2020年七年级下数学《对顶角、邻补角》练习题 (46)
人教版七年级数学下册《邻补角、对顶角的定义及性质》课件ppt
解:(1)∠AOC的邻补角是∠AOD和 ∠COB;∠BOE的邻补角是 ∠EOA和∠BOF.
(2)∠DOA的对顶角是∠COB; ∠EOC的对顶角是∠DOF.
(3)∠BOD=∠AOC= 50°; ∠COB=180°-∠AOC=130°.
D E
A
O
B
F
C
5. 在下图中,花坛转角(红色标注的角)按图纸要求为135°;施工结束 后,要求你检测它是否合格?请你设计检测的方法.
思考 :剪刀剪东西的过程中,你能说说∠AOC与∠AOD,∠AOC与∠BOD这两 对角的位置保持怎样的关系吗?
A
C
O
∠AOC和∠AOD有一条公共边AO,且∠AOC的
另一边是∠AOD另一边的反向延长线.
∠AOC和∠BOD有公共顶点,且∠AOC的两边 分别是∠BOD两边的反向延长线.
DB
一、邻补角的概念 邻补角:如果两个角有一条公共边,它们的另一边互为__反__向__延__长__线__,那 么这两个角互为邻补角.图中∠1的邻补角有__∠__2_,_∠__3___.
人教版 数学 七年级 下册
理解并掌握邻补角和对顶角的概念及性质.
掌握邻补角与对顶角的性质,并能运用它们的性质 进行角的计算及解决简单实际问题..
观察下列图片,说一说直线与直线有什么样的位置关系.
观察下列图片,说一说直线与直线有什么样的位置关系.
观察下列图片,说一说直线与直线有什么样的位置关系.
角的 名称
对 顶 角
邻 补 角
特征
性质 相同点
①两条直线相 交形成的角; ②有公共顶点;
③没有公共边。
对顶 角相 等。
①两条直线相 交而成; ②有公共顶点;
③有一条公共边。
知识点246 对顶角、邻补角(解答题)
246 对顶角、邻补角〔解答题〕1、如下列图,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.2、如图,有两堵墙,要测量地面上所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外.如何测量〔运用本章知识〕?3、如图,直线AB与CD相交于点O,那么∠1=∠2吗?请说明你的理由.4、如图,当光线从空气中射入水中时,光线的传播方向发生了变化,在物理学中这种现象叫做光的折射,在图中,∠1=43°,∠2=27°,试问光的传播方向改变了多少度?5、如图,∠1=∠2,∠1+∠2=162°,求∠3与∠4的度数.6、如图,AB,CD交于O点.〔1〕如果∠AOD=3∠BOD,那么∠BOD= _________ 度,∠COB= _________ 度;〔2〕如果∠AOC=2x°,∠BOC=〔x+90〕°,∠BOD=〔y+4〕°,求x,y的值.7、如图,直线AB、CD相交于点O,:∠AOC=70°,OE把∠BOD分成两局部,且∠BOE:∠EOD=2:3,求∠AOE的度数.8、如图〔1〕两条直线相交于一点,有_________ 对对顶角;如图〔2〕三条直线相交于一点,请写出所有对顶角;如图〔3〕n条直线相交于一点,有_________ 对对顶角.9、如图,直线AB、CD、EF相交于一点O,∠AOD=3∠AOF,∠AOC=120°,求∠BOE.10、如图,直线AB、CD,EF相交于点O,∠1=20°,∠BOC=80°,求∠2的度数.11、如图,直线AB与CD相交于点O,OD恰为∠BOE的角平分线.〔1〕图中∠AOD的补角是_________ 〔把符合条件的角都填出来〕;〔2〕假如∠AOD=140°,求∠AOE的度数.12、〔动手操作实验题〕如下列图是小明自制对顶角的“小仪器〞示意图:〔1〕将直角三角板ABC的AC边延长且使AC固定;〔2〕另一个三角板CDE的直角顶点与前一个三角板直角顶点重合;〔3〕延长DC,∠PCD与∠ACF就是一组对顶角,∠1=30°,∠ACF为多少?13、如图,直线a,b,c两两相交,∠1=2∠3,∠2=65°,求∠4的度数.14、如图,要测量两堵墙所形成的∠AOB的度数,但人不能进入围墙,如何测量请你写出两种不同的测量方法,并说明几何道理.15、如图,直线AB、CD相交于点0,OE平分∠AOC,∠AOD比∠AOE大75°,求∠AOD的度数.16、如图,要测量两堆围墙所形成的∠AOB的度数,但人既不能进入围墙内,又不能站在围墙上,只能站在墙外,如何测量?〔要求用两种方法〕17、附加题:在答题卡上相应题目的答题区域内作答.〔1〕计算:〔﹣2〕×〔﹣3〕= _________ .〔2〕直线AB与直线CD相交于O点,∠1=70°,如此∠2= _________ 度.18、如图,把∠AOE绕点O按顺时针方向旋转一个角度,得∠COD,且使射线OC平分∠AOE的邻补角,∠DOE=30°,问∠AOE按顺时针方向旋转了多少度.19、如图,直线a,b,c相交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.20、如下列图,〔1〕是某城市古建筑群中一座古塔底部的建筑平面图,请你利用学过的知识设计如何测量出古塔外墙底部的∠ABC大小的方案,并说明理由.注:〔2〕,〔3〕图备用.21、如图,三条直线AB、CD、EF相交于同一点O,假如∠AOE=2∠AOC,∠COF=60°,求∠BOD的度数.22、如图∠AOD=90°,OD为∠BOC的平分线,OE为BO的延长线,假如∠AOB=40°,求∠COE的度数.23、如图,直线AB与直线CD相交于点O,OE⊥AB,OF平分∠AOD,∠COE=28°.求∠AOC和∠DOF的度数.24、如图,直线AB,CD,EF交于点O,∠BOC=46°.射线OE平分∠BOC,求:〔1〕∠2和∠3的度数;〔2〕射线OF平分∠AOD吗?请说明理由.25、:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD:∠DOE=4:1.求∠AOF的度数.26、如图,一条光线AO射到墙上的镜子CD后沿OB方向反射出去,OM⊥CD,∠1=∠2.求证:∠2+∠3=90°.27、:直线AB与直线CD相交于点O,∠BOC=45°,〔1〕如图1,假如EO⊥AB,求∠DOE的度数;〔2〕如图2,假如EO平分∠AOC,求∠DOE的度数.28、直线AB、CD、EF相交于点O,∠1:∠3=3:1,∠2=20°,求∠DOE的度数.29、如图,直线AB、CD交于点O,且∠1:∠2=2:3,∠AOC=60°,求∠2的度数.30、如图,直线AB、CD相交于点O,OA平分∠COE,∠COE=80°,求∠BOD的度数.31、如图:AB、CD、EF相交于点O,∠1=50°,∠2=50°.求∠3的度数.32、如图,直线AB、CD交于O点,且∠BOC=80°,OE平分∠BOC,OF为OE的反向延长线.〔1〕求∠2和∠3的度数;〔2〕OF平分∠AOD吗?为什么?33、如图,AB、CD相交于点O,OB平分∠DOE,∠AOC=37°,求∠BOC,∠BOE的度数.34、小明同学认为对顶角可以这样定义:顶点公共,而且相等的角叫对顶角,你认为正确吗?如果你认为不正确请举一个反例,并对“对顶角〞正确定义.答案与评分标准1、如下列图,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.考点:对顶角、邻补角;角平分线的定义。
初一数学下期中复习与练习(含答案)
第五章 相交线与平行线1.掌握对顶角与邻补角的概念注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。
2、垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
即:垂线段最短。
3、平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线a 与直线b 互相平行,记作a ∥b 。
4、平行线的性质和判定两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补。
5、平移把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
第六章实数第一部分:求平方根(只有正数和0才有平方根)1.如果题目是“求一个数的平方根“,则求出来的解有两个,分别为一个算术平方根和一个负的平方根,比如练习的第一题。
2.解方程是求平方根的一个重点,方程解出来的值为平方根,并非算术平方根,因此,在解方程时不能漏根,比如练习的第二题。
3.对于已给出了形如87-和的平方根,是莫认了给我们了是其中的一种平方根,比如7是7的算术平方根,8-是8的负平方根,比如练习的第三题。
第二部分:求立方根(任意实数都有平方根) 1.任何数的立方根都只有一个,且和该数同号。
2.解方程时,解出来的值只有一个。
第三部分:实数对实数进行分类有两种方法:1.有理数(可以表示成分式、无限循环小数、整数、有限小数、0)和无理数(无限不循环小数,比如大多数的平方根和立方根式)2.正实数,负实数和0第七章平面直角坐标系1.应知道什么叫象限,什么叫横轴,什么是纵轴,原点,以及平面直角坐标系应该怎么画,坐标平移的表示方法。
人教数学七年级下全册同步练习-初中数学七年级下册全册同步练习题(含答案,共119页)
第五章 相交线与平行线1相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角. 3.对顶角的重要性质是_________________.4.如图,直线AB 、CD 相交于O 点,∠AOE =90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角; ∠2和∠3互为_______角;∠1和∠3互为______角; ∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE -∠______=______°-______°=______°; ∠4=∠______-∠1=______°-______°=______°. 5.如图,直线AB 与CD 相交于O 点,且∠COE =90°,则(1)与∠BOD 互补的角有________________________; (2)与∠BOD 互余的角有________________________; (3)与∠EOA 互余的角有________________________; (4)若∠BOD =42°17′,则∠AOD =__________; ∠EOD =______;∠AOE =______. 二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC (B)∠BOC 和∠AOF (C)∠AOF (D)∠BOE 和∠AOF 8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为( ). (A)30° (B)45° (C)60°(D)135°9.如图所示,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°三、判断正误10.如果两个角相等,那么这两个角是对顶角.( ) 11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角.( ) 12.有一条公共边的两个角是邻补角.( ) 13.如果两个角是邻补角,那么它们一定互为补角.( ) 14.对顶角的角平分线在同一直线上.( ) 15.有一条公共边和公共顶点,且互为补角的两个角是邻补角.( )综合、运用、诊断一、解答题16.如图所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求∠2的度数.17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.图a 图b 图c8.如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直. ( ) 11.一条直线的垂线只能画一条. ( ) 12.平面内,过线段AB 外一点有且只有一条直线与AB 垂直. ( ) 13.连接直线l 外一点到直线l 上各点的6个有线段中,垂线段最短. ( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离. ( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离. ( ) 16.在三角形ABC 中,若∠B =90°,则AC >AB . ( )二、选择题17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α (B)180°-α(C)α2190+︒ (D)2α-90°18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为P A =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ). (A)3cm (B)小于3cm (C)不大于3cm (D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n (C)n ≤AC ≤m (D)n <AC <m 20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm的点的个数是( ). (A)0 (B)1 (C)2 (D)3 21.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC于点E ,能表示点到直线(或线段)的距离的线段有( ). (A)3条 (B)4条 (C)7条 (D)8条 三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG 平分∠BOF .求∠DOG .拓展、探究、思考24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC与∠BOD 的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍?3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.2.如图2所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.3.如图3所示,(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.4.如图4所示,(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合、运用、诊断一、选择题5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).图2 图3 图4(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对拓展、探究、思考一、解答题9.如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD ⊥DA ,DA ⊥AB ,∠1=∠2.试确定射线DF 与AE 的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______. (3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义) 又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质) 即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( ) ∴∠2=∠______.(等量代换) ∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a ______c .(2)证明思路分析:欲证a ______c ,只要证______∥______且______∥______. (3)证明过程:证明:∵∠1=∠2,( )∴a ∥______.(________,________)① ∵∠3+∠4=180°,( )∴c ∥______.(________,________)② 由①、②,因为a ∥______,c ∥______, ∴a ______c .(________,________)5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________)6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,∠B =50°.求∠D 的度数.分析:可利用∠DCE 作为中间量过渡. 解法1:∵AB ∥CD ,∠B =50°,( )∴∠DCE =∠_______=_______°. (____________,______) 又∵AD ∥BC ,( )∴∠D =∠______=_______°.(____________,____________)想一想:如果以∠A 作为中间量,如何求解? 解法2:∵AD ∥BC ,∠B =50°,( )∴∠A +∠B =______.(____________,____________)即∠A =______-______=______°-______°=______°. ∵DC ∥AB ,( )∴∠D +∠A =______.(_____________,_____________) 即∠D =______-______=______°-______°=______°.11.已知:如图,AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数.解:过P 点作PM ∥AB 交AC 于点M .∵AB ∥CD ,( )∴∠BAC +∠______=180°.( ) ∵PM ∥AB ,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行) ∴∠3=∠______.(两直线平行,内错角相等) ∵AP 平分∠BAC ,CP 平分∠ACD ,( )∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( )∴∠APC =∠2+∠3=∠1+∠4=90°.( ) 总结:两直线平行时,同旁内角的角平分线______.拓展、探究、思考12.已知:如图,AB ∥CD ,EF ⊥AB 于M 点且EF 交CD 于N 点.求证:EF ⊥CD .13.如图,DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠E的度数.14.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.15.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.16.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E 是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).6 命题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是______ _____.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.__________________________________________________________________.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合、运用、诊断一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14. 不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( )二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”)19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )拓展、探究、思考31.已知:如图,在四边形ABCD中,给出下列论断:①AB∥DC;②AD∥BC;③AB=AD;④∠A=∠C;⑤AD=BC.以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.答:_____________________________________________________________________.32.求证:两条平行线被第三条直线所截,内错角的平分线互相平行.7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.拓展、探究、思考一、选择题8.如图,把边长为2的正方形的局部进行如图①~图④的变换,拼成图⑤,则图⑤的面积是( ).(A)18 (B)16 (C)12 (D)8二、解答题9.河的两岸成平行线,A,B是位于河两岸的两个车间(如图).要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法如下:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB.EB交MN于D.在D处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.10.以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?第六章 实数6.1平方根学习要求1. 理解算术平方根和平方根的含义。
七下数学每日一练:对顶角、邻补角练习题及答案_2020年综合题版
