部解为______________(2(0,1)k i k π=± )
5.
i
i -+1)1(的值为
,1,0)],2ln 4sin()2ln 4[cos(224
±=-+-+k i e
k π
ππ
π

主值为)]
2ln 4sin()2ln 4[cos(24-+-π
ππ
i e .
三、设i y x y x z f 2
2
3
3
2)(+-=,问)(z f 在何处可导?何处解析?并在可导处求出
)1(16
27
)4343()4
3,43()4
3
,43(i x
v i
x
u i f +=
∂∂+∂∂=+' (2分)
四、解方程:sin cos 4z i z i +=
一、选择题
1. 设C 为从原点沿2y x =至1+i 的弧段,则2()c
x iy dz +=⎰
()D
A.
1566i - B. 1566i -+ C. 1566i -- D. 1566
i + 2. 设C 为不经过点1与-1的正向简单闭曲线,则
(1)(1)c z
dz z z -+⎰为()D
A.
2i π B. 2
i π
- C. 0 D. A,B,C 都有可能 二、1..解析函数在圆心处的值等于它在圆周上的________(平均值)
2. 积分⎰=1||z z
dz z e 的值为i π2,⎰==
-2||2)2
(sin z dz z z
π 0 .
3. 设
()2
sin
2f z d z
ξ
π
ξ
ξξ==-⎰ ,其中2z ≠,则()1f '=_______.(0)
三、计算
26(1)(2)z R z
dz z z =-+⎰ ,其中0 1 R R >≠,
,且2R ≠。

当0<R<1,积分值=0
当1<R<2,积分值=8i π 当R>2,积分值=0
四、

=
-++=321
73)(ξξ
ξξξd z z f ,求).1(i f +'
)136(2]7)1(6[2)1(i i i i f +-=++=+'ππ
(1分)
五、验证
()22
,22v x y x y x =-+是一调和函数,并构造解析函数()f z u iv =+满足条件()2f i i =-.
)22()14()(22x y x i y xy z f +-++--= (10分)
六. 设
,sin y e v px
=求p 的值使v 为调和函数,并求出解析函数iv u z f +=)(. ⎪⎩⎪⎨⎧-=+-=+--=+=++=--1,)sin (cos 1,)sin (cos )(p c e c y i y e p c e c y i y e z f z
x
z
x (2分)
1. 设0()()f t t t δ=-,则f(t)的傅氏变换为(D )
A. 1
B. 2π
C. 0jwt e
D. 0jwt
e -
2. 设0()cos f t w t =,则f(t)的傅氏变换为(A ) A. 00[()()]w w w w πδδ++- B. 00[()()]w w w w πδδ+--
C.
00[()()]j w w w w πδδ+-- D. 00[()()]j w w w w πδδ++-
3. 设()sin()3
f t t π
=-
,则f(t)的拉氏变换为(A )
A. 212(1)s -+
B. 2
2(1)
s s + C. 3
21(1)s e s π-+ D. 32(1)s s e s π-+ 5.
设)()]([),()]([2211ωωF t f F t f ==F F ,
则=*)]()([21t f t f F )]([)]([21t f t f F F ⋅其中)()(21t f t f *定



∞+∞
--τ
ττd t f f )()(21.
6. 已知
()()()()12,,t
f t e u t f t tu t ==则它们的卷积()()12f t f t *=____________. (1t
t e --+)
4. 利用 ()
[
]()s f t F s ds t
∞=⎰
已知sin ()kt
f t t
=,求()F s
6. 用Laplace 变换求解常微分方程:
⎩⎨
⎧=='=''-=-'+''-'''2)0(,1)0()0(133y y y y y y y
故 1)]([)(1+==-t
e S Y t y L
7. 用拉普拉斯(Laplace)变换求解微分方程2t
y y e
''''+=满足初始条件
()()()0000y y y '''===的解.
t t e t sin 51
cos 52101212-++-
=。

相关文档
最新文档