七下数学每日一练:对顶角、邻补角练习题及答案_2020年综合题版答案答案答案2020年七下数学:图形的性质_相交线与平行线_对顶角、邻补角练习题~~第1题~~(2019长兴.七下期末) 如图1,直线MN 与直线AB ,CD 分别交于点E ,F ,∠1与∠2互补(1) 试判断直线AB 与直线CD 的位置关系,并说明理由(2) 如图2,∠BEF 与∠EFD 的角平分线交于点P ,EP 与CD 交于点G ,点H 是MN 上一点,且GH ⊥EG ,求证:PF ∥GH(3) 如图3,在(2)的条件下,连结PH ,在GH 上取一点K ,使得∠PKG=2∠HPK ,过点P 作PQ 平分∠EPK 交EF 于点Q ,问∠HPQ 的大小是否发生变化?若不变,请求出其值;若变化,说明理由.(温馨提示:三角形的三个内角和为180°.)考点: 对顶角、邻补角;垂线;平行线的判定与性质;~~第2题~~(2019余杭.七下期末) 如图,在三角形ABC 中,D ,E ,F 分别是BC ,AC ,AB 上的点,且∠CDE=∠B .(1) 若DF ⊥AB ,试判断DF 与DE 是否垂直,并说明理由.(2) 若FD 平分∠BFE ,∠FDE+3∠AFE=180°,求∠BFE 的度数.考点: 对顶角、邻补角;平行线的性质;~~第3题~~(2019东海.七下期末)如图,点A 在CB 的延长线上,点F 在DE 的延长线上,连接AF ,分别与BD 、CE 交于点G 、H 。
已知∠1=52°,∠2=128°。
(1) 求证:BD ∥CE ;(2) 若∠A=∠F ,试判断∠C 与∠D 的数量关系,并说明理由。
考点: 对顶角、邻补角;平行线的判定与性质;~~第4题~~(2019覃塘.七下期末) 已知:如图,直线AB 、CD 相交于点O ,EO ⊥CD 于O .答案答案(1) 若∠AOC=36°,求∠BOE 的度数;(2) 若∠BOD :∠BOC=1:5,求∠AOE 的度数;(3) 在(2)的条件下,请你过点O 画直线MN ⊥AB ,并在直线MN 上取一点F (点F 与O 不重合),然后直接写出∠E OF 的度数.考点: 对顶角、邻补角;~~第5题~~(2019通化.七下期中) 如图所示,已知∠1=135 ,∠2=135(1) 求证:AB ∥CD .(2) 已知∠3=140 ,求∠4的度数考点: 对顶角、邻补角;平行线的判定与性质;2020年七下数学:图形的性质_相交线与平行线_对顶角、邻补角练习题答案1.答案:2.答案:3.答案:4.答案:5.答案:。
最新人教版七年级数学下册基础训练题(全册合集)(含答案)
最新人教版七年级数学下册章节基础训练题(含答案)(全册合集)第五章相交线与平行线5.1.1 相交线1.下列图形中,∠1与∠2是对顶角的是()2.下列说法正确的是()A.大小相等的两个角互为对顶角B.有公共顶点且相等的两个角是对顶角C.两角之和为180°,则这两个角互为邻补角D.—个角的邻补角可能是锐角、钝角或直角3.如图所示,AB与CD相交所成的四个角中,∠1的邻补角是______________,∠1的对顶角是______________。
4.如图,直线AB,CD相交于点O,所形成的∠1、∠2、∠3和∠4中,一定相等的角有()A.0对B.1对C.2对D.4对5.如图,直线AB,CD相交于点O,若∠1+80°=∠BOC,则∠BOC等于()A.130° B.140° C.150° D.160°6.如图,点A,O,B在同一直线上,已知∠BOC=50°,则∠AOC=______________7.如图是一把剪刀,其中∠1=40°,则∠2=______________,其理由是__________________。
8.在括号内填写依据:如图,因为直线a,b相交于点O,所以∠1+∠3=180°(____________________________),∠1=∠2(____________________________).9.如图所示,AB,CD,EF交于点O,∠1=20°,∠2=60°,求∠BOC的度数.10.如图,直线AB,CD相交于点O,∠EOC=70°,OA平分∠EOC,求∠BOD的度数.11.如图,三条直线l1,l2,l3相交于一点,则∠1+∠2+∠3等于()A.90° B.120° C.180° D.360°12.如图所示,直线AB和CD相交于点O,若∠AOD与∠BOC的和为236°,则∠AOC的度数为()A.62° B.118° C.72° D.59°13.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于()A.35° B.70° C.110° D.145°14.如图,已知直线AB,CD,EF相交于点O.(1)∠AOD的对顶角是______________;∠EOC的对顶角是______________;(2)∠AOC的邻补角是______________;∠EOB的邻补角是______________.15.如图,直线a,b,c两两相交,∠1=80°,∠2=2∠3,则∠4=______________16.如图,直线a,b相交于点O,已知3∠1-∠2=100°,则∠3=______________17.如图所示,直线AB与CD相交于点O,OE平分∠AOD,∠BOC=80°,求∠BOD和∠AOE 的度数.18.如图,直线AB,CD相交于点O,OE平分∠AOB,OB平分∠DOF,若∠DOE=50°,求∠DOF的度数.参考答案:1.C2.D3.∠2,∠4 ∠34.C5.A6.130°7.40° 对顶角相等8.邻补角互补对顶角相等9.解:因为∠BOF=∠2=60°,所以∠BOC=∠1+∠BOF=20°+60°=80°.10.解:因为OA平分∠EOC,∠EOC=70°,所以∠AOC=12∠EOC=35°.所以∠BOD=∠AOC=35°.11.C12.A13.C14.(1)∠BOC ∠DOF(2)∠AOD和∠BOC ∠EOA和∠BOF 15.140°16.130°17.解:因为∠BOD与∠BOC是邻补角,∠BOC=80°,所以∠BOD=180°-∠BOC=100°.又因为∠AOD与∠BOC是对顶角,所以∠AOD=∠BOC=80°.又因为OE平分∠AOD,所以∠AOE=12∠BOC=40°.18.解:因为AB为直线,OE平分∠AOB,所以∠AOE=∠BOE=90°.因为∠DOE=50°,所以∠DOB=∠BOE-∠DOE=40°.因为OB平分∠DOF,所以∠DOF=2∠DOB=80°5.1.2 垂线1.如图,OA∠OB,若∠1=55°,则∠2的度数是()A.35° B.40° C.45° D.60°2.如图,直线AB,CD相交于点O,若∠AOC=90°,则AB与CD的位置关系是___________;若已知AB∠CD,则∠AOC=∠COB=∠BOD=∠AOD=____________.3.如图,已知直线AB,CD,EF相交于点O,AB∠CD,∠DOE=127°,求∠AOF的大小.4.画一条线段的垂线,垂足在()A.线段上B.线段的端点C.线段的延长线上D.以上都有可能5.下列各图中,过直线l外点P画l的垂线CD,三角板操作正确的是()6.下列说法正确的有()∠在平面内,过直线上一点有且只有一条直线垂直于已知直线;∠在平面内,过直线外一点有且只有一条直线垂直于已知直线;∠在平面内,可以过任意一点画一条直线垂直于已知直线;∠在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个7.下面可以得到在如图所示的直角三角形中斜边最长的原理是()A.两点确定一条直线B.两点之间线段最短C.过一点有且只有一条直线和已知直线垂直D.垂线段最短8.某中学创建绿色和谐校园活动中要在一块三角形花园里种植两种不同的花草,同时拟从点A修建一条花间小径到边BC.若要使修建小路所使用的材料最少,请在图中画出小路AD,你这样画的理由是______________________.9.点到直线的距离是指这点到这条直线的()A.垂线段B.垂线C.垂线的长度D.垂线段的长度10.如图所示,在灌溉农田时,要把河(直线l表示一条河)中的水引到农田P处,设计了四条路线PA,PB,PC,PD(其中PB∠l),你选择哪条路线挖渠才能使渠道最短()A.PA B.PB C.PC D.PD11.如图所示,AB∠AC,AD∠BC,垂足分别为A,D,AB=6 cm,AD=5 cm,则点B到直线AC的距离是___________,点A到直线BC的距离是_____________.12.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数有()A.1个B.2个C.3个D.4个13.如图,AB∠AC,AD∠BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有()A.2条B.3条C.4条D.5条14.如图,∠ABC中,∠C=90°,AC=3,点P是边BC上的动点,则AP的长不可能是()A.2.5 B.3 C.4 D.515.点P为直线l外一点,点A,B,C为直线上三点,PA=2 cm,PB=3 cm,PC=4 cm,则点P到直线l的距离为()A.等于2 cm B.小于2 cm C.大于2 cm D.不大于2 cm16.如图,田径运动会上,七年级二班的小亮同学从C点起跳,假若落地点是D.当AB与CD___________时,他跳得最远.17.如图,当∠1与∠2满足条件______________________时,OA∠OB.18.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON∠OM,若∠AOM=35°,则∠CON的度数为___________.参考答案:1.A2.垂直90°3.解:因为AB∠CD,所以∠DOB=90°.又因为∠DOE=127°,所以∠BOE=∠DOE-∠DOB=127°-90°=37°.所以∠AOF=∠BOE=37°.4.D5.D6.C7.D8.垂线段最短9.D10.B11.6 cm 5 cm12.D13.D14.A15.D16.垂直17.∠1+∠2=90°18.55°5.1.3 同位角、内错角、同旁内角1.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角D.对顶角2.如图,以下说法正确的是()A.∠1和∠2是内错角B.∠2和∠3是同位角C.∠1和∠3是内错角D.∠2和∠4是同旁内角3.如图,下列说法错误的是()A.∠A与∠EDC是同位角B.∠A与∠ABF是内错角C.∠A与∠ADC是同旁内角D.∠A与∠C是同旁内角4.看图填空:(1)∠1和∠3是直线_____________被直线___________所截得的_____________;(2)∠1和∠4是直线_____________被直线___________所截得的_____________;(3)∠B和∠2是直线_____________被直线___________所截得的_____________;(4)∠B和∠4是直线_____________被直线___________所截得的_____________.5.如图所示,若∠1=∠2,在∠∠3和∠2;∠∠4和∠2;∠∠3和∠6;∠∠4和∠8中相等的有()A.1对B.2对C.3对D.4对6.如图,如果∠2=100°,那么∠1的同位角等于_____________,∠1的内错角等于_____________,∠1的同旁内角等于_____________.7.如图所示,∠1与∠2不是同位角的是()8.如图,属于内错角的是()A.∠1和∠2 B.∠2和∠3 C.∠1和∠4 D.∠3和∠49.如图,下列说法错误的是()A.∠1和∠3是同位角B.∠A和∠C是同旁内角C.∠2和∠3是内错角D.∠3和∠B是同旁内角10.∠1与∠2是直线a,b被直线c所截得的同位角,∠1与∠2的大小关系是()A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.无法确定11.如图,∠ABC与____________________是同位角;∠ADB与___________________是内错角;∠ABC与___________________是同旁内角.12.根据图形填空:(1)若直线ED,BC被直线AB所截,则∠1和_____________是同位角;(2)若直线ED,BC被直线AF所截,则∠3和_____________是内错角;(3)∠1和∠3是直线AB,AF被直线_____________所截构成的_____________角;(4)∠2和∠4是直线__________,__________被直线BC所截构成的__________角.13.根据图形说出下列各对角是什么位置关系?(1)∠1和∠2;(2)∠1和∠7;(3)∠3和∠4;(4)∠4和∠6;(5)∠5和∠7.14.如图:(1)找出直线DC,AC被直线BE所截形成的同旁内角;(2)指出∠DEF与∠CFE是由哪两条直线被哪一条直线所截形成的什么角;(3)试找出图中与∠DAC是同位角的所有角.参考答案:1.B2.C3.D4.(1)AB,BC AC 同旁内角(2)AB,BC AC 同位角(3)AB,AC BC 同位角(4)AC,BC AB 内错角5.C6.80° 80° 100°7.B8.D9.A10.D11.∠EAD ∠DBC,∠EAD ∠DAB,∠BCD12.(1)∠2(2)∠4(3)ED 内错(4)AB AF 同位角13.解:(1)∠1和∠2是同旁内角;(2)∠1和∠7是同位角;(3)∠3和∠4是内错角;(4)∠4和∠6是同旁内角;(5)∠5和∠7是内错角.14.解:(1)∠FBC和∠CFB,∠DFB和∠FBA是直线DC,AC被直线BE所截形成的同旁内角.(2)∠DEF与∠CFE是由直线AG,DF被直线EF所截形成的内错角.(3)∠DAC的同位角:∠EBH,∠DCH,∠EDF,∠GEF.5.2.1 平行线1.点P,Q都是直线l外的点,下列说法正确的是()A.连接PQ,则PQ一定与直线l垂直B.连接PQ,则PQ一定与直线l平行C.连接PQ,则PQ一定与直线l相交D.过点P能画一条直线与直线l平行2.在同一平面内的两条不重合的直线的位置关系()A.有两种:垂直或相交B.有三种:平行,垂直或相交C.有两种:平行或相交D.有两种:平行或垂直3.在同一平面内,直线a与b满足下列条件,把它们的位置关系填在后面的横线上.(1)a与b没有公共点,则a与b____________;(2)a与b有且只有一个公共点,则a与b____________;(3)a与b有两个公共点,则a与b____________.4.如图,在下面的方格纸中,找出互相平行的线段,并用符号表示出来:____________,____________.5.在同一平面内,下列说法中,错误的是()A.过两点有且只有一条直线B.过一点有无数条直线与已知直线平行C.过直线外一点有且只有一条直线与已知直线平行D.过一点有且只有一条直线与已知直线垂直6.若直线a∠b,b∠c,则a∠c的依据是()A.平行公理B.等量代换C.等式的性质D.平行于同一条直线的两条直线互相平行7.如图,PC∠AB,QC∠AB,则点P,C,Q在一条直线上.理由是___________________________8.下列说法错误的是()A.过一点有且只有一条直线与已知直线平行B.平行于同一条直线的两条直线平行C.若a∠b,b∠c,c∠d,则a∠dD.同一平面内,若一条直线与两平行线中的一条相交,那么它也和另一条相交9.如图,AB∠CD,EF∠AB,AE∠MN,BF∠MN,由图中字母标出的互相平行的直线共有()A.4组B.5组C.6组D.7组10.如图所示,直线AB,CD是一条河的两岸,并且AB∠CD,点E为直线AB,CD外一点,现想过点E作河岸CD的平行线,只需过点E作_________的平行线即可,其理由是___________________________________11.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的另一条直线必__________________12.观察下图所示的长方体,回答下列问题.(1)用符号表示两棱的位置关系:A1B1______AB,AA1______AB,A1D1______C1D1,AD______BC;(2)AB与B1C1所在的直线不相交,它们不是平行线(填“是”或“不是”).由此可知,在____________内,两条不相交的直线才是平行线.13.在同一平面内,有三条直线a,b,c,它们之间有哪几种可能的位置关系?画图说明.参考答案:1.D2.C3.平行相交重合4.CD∠MN GH∠PN5.B6.D7.经过直线外一点,有且只有一条直线与这条直线平行8.A9.C10.AB 平行于同一条直线的两条直线平行11.相交12.∠ ∠ ∠ ∠ 不是同一平面内13.解:有四种可能的位置关系,如下图:5.2.2 平行线的判定1.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是_____________________.2.如图,∠1=60°,∠2=60°,则直线a与b的位置关系是_________3.如图,∠3与∠1互余,∠3与∠2互余.试说明AB∠CD.4.如图所示,已知∠1=∠2,则图中互相平行的线段是___________________________5.如图,请在括号内填上正确的理由:∠∠DAC=∠C(已知),∠AD∠BC(___________________________).6.将一副直角三角尺拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F,试判断CF与AB是否平行,并说明理由.7.如图,已知∠1=70°,要使AB∠CD,则需具备的另一个条件是()A.∠2=70° B.∠2=100° C.∠2=110° D.∠3=110°8.如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC =150°,∠BCD=30°,则()A.AB∠BC B.BC∠CD C.AB∠DC D.AB与CD相交9.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∠CD.10.如图,下列说法错误的是()A.若a∠b,b∠c,则a∠c B.若∠1=∠2,则a∠cC.若∠3=∠2,则b∠c D.若∠3+∠5=180°,则a∠c11.如图,在下列条件中,能判断AD∠BC的是()A.∠DAC=∠BCA B.∠DCB+∠ABC=180°C.∠ABD=∠BDC D.∠BAC=∠ACD12.对于图中标记的各角,下列条件能够推理得到a∠b的是()A.∠1=∠2 B.∠2=∠4 C.∠3=∠4 D.∠1+∠4=180°13.已知a,b,c为平面内三条不同直线,若a∠b,c∠b,则a与c的位置关系是_________ 14.如图,用几何语言表示下列句子.(1)因为∠1和∠B相等,根据“同位角相等,两直线平行”,所以DE和BC平行;(2)因为∠1和∠2相等,根据“内错角相等,两直线平行”,所以AB和EF平行;(3)因为∠BDE和∠B互补,根据“同旁内角互补,两直线平行”,所以DE和BC平行.15.如图所示,推理填空:(1)∠∠1=_________(已知),∠AC∠ED(____________________________________).(2)∠∠2=_________(已知),∠AB∠FD(____________________________________).(3)∠∠2+_________=180°(已知),∠AC∠ED(____________________________________).参考答案:1.同位角相等,两直线平行2.平行3.解:∠∠3与∠1互余,∠3与∠2互余,∠∠1=∠2.∠AB∠CD.4.AD∠BC(或AD与BC平行)5.内错角相等,两直线平行6.解:CF∠AB.理由如下:∠图中是一副直角三角板,∠∠BAC=45°.∠CF平分∠DCE,∠DCE=90°,∠∠DCF=12∠DCE=45°.∠∠DCF=∠BAC.∠CF∠AB.7.C 8.C9.解:∠∠ACD=70°,∠ACB=60°,∠∠BCD=130°.∠∠ABC=50°,∠∠BCD+∠ABC=180°.∠AB∠CD.10.C 11.A 12.D13.平行14.解:(1)∠∠1=∠B(已知),∠DE∠BC(同位角相等,两直线平行).(2)∠∠1=∠2(已知),∠EF∠AB(内错角相等,两直线平行).(3)∠∠BDE+∠B=180°(已知),∠DE∠BC(同旁内角互补,两直线平行).15.(1)∠C 同位角相等,两直线平行(2)∠BED 内错角相等,两直线平行(3)∠AFD 同旁内角互补,两直线平行5.3.1 平行线的性质1.如图,直线AB∠CD,直线EF分别与直线AB,CD相交于点G,H.若∠1=135°,则∠2的度数为()A.65° B.55° C.45° D.35°2.如图,在∠ABC中,∠ACB=90°,CD∠AB,∠ACD=40°,则∠B的度数为()A.40° B.50° C.60° D.70°3.如图,AB∠CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为()A.40° B.35° C.50° D.45°4.如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=110°,则∠4=()A.70° B.80° C.110° D.100°5.如图,AB∠CD,直线l分别与AB,CD相交,若∠1=50°,则∠2的度数为___________.6.如图,直线a,b被第三条直线c所截,如果a∠b,∠1=70°,那么∠3的度数是__________.7.某商品的商标可以抽象为如图所示的三条线段,其中AB∠CD,∠EAB=45°,则∠FDC的度数是()A.30°B.45°C.60°D.75°8.一只因损坏而倾斜的椅子,从背后看到的形状如图所示,其中两组对边的平行关系没有发生变化,若∠1=76°,则∠2的大小是()A.76°B.86°C.104°D.114°9.如图,在A,B两地挖一条笔直的水渠,从A地测得水渠的走向是北偏西42°,A,B两地同时开工,B地所挖水渠走向应为南偏东__________.10.某次考古发掘出的一个梯形残缺玉片,工作人员从玉片上量得∠A=115°,∠D=100°,已知梯形的两底AD∠BC,请你帮助工作人员求出另外两个角的度数,并说明理由.11.如图,在∠ABC中,∠B=40°,过点C作CD∠AB,∠ACD=65°,则∠ACB的度数为()A.60° B.65° C.70° D.75°12.如图,AB∠CD,直线EF与AB,CD分别交于点M,N,过点N的直线GH与AB交于点P,则下列结论错误的是()A.∠EMB=∠END B.∠BMN=∠MNCC.∠CNH=∠BPG D.∠DNG=∠AME13.如图,AB∠CD∠EF,AC∠DF,若∠BAC=120°,则∠CDF=()A.60°B.120°C.150°D.180°14.一大门的栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD =__________15.如图,一只船从点A出发沿北偏东60°方向航行到点B,再以南偏西25°方向返回,则∠ABC=__________16.如图,直线AB∠CD,BC平分∠ABD,∠1=65°,求∠2的度数.17.如图,已知AB∠DE∠CF,若∠ABC=70°,∠CDE=130°,求∠BCD的度数.参考答案:1.C2.B3.A4.A5.50°6.70°7.B8.C9.42°10.解:∠AD∠BC,∠A=115°,∠D=100°,∠∠B=180°-∠A=180°-115°=65°,∠C=180°-∠D=180°-100°=80°.11.D12.D13.A14.270°15.35°16.解:∠直线AB∠CD,∠1=65°,∠∠ABC=∠1=65°.∠BC平分∠ABD,∠∠ABD=2∠ABC=130°.∠直线AB∠CD,∠∠ABD+∠BDC=180°.∠∠2=∠BDC=180°-∠ABD=180°-130°=50°. 17.解:∠AB∠CF,∠ABC=70°,∠∠BCF=∠ABC=70°.又∠DE∠CF,∠CDE=130°,∠∠DCF+∠CDE=180°.∠∠DCF=50°.∠∠BCD=∠BCF-∠DCF=70°-50°=20°.5.3.2 命题、定理、证明1.下列语句中,是命题的是()∠若∠1=60°,∠2=60°,则∠1=∠2;∠同位角相等吗?∠画线段AB=CD;∠如果a>b,b>c,那么a>c;∠直角都相等.A.∠∠∠ B.∠∠∠ C.∠∠∠ D.∠∠∠∠2.把“垂直于同一条直线的两条直线平行”改写成“如果……那么……”的形式是____________ ___________________________________________________________3.把下列命题改写成“如果……那么……”的形式,并分别指出它们的题设和结论:(1)两点确定一条直线;(2)同角的补角相等;(3)两个锐角互余.4.下列说法错误的是()A.命题不一定是定理,定理一定是命题B.定理不可能是假命题C.真命题是定理D.如果真命题的正确性是经过推理证实的,这样得到的真命题就是定理5.下列命题:∠若|a|>|b|,那么a2>b2;∠两点之间,线段最短;∠对顶角相等;∠内错角相等.其中真命题的个数是()A.1个B.2个C.3个D.4个6.下列命题中,是假命题的是()A.相等的角是对顶角B.垂线段最短C.同一平面内,两条直线的位置关系只有相交和平行两种D.两点确定一条直线7.判断下列命题的真假,是假命题的举出反例.∠两个锐角的和是钝角;∠一个角的补角大于这个角;∠不相等的角不是对顶角.8.如图,BD平分∠ABC,若∠BCD=70°,∠ABD=55°.求证:CD∠AB.9.把下列命题写成“如果……那么……”的形式,并判断其真假.(1)等角的补角相等;(2)不相等的角不是对顶角;(3)相等的角是内错角.10.下列说法正确的是()A.“作线段CD=AB”是一个命题B.过一点作已知直线的平行线有一条且只有一条C.命题“若x=1,则x2=1”是真命题D.所含字母相同的项是同类项11.下列命题中,是真命题的是()A.若|x|=2,则x=2 B.平行于同一条直线的两条直线平行C.一个锐角与一个钝角的和等于一个平角D.任何一个角都比它的补角小12.“直角都相等”的题设是_______________________,结论是_______________________ 13.已知:如图,C,D是直线AB上两点,∠1+∠2=180°,DE平分∠CDF,EF∠AB.(1)求证:CE∠DF;(2)若∠DCE=130°,求∠DEF的度数.参考答案:1.A2.如果两条直线垂直于同一条直线,那么这两条直线平行3.解:(1)如果在平面上有两个点,那么过这两个点能确定一条直线.题设:在平面上有两个点;结论:过这两个点能确定一条直线.(2)如果两个角是同角的补角,那么它们相等.题设:两个角是同角的补角;结论:这两个角相等.(3)如果两个角是锐角,那么这两个角互余.题设:两个角是锐角;结论:这两个角互余.4.C5.C6.A7.解:∠假命题.反例为:30°与40°的和为70°.∠假命题.反例为:120°的补角为60°.∠真命题.8.证明:∠BD平分∠ABC,∠ABD=55°,∠∠ABC=2∠ABD=110°.又∠∠BCD=70°,∠∠ABC+∠BCD=180°.∠CD∠AB.9.解:(1)如果两个角是两个相等的角的补角,那么这两个角相等.是真命题.(2)如果两个角不相等,那么这两个角不是对顶角.是真命题.(3)如果两个角相等,那么这两个角是内错角.是假命题.10.C11.B12.两个角是直角这两个角相等13.解:(1)证明:∠C,D是直线AB上两点,∠∠1+∠DCE=180°.∠∠1+∠2=180°,∠∠2=∠DCE.∠CE∠DF.(2)∠CE∠DF,∠DCE=130°,∠∠CDF=180°-∠DCE=180°-130°=50°.∠DE平分∠CDF,∠∠CDE=12∠CDF=25°.∠EF∠AB,∠∠DEF=∠CDE=25°.5.4 平移1.下列现象不属于平移的是()A.飞机起飞前在跑道上加速滑行B.汽车在笔直的公路上行驶C.游乐场的过山车在翻筋斗D.起重机将重物由地面竖直吊起到一定高度2.在A、B、C、D四个选项中,能通过如图所示的图案平移得到的是()3.如图,将直线l1沿AB的方向平移得到l2,若∠1=40°,则∠2=()A.40° B.50° C.90° D.140°4.如图所示,四幅汽车标志设计中,能通过平移得到的是()5.如图所示,∠FDE经过怎样的平移可得到∠ABC()A.沿射线EC的方向移动DB长B.沿射线CE的方向移动DB长C.沿射线EC的方向移动CD长D.沿射线BD的方向移动BD长6.将长度为5 cm的线段向上平移10 cm所得线段长度是()A.10 cm B.5 cm C.0 cm D.无法确定7.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC′=____________.8.如图,三角形A′B′C′是由三角形ABC沿射线AC方向平移2 cm得到,若AC=3 cm,则A′C =____________.9.如图,三角形DEF是三角形ABC平移所得,观察图形:(1)点A的对应点是点________,点B的对应点是点________,点C的对应点是点________;(2)线段AD,BE,CF叫做对应点间的连线,这三条线段之间有什么关系呢?10.如图,在6×6方格中有两个涂有阴影的图形M,N,图1中的图形M平移后位置如图2所示,以下对图形M的平移方法叙述正确的是()图1图2A.向右平移2个单位,向下平移3个单位B.向右平移1个单位,向下平移3个单位C.向右平移1个单位,向下平移4个单位D.向右平移2个单位,向下平移4个单位11.如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A.a户最长B.b户最长C.c户最长D.三户一样长12.如图,现将四边形ABCD沿AE进行平移,得到四边形EFGH,则图中与CG平行的线段有()A.0条B.1条C.2条D.3条13.如图,4根火柴棒形成象形“口”字,只通过平移火柴棒,原图形能变成的汉字是()14.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3=____________.参考答案:1.C2.C3.A4.A5.A6.B7.58. 1 cm9.(1)D E F(2)解:AD∠BE∠CF,AD=BE=CF.10.B11.D12.D13.B14.110°第六章实数6.1.1 算术平方根1.25的算术平方根是()A.5 B.-5 C.±5 D.5 29=()A.2 B.3 C.4 D.53.14的算术平方根是()A.12B.-12 C.116D.±124.0.49的算术平方根的相反数是()A.0.7 B.-0.7 C.±0.7 D.0 5.(-2)2的算术平方根是()A.2 B.±2 C.-2 D.2 6.下列式子没有意义的是()A.-3B.0C. 2D.(-1)2 7.下列说法正确的是()A.因为52=25,所以5是25的算术平方根B.因为(-5)2=25,所以-5是25的算术平方根C.因为(±5)2=25,所以5和-5都是25的算术平方根D.以上说法都不对8.求下列各数的算术平方根:(1)144;(2)1;(3)1625;(4)0.9.求下列各式的值:(1)64;121225;(3)108;(4)(-3)2.10.一个正方形的面积为50平方厘米,则正方形的边长约为()A.5厘米B.6厘米C.7厘米D.8厘米11.设n为正整数,且n<65<n+1,则n的值为()A.5 B.6 C.7 D.812.比较大小:4________15(用“>”或“<”号填空).13.设a-3是一个数的算术平方根,那么()A.a≥0 B.a>0 C.a>3 D.a≥3 14.下列整数中,与30最接近的是()A.4 B.5 C.6 D.715.16的算术平方根是()A.±4 B.4 C.±2 D.216.若一个数的算术平方根等于它本身,则这个数是()A.1 B.-1 C.0 D.0或1 17.下列说法中:∠一个数的算术平方根一定是正数;∠100的算术平方根是10,记为±100=10;∠(-6)2的算术平方根是6;∠a2的算术平方根是a. 正确的有()A.1个B.2个C.3个D.4个18.已知一个表面积为12 dm2的正方体,则这个正方体的棱长为()A.1 dm B. 2 dm C. 6 dm D.3 dm19.若一个数的算术平方根是11,则这个数是_____________.20.若x-3的算术平方根是3,则x=_____________.21.若数m,n满足(m-1)2+n+2=0,则(m+n)5=_____________.参考答案:1.A2.B3.A4.B5.A6.A7.A8.12 1 4509.8 1115104310.C11.D12.>13.D14.B15.D16.D17.A18.B19.1120.1221.-16.1.2 平方根1.9的平方根是()A.±3 B.±13C.3 D.-32.±2是4的()A.平方根B.相反数C.绝对值D.算术平方根3.下面说法中不正确的是()A.6是36的平方根B.-6是36的平方根C.36的平方根是±6 D.36的平方根是64.下列说法正确的是()A.任何非负数都有两个平方根B.一个正数的平方根仍然是正数C.只有正数才有平方根D.负数没有平方根5.(-2)2的平方根是()A.2 B.-2 C.±2 D.26.填表:7.计算:±425=_______,-425=_______,425=_______.8.求下列各数的平方根:(1)100 (2)0.008 1;(3)25 36.9.下列各数是否有平方根?若有,求出它的平方根;若没有,请说明理由.(1)(-3)2;(2)-42;(3)-(a2+1).10.下列说法不正确的是()A.21的平方根是±21 B.49的平方根是23C.0.01的算术平方根是0.1 D.-5是25的一个平方根11.下列式子中,计算正确的是()A.- 3.6=-0.6 B.(-13)2=-13C.36=±6 D.-9=-312.求下列各数的平方根与算术平方根:(1)(-5)2;(2)0;(3)-2;(4)16.13.求下列各式的值:(1)225;(2)-3649;(3)±144121.14.下列说法正确的是()A.-8是64的平方根,即64=-8 B.8是(-8)2的算术平方根,即(-8)2=8 C.±5是25的平方根,即±25=5 D.±5是25的平方根,即25=±515.81的平方根是()A.±3 B.3 C.±9 D.916.若x2=16,则5-x的算术平方根是()A.±1 B.±4 C.1或9 D.1或317.如果某数的一个平方根是-6,那么这个数的另一个平方根是_______,这个数是________.18.若x+2=3,求2x+5的平方根_________.19.已知25x2-144=0,且x是正数,求25x+13的值.20.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b的平方根.参考答案:1-5 AADDC7. ±25,-25,25.8.±10 ±0.09 ±5 69.(1)±3. (2)没有平方根,因为-42是负数.(3)没有平方根,因为-(a2+1)是负数.10.B11.D12.解:平方根分别是:(1)±5;(2)0;(3)没有平方根;(4)±2. 算术平方根分别是:(1)5;(2)0;(3)没有算术平方根;(4)2. 13.(1) 解:∠152=225,∠225=15. (2) 解:∠(67)2=3649,∠-3649=-67.(3) 解:∠(1211)2=144121,∠±144121=±1211. 14.B 15.A 16.D17.6 3618. 19.解:由25x 2-144=0,得x =±125.∠x 是正数,∠x =125.∠25x +13=25×125+13=2×5=10.20.解:依题意,得2a -1=9且3a +b -1=16,∠a =5,b =2.∠a +2b =5+4=9. ∠a +2b 的平方根为±3.即±a +2b =±3.6.2 立方根1.64的立方根是( )A .4B .±4C .8D .±8 2.化简:38=( )A .±2B .-2C .2D .22 3.若一个数的立方根是-3,则该数为( )A .-33B .-27C .±33 D .±274.-8等于()A.2 B.2 3 C.-12D.-25.下列结论正确的是()A.64的立方根是±4 B.-18没有立方根C.立方根等于本身的数是0 D.3-216=-32166.下列计算正确的是()A.30.012 5=0.5 B.3-2764=34C.3338=112D.-3-8125=-257.下列说法正确的是()A.如果一个数的立方根是这个数本身,那么这个数一定是0 B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个不为零的数的立方根和这个数同号,0的立方根是08.-64的立方根是___________,-13是___________的立方根.9.若3a=-7,则a=___________.10.-338的立方根是___________.11.求下列各数的立方根:(1)0.216;(2)0;(3)-21027;(4)-5.12.求下列各式的值:(1)30.001 (2)3-343125(3)-31-1927.13.(-1)2的立方根是( )A .-1B .0C .1D .±1 14.下列说法正确的是( )A .一个数的立方根有两个,它们互为相反数B .一个数的立方根比这个数平方根小C .如果一个数有立方根,那么它一定有平方根 D.3a 与3-a 互为相反数 15.38的算术平方根是( )A .2B .±2 C. 2 D .±2 16.若a 2=(-5)2,b 3=(-5)3,则a +b 的值为( )A .0B .±10C .0或10D .0或-10 17.若x -1是125的立方根,则x -7的立方根是___________. 18.求下列各式中的x :(1)8x 3+125=0; (2)(x +3)3+27=0.参考答案:1-7 ACBDDCD 8.-4 -127 9.-343 10.-3211.(1)解:∠0.63=0.216,∠0.216的立方根是0.6,即30.216=0.6. (2)解:∠03=0,∠0的立方根是0,即30=0.(3)解:∠-21027=-6427,且(-43)3=-6427, ∠-21027的立方根是-43,即3-21027=-43. (4)解:-5的立方根是3-5.12.0.1 -75 -23 13.C 14.D 15.C 16.D 17.-118.(1)解:8x 3=-125,x 3=-1258,x =-52.(2)解:(x +3)3=-27,x +3=-3, x =-6.6.3 实数1.下列实数中,是有理数的为( )A. 2B.34 C .π D .0 2.下列各数是无理数的是( )A .0B .-1 C. 2 D.373.下列各数中,3.141 59,-38,0.131 131 113…,-π,25,-17,无理数的个数有( )A .1个B .2个C .3个D .4个 4.下列说法:∠有理数都是有限小数;∠有限小数都是有理数;∠无理数都是无限不循环小数;∠无限小数都是无理数,正确的是()A.∠∠ B.∠∠ C.∠∠ D.∠∠5.在下列各数中,选择合适的数填入相应的集合中.-15,39,π2,3.14,-327,0,-5.123 45…,0.25,-32.(1)有理数集合:{ …};(2)无理数集合:{ …};(3)正实数集合:{ …};(4)负实数集合:{ …}.6.和数轴上的点一一对应的是()A.整数B.有理数C.无理数D.实数7.-34的倒数是()A.43 B.34C.-34D.-4385的绝对值是()A.- 5 B. 5 C.15D.-159.下列四个实数中最大的是()A.-5 B.0 C.π D.3 10.2的相反数是____________,绝对值是____________.11.写出下列各数的相反数与绝对值.3.5,-6,π3,2-3.12.计算32-2的值是()A.2 B.3 C. 2 D.2213.计算364+(-16)的结果是()A.4 B.0 C.8 D.1214.计算:(1)33-53; (2)||1-2+||3-2.15.下列各组数中互为相反数的一组是( )A .-|-2|与3-8 B .-4与-(-4)2 C .-32与|3-2| D .-2与1216.下列等式一定成立的是( )A.9-4= 5B.||1-3=3-1C.9=±3 D .-(-9)2=9 17.化简:3(1-3)=____________,7(1-17)=____________. 18.点A 在数轴上和原点相距3个单位,点B 在数轴上和原点相距5个单位,则A ,B 两点之间的距离是__________________________.19.计算:(1)23+32-53-32; (2)|3-2|+|3-1|.参考答案:1.D 2.C 3.B 4.C5.(1)-15,3.14,-327,0,0.25,(2)39,π2,-5.123 45…,-32, (3)39,π2,3.14,0.25,(4)-15,-327,-5.123 45…,-32,6.D7.D8.B9.C10.- 2 211.解:12.D13.B14.(1)解:原式=(3-5)3=-2 3.(2)解:原式=2-1+3-2=3-1.15.C16.B17.3-3 7-118.3+5或3-519.(1)解:原式=(2-5)3+(3-3)2=-3 3.(2)解:原式=2-3+3-1=1.第七章平面直角坐标系7.1.1 有序数对1.用7和8组成一个有序数对,可以写成()A.(7,8) B.(8,7) C.7,8或8,7 D.(7,8)或(8,7) 2.一个有序数对可以()A.确定一个点的位置B.确定两个点的位置C.确定一个或两个点的位置D.不能确定点的位置3.下列关于有序数对的说法正确的是()A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,-2)与(-2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置4.下列有污迹的电影票中能让小华准确找到座位的是()5.用有序数对(2,9)表示某住户住2单元9号房,请问(3,11)表示住户住____单元_____号房.6.根据下列表述,能确定位置的是()A.红星电影院第2排B.北京市四环路C.北偏东30° D.东经118°,北纬40°7.电影院里的座位按“×排×号”编排,小明的座位简记为(12,6),小菲的位置简记为(12,12),则小明与小菲坐的位置为()A.同一排B.前后同一条直线上C.中间隔六个人D.前后隔六排8.小敏的家在学校正南方向150 m,正东方向200 m处,如果以学校位置为原点,以正北、正东为正方向,则小敏家用有序数对(规定:东西方向在前,南北方向在后)表示为()A.(-200,-150) B.(200,150) C.(200,-150) D.(-200,150) 9.如图是某电视塔周围的建筑群平面示意图,这个电视塔的位置用A表示.某人由点B出发到电视塔,他的路径表示错误的是(注:街在前,巷在后)()A.(2,2)→(2,5)→(5,6) B.(2,2)→(2,5)→(6,5)C.(2,2)→(6,2)→(6,5) D.(2,2)→(2,3)→(6,3)→(6,5)10.若图中的有序数对(4,1)对应字母D,有一个英文单词的字母顺序对应图中的有序数对为(1,1),(2,3),(2,3),(5,2),(5,1),则这个英文单词是__________.11.如图所示,围棋盘的左下角呈现的是一局围棋比赛中的几手棋,为记录棋谱方便,横线用数字表示,纵线用英文字母表示,这样,黑棋∠的位置可记为(C,4),白棋∠的位置可记为(E,3),则黑棋∠的位置应记为__________.12.如图所示,一方队正沿箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么C的位置是()A.(4,5) B.(5,4) C.(4,2) D.(4,3)13.钓鱼岛及其附属岛屿自古以来就是中国的固有领土,在明代钓鱼岛纳入中国疆域版图.能够准确表示钓鱼岛这个地点的是()A.北纬25°40′~26° B.东经123°~124°34′C.福建的正东方向D.东经123°~124°34′,北纬25°40′~26°14.如图,雷达探测器测得六个目标A,B,C,D,E,F出现,按照规定的目标表示方法,目标C,F的位置分别表示为C(6,120°),F(5,210°),按照此方法在表示目标A,B,D,E 的位置时,其中表示不正确的是()A.A(5,30°) B.B(2,90°) C.D(4,240°) D.E(3,60°) 15.若将正整数按如图所示的规律排列.若用有序数对(a,b)表示第a排,从左至右第b个数.例如(4,3)表示的数是9,则(7,2)表示的数是__________.16.如图,在国际象棋的棋盘上,左右两边标有数字1至8,上下两边标有字母a至h,如果黑色的国王棋子的位置用(d,3)来表示,白色的马棋子的位置用(g,5)来表示,请你分别写出棋盘中其他三个棋子的位置,分别是______________________.参考答案:1.D2.A3.C。
2020春单元达标必刷常考题100道:初中数学人教新版七年级(下)《第5章 相交线与平行线》
第5章相交线与平行线一、选择题(共40小题)1.(2018春•张店区期末)如图,在所标识的角中,互为对顶角的两个角是()A.1∠和2∠B.1∠和4∠C.2∠和3∠D.3∠和4∠2.(2019春•鄂城区期中)已知AOB∠与BOC∠互为邻补角,且BOC AOB∠>∠.OD平分AOB∠,射线OE使12BOE EOC∠=∠,当72DOE∠=︒时,则EOC∠的度数为()A.72︒B.108︒C.72︒或108︒D.以上都不对3.一副三角板,如图所示叠放在一起,则(AOB COD∠+∠=)A.180︒B.150︒C.160︒D.170︒4.(2018•濮阳一模)如图,直线AB与直线CD相交于点O,E是COB∠内一点,且OE AB⊥,35AOC∠=︒,则EOD∠的度数是()A.155︒B.145︒C.135︒D.125︒5.(2019春•五莲县期末)如图,在立定跳远中,体育老师是这样测量运动员的成绩的,用一块直角三角板的一边附在起跳线上,另一边与拉直的皮尺重合,这样做的理由是()A .两点之间线段最短B .过两点有且只有一条直线C .垂线段最短D .过一点可以作无数条直线6.(2018春•桂平市期末)如图所示,已知AC BC ⊥,CD AB ⊥,垂足分别是C ,D ,那么以下线段大小的比较必定成立的是( )A .CD AD >B .AC BC <C .BC BD >D .CD BD <7.(2019秋•温州期末)下列说法:①两条直线相交,有公共顶点而没有公共边的两个角是对顶角; ②如果两条线段没有交点,那么这两条线段所在直线也没有交点; ③邻补角的两条角平分线构成一个直角;④直线外一点与直线上各点连接的所有线段中,垂线段最短.其中正确的是( ) A .1个B .2个C .3个D .4个8.(2019春•滨州期末)点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,4PA cm =,5PB cm =,2PC cm =,则点P 到直线m 的距离为( )A .4cmB .5cmC .小于2cmD .不大于2cm9.(2018春•宁县期末)如图:1∠和2∠是同位角的是( )A .②③B .①②③C .①②④D .①④10.(2018春•城关区校级月考)如图所示,同位角共有()A.6对B.8对C.10对D.12对11.(2018春•沧州期中)在同一平面内,不重合的两条直线的位置关系是() A.平行B.相交C.平行或相交D.平行、相交或垂直12.(2018春•垦利区期末)下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤两点之间的距离是两点间的线段;⑥在同一平面内的两直线位置关系只有两种:平行或相交.A.1个B.2个C.3个D.4个13.(2019春•博白县期末)在同一平面内,若a b⊥,则a与c的位置关系是.⊥,b c14.(2019春•孝义市期末)如图,在一张半透明的纸上画一条直线l,在直线l外任取一点A、折出过点A且与直线l垂直的直线.这样的直线只能折出一条,理由是()A.连接直线外一点与直线上各点的所有线段中,垂线段最短B.两点之间线段最短C.在平面内,过一点有且只有一条直线与已知直线垂直D.经过直线外一点有且只有一条直线与已知直线平行15.(2019春•北海期末)如图,下列条件中,能判定//DE AC的是()A .EDC EFC ∠=∠B .AFE ACD ∠=∠C .34∠=∠D .12∠=∠16.(2019秋•雨花区校级期末)如图,能判定//AD BC 的条件是( )A .32∠=∠B .12∠=∠C .BD ∠=∠D .1B ∠=∠17.(2019春•祁阳县期末)在同一平面内,有8条互不重合的直线,1l ,2l ,38l l ⋯,若12l l ⊥,23//l l ,34l l ⊥,45//l l ⋯以此类推,则1l 和8l 的位置关系是( )A .平行B .垂直C .平行或垂直D .无法确定18.(2019•潍坊模拟)在下列图形中,由条件12180∠+∠=︒,不能得到//AB CD 的是( )A .B .C .D .19.(2019春•三台县期末)如图,ABC ∆中,AH BC ⊥,BF 平分ABC ∠,BE BF ⊥,//EF BC ,以下四个结论:①AH EF ⊥,②ADF E =∠;③//AC BE ;④E ABE ∠=∠. 其中正确的有( )A .1个B .2个C .3个D .4个20.(2019春•青田县期末)如图,//AB CD ,用含1∠,2∠,3∠的式子表示4∠,则4∠的值为( )A .123∠+∠-∠B .132∠+∠-∠C .180312︒+∠-∠-∠D .231180∠+∠-∠-︒21.(2019秋•淮安期末)若将一副三角板按如图所示的方式放置,则下列结论不正确的是()A .13∠=∠B .如果230∠=︒,则有//AC DE C .如果230∠=︒,则有//BC ADD .如果230∠=︒,必有4C ∠=∠22.(2019秋•万州区期末)如图,180AEM CDN ∠+∠=︒,EC 平分AEF ∠.若62EFC ∠=︒,求C ∠的度数.根据提示将解题过程补充完整. 解:180CDM CDN ∠+∠=︒Q (平角), 又180AEM CDN ∠+∠=︒Q (已知),AEM CDM∴∠=∠AB CD∴,()//∴∠+)180AEF(=︒,(两直线平行,同旁内角互补)Q,∠=︒62EFC∴∠=)(AEFQ平分AEFEC∠,∴∠=).(角平分线的定义)AEC(AB CDQ,//∴∠=∠=)(两直线平行,内错角相等)C AEC(23.(2019秋•邵阳期中)有下列命题:①两点之间,线段最短;②相等的角是对顶角;③内错角互补,两直线平行.其中真命题的有()A.1个B.2个C.3个D.0个24.(2018秋•德清县期末)下列命题中,真命题是()A.两个锐角之和为钝角B.相等的两个角是对顶角C.同位角相等D.钝角大于它的补角25.(2019春•阳谷县期中)有下列几种说法:①两条直线相交所成的四个角中有一个是直角;②两条直线相交所成的四个角相等;③两条直线相交所成的四个角中有一组相邻补角相等;④两条直线相交对顶角互补.其中,能两条直线互相垂直的是()A.①③B.①②③C.②③④D.①②③④26.(2019春•潮阳区期末)如图是一块长方形ABCD的场地,长102=,AB mAD m=,宽51从A、B两处入口的中路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪面积为()A.24900m D.24998m5000m C.25050m B.227.(2019春•高安市校级月考)汉字“王、人、木、水、口、立”中能通过单独平移组成一个新的汉字的有()A.1个B.2个C.3个D.4个28.(2019•邵阳)某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长29.(2019春•和田地区期末)下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.30.(2019春•正定县期末)如图,将ABC∆沿直线AB向右平移后到达BDE∆的位置,若∠=︒,则CBE∠的度数为()ABC50CAB∠=︒,100A.50︒B.100︒C.45︒D.30︒31.(2019春•桥西区期末)如图,将ABC∆的周∆沿BC方向平移3cm得到DEF∆,若ABC长为16cm,则四边形ABFD的周长为()A.16cm B.22cm C.20cm D.24cm 32.(2019春•河东区期末)如图,如果把图中任一条线段沿方格线平移1格称为“1步”,那么要通过平移使图中的3条线段首尾相接组成一个三角形,最少需要()A.4步B.5步C.6步D.7步33.(2019春•端州区期末)如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是()A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格34.(2019春•西城区校级期中)如图,在ABC∆中,90AC=,5BC=,AB=,4∠=︒,3BAC将ABC∆沿直线BC向右平移2个单位得到DEF∆,连接AD,则下列结论:①//=AC DF,AC DF②ED DF⊥③四边形ABFD的周长是16④ABEO CFDO S S =四边形四边形 其中结论正确的个数有( )A .1个B .2个C .3个D .4个35.(2019春•鄂托克旗期末)如图,将直径为2cm 的半圆水平向左平移2cm ,则半圆所扫过的面积(阴影部分)为( )A .2cm πB .24cmC .2()2cm ππ-D .2()2cm ππ+36.(2019•天桥区三模)如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到DEF ∆的位置,10AB =,4DO =,平移距离为6,则阴影部分面积为( )A .24B .40C .42D .4837.(2019春•靖江市期末)如图,在ABC ∆中,5BC =,70A ∠=︒,75B ∠=︒,把ABC ∆沿直线BC 的方向平移到DEF ∆的位置,若3CF =,则下列结论中错误的是( )A .3BE =B .35F ∠=︒C .5DF =D .//AB DE38.(2019春•石家庄期末)如图,将ABC ∆沿射线BC 方向移动,使点B 移动到点C ,得到DCE ∆,连接AE ,若ABC ∆的面积为2,则ACE ∆的面积为( )A.2B.4C.8D.16 39.(2019春•西湖区校级月考)如图,表示直线a平移得到直线b的两种画法,下列关于三角板平移的方向和移动的距离说法正确的是()A.方向相同,距离相同B.方向不同,距离不同C.方向相同,距离不同D.方向不同,距离相同40.(2018春•南关区校级期中)下列平移作图错误的是()A.B.C.D.二、填空题(共30小题)41.(2018春•金山区期中)如图所示,直线AB、CD相交于O,135∠=︒,则直线ABBOC与直线CD的夹角是︒.42.(2019春•安康期中)如图,三条直线交于同一点,1:2:32:3:1∠∠∠=,则4∠=.43.(2019秋•工业园区期末)如图是一把剪刀,若60∠=︒.AOB COD∠+∠=︒,则BOD44.(2019春•罗田县期中)如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,若40AOD DOB ∠-∠=︒,则EOB ∠= .45.(2019春•苍溪县期末)自来水公司为某小区A 改造供水系统,如图沿路线AO 铺设管道和BO 主管道衔接()AO BO ⊥,路线最短,工程造价最低,根据是 .46.(2019春•金山区校级期末)如图,AC BC ⊥,CD AB ⊥,点B 到CD 边的距离是线段 的长.47.(2019春•呼和浩特期中)如图,AC BC ⊥,3AC =,4BC =,5AB =,则点B 到AC 的距离为 .48.(2018春•武冈市期末)如图,如果140∠=︒,2100∠=︒,3∠的同旁内角等于 .49.(2019春•五莲县期中)如图,有下列判断:①A∠是同旁∠与B∠与1∠是同位角;②A 内角;③4∠是同位角.其中正确的是(填序号).∠与3∠是内错角;④1∠与150.(2019春•浦东新区期中)如图,直线//∠=∠,那么直线b、c的位置关系是.a c,1251.(2019•滨州模拟)如图://QC AB,则点P、C、Q在一条直线上.PC AB,//理由是:.52.(2019秋•颍州区期末)如图,四边形ABCD中,BD为对角线,请你添加一个适当的条件,使得//AB CD成立.53.(2019春•东台市校级月考)如果两条直线被第三条直线所截,一组同旁内角的度数比为3:2,差为36︒,那么这两条直线的位置关系是,这是因为.54.(2019•邵阳)如图,//∠=︒,MEBAB CD,直线MN分别与AB、CD相交于点E、F,若65则CFN∠=度.55.(2019•曲靖)珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若120∠=度.∠=︒,则CDE∠=︒,80ABCBCD56.(2019春•黄州区期末)把命题“同旁内角互补”写成“如果⋯,那么⋯.”的形式为.57.(2019春•修水县校级期末)某宾馆在重新装修后,准备在大厅主楼梯上铺设某种红色地毯,已知这种地毯每平方米售价30元,主楼梯道宽2米,其侧面如图所示,则购买地毯至少需要元.58.(2019春•铁岭期中)如图,面积为28cm的直角三角形ABC沿BC方向平移至三角形DEF 的位置,平移距离是BC的2倍,则图中四边形ACED的面积为2cm.59.(2018春•宁县期末)图形在平移时,下列特征中不发生改变的有(把你认为正确的序号都填上),①图形的形状;②图形的位置;③线段的长度;④角的大小;⑤垂直关系;⑥平行关系.60.(2018•雁塔区校级模拟)如图,在三角形ABC中,AD BCAD=,将三BC=,3⊥,6角形ABC沿射线BC的方向平移2个单位后,得到三角形A B C''',连接A C',则三角形''的面积为.A B C61.(2019春•滑县校级月考)如图所示,两个完全相同的直角梯形重叠在一起,将其中一个直角梯形沿一腰平移,阴影部分的面积为.62.(2019秋•德惠市期末)如图,矩形ABCD中,5BC=,则图中五个小矩形的AB=,7周长之和为.63.(2019•广州)如图,ABC∆中,AB AC=,12DC cm=.将BC cm=,点D在AC上,4线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则EBF∆的周长为cm.64.(2019春•无锡期末)如图,把边长为3cm的正方形ABCD先向右平移1cm,再向上平移1cm,得到正方形EFGH,则阴影部分的面积为.65.(2019春•安陆市期中)把ABC∠=︒时,ABC∠向下平移2cm得A B C∠''',则当30∠'''=.A B C66.(2019春•玉田县期中)如图,已知梯形ABCD,//AB=,AD=,4BC=,3AD BC,6∆的周长是.2CD=,AB平移后到DE处,则CDE67.(2019秋•全椒县期中)如图,ABC ∆经过平移后到GMN ∆的位置,BC 上一点D 也同时平移到点H 的位置,若8AB cm =,25HGN ∠=︒,则GM = cm ,DAC ∠= 度.68.(2019春•辉县市期末)如图:直角ABC ∆中,5AC =,12BC =,13AB =,则内部五个小直角三角形的周长为 .69.如图,已知线段AB 平移后的位置点C ,作出线段AB 平移后的图形.作法1:连接AC ,再过B 作线段BD ,使BD 满足 :连接CD .则CD 为所作的图形. 作法2:过C 作线段CD ,使CD 满足 且 ,则CD 为所作的图形.70.(2018春•昌平区期末)数学课上,老师要求同学们利用三角板画两条平行线.老师说苗苗和小华两位同学画法都是正确的,两位同学的画法如下:苗苗的画法:①将含30︒角的三角尺的最长边与直线a 重合,另一块三角尺最长边与含30︒角的三角尺的最短边紧贴;②将含30︒角的三角尺沿贴合边平移一段距离,画出最长边所在直线b ,则//b a . 小华的画法:①将含30︒角三角尺的最长边与直线a 重合,用虚线做出一条最短边所在直线; ②再次将含30︒角三角尺的最短边与虚线重合,画出最长边所在直线b ,则//b a .请在苗苗和小华两位同学画平行线的方法中选出你喜欢的一种,并写出这种画图的依据. 答:我喜欢 同学的画法,画图的依据是 .三、解答题(共30小题)71.(2019•黄冈模拟)如图,1122∠=∠,12162∠+∠=︒,求3∠与4∠的度数.72.(2019秋•喀左县期末)如图,直线AB 、CD 相交于O ,OE 平分AOC ∠,20BOC BOD ∠-∠=︒,求BOE ∠的度数.73.(2019秋•伊通县期末)如图,直线AB 、CD 交于O 点,且80BOC ∠=︒,OE 平分BOC ∠,OF 为OE 的反向延长线.(1)求2∠和3∠的度数;(2)OF 平分AOD ∠吗?为什么?74.(2019春•阳江期中)如图,直线AB 、CD 相交于点O ,OE 把BOD ∠分成两部分;(1)直接写出图中AOC∠的对顶角为,BOE∠的邻补角为;(2)若70AOC∠=︒,且:2:3BOE EOD∠∠=,求AOE∠的度数.75.(2019秋•临河区期末)如图,直线AB与CD相交于点O,OP是BOC∠的平分线,OE AB⊥,OF CD⊥.(1)图中除直角外,还有相等的角吗?请写出两对:①;②.(2)如果40AOD∠=︒.①那么根据,可得BOC∠=度.②因为OP是BOC∠的平分线,所以12COP∠=∠=度.③求BOF∠的度数.76.(2019秋•张家港市期末)如图,直线AB,CD相交于点O,OE平分AOD∠,OF OC⊥.(1)图中AOF∠的余角是(把符合条件的角都填上);(2)如果128∠=︒,求2∠和3∠的度数.77.(2019春•韶关期末)如图,AGF ABC∠=∠,12180∠+∠=︒.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF AC ⊥,2150∠=︒,求AFG ∠的度数.78.(2019秋•泰兴市期末)如图,在直线MN 的异侧有A 、B 两点,按要求画图取点,并注明画图取点的依据.(1)在直线MN 上取一点C ,使线段AC 最短.依据是 .(2)在直线MN 上取一点D ,使线段AD BD +最短.依据是 .79.(2019春•怀集县期末)已知:如图,AB BC ⊥,BC CD ⊥且12∠=∠,求证://BE CF .80.(2019春•澄江县校级期中)如图,130∠=︒,60B ∠=︒,AB AC ⊥. 试说明//AD BC .81.(2019•武汉模拟)已知:如图,A F ∠=∠,C D ∠=∠.求证://BD CE .82.(2019春•民乐县校级期中)如图,已知CD AD ⊥,DA AB ⊥,12∠=∠.则DF 与AE 平行吗?为什么?83.(2018春•成华区期末)如图,ABC ACB ∠=∠,BD 平分ABC ∠,CE 平分ACB ∠,DBF F ∠=∠.试说明://EC DF .84.(2018春•新化县期末)如图,12180∠+∠=︒,A C ∠=∠,DA 平分BDF ∠.(1)AE 与FC 会平行吗?说明理由;(2)AD 与BC 的位置关系如何?为什么?(3)BC 平分DBE ∠吗?为什么.85.(2018秋•南关区校级期末)如图,已知AC AE ⊥,BD BF ⊥,115∠=︒,215∠=︒,AE 与BF 平行吗?为什么?86.(2018春•建安区期末)已知:如图,12∠=∠,34∠=∠,56∠=∠.求证://ED FB .87.(2019春•楚雄州期末)已知如图,//AB CD ,试解决下列问题:(1)12∠+∠= ;(2)123∠+∠+∠= ;(3)1234∠+∠+∠+∠= ;(4)试探究1234n ∠+∠+∠+∠+⋯+∠= .88.(2019春•徽县期末)如图,//EF AD ,12∠=∠,70BAC ∠=︒,求AGD ∠.89.(2019春•东阳市期末)如图,已知//AB CD ,CE 、BE 的交点为E ,现作如下操作: 第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E , 第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E , 第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E ,⋯,第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E .(1)如图①,求证:BEC ABE DCE ∠=∠+∠;(2)如图②,求证:214BE C BEC ∠=∠; (3)猜想:若n E α∠=度,那BEC ∠等于多少度?(直接写出结论).90.(2016春•罗平县期末)如图,在ABC ∆中,CD AB ⊥,垂足为D ,点E 在BC 上,EF AB ⊥,垂足为F .(1)CD 与EF 平行吗?为什么?(2)如果12∠=∠,且3115∠=︒,求ACB ∠的度数.91.(2018秋•南关区校级期末)如图,已知180ABC ECB ∠+∠=︒,P Q ∠=∠.求证:12∠=∠.92.(2018秋•鸡东县期末)如图,//AD BC ,120DAC ∠=︒,20ACF ∠=︒,140EFC ∠=︒.求证://EF AD .93.(2019秋•乐至县期末)已知:如图,12∠=∠,3B ∠=∠;(1)求证://EF AB ;(2)求证://DE BC ;(3)若80C ∠=︒,求AED ∠的度数.94.(2018春•新田县期末)如图,已知两条射线//OM CN,动线段AB的两个端点A、B 分别在射线OM、CN上,且108∠,OEC OAB∠=∠=︒,F在线段CB上,OB平分AOF平分COF∠.(1)请在图中找出与AOC∠相等的角,并说明理由;(2)若平行移动AB,那么OBC∠的度数比是否随着AB位置的变化而发生变化?∠与OFC若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使2OEC OBA∠=∠?若存在,请求出∠度数;若不存在,说明理由.OBA95.(2019秋•郑州期末)如图,有三个论断①12∠=∠;②B D∠=∠;③A C∠=∠,请从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.96.(2019春•宛城区期末)如图,在Rt ABC∆沿ABA∠=︒,将ABC∠=︒,33∆中,90ACB方向向右平移得到DEF∆.(1)试求出E∠的度数;(2)若9=,2AE cm=.请求出CF的长度.DB cm97.(2019春•天河区期中)如图,桌面内,直线l上摆放着两块大小相同的直角三角板,它们中较大锐角的度数为60︒.将ECD∆沿直线l向左平移到图的位置,使E点落在AB上,即点E',点P为AC与E D''的交点.(1)求CPD∠'的度数;(2)求证:AB E D⊥''.98.(2019春•湖州期中)在网格上,平移ABC∆的一个顶点A平移到点D处,∆,并将ABC(1)请你作出平移后的图形DEF∆;(2)请求出DEF∆的面积(每个网格是边长为1的正方形).99.(2019秋•滨海县期末)如图,经过平移,小船上的点A移到了点B.(1)请画出平移后的小船.(2)该小船向下平移了格,向平移了格.100.(2019春•工业园区期末)将下列方格纸中的ABC∆向右平移8格,再向上平移2格,得到△A B C.111(1)画出平移后的三角形;(2)若3BC cm =,则11AC = ;(3)如果AC BC ⊥,则1C ∠= .2020春单元达标必刷常考题100题:初中数学人教新版七年级(下)第5章相交线与平行线参考答案与试题解析一、选择题(共40小题)1.(2018春•张店区期末)如图,在所标识的角中,互为对顶角的两个角是( )A .1∠和2∠B .1∠和4∠C .2∠和3∠D .3∠和4∠【考点】2J :对顶角、邻补角【专题】551:线段、角、相交线与平行线【分析】对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.依此即可求解.【解答】解:观察图形可知,互为对顶角的两个角是3∠和4∠.故选:D .【点评】考查了对顶角,关键是熟练掌握对顶角的定义.2.(2019春•鄂城区期中)已知AOB ∠与BOC ∠互为邻补角,且BOC AOB ∠>∠.OD 平分AOB ∠,射线OE 使12BOE EOC ∠=∠,当72DOE ∠=︒时,则EOC ∠的度数为( ) A .72︒ B .108︒ C .72︒或108︒ D .以上都不对【考点】2J :对顶角、邻补角【专题】68:模型思想;11:计算题;64:几何直观【分析】先根据题意画出图形,设AOD DOB x ∠=∠=︒,结合题干中角之间的关系,再根据补角的定义即可得出结论.【解答】解:如图1:设AOD DOB x ∠=∠=︒,BOE y ∠=︒,则2EOC y ∠=︒.根据题意72x y +=,23222()180x y x y y x y y +=++=++=Q ,272180y ∴⨯+=,18014436y ∴=-=,36272EOC ∴∠=︒⨯=︒.如图2:设AOD DOB x ∠=∠=︒,则1802BOC x ∠=-,72BOE x ∠=+,1442EOC x ∠=+,故360BOE BOC EOC ∠+∠+∠=,7218021442360x x x ++-++=,解得36x =-︒(舍去). 综上72EOC ∠=︒.故选:A .【点评】本题考查的是对顶角、邻补角,熟知对顶角、邻补角的性质是解答此题的关键.3.(2019•涪城区校级自主招生)一副三角板,如图所示叠放在一起,则(AOB COD ∠+∠= )A .180︒B .150︒C .160︒D .170︒【考点】3J :垂线【专题】11:计算题 【分析】利用角的和差关系,将AOB ∠拆分为三个角的和,再利用互余关系求角.【解答】解:由已知,得90AOC ∠=︒,90BOD ∠=︒,180AOB COD AOD COD BOC COD AOC BOD ∴∠+∠=∠+∠+∠+∠=∠+∠=︒. 故选:A .【点评】本题主要利用角的和差关系求角的度数.4.(2018•濮阳一模)如图,直线AB 与直线CD 相交于点O ,E 是COB ∠内一点,且OE AB ⊥,35AOC ∠=︒,则EOD ∠的度数是( )A.155︒B.145︒C.135︒D.125︒【考点】2J:垂线J:对顶角、邻补角;3【分析】由对顶角相等可求得BOD∠,再利用角的和差可求得答∠,根据垂直可求得EOB案.【解答】解:∠=︒Q,AOC35∴∠=︒,35BODQ,⊥EO ABEOB∴∠=︒,90∴∠=∠+∠=︒+︒=︒,EOD EOB BOD9035125故选:D.【点评】本题主要考查对项角相等和垂直的定义,掌握对顶角相等是解题的关键,注意由垂直可得到角为90︒.5.(2019春•五莲县期末)如图,在立定跳远中,体育老师是这样测量运动员的成绩的,用一块直角三角板的一边附在起跳线上,另一边与拉直的皮尺重合,这样做的理由是()A.两点之间线段最短B.过两点有且只有一条直线C.垂线段最短D.过一点可以作无数条直线【考点】4J:垂线段最短【分析】根据垂线段的性质:垂线段最短进行解答即可.【解答】解:这样做的理由是垂线段最短.故选:C.【点评】此题主要考查了垂线段的性质,关键是掌握性质定理.6.(2018春•桂平市期末)如图所示,已知AC BC⊥,CD AB⊥,垂足分别是C,D,那么以下线段大小的比较必定成立的是()A.CD AD<>D.CD BD<C.BC BD>B.AC BC【考点】4J:垂线段最短【分析】根据从直线外一点到这条直线上各点所连的线段中,垂线段最短进行分析.【解答】解:A、CD与AD互相垂直,没有明确的大小关系,故本选项不符合题意;B、AC与BC互相垂直,没有明确的大小关系,故本选项不符合题意;C、BD是从直线CD外一点B所作的垂线段,根据垂线段最短定理,BC BD>,故本选项符合题意;D、CD与BD互相垂直,没有明确的大小关系,故本选项不符合题意;故选:C.【点评】此题主要考查了从直线外一点到这条直线上各点所连的线段中,垂线段最短的性质.7.(2019秋•温州期末)下列说法:①两条直线相交,有公共顶点而没有公共边的两个角是对顶角;②如果两条线段没有交点,那么这两条线段所在直线也没有交点;③邻补角的两条角平分线构成一个直角;④直线外一点与直线上各点连接的所有线段中,垂线段最短.其中正确的是()A.1个B.2个C.3个D.4个【考点】2J:垂线段最短J:对顶角、邻补角;4【分析】根据相关定义对各选项逐一进行判定,即可得出结论.【解答】解:①两条直线相交,有公共顶点而没有公共边的两个角是对顶角,对;②直线延长可能有交点,错;③邻补角的两条角平分线构成一个直角,对;④直线外一点与直线上各点连接的所有线段中,垂线段最短,对.故选:C .【点评】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.8.(2019春•滨州期末)点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,4PA cm =,5PB cm =,2PC cm =,则点P 到直线m 的距离为( )A .4cmB .5cmC .小于2cmD .不大于2cm【考点】5J :点到直线的距离【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【解答】解:当PC m ⊥时,PC 是点P 到直线m 的距离,即点P 到直线m 的距离2cm , 当PC 不垂直直线m 时,点P 到直线m 的距离小于PC 的长,即点P 到直线m 的距离小于2cm ,综上所述:点P 到直线m 的距离不大于2cm ,故选:D .【点评】本题考查了点到直线的距离,利用了垂线段最短的性质.9.(2018春•宁县期末)如图:1∠和2∠是同位角的是( )A .②③B .①②③C .①②④D .①④【考点】6J :同位角、内错角、同旁内角【分析】同位角的概念,在截线的同侧,并且在被截线的同一方的两个角是同位角,所以①②④符合要求.【解答】解:图①、②、④中,1∠与2∠在截线的同侧,并且在被截线的同一方,是同位角; 图③中,1∠与2∠的两条边都不在同一条直线上,不是同位角.故选:C .【点评】本题考查了同位角的概念;判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.10.(2018春•城关区校级月考)如图所示,同位角共有()A.6对B.8对C.10对D.12对【考点】6J:同位角、内错角、同旁内角【分析】在基本图形“三线八角”中有四对同位角,再看增加射线GM、HN后,增加了多少对同位角,求总和.【解答】解:如图,由AB、CD、EF组成的“三线八角”中同位角有四对,射线GM和直线CD被直线EF所截,形成2对同位角;射线GM和直线HN被直线EF所截,形成2对同位角;射线HN和直线AB被直线EF所截,形成2对同位角.则总共10对.故选:C.【点评】本题主要考查同位角的概念.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.11.(2018春•沧州期中)在同一平面内,不重合的两条直线的位置关系是() A.平行B.相交C.平行或相交D.平行、相交或垂直【考点】7J:平行线【专题】1:常规题型【分析】根据直线的位置关系解答.【解答】解:在同一平面内,不重合的两条直线只有两种位置关系,是平行或相交,所以在同一平面内,不重合的两条直线的位置关系是:平行或相交.故选:C.【点评】本题考查了两直线的位置关系,需要特别注意,垂直是相交特殊形式,在同一平面内,不重合的两条直线只有平行或相交两种位置关系.12.(2018春•垦利区期末)下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤两点之间的距离是两点间的线段;⑥在同一平面内的两直线位置关系只有两种:平行或相交.A.1个B.2个C.3个D.4个【考点】ID:两点间的距离;1J:垂J:平行线;3J:对顶角、邻补角;7J:相交线;2线;IC:线段的性质:两点之间线段最短【分析】①根据两点之间线段最短判断.②对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.③根据平行公理进行判断.④根据垂线的性质进行判断.⑤距离是指的长度.⑥根据在同一平面内,两条不重合的直线的位置关系.【解答】解:①两点之间的所有连线中,线段最短,故①正确.②相等的角不一定是对顶角,故②错误.③经过直线外一点有且只有一条直线与已知直线平行,故③错误.④同一平面内,过一点有且只有一条直线与已知直线垂直,故④错误.⑤两点之间的距离是两点间的线段的长度,故⑤错误.⑥在同一平面内,两直线的位置关系只有两种:相交和平行,故⑥正确.综上所述,正确的结论有2个.故选:B.【点评】本题主要考查对平行线的定义,两点间的距离,相交线等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.13.(2019春•博白县期末)在同一平面内,若a ba c.⊥,则a与c的位置关系是//⊥,b c【考点】7J:平行线【分析】根据在同一平面内,垂直于同一条直线的两条直线互相平行即可求解.【解答】解:a b ⊥Q ,b c ⊥,//a c ∴.故答案为//a c .【点评】本题考查了平行线的判定:在同一平面内,垂直于同一条直线的两条直线互相平行. 14.(2019春•孝义市期末)如图,在一张半透明的纸上画一条直线l ,在直线l 外任取一点A 、折出过点A 且与直线l 垂直的直线.这样的直线只能折出一条,理由是( )A .连接直线外一点与直线上各点的所有线段中,垂线段最短B .两点之间线段最短C .在平面内,过一点有且只有一条直线与已知直线垂直D .经过直线外一点有且只有一条直线与已知直线平行 【考点】4J :垂线段最短;IC :线段的性质:两点之间线段最短 【专题】551:线段、角、相交线与平行线【分析】在平面内,过一点有且只有一条直线与已知直线垂直,根据垂线的性质可得答案. 【解答】解:这样的直线只能折出一条,理由是:在平面内,过一点有且只有一条直线与已知直线垂直, 故选:C .【点评】本题考查了垂线,利用了垂线的性质:过一点有且只有一条直线与已知直线垂直. 15.(2019春•北海期末)如图,下列条件中,能判定//DE AC 的是( )A .EDC EFC ∠=∠B .AFE ACD ∠=∠C .34∠=∠D .12∠=∠【考点】9J :平行线的判定。
(新人教版)数学七年级下册同步练习试题及答案
人教版七下《
课前感悟
1.如果∠α=110°,那么∠α的补角等于__________________.
2.如图,直线EF与AB相交于G,与CD相交于H,
则∠AGH的对顶角是___________;∠AGF与_______是
对顶角.∠AGH与_______是邻补角,∠GHD的邻补角
是________.
埃拉托色尼是首先使用“地理学”名称的人,从此代替传统的“地方志”,写成了三卷专著.书中描述了地球的形状、大小和海陆分布.埃拉托色尼还用经纬网绘制地图,最早把物理学的原理与数学方法相结合,创立了数理地理学.
参考答案
1.70 2.∠FGB,∠HGB,∠AGF,∠HGB,∠CHB,∠EHB 3.C 4.C
C.有公共顶点的且相等的角D.一个角的两边分别是另一个角两边的反向延长线
10.如图,已知直线AB.CD相交于点O,OA平分∠EOC,∠EOC=70°,
则∠BOD的度数等于( ).
A.30°B.35°C.20°D.40°
11.如图,AB交CD于O,OE是顶点为O的一条射线,图中的对顶角和邻补角各有( ).
2000多年前,有人用简单的测量工具计算出地球的周长.这个人就是古希腊的埃拉托色尼(约公元前275—前194).
埃拉托色尼博学多才,他不仅通晓天文,而且熟知地理;又是诗人、历史学家、语言学家、哲学家,曾担任过亚历山大博物馆的馆长.
细心的埃拉托色尼发现:离亚历山大城约800公里的塞恩城(今埃及阿斯旺附近),夏日正午的阳光可以一直照到井底,因而这时候所有地面上的直立物都应该没有影子.但是,亚历山大城地面上的直立物却有一段很短的影子.他认为:直立物的影子是由亚历山大城的阳光与直立物形成的夹角所造成.从地球是圆球和阳光直线传播这两个前提出发,从假想的地心向塞恩城和亚历山大城引两条直线,其中的夹角应等于亚历山大城的阳光与直立物形成的夹角.按照相似三角形的比例关系,已知两地之间的距离,便能测出地球的圆周长.埃拉托色尼测出夹角约为7度,是地球圆周角(360度)的五十分之一,由此推算地球的周长大约为4万公里,这与实际地球周长(40076公里)相差无几.他还算出太阳与地球间距离为1.47亿公里,和实际距离1.49亿公里也惊人地相近.这充分反映了埃拉托色尼的学说和智慧.
人教版七年级数学下册第五章相交线与平行线复习训练题
第五章相交线与平行线类型一邻补角与对顶角巧分辨1.如图1所示的几个图形中,能构成对顶角的是( )图12.如图2,三条直线AB,CD,EF相交于点O,则∠1的邻补角为______________.图23.如图3,直线AB,CD交于点O,射线OM平分∠AOC.若∠BOD=76°,求∠AOM的度数.图3类型二区分同位角、内错角、同旁内角有原则4.如图4,与∠1构成内错角的是( )图4A.∠2 B.∠3 C.∠4 D.∠55.如图5,直线DE经过点C,则∠A的内错角是________,∠A的同旁内角是________________.图56.如图6,E是AB延长线上一点,指出下面各组中的两个角是由哪两条直线被哪一条直线所截形成的?它们是什么角?(1)∠A和∠D;(2)∠A和∠CBA;(3)∠C和∠CBE.图6类型三掌握相交的特殊情形——垂直7.如图7,已知AB,CD相交于点O,OE⊥CD,垂足为O,∠AOC=30°,则∠BOE等于( )图7A .30°B .60°C .120°D .130°8.如图8所示,在直角三角形ABC 中,∠ACB=90°,CD⊥AB 于点D ,则点A 到BC 的距离为线段______的长度;点A到CD 的距离为线段______的长度;点C 到AB 的距离为线段______的长度.图8类型四 平行线的判定和性质9.如图9,直线a ,b 被直线c 所截,下列说法正确的是( )A .当∠1=∠2时,一定有a∥bB .当a∥b 时,一定有∠1=∠2C .当a∥b 时,一定有∠1+∠2=90°D .当∠1+∠2=180°时,一定有a∥b10.如图10,已知AB∥CD,∠1=60°,则∠2=________°.图9图1011.如图11,不添加辅助线,请你写出一个能判定EB∥AC的条件:________________________.图1112.如图12,AB∥CD,直线EF交AB于点E,交CD于点F,EG平分∠BEF,交CD于点G,∠1=50°,求∠2的度数.图1213.如图13,已知∠1+∠2=180°,∠DEF=∠A,试判断∠ACB与∠DEB的大小关系,并说明理由.图1314.如图14所示,已知OP∥QR∥ST,连接PR,SR,猜想∠1,∠2,∠3三个角之间的关系,并说明理由.图14类型五命题与定理须细辨15.下列语句不是命题的是( )A.若a<0,b<0,则ab>0B.用三角板画一个60°的角C.对顶角相等D.互为相反数的两个数的和为016.下列命题中,是真命题的是( )A.对顶角相等B.同位角相等C.若a2=b2,则a=bD.若a>b,则-2a>-2b17.将下列命题改写成“如果……那么……”的形式.(1)直角都相等;(2)末位数字是5的整数能被5整除;(3)三角形的内角和是180°.类型六平移平移的特征:图形的平移变换中,图形的形状、大小、方向都不发生改变,只是改变了图形的位置;平移前后图形的对应点的连线平行(或在同一条直线上)且相等.18.下列现象中,不属于平移的是( )A.钟表的指针转动B.电梯的升降C.火车在笔直的铁轨上行驶D.传送带上物品的运动19.如图15,将周长为8的三角形ABC沿BC方向向右平移1个单位长度得到三角形DEF,则四边形ABFD的周长为( )图15A.6 B.8 C.10 D.12类型七方程思想在几何中的应用20.如图16,已知a∥b,∠1=(3x+70)°,∠2=(5x+22)°,求∠1的补角的度数.图16类型八开放型问题21.给出下列三个论断:①∠B+∠D=180°;②AB∥CD;③BC∥DE.请你以其中两个论断作为已知条件,填入“已知”栏中,以一个论断作为结论,填入“结论”栏中,使之成为一道由已知可得到结论的题目,并说明理由.已知:如图17,________________________.结论:________________________.图17类型九探究型问题22.【阅读材料】在“相交线与平行线”的学习中,有这样一道典型问题:如图18①,AB∥CD,点P在AB与CD之间,可得结论:∠BAP+∠APC+∠PCD=360°.理由如下:过点P作PQ∥AB.∴∠BAP+∠APQ=180°.∵AB∥CD,PQ∥AB,∴PQ∥CD,∴∠PCD+∠CPQ=180°.∴∠BAP+∠APC+∠PCD=∠BAP+∠APQ+∠CPQ+∠PCD=180°+180°=360°.【问题解决】(1)如图②,AB∥CD,点P在AB与CD之间,可得∠BAP,∠APC,∠PCD间的等量关系是________________________________________________________________________;(2)如图③,AB∥CD,点P ,E 在AB 与CD 之间,AE 平分∠BAP,CE 平分∠DCP,写出∠AEC 与∠APC 间的等量关系,并写出理由;(3)如图④,AB∥CD,点P ,E 在AB 与CD 之间,∠BAE=13∠BAP,∠DCE=13∠DCP ,可得∠AEC与∠APC 间的等量关系是________________________.图18答案1.D2.∠BOE 和∠AOF 3.解:∵∠BOD=76°, ∴∠AOC=∠BOD=76°. ∵射线OM 平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°.4.B5.∠ACD ∠ACB,∠ACE 和∠B6.解:(1)∠A 和∠D 是直线AE ,DC 被直线AD 所截而成的同旁内角. (2)∠A 和∠CBA 是直线AD ,BC 被直线AE 所截而成的同旁内角. (3)∠C 和∠CBE 是直线DC ,AE 被直线BC 所截而成的内错角. 7.C 8.AC AD CD 9.D 10.12011.答案不唯一,如∠C=∠EBD 12.解:∵AB∥CD,∴∠2=∠BEG,∠BEF+∠1=180°. ∵∠1=50°,∴∠BEF=130°. ∵EG 平分∠BEF,∴∠BEG=12∠BEF=65°, ∴∠2=65°.13.解:∠ACB=∠DEB.理由:∵∠1+∠2=180°,∠1+∠DFE=180°,∴∠2=∠DFE,∴AB∥EF,∴∠DEF=∠BDE.∵∠DEF=∠A,∴∠A=∠BDE,∴AC∥DE,∴∠ACB=∠DEB.14.解:∠2+∠3=180°+∠1.理由:∵OP∥QR,∴∠2+∠QRP=180°,∴∠QRP=180°-∠2.∵QR∥ST,∴∠3=∠QRS=∠1+∠QRP=∠1+180°-∠2.∴∠2+∠3=180°+∠1.15.B16. A17.解:(1)如果几个角是直角,那么它们都相等.(2)如果一个整数的末位数字是5,那么它能被5整除.(3)如果一个图形是三角形,那么它的内角和是180°.18.A19. C20.解:如图,因为a∥b,所以∠1=∠3.又因为∠1=(3x+70)°,∠2=(5x+22)°,∠2+∠3=180˚,所以(3x +70)°+(5x+22)°=180°,解得x=11,所以∠1=(3x+70)°=103°.又因为180°-103°=77°,所以∠1的补角的度数为77°.21.解:答案不唯一,符合题意的情况有3种,即①②→③;①③→②;②③→①,任选其中一种即可.已知:如图17,∠B+∠D=180°,AB∥CD.结论:BC∥DE.理由:因为AB∥CD,所以∠B=∠C(两直线平行,内错角相等).又因为∠B+∠D=180°,所以∠C+∠D=180°,所以BC∥DE(同旁内角互补,两直线平行).22.解:(1)如图②,作PE∥AB,得∠APE=∠BAP.∵AB∥CD,AB∥PE,∴CD∥PE,∴∠CPE=∠PCD,∴∠APC=∠APE+∠CPE=∠BAP+∠PCD.故答案为∠APC=∠BAP+∠PCD.(2)∠APC=2∠AE C.理由:设∠EAB=∠EAP=x,∠ECD=∠ECP=y.由(1)可知:∠AEC=x+y,∠APC=2x+2y,∴∠APC=2∠AE C.(3)设∠EAB=a,∠DCE=b,则∠BAP=3a,∠DCP=3b. 由题意得∠AEC=a+b,∠APC+3a+3b=360°,∴∠APC+3∠AEC=360°.故答案为∠APC+3∠AEC=360°.。
2020年初一数学下期中试卷带答案
解析:C 【解析】 【分析】 根据幂的乘方,底数不变指数相乘都转换成指数是 11 的幂,再根据底数的大小进行判断即 可 【详解】 解:255=(25)11=3211, 344=(34)11=8111, 433=(43)11=6411, ∵32<64<81, ∴255<433<344. 故选:C. 【点睛】 本题考查了幂的乘方的性质,解题的关键在于都转化成以 11 为指数的幂的形式.
【详解】 解:∵将△ABC 沿直线 AB 向右平移后到达△BDE 的位置, ∴AC∥BE, ∴∠CAB=∠EBD=50°(两直线平行,同位角相等), ∵∠ABC=100°, ∴∠CBE 的度数为:180°-50°-100°=30°. 故选 B. 【点睛】 此题主要考查了平移的性质以及直线平行的性质,得出∠CAB=∠EBD=50°是解决问题的 关键.
25.某学校为了迎接“中招考试理化生实验”,需购进 A , B 两种实验标本共 75 个.经 调查, A 种标本的单价为 20 元, B 种标本的单价为 12 元,若总费用不超过 1180 元,那么 最多可以购买多少个 A 种标本?(列不等式解决) 【参考答案】***试卷处理标记,请不要删除
一、选择题 1.B 解析:B 【解析】 【分析】 根据平移的性质得出 AC∥BE,以及∠CAB=∠EBD=50°,∠ABC=100º,进而求出∠CBE 的度数.
10.B
解析:B 【解析】 【分析】 根据横坐标不变,纵坐标变为原来的 2 倍得到整个图形将沿 y 轴变长,即可得出结论. 【详解】
如果将一个图形上各点的横坐标不变,纵坐标乘以 2, 则这个图形发生的变化是:纵向拉伸为原来的 2 倍. 故选:B. 【点睛】 本题考查了坐标与图形性质:利用点的坐标计算相应的线段的长和判断线段与坐标轴的关 系.
2024年粤人版七年级数学下册月考试卷465
2024年粤人版七年级数学下册月考试卷465考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏一、选择题(共7题,共14分)1、用一个平面去截一个正方体,截面不可能是()A. 四边形B. 五边形C. 六边形D. 七边形2、为了奖励学习有进步的学生,老师请小杰帮忙到文具店买了20本练习簿和10支水笔,共花了36元.已知每支水笔的价格比每本练习簿的价格贵1.2元,如果设练习簿每本为x元,水笔每支为y元,那么下面列出的方程组中正确的是()A. {20x+10y=36x−y=1.2B. {20x+10y=36y−x=1.2C. {10x+20y=36x−y=1.2D. {10x+20y=36y−x=1.23、两条直线相交构成四个角;给出下列条件:①有三个角都相等;②有一对对顶角互补;③有一个角是直角;④有一对邻补角相等;其中能判定这两条直线垂直的有()A. 4个B. 3个C. 2个D. 1个4、函数y=x−1+3中自变量x的取值范围是()A. x>1B. x≥1C. x≤1D. x≠15、下列命题是真命题的有()①若a2=b2则a=b②内错角相等;两直线平行.③若ab是有理数,则|a+b|=|a|+|b|④如果∠A=∠B那么∠A与∠B是对顶角.A. 1个B. 2个C. 3个D. 4个6、已知4a5b2和是同类项.则代数式12m-24的值是()A. -3B. -4C. -5D. -67、据杭州市统计局公布的第六次人口普查数据,本市常住人口870.04万人,其中870.04万人用科学记数法表示为()A. 8.7004×105人B. 8.7004×106人C. 8.7004×107人D. 0.87004×107人评卷人得分二、填空题(共7题,共14分)8、在函数y=中,自变量x的取值范围是____.9、已知-x m+3y6与3x5y2n是同类项,则m n的值是 ______ .10、某一电子昆虫落在数轴上的某点K0,从K0点开始跳动,第1次向左跳1个单位长度到K1,第2次由K1向右跳2个单位长度到K2,第3次由K2向左跳3个单位长度到K3,第4次由K3向右跳4个单位长度到K4依此规律跳下去,当它跳第100次落下时,电子昆虫在数轴上的落点K100表示的数恰好是2013,则电子昆虫的初始位置K0所表示的数是 ______ .11、已知和互为相反数,且x-y+4的平方根是它本身,则x=____,y=____.12、(2014秋•达州月考)使图中平面展开图折叠成正方体后,相对面上两个数互为相反数,则x=____,y=____.13、(2013春•西昌市校级月考)如图:想在河堤两岸搭建一座桥,图中搭建方式中,最短的是____,理由____.14、写出一个点的坐标,其积为-10,且在第二象限为______。
5.1 对顶角、邻补角 考点训练(含答案解析)
【考点训练】对顶角、邻补角-1一、选择题(共6小题)1.(2012•北京)如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()38°B.104°C.142°D.144°A.(第1题) (第2题) (第3题)2.如图,AB是一条直线,OC是∠AOD的平分线,OE在∠BOD内,∠DOE=∠BOD,∠COE=72°,则∠EOB=()36°B.72°C.108°D.120°A.3.(2011•台湾)如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确()∠2=∠4+∠7 B.∠3=∠1+∠6 C.∠1+∠4+∠6=180°D.∠2+∠3+∠5=360°A.4.(2012•梧州)如图,直线AB和CD相交于点O,若∠AOC=125°,则∠AOD=()50°B.55°C.60°D.65°A.(第4题) (第6题)(第7题)5.(2013•贺州)下面各图中∠1和∠2是对顶角的是().AB.C.D..6.(2012•柳州)如图,直线a与直线c相交于点O,∠1的度数是()A60°B.50°C.40°D.30°.二、填空题(共3小题)(除非特别说明,请填准确值)7.(2012•泉州)如图,在△ABC中,∠A=60°,∠B=40°,点D、E分别在BC、AC的延长线上,则∠1=_________°.8.(2013•湘西州)如图,直线a和直线b相交于点O ,∠1=50°,则∠2_________.(第8题) (第9题)9.(2013•曲靖)如图,直线AB、CD相交于点O,若∠BOD=40°,OA平分∠COE,则∠AOE=_________.三、解答题(共2小题)(选答题,不自动判卷)10.(2011•泉州)如图,直线a、b相交于点O,若∠1=30°,则∠2=_________.(第10题) (第11题)11.(2012•泉州)(2)如图,点A、O、B在同一直线上,已知∠BOC=50°,则∠AOC=_________°.参考答案与试题解析一、选择题(共6小题)1.(2012•北京)如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()A.38°B.104°C.142°D.144°考点:对顶角、邻补角;角平分线的定义.专题:常规题型.分析:根据对顶角相等求出∠AOC的度数,再根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.解答:解:∵∠BOD=76°,∴∠AOC=∠BOD=76°,∵射线OM平分∠AOC,∴∠AOM=∠AOC=×76°=38°,∴∠BOM=180°﹣∠AOM=180°﹣38°=142°.故选C.点评:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.2.如图,AB是一条直线,OC是∠AOD的平分线,OE在∠BOD内,∠DOE=∠BOD,∠COE=72°,则∠EOB=()A.36°B.72°C.108°D.120°考点:角平分线的定义;对顶角、邻补角.专题:计算题.分析:设∠DOE=x,根据题意得到∠BOE=2x,∠AOC=∠COD=72°﹣x,再根据平角为180度,得到2×(72°﹣x)+3x=180°,解得x=36°,即可得到∠BOE的度数.解答:解:如图,设∠DOE=x,∵∠DOE=∠BOD,∴∠BOE=2x,又∵OC是∠AOD的平分线,∠COE=72°,∴∠AOC=∠COD=72°﹣x;∴2×(72°﹣x)+3x=180°,解得x=36°,∴∠BOE=2x=2×36°=72°.故选B.点评:本题考查了角的有关计算以及角平分线的性质和平角的定义,是基础知识比较简单.3.(2011•台湾)如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确()A.∠2=∠4+∠7 B.∠3=∠1+∠6 C.∠1+∠4+∠6=180°D.∠2+∠3+∠5=360°考点:三角形内角和定理;对顶角、邻补角;三角形的外角性质.分析:根据对顶角的性质得出∠1=∠AOB,再用三角形内角和定理得出∠AOB+∠4+∠6=180°,即可得出答案.解答:解:∵四条互相不平行的直线L1、L2、L3、L4所截出的七个角,∵∠1=∠AOB,∵∠AOB+∠4+∠6=180°,∴∠1+∠4+∠6=180°.故选C.点评:此题主要考查了对顶角的性质以及三角形的内角和定理,正确的应用三角形内角和定理是解决问题的关键.4.(2012•梧州)如图,直线AB和CD相交于点O,若∠AOC=125°,则∠AOD=()A.50°B.55°C.60°D.65°考点:对顶角、邻补角.分析:根据邻补角的和等于180°列式进行计算即可得解.解答:解:∵∠AOC=125°,∴∠AOD=180°﹣125°=55°.故选B.点评:本题考查了邻补角的两个角的和等于180°的性质,是基础题.5.(2013•贺州)下面各图中∠1和∠2是对顶角的是()A.B.C.D.考点:对顶角、邻补角.分析:根据对顶角的定义对各选项分析判断后利用排除法求解.解答:解:A、∠1和∠2不是对顶角,故本选项错误;B、∠1和∠2是对顶角,故本选项正确;C、∠1和∠2不是对顶角,故本选项错误;D、∠1和∠2不是对顶角,是邻补角,故本选项错误.故选B.点评:本题考查了对顶角、邻补角,熟记概念并准确识图是解题的关键.6.(2012•柳州)如图,直线a与直线c相交于点O,∠1的度数是()A.60°B.50°C.40°D.30°考点:对顶角、邻补角.分析:根据邻补角的和等于180°列式计算即可得解.解答:解:∠1=180°﹣150°=30°.故选D.点评:本题主要考查了邻补角的和等于180°,是基础题,比较简单.二、填空题(共3小题)(除非特别说明,请填准确值)7.(2012•泉州)如图,在△ABC中,∠A=60°,∠B=40°,点D、E分别在BC、AC的延长线上,则∠1=80°.考点:三角形内角和定理;对顶角、邻补角.专题:探究型.分析:先根据三角形内角和定理求出∠ACB的度数,再根据对顶角相等求出∠1的度数即可.解答:解:∵△ABC中,∠A=60°,∠B=40°,∴∠ACB=180°﹣∠A﹣∠B=180°﹣60°﹣40°=80°,∴∠1=∠ACB=80°.故答案为:80.点评:本题考查的是三角形的内角和定理,即三角形内角和是180°.8.(2013•湘西州)如图,直线a和直线b相交于点O,∠1=50°,则∠2=50°.考点:对顶角、邻补角.分析:根据对顶角相等即可求解.解答:解:∵∠2与∠1是对顶角,∴∠2=∠1=50°.故答案为=50°.点评:本题考查了对顶角的识别与对顶角的性质,牢固掌握对顶角相等的性质是解题的关键.9.(2013•曲靖)如图,直线AB、CD相交于点O,若∠BOD=40°,OA平分∠COE,则∠AOE=40°.考点:对顶角、邻补角;角平分线的定义.分析:根据对顶角相等求出∠AOC,再根据角平分线的定义解答.解答:解:∵∠BOD=40°,∴∠AOC=∠BOD=40°,∵OA平分∠COE,∴∠AOE=∠AOC=40°.故答案为:40°.点评:本题考查了对顶角相等的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.三、解答题(共2小题)(选答题,不自动判卷)10.(2011•泉州)如图,直线a、b相交于点O,若∠1=30°,则∠2=30°.考点:对顶角、邻补角.专题:计算题;压轴题.分析:直接根据对顶角相等得到∠2的度数.解答:解:∵直线a、b相交于点O,∴∠1=∠2,而∠1=30°,∴∠2=30°.故答案为:30°.点评:本题考查了对顶角的性质:对顶角相等.11.(2012•泉州)(1)方程x﹣5=0的解是5.(2)如图,点A、O、B在同一直线上,已知∠BOC=50°,则∠AOC=130°.考点:对顶角、邻补角;解一元一次方程.专题:计算题;压轴题.分析:(1)观察或直接移项可得方程的解;(2)根据邻补角互补直接求出∠AOC的值.解答:解:(1)移项得,x=5;(2)∵∠BOC=50°,∴∠A0C=180°﹣50°=130°.点评:(1)本题考查了一元一次方程的解法,熟悉等式的性质是解题的关键;(2)本题考查了对顶角、邻补角,知道邻补角的和为180°是解题的关键.。
人教版七年级数学下册《相交线中求角》专项练习题-附含答案
人教版七年级数学下册《相交线中求角》专项练习题-附含答案【例题讲解】如图 直线AB CD 相交于点O OE 平分∠BOD OF 平分∠COE .(1)若∠AOC =76° 求∠BOF 的度数;(2)若∠BOF =36° 求∠AOC 的度数;(3)请探究∠AOC 与∠BOF 的数量关系.)BOD ∠=又OE 平分180142DOE =︒-∠︒ OF 平分33EOF =∠-∠︒.)OE 平分∠COE ∠ BOE ∴∠BOE x ∠= 则2COA x ∠= EOF ∠180AOC COF +∠︒=︒ 解得:)由(1)知(180DOE ︒-∠【综合解答】1.如图 直线AB 、CD 相交于点O OE 把BOD ∠分成两部分(1)直接写出图中AOC ∠的对顶角为________ BOE ∠的邻补角为________;(2)若AOC 70∠=︒ 且BOE EOD ∠∠:=2:3 求AOE ∠的度数.2.如图 直线AB 、CD 、EF 相交于点O OG 平分∠COF ∠1=30° ∠2=45°.求∠3的度数.【答案】∠3=52.5°【详解】试题分析:先求出∠EOD的度数从而得出∠COF=105° 再根据OG平分∠COF 可得∠3的度数.试题解析:∠∠1=30° ∠2=45°∠∠EOD=180°﹣∠1﹣∠2=105°∠∠COF=∠EOD=105°又∠OG平分∠COF∠∠3=∠COF=52.5°.考点:对顶角、邻补角.3.如图直线AB、CD相交于点O∠DOE=∠BOD OF平分∠AOE.(1)判断OF与OD的位置关系并说明理由;(2)若∠AOC:∠AOD=1:5 求∠EOF的度数.4.如图 直线AB CD 相交于点O EO AB ⊥ 垂足为O .(1)若35EOC ∠=︒ 求AOD ∠的度数;(2)若2BOC AOC ∠=∠ 求DOE ∠的度数.【答案】(1)125°;(2)150°【分析】(1)把COB ∠的度数计算出来 再根据对顶角的性质即可得到答案;(2)根据2BOC AOC ∠=∠ 设AOC x ∠= 2BOC x ∠=得到60BOD AOC ∠=∠=︒ 最后根据EO AB ⊥即可得到答案;【详解】解:(1)EO AB ⊥90EOB ∴∠=︒909035125COB EOC ∴∠=︒+∠=︒+︒=︒125AOD COB ∴∠=∠=︒;(2)2BOC AOC ∠=∠∴设AOC x ∠= 2BOC x ∠=又180BOC AOC ∠+∠=︒2180x x ∴+=︒60x ∴=︒60BOD AOC ∴∠=∠=︒又EO AB ⊥90EOB ∴∠=︒6090150DOE BOD EOB ∴∠=∠+∠=︒+︒=︒.【点睛】本题主要考查了对顶角的性质(对顶角相等)和邻补角的性质熟练掌握邻补角的性质和对顶角的性质是解题的关键.5.如图直线AB CD相交于O点OM平分∠AOB(1)若∠1=∠2 求∠NOD的度数;(2)若∠BOC=4∠1 求∠AOC与∠MOD的度数.【答案】(1)90°;(2)∠AOC=60°;∠MOD=150°.【分析】(1)根据角平分线的性质可得∠1+∠AOC=90° 再利用等量代换可得∠2+∠AOC=90° 利用邻补角互补可得答案;(2)根据条件可得90°+∠1=4∠1 进而可得求出∠1=30° 从而可得∠AOC的度数再利用邻补角互补可得∠MOD的度数.【详解】(1)∠OM平分∠AOB∠∠1+∠AOC=90°.∠∠1=∠2 ∠∠2+∠AOC=90° ∠∠NOD=180°﹣90°=90°;(2)∠∠BOC=4∠1 ∠90°+∠1=4∠1 ∠∠1=30° ∠∠AOC=90°﹣30°=60° ∠MOD=180°﹣30°=150°.【点睛】本题考查了角平分线和邻补角关键是掌握邻补角互补.6.如图直线AB CD EF相交于点O.(1)写出∠COE的邻补角;(2)分别写出∠COE和∠BOE的对顶角;(3)如果∠BOD=60° ∠BOF=90° 求∠AOF和∠FOC的度数.【答案】(1)∠COE的邻补角为∠COF和∠EOD;(2)∠COE和∠BOE的对顶角分别为∠DOF和∠AOF;(3)∠FOC=150°.【分析】(1)根据邻补角的定义(两个角有一条公共边它们的另一条边互为反向延长线具有这种关系的两个角)可得∠COE的邻补角有∠COF和∠EOD两个角;(2)根据对顶角的定义(一个角的两边分别是另一个角两边的反向延长线且这两个角有公共顶点)可得∠COE和∠BOE的对顶角分别为∠DOF和∠AOF;(3)由∠BOF=90°可得:AB∠EF 所以∠AOF=90° 由∠AOC=∠BOD可得:∠AOC =60° 由∠FOC=∠AOF+∠AOC即可求出∠FOC的度数;【详解】(1)∠COE的邻补角为∠COF和∠EOD;(2)∠COE和∠BOE的对顶角分别为∠DOF和∠AOF;(3)∠∠BOF=90°∠AB∠EF∠∠AOF=90°又∠∠AOC=∠BOD=60°∠∠FOC=∠AOF+∠AOC=90°+60°=150°.7.如图直线AB、CD相交于点O OE平分∠BOD OF平分∠COE.(1)若∠AOC=76° 求∠BOF的度数;(2)若∠BOF=36° 求∠AOC的度数;8.如图 直线AB 、CD 相交于点O OE 平分BOC ∠ 90COF ∠=.(1)若∠AOF =50° 求∠BOE 的度数;(2)若∠BOD :∠BOE =1:4 求∠AOF 的度数.【答案】(1)70BOE ∠=;(2)70AOF ∠=.【分析】(1)根据补角 余角的关系 可得∠COB 根据角平分线的定义 可得答案;(2)根据邻补角 可得关于x 的方程 根据解方程 可得∠AOC 再根据余角的定义 可得答案.【详解】(1)∠∠COF 与∠DOF 是邻补角∠∠COF =180°−∠DOF =90°.∠∠AOC 与∠AOF 互为余角∠∠AOC =90°−∠AOF =90°−50°=40°.∠∠AOC 与∠BOC 是邻补角∠∠COB =180°−∠AOC =180°−40°=140°.∠OE 平分∠BOC(2)∠BOD:∠BOE=1:4设∠BOD=∠AOC=x∠BOE=∠COE=4x.∠∠AOC与∠BOC是邻补角∠∠AOC+∠BOC=180°即x+4x+4x=180°解得x=20°.∠∠AOC与∠AOF互为余角∠∠AOF=90°−∠AOC=90°−20°=70°.【点睛】此题考查角平分线的定义对顶角、邻补角解题关键在于掌握其性质定义.9.如图∠1=∠2 ∠1+∠2=162° 求∠3与∠4的度数.【答案】∠3=54°∠4=72°【详解】试题分析:本题首先根据方程思想求出. ∠1、∠2的度数再根据对顶角、邻补角的关系求出∠3与∠4的度数.试题解析:由已知∠1=∠2 ∠1+∠2=162°解得:∠1=54° ∠2=108°.∠∠1与∠3是对顶角∠∠3=∠1=54°.∠∠2与∠4是邻补角∠∠4=180°﹣∠2=72°.考点:1二元一次方程组;2对顶角;3邻补角.10.如图直线AB CD相交于点O EO∠AB垂足为O.(1)若∠COE =35° 则∠AOD 的度数为_________°(直接写出结果);(2)若∠AOD +∠COE =170° 求∠COE 的度数. 【答案】(1)125(2)40°【分析】(1)先根据两角互余求出∠AOC 的度数 再利用邻补角即可求出∠AOD 的度数;(2)设AOC x ∠= 则AOC BOD x ∠=∠= 再利用周角列出方程 解出x 的值之后再利用互余即可求出∠COE 的度数.(1)解:∠∠COE =35° EO ∠AB∠90AOE COE AOC ∠=∠+∠=︒∠903555AOC ∠=︒-︒=︒.又∠∠AOD 是∠AOC 的邻补角∠180125AOD AOC ∠=︒-∠=︒.(2)解:设AOC x ∠= 则AOC BOD x ∠=∠=∠360AOD COE AOC BOD BOE ∠∠+∠+∠+∠=︒+即170902360x ︒+︒+=︒解得50x =︒.∠905040COE ∠=︒-︒=︒.【点睛】本题考查了两角互余的关系和邻补角以及周角 解题的关键是熟练掌握互余、互补的概念和对顶角相等以及周角为360︒ 互余是指两角之和为90° 互补是指两角之和为180° 并且熟知两个角有一条公共边 它们的另一边互为反向延长线 具有这种关系的两个角 叫做邻补角. 11.如图 直线AB CD 相交于点O OE 把BOD ∠分成两部分.(1)直接写出图中AOD ∠的对顶角为______ DOE ∠的邻补角为______.(2)若=90AOC ∠︒ 且:2:3BOE EOD ∠∠=.求EOC ∠的度数.【答案】(1)BOC ∠ EOC ∠;(2)126゜【分析】(1)根据对顶角和邻补角的定义直接写出即可;(2)根据对顶角相等求出∠BOD 的度数 再根据∠BOE :∠EOD =2:3求出∠BOE 和∠EOD 的度数 即可求出∠EOC 的度数.【详解】解:(1)AOD ∠的对顶角为BOC ∠ DOE ∠的邻补角为EOC ∠.(2)∠∠BOE :∠EOD =2:3 设2BOE x ∠= 3EOD x ∠=则590BOD AOC x ∠=∠==解得:18x =.∠354DOE x ∠==.∠180126EOC DOE ∠=-∠=.【点睛】本题主要考查了对顶角与邻补角的定义 解题的关键在于能够熟练掌握相关知识进行求解.12.如图 直线AB 和CD 相交于点O OE 把∠AOC 分成两部分且∠AOE :∠EOC =3:5 OF 平分∠BOE .(1)若∠BOD =80° 求∠BOE ;(2)若∠BOF =∠AOC +14° 求∠EOF .【答案】(1)150°;(2)78°13.如图 直线AB CD 相交于点O OE AB ⊥ 垂足为O .(1)直接写出图中AOC ∠的对顶角为 BOD ∠的邻补角为 ;(2)若:1:2BOD COE ∠∠= 求AOD ∠的度数.【答案】(1)BOD ∠;BOC ∠ AOD ∠;(2)150°【分析】(1)根据对顶角、邻补角的定义寻找对顶角和邻补角即可;(2)设∠BOD=x 则∠COE=2x 再根据∠BOD 与∠COE 互余可求得x 的值 从而得出∠AOC 的大小 进而得出∠AOD 的大小.【详解】(1)∠AOC 的对顶角为:∠BOD∠BOD 的邻补角为:∠BOC ∠AOD(2)∠:1:2BOD COE ∠∠=设∠BOD=x 则∠COE=2x∠OE∠AB∠∠EOB=90°∠∠COE+∠BOD=90° 即x+2x=90°解得:x=30°∠∠BOD=∠COA=30°∠∠AOD=150°【点睛】本题考查角度的简单推导 解题关键是利用对顶角相等和补角为180°转化求解.14.如图 直线MD 、CN 相交于点O OA 是∠MOC 内的一条射线 OB 是∠NOD 内的一条射线 ∠MON =70°.(1)若∠BOD =12∠COD 求∠BON 的度数;(2)若∠AOD =2∠BOD ∠BOC =3∠AOC 求∠BON 的度数. 【答案】(1)75°(2)54°【分析】(1)先由对顶角相等求出∠COD =70° 再由已知条件求出∠BOD 的度数 根据邻补角的定义与角的和差进行求解即可;(2)设∠AOC =x ° 则∠BOC =3x ° 利用角的和差即可解得x 进而求解.(1)∠∠MON =70°∠∠COD =∠MON =70°15.如图直线AB、CD相交于点O OE∠AB 且∠DOE=5∠COE 求∠AOD的度数.【答案】120°【分析】由OE∠AB可得∠EOB=90° 设∠COE=x 则∠DOE=5x 而∠COE+∠EOD=180° 即x+5x=180° 得到x=30° 则∠BOC=30°+90°=120° 利用对顶角相等即可得到∠AOD的度数.【详解】解:∠OE∠AB∠∠EOB=90°设∠COE=x 则∠DOE=5x∠∠COE+∠EOD=180°∠x+5x=180°∠x=30°∠∠BOC=∠COE+∠BOE=30°+90°=120°∠∠AOD=∠BOC=120°.。
沪教版七年级(下)数学第十三章相交线-平行线课课练及单元测试卷一和参考答案
数学七年级下第十三章相交线平行线13.1 邻补角、对顶角(1)一、选择题1、图中是对顶角的是( )A B C D2 如图,∠AOC的邻补角是( )A. ∠AODB. ∠BOCC. ∠AOD和∠BOCD. ∠AOE和∠COF第2题第4题3.下列说法中,正确的是()A、有公共顶点,没有公共边的两个角是对顶角;B、相等的两个角是对顶角;C、如果两个角是对顶角,那么这两个角相等;D、有公共顶点且和为180°的两个角为邻补角。
4. 如图,三条直线l1、l2、l3相交于点O,则∠1+∠2+∠3= ()A、270°B、180°C、120°D、90°5、平面上三条直线两两相交最多能构成对顶角的对数是()A、6B、8C、10D、46、已知∠1与∠2是邻补角,∠2是∠3的邻补角,那么∠1与∠3的关系是()A、相等但不是对顶角B、邻补角C、互补但不是邻补角D、对顶角7. 三条直线相交于同一点时,对顶角有m对,相交于不同三点时,对顶角为n对,则m与n的关系是()A、m=nB、m>nC、m<nD、m+n=10二、填空题8. 平面内两条直线相交有个交点,三条直线相交可能有个交点,四条直线相交可能有个交点,五条直线相交最多有个交点。
9、如图,直线AB、CD相交于O点,∠AOE=90°。
∠1和∠2互为______角;∠2和∠4互为______角,∠1和∠3互为_______角。
10、如图,∠2=∠3,∠1=65°,则∠4= ,∠5= 。
11、如图,三条直线AB、CD、EF相交于点O,∠1=62°,∠2=50°,则∠COE= ,∠DOE= , ∠AOE= 。
第9题第10题第11题第12题12.如图,三条直线交于同一点,∠1:∠2:∠3=3:5:2,则∠4=___ ______.三、简答题13、如图,直线ABCDEF都经过O点,∠AOC =38°,∠COE=54°,求∠EOB、∠BOC、∠DOF、∠COF和∠FOA的度数。
2023年春上海七年级下数学辅导讲义(沪教版)第5讲 邻补角、对顶角及垂直(讲义)解析版
第5讲邻补角、对顶角及垂直模块一:邻补角的意义和性质知识精讲1、平面上两条不重合直线的位置关系相交:两条直线有一个交点;平行:两条直线没有交点.2、邻补角的意义两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角叫做互为邻补角.3、邻补角的性质互为邻补角的两个角一定互补,但互补的两个角不一定互为邻补角.例题解析例1.(2018·上海七年级零模)已知,∠B与∠A互为邻补角,且∠B=2∠A,那么∠A为________度.【答案】60【分析】设A x ∠=,则2B x ∠=,然后根据领补角的定义进行求解即可.【详解】解:设A x ∠=,则2B x ∠=根据题意得,2180x x +=︒,解得:60x =︒,∴60A ∠=︒,故答案为:60.【点睛】本题主要考查领补角的定义及一元一次方程的解法,熟练掌握领补角的定义及一元一次方程的解法是解题的关键.例2.(2019·上海浦东新区·七年级期末)互为邻补角的两个角的大小相差60︒,这两个角的大小分别为_____________【答案】60,120︒︒【分析】设其中一个角为x ,则根据邻补角的定义得另一个角为180x ︒-,再根据两个角的大小相差60︒,列出方程,解方程即可【详解】解:设其中一个角为x ,则另一个角为180x ︒-,∵两个角的大小相差60︒,∴()18060x x ︒︒--=或()18060x x ︒︒--= ∴120x ︒=或60x ︒=,∴18060x ︒︒-=或120︒,故答案为:60,120︒︒【点睛】本题考查了邻补角的定义和解一元一次方程,熟练掌握相关知识是解题的关键 例3.(2018·上海七年级期中)如果两个角互为邻补角,其中一个角为65°,那么另一个角为______度.【答案】115【分析】根据邻补角互补即可得到结论.【详解】解:由题意得,180°-65°=115°, 答:另一个角为115°, 故答案为115.【点睛】本题考查了邻补角,熟记邻补角互补是解题的关键.例4.如图,直线AB 、CD 相交于点O ,∠AOD =35°,则∠AOC =___________;∠BOD=_________;∠BOC=______________.【难度】★【答案】145︒,145︒,35︒.【解析】AOD∠和AOC∠互为邻补角,∠,BOC∠互为邻补角.∠和BODBOD∠和AOD【总结】考察邻补角的定义.例5.经过两点可以画_______________条直线,两条直线相交,有且只有_________个交点.【难度】★【答案】1,1.【解析】考察两点确定一条直线以及相交的意义.例6.如图,∠BOF的邻补角是().A.∠AOE B.∠AOF和∠BOE C.∠AOB D.∠BOE和∠DOF【难度】★【答案】B【解析】考察邻补角的意义.例7.把下图中邻补角分别写出来.【难度】★【答案】AFE ∠和BFE ∠,BOD ∠和AOD ∠,BOD ∠和BOC ∠,AOC ∠和AOD ∠,AOC ∠和BOC ∠.【解析】考察邻补角的意义例8.已知∠1=∠2,∠1与∠3互余,∠2与∠4互补,则∠3___________∠4.【难度】★【答案】<.【解析】1+3=90∠∠︒(互余的意义),2+4=180∠∠︒(互补的意义),又1=2∠∠(已知), 9031804∴︒-∠=︒-∠(等式性质). 4390∴∠-∠=︒(等式性质), 34∴∠<∠.【总结】考察互余,互补的概念以及利用简单的运算比较大小.例9.已知,AB 与CD 相交于O 点,若∠AOD 比∠AOC 大40°,则∠BOD =________,若∠AOD =2∠AOC ,则∠BOD =________,若∠AOD =∠AOC ,则∠BOD =________.【难度】★【答案】706090︒︒︒,,.【解析】设AOC x ∠=,则40AOD x ∠=+︒,40x x ++180=︒(邻补角的意义), 解得:70x =︒,所以40110x +︒=︒, 所以70BOD ∠=︒(邻补角的意义); 设AOC x ∠=,则2180x x +=︒解得:60x =︒,所以2120x=︒,所以60BOD∠=︒(邻补角的意义);设AOC x∠=,则2180x=︒,解得:90x=︒,所以90BOD∠=︒.【总结】考察平角的意义以及邻补角的定义.例10.如图所示,O是直线AB上任意一点,以O为端点任意做一条射线OC,且OD平分∠BOC,OE平分∠AOC,求∠DOE的度数.【难度】★★【答案】90︒.【解析】因为OD平分BOC∠,OE平分AOC∠(已知)所以BOD COD∠=∠,COE AOE∠=∠(角平分线的意义)因为180BOD COD EOC AOE∠+∠+∠+∠=︒(平角的意义)所以22180EOC COD∠+∠=︒(等量代换)所以90EOC COD∠+∠=︒(等式性质)即90DOE∠=︒【总结】主要考察平角的意义,角平分线的意义的综合运用.例11.如图,射线OA、OB、OC、OD有公共端点O,且∠AOB=90°,∠COD=90°,∠AOD=5 4∠BOC,求∠BOC的度数.【难度】★★【答案】80︒.【解析】因为∠AOD=54∠BOC,所以设BOC x∠=,则54AOD x∠=.因为360AOB AOD COD BOC∠+∠+∠+∠=(周角的意义)又∠AOB=90°,∠COD=90°(已知)所以51804x x+=︒(等式性质)解得:80x=︒,即80BOC∠=.【总结】考察周角的概念,以及利用设未知数的思路求解角的度数.例12.(1)已知∠1和∠2互为邻补角,且∠1比∠2的3倍大20°,求∠1和∠2的度数;(2)一个角的补角比这个角的余角的2倍大15°,求这个角的度数.【难度】★★【答案】(1)1140∠=︒,240∠=︒;(2)15︒.【解析】(1)因为∠1和∠2互为邻补角,所以12180∠+∠=︒(邻补角的意义).因为13220∠=∠+︒(已知),所以4220180∠+︒=︒(等量代换),所以240∠=︒,1140∠=︒(等式性质);(2)设这个角为x,则根据题意可得:180(90)215x x-=-⨯+︒,解得:15x=︒,即这个角的度数为15︒.【总结】考察补角,余角以及邻补角的概念及其综合运用.例13.如图,直线AB 、CD 相交于点O ,且∠AOC =54°,∠1比∠2小10°,求∠1、∠2的度数.【难度】★★【答案】22︒,32︒.【解析】因为直线AB 、CD 相交于点O (已知),所以AOC BOD ∠=∠54=︒(对顶角相等).设1x ∠=,则210x ∠=+, 故1054x x ++=︒, 解得:22x =︒,所以1032x +=︒, 即122∠=,232∠=.【总结】考察对顶角的意义及角的和差的综合运用.例14.如图,直线AB 、CD 、EF 相交于点O ,且∠AOF =3∠BOF ,∠AOC =90°,(1) 求∠COE 的度数;(2) 说明OE 、OF 分别是∠AOC 、∠BOD 的平分线的理由.【难度】★★【答案】(1)45︒;(2)略.【解析】(1)因为180AOF BOF ∠+∠=︒(邻补角的意义)又3AOF BOF ∠=∠(已知)所以4180BOF ∠=︒(等量代换)所以45∠=︒(等式性质)BOF因为直线AB、EF相交于点O(已知)所以BOF AOE∠=∠(对顶角相等)因为90∠=︒(已知)AOC所以9045∠=︒-∠=︒(等式性质)COE BOF(2)因为90COE∠=︒(已知)AOC∠=︒,45所以45AOE∠=︒(等式性质)所以AOE COE∠=∠(等量代换)因为BOF AOE∠=∠(对顶角相等)所以45∠=∠=︒(等量代换)AOE BOF同理45∠=︒DOF所以OE、OF分别是∠AOC、∠BOD的平分线(角平分线的意义)【总结】考察邻补角的意义,角平分线的意义以及相应的计算,综合性较强,注意认真分析题目中的条件.模块二:对顶角的意义和性质知识精讲1、对顶角的意义两个角有公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角叫做互为对顶角.2、对顶角的性质对顶角相等.例题解析例1.(2019·上海浦东新区·七年级期中)下列说法:①对顶角相等;②相等的两角一定是对顶角;③如果两个角不是对顶角,那么它们一定不相等;其中正确的说法有( )A.0 B.1 C.2 D.3【答案】B【分析】根据对顶角的定义以及性质对各选项分析判断后利用排除法求解.【详解】解:①对顶角相等,正确;②相等的两个角是一定对顶角,错误;③如果两个角不是对顶角,那么它们一定不相等;错误;故选:B.【点睛】本题考查了对顶角的定义以及对顶角相等的性质,是基础题,掌握概念与性质是解题的关键.例2.(2019·上海市嘉定区震川中学七年级期中)在下列四个选项中的图形中,∠1与∠2是对顶角的图形是( ).A.B.C.D.【答案】C【分析】根据对顶角的定义,对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,据此即可判断.【详解】解:根据对顶角的定义可得,四个图形中C中∠1与∠2为对顶角.故答案为:C.【点睛】本题考查了对顶角的定义,理解定义是解题的关键.例3.下列说法中,正确的是( )A.有公共顶点的两个角是对顶角B.对顶角一定相等C.有一条公共边的两个角是邻补角D.互补的两个角一定是邻补角【难度】★【答案】B【解析】A错误,有公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角才叫做互为对顶角;B正确;C错误,有一条公共边,且它们的另一边互为反向延长线;D错误,互补的两个角不一定是邻补角.【总结】考察邻补角和对顶角的概念.例4.把下图中对顶角分别写出来.【难度】★【答案】AOB∠和AOD∠.∠,BOC∠和COD【解析】考察对顶角的定义.例5.(1)如果以点O为端点画四条射线OA、OB、OC、OD,且OA、OC, OB、OD互为反向延长线,那么∠AOB和∠COD互为_________;(2)如果以点O为端点画三条射线OA、OB、OC,且射线OA、OC互为反向延长线,那么∠AOB 和∠COB 互为_________.【难度】★【答案】对顶角,邻补角.【解析】考察对顶角和邻补角的定义.例6.如图,共有对顶角() A .4对 B .5对 C .6对 D .8对【难度】★【答案】D【解析】CJA ∠和KJG ∠,CJK ∠和AJG ∠,BIJ ∠和EIF ∠,BIE ∠和JIG ∠,CGB ∠和FGD ∠, CGF ∠和BGD ∠,CHF ∠和EHD ∠,CHE ∠和FHD ∠均互为对顶角.【总结】本题主要考察对顶角的概念.例7.下列说法:①对顶角相等;②相等的角是对顶角;③如果两个角不相等,那么这两个角一定不是对顶角;④如果两个角不是对顶角,那么这两个角不相等.其中正确的说法是( )A .①②B .①③C .②③D .②④ 【难度】★★【答案】B【解析】(1)正确;(2)错误,相等的角不一定是对顶角;(3)正确,对顶角一定是相等的,(4)错误,不是对顶角也可以相等.【总结】主要考察学生对对顶角的理解,相等的角不一定是对顶角,但对顶角一定相等,不是对顶角的两个角也可以相等.例8.a、b、c两两相交,∠1=60°,∠2:∠4=3:2,求∠3和∠5的度数.【难度】★★【答案】40︒,120︒.【解析】因为12∠=︒(已知)∠=∠(对顶角相等),160所以260∠=︒(等量代换)因为2:43:2∠=︒(等式性质)∠∠=(已知),所以440因为34∠=︒(等量代换)∠=∠(对顶角相等),所以340因为25180∠=︒(等式性质)∠+∠=︒(邻补角的意义),所以5120【总结】考察邻补角和对顶角的意义及综合运用.例9.如图,直线AB、CD交于点O,则(1)若∠2=3∠1,则∠1=__________;(2)若∠2:∠3=4:1,则∠2=__________;(3)若∠2-∠1=100°,则∠3=__________.【难度】★★【答案】45︒,144︒,40︒.【解析】(1)因为12180∠+∠=︒(邻补角的意义), 又231∠=∠(已知)所以41180∠=︒(等量代换), 所以145∠=︒(等式性质);(2)因为23180∠+∠=︒(邻补角的意义),∠2:∠3=4:1(已知)所以设24x ∠=,3x ∠=, 则4180x x +=︒(等量代换),解得:36x =︒,4144x =︒(等式性质), 即2144∠=;(3) 因为12180∠+∠=︒(邻补角的意义),∠2-∠1=100°(已知)所以2140∠=︒,140∠=︒(等式性质), 所以340∠=︒(对顶角相等)【总结】考察学生对于邻补角知识点的掌握,同时还考察学生对于二元一次方程组的计算,设未知数列式计算等.例10.a 、b 、c 交于点O ,两条直线相交,∠2=∠1,∠3:∠1=8:1,求∠4的度数【难度】★★【答案】36︒.【解析】设12x ∠=∠=,则38x ∠=, 故8180x x x ++=︒,解得:18x =︒(等式性质), 所以1218∠=∠=.所以436∠=︒(对顶角相等)【总结】考察学生对邻补角和对顶角的意义及综合运用.例11.已知直线AB 、CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COE ,∠2:∠1=4:1,求∠AOF 的度数.【难度】★★★【答案】135︒.【解析】因为OE平分∠BOD(已知)所以1DOE∠=∠(角平分线的意义)设1x∠=,则DOE x∠=,24x∠=,因为4180x x x++=︒(平角的意义),所以30x=︒(等式性质)即30DOE∠=,所以150COE∠=︒(邻补角的意义).因为OF平分∠COE(已知),所以COF EOF∠=∠(角平分线的意义)所以COF EOF ∠=∠12COE=∠75=︒(等式性质)因为1EOF BOF∠=∠+∠(角的和差)所以45BOF∠=︒(等式性质)因为180AOF BOF∠+∠=(邻补角的意义)所以135AOF∠=︒(等式性质)【总结】考察学生对邻补角,角平分线的意义的概念的理解以及简单的运算,综合性较强,注意认真分析条件.例12.(2020·上海市静安区实验中学七年级课时练习)观察图形,回答下列各题:(1)图A中,共有____对对顶角;(2)图B中,共有____对对顶角;(3)图C中,共有____对对顶角;(4)探究(1)--(3)各题中直线条数与对顶角对数之间的关系,若有n条直线相交于一点,则可形成________对对顶角;【答案】(1)2对;(2)6对;(3)12对;(4)n(n-1) (n≥2).试题分析:(1)图A中,共有2对对顶角;(2)图B中,共有6对对顶角;(3)图C中,共有12对对顶角;(4)找出对顶角的对数与直线的条数n之间的关系式为:n(n-1)(n ≥2).试题解析:(1)2对;(2)6对;(3)12对;(4)2条直线相交时,对顶角对数为:1×2=2对;3条直线相交时,对顶角对数为:3×2=6对;4条直线相交时,对顶角对数为:4×3=12对;…n条直线相交时,对顶角对数为:n(n-1)(n≥2)对.点睛:本题关键在于找出直线的条数与对顶角对数的关系式.模块三:垂线(段)的意义和性质知识精讲1、垂线的意义如果两条直线的夹角为直角,那么就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.2、垂直的符号记作:“⊥”,读作:“垂直于”,如:AB⊥CD,读作“AB垂直于CD”.注:垂直是特殊的相交.3、垂直公理:在平面内,过直线上或直线外的一点作已知直线的垂线可以作一条,并且只能作一条.简记为:过一点,有且仅有一条直线与已知直线垂直4、中垂线过线段中点且垂直于这条线段的直线,叫做这条线段的垂直平分线,简称中垂线.5、垂线段的性质联结直线外一点与直线上各点的所有线段中,垂线段最短.6、点到直线的距离直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离.如果一个点在直线l上,那么就说这个点到直线l的距离为零.例题解析例1.“同一平面内,过一点有且只有一条直线与已知直线垂直”中这一点的位置()A.在直线的上方B.在直线的下方C.在直线上D.可以任意位置【难度】★【答案】D【解析】考察对垂直公理的理解及运用.例2.如图,OA⊥OB于O,直线CD经过点O,∠AOD=35°,则∠BOC=_______.【难度】★【答案】125︒.【解析】OA OB⊥(已知)AOB∴∠=︒(垂线的意义)90AOD∠=︒(已知)35∴∠=︒(互余)BOD55∴∠=︒(邻补角的意义)125BOC【总结】考察垂线的意义以及互余的意义及综合运用.例3.下列说法中正确的是()A.有且只有一条直线垂直于已知直线B.从直线外一点到这条直线的垂线段,叫做这点到这条直线距离C.互相垂直的两条线段一定相交D.直线c外一点A与直线c上各点连接而成的所有线段中最短线段的长是3cm,则点A 到直线c的距离是3cm【难度】★★【答案】D【解析】A错误,过一点有且只有一条直线垂直于已知直线; B错误,垂线段的长度;C错误,互相垂直的两条直线一定相交; D正确.【总结】考察垂直公理,点到直线的距离以及垂线段的性质等内容.例4.列说法正确的个数是()①直线上或直线外一点,都能且只能画这条直线的一条垂线;②过直线l上一点A和直线l外一点B的直线,使它与直线l垂直;③从直线外一点作这条直线的垂线段,叫做这个点到这条直线的距离;④过直线外一点画这条直线的垂线段,垂线段的长度叫做这点到这条直线的距离.A.1 B.2 C.3 D.4【难度】★★【答案】C【解析】(1)错误,在同一平面内;(2)错误;(3)错误,点到直线的距离是指垂线段的长度,故选C.【总结】考察学生对基本概念的理解.∆,根据下列语句画图.例5.(2018·上海松江区·七年级期中)如图,已知ABC⊥,垂足为D;(1)过点A作AD BC(2)过点D作DE AB∥,交AC于点E;(3)点C到直线AD的距离是线段_______的长度.【答案】(1)见解析.(2)见解析.(3)CD.【分析】(1)根据垂线的定义画出直线AD即可;(2)根据平行线的定义画出直线DE即可;(3)根据点到直线的距离判断即可.【详解】(1)如图,直线AD 即为所求(2)如图,直线DE 即为所求(3)点C 到直线AD 的距离是线段CD 的长度.【点睛】本题考查了作图-复杂作图、平行线的判定及性质、点到直线的距离,熟练掌握垂线、平行线、点到直线的距离的定义是解题的关键.例6.(2019·上海市浦东新区建平中学南校七年级期中)按下列要求画图并填空:如图,(1)过点A 画直线BC 的平行线AD ;(2)过点B 画直线AD 的垂线段,垂足为点E ;(3)若点B 到直线AD 的距离为4cm ,BC=2cm ,则ABC S =________2cm .【答案】(1)见解析(2)见解析(3)4【分析】(1)根据平行线的画法画出即可;(2)根据垂线的画法画出即可;(3)根据平行线间的距离处处相等得出三角形ABC的高为4cm,再根据三角形的面积公式即可求出.【详解】解:(1)如图:AD即为所求(2)如图: BE即为所求(3)因为BC//AD,所以三角形ABC的高为4cm;所以12442ABCS=⨯⨯=;故答案为:4【点睛】本题考查了基本作图的知识以及三角形的面积公式,正确的作出图形是解答第(3)题的关键,难度不大.例7.(2019·上海七年级单元测试)如图所示,点P是∠ABC内一点.(1)画图:①过点P画BC的垂线,垂足为D;②过点P画BC的平行线交AB于点E,过点P 画AB的平行线交BC于点F.(2)∠EPF等于∠B吗?为什么?【答案】(1)图形见解析(2)∠EPF=∠B试题分析:(1)①过点P作BC的垂线,D是垂足;②过点P作BC的平行线交AB于E,过点P作AB的平行线交BC于F;(2)根据平行线的性质可得∠AEP=∠B,∠EPF=∠AEP然后利用等量代换得到结论即可.解:如图所示,(1)①直线PD即为所求;②直线PE、PF即为所求.(2)∠EPF=∠B,理由:因为PE∥BC(已知),所以∠AEP=∠B(两直线平行,同位角相等).又因为PF∥AB(已知),所以∠EPF=∠AEP(两直线平行,内错角相等),∠EPF=∠B(等量代换).点睛:本题考查了平行线和垂线的画法及平行线的性质,熟练掌握两直线平行同位角相等,两直线平行内错角相等是解答本题的关键.例8.如图,点A到直线BC的距离是线段_______的长;线段CH的长表示点C到直线________的距离;点A到点C的距离是线段_________长.【难度】★★【答案】AE,AD,AC.【解析】考察点到直线的距离的概念的理解及运用.例9.如图,AC⊥BC,C为垂足,CD⊥AB,D为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点C到AB的距离是_______,点A到BC的距离是________,点B到CD的距离是_____,A、B两点的距离是_________.【难度】★★【答案】4.8,6,6.4,10.【解析】点C到AB的距离是线段CD的长,即4.8;点A到BC的距离是线段AC的长,即6;点B到CD的距离是线段BD的长,即6.4;A、B两点的距离是线段AB的长,即10.【总结】考察点到直线的距离的内容.例10.作图题:过点P分别画直线a、b的垂线,垂足分别为M、N.【难度】★★【答案】【解析】考察垂线的画法例11.按下列要求画图并填空:(1)过点B画出直线AC的垂线,交直线AC于点D,那么点B到直线AC的距离是线段_________的长.(2)用直尺和圆规作出△ABC的边AB的垂直平分线EF,交边AB、AC于点M、N,联结CM.那么线段CM是△ABC的___________.(保留作图痕迹)【难度】★★【答案】(1)BD;(2)AB边上的中线【解析】考察垂线的画法.例12.一辆汽车在直线形的公路上由A向B行驶,M、N分别是位于公路AB两侧的两个学校;(1)汽车行驶时,会对公路两旁的学校都造成一定的影响,当汽车行驶到何处时,分别对两个学校影响最大?在图中标出来.(2)当汽车由A向B行驶时,在哪一段上对两个学校影响越来越大?越来越小?对M学校影响逐渐减小而对N学校影响逐渐增大?【难度】★★★【解析】(1)如下图所示,到C 点时对M 影响最大,到D 点时对N 影响最大;(2)由A 向C 时,对两学校影响逐渐增大;由D 向B 时,对两学校影响逐渐减小;由C 向D 时,对M 影响减小,对N 影响增大.【总结】本题主要考察对点到直线的距离的概念的理解及在实际问题中的运用.随堂检测1.到一条直线的距离等于2的点有() A .1个B .0个C .无数个D .无法确定 【难度】★【答案】C【解析】到直线的距离等于2的点有无数个,这些点组成两条直线.【总结】考察点到直线的距离.2.下列说法错误的是( )A .两点之间,线段最短B .和已知直线垂直的直线有且只有一条C .过直线外一点有且只有一条直线平行于已知直线D .在同一平面内过一点有且只有一条直线垂直于已知直线DC N MBA【难度】★【答案】B【解析】B错误,有无数条.【总结】考察学生对垂线的意义和性质的理解.3.如图,过△ABC三个顶点A、B、C,分别作BC、AC、AB的垂线,并用“⊥”符号表示出来.【难度】★【答案】【解析】考察垂线段的作法.4.下列说法正确的个数有()(1)直线外一点与直线上各点的所有连接线中垂线段最短;(2)画一条直线的垂线可以画无数条;(3)在同一平面内,经过一个已知点能画出一条直线和已知直线垂直;(4)从直线外一点到这条直线的垂线段叫做点到直线的距离A.1个B. 2个C. 3个D.4个【难度】★★【答案】C【解析】(4)错误,直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故选C.【总结】本题主要考查点到直线的距离及垂线的相关概念等.5.若∠α=54°,∠β的两边与∠α两边互相垂直,则∠β=____________.【难度】★★【答案】54︒或126︒.【解析】∠α和∠β是相等或者互补的关系.【总结】考察垂线的意义以及两解问题,注意分类讨论.6.平面上三条直线两两相交,最多有m个交点,最少有n个交点,则m n+=____________.【难度】★★【答案】4.【解析】最多有3个交点,最少有1个交点.3+=.m nn=,4m=,1【总结】考察学生的作图分析能力.7.如图,直线AB、CD、EF相交于点O,OA平分∠COE,当∠COE=70°,求∠BOD的度数,当∠DOE=110°时,求∠BOD的度数.【难度】★★【答案】35︒,35︒.【解析】因为OA平分COE∠,∠COE=70°(已知)所以1352AOC AOE COE∠=∠=∠=︒(角平分线的意义)所以35BOD AOC∠=∠=︒(对顶角相等)同理,35BOD∠=︒【总结】考察学生对邻补角和对顶角知识点的掌握和简单应用.8.已知AB⊥l,BC⊥l,B为垂足,问:A、B、C三点共线吗?为什么? 【难度】★★【答案】共线.【解析】过直线外一点有且只有一条直线与已知直线垂直.【总结】考察垂线段意义和性质,注意对三点共线的理解.9.如图已知O是直线AC上一点,OB是一条射线,OD平分∠AOB,OE在∠BOC内,∠BOE=1 2∠EOC,∠DOE=70°,求∠EOC的度数.【难度】★★★【答案】80︒.【解析】因为OD平分∠AOB(已知)所以AOD BOD∠=∠(角平分线的意义)设BOE x∠=,BOD y∠=,则7023180x yy x+=︒⎧⎨+=︒⎩,解得:4030xy=︒⎧⎨=︒⎩,所以∠EOC =280x=︒.【总结】这一题考察学生对角平分线的内容理解,对补角的知识点的掌握以及二元一次方程组的列式和计算等.10.如图,已知∠AOB,画射线OC⊥OA,射线OD⊥OB,你能画出几种符合要求的图形?并猜想∠COD与∠AOB的数量关系,并说明理由.【难度】★★★【答案】相等或互补【解析】如图.【总结】主要考察多解问题,是对学生发散思维的要求.。
人教版七年级数学下册《识别三线八角》专项练习题-附含答案
人教版七年级数学下册《识别三线八角》专项练习题-附含答案【模型讲解】如图已知直线a b被直线c d所截直线a c d相交于点O按要求完成下列各小题.(1)在图中的∠1~∠9这9个角中同位角共有多少对?请你全部写出来;(2)∠4和∠5是什么位置关系的角?∠6和∠8之间的位置关系与∠4和∠5的相同吗?【分析】根据同位角、内错角和同旁内角的特征(同位角形如“F” 内错角形如“Z” 同旁内角形如“U”)判断即可.【详解】解:(1)如题图所示:同位角共有5对:分别是∠1和∠5 ∠2和∠3 ∠3和∠7 ∠4和∠6 ∠4和∠9;(2)由三线八角的判断方法∠4和∠5是由c b d三线组成并且构成“U”形图案所以∠4和∠5是同旁内角同理可得:∠6和∠8也是同旁内角故∠6和∠8之间的位置关系与∠4和∠5的相同.【模型演练】1.如图同位角共有()对.A.6B.5C.8D.7【答案】A【分析】根据同位角的概念解答即可.【详解】解:同位角有6对∠4与∠7 ∠3与∠8 ∠1与∠7 ∠5与∠6 ∠2与∠9 ∠1与∠3故选:A.【点睛】此题考查同位角关键是根据同位角解答.2.如图下列判断中正确的个数是()(1)∠A 与∠1是同位角;(2)∠A 和∠B 是同旁内角;(3)∠4和∠1是内错角;(4)∠3和∠1是同位角.A .1个B .2个C .3个D .4个 【答案】C【分析】准确识别同位角、内错角、同旁内角的关键 是弄清哪两条直线被哪一条线所截.也就是说 在辨别这些角之前 要弄清哪一条直线是截线 哪两条直线是被截线.【详解】解:(1)∠A 与∠1是同位角 正确 符合题意;(2)∠A 与∠B 是同旁内角.正确 符合题意;(3)∠4与∠1是内错角 正确 符合题意;(4)∠1与∠3不是同位角 错误 不符合题意.故选:C .【点睛】此题主要考查了三线八角 在复杂的图形中识别同位角、内错角、同旁内角时 应当沿着角的边将图形补全 或者把多余的线暂时略去 找到三线八角的基本图形 进而确定这两个角的位置关系.3.如图 B ∠的内错角是( )A .1∠B .2∠C .3∠D .4∠【答案】A【分析】根据内错角的定义判断即可;【详解】解:A 、B ∠的内错角是1∠ 故此选项符合题意;B 、B ∠与2∠是同旁内角 故此选项不合题意;C 、B ∠与3∠是同位角 故此选项不合题意;D 、B ∠与4∠不是内错角 故此选项不合题意;答案:A.【点睛】本题主要考查了内错角的判定准确分析判断是解题的关键.4.下列所示的四个图形中∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④【答案】C【分析】根据同位角的定义逐一判断即得答案.【详解】图①中的∠1与∠2是同位角图②中的∠1与∠2是同位角图③中的∠1与∠2不是同位角图④中的∠1与∠2是同位角所以在如图所示的四个图形中图①②④中的∠1和∠2是同位角.故选:C.【点睛】本题考查了同位角的定义属于基础概念题型熟知概念是关键.5.如图所示下列说法不正确的是()A.∠1和∠2是同旁内角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠4是内错角【答案】A【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角故此选项错误;B. ∠1和∠3是对顶角此选项正确;C. ∠3和∠4是同位角此选项正确;D. ∠1和∠4是内错角 此选项正确;故选A.【点睛】此题考查对顶角 邻补角 同位角 内错角 同旁内角 解题关键在于掌握各性质定义.6.如图 有下列说法:其中结论正确的是( )①若//DE AB 则180DEF EFB ∠+∠=︒;②能与EDC ∠构成内错角的角的个数有1个③能与DEC ∠构成同位角的角的个数有2个;④能与B ∠构成同旁内角的角的个数有4个A .①B .①④C .①②④D .①③④ 【答案】B【分析】根据平行线的性质、同位角、内错角、同旁内角的定义解答即可.【详解】解:①若DE ∠AB 则∠DEF +∠EFB =180° 故①正确;②能与∠EDC 构成内错角的角的个数有2个 只有∠DEF 和∠DEA 故②错误;③能与∠DEC 构成同位角的角的个数有1个 只有∠A 故③错误;④能与∠B 构成同旁内角的角的个数有4个 分别为∠BDE 、∠BFE 、∠A 、∠C 故④正确. 故选B .【点睛】本题主要考查了同位角、内错角、同旁内角及平行线的性质 正确理解同位角、内错角、同旁内角的定义是解答本题的关键.7.如图 直线AD BE 被直线BF 和AC 所截 则∠1的同位角和∠5的内错角分别是( )A.∠4 ∠2B.∠2 ∠6C.∠5 ∠4D.∠2 ∠4【答案】B【分析】同位角:两条直线a b被第三条直线c所截(或说a b相交c)在截线c的同旁被截两直线a b的同一侧的角我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截两个角分别在截线的两侧且夹在两条被截直线之间具有这样位置关系的一对角叫做内错角.根据此定义即可得出答案.【详解】解:∠直线AD BE被直线BF和AC所截∠∠1与∠2是同位角∠5与∠6是内错角故选:B.【点睛】本题考查的知识点是同位角和内错角的概念解题的关键是熟记内错角和同位角的定义.8.已知图(1)—(4):在上述四个图中∠1与∠2是同位角的有().A.(1)(2)(3)(4)B.(1)(2)(3)C.(1)(3)D.(1)【答案】C【分析】根据同位角的定义;两条直线被第三条直线所截形成的角中若两个角都在两直线的同侧并且在第三条直线(截线)的同旁则这样一对角叫做同位角进行判断即可.【详解】图①③中∠1与∠2是同位角;故选C.【点睛】此题主要考查了同位角关键是掌握同位角的边构成“F“形.9.如图直线AD、BC被直线AC所截则∠1和∠2是().A.内错角B.同位角C.同旁内角D.对顶角【答案】A【分析】根据三线八角的概念以及内错角的定义作答即可.【详解】如图所示∠1和∠2两个角都在两被截直线(直线b和直线a)异侧并且在第三条直线c(截线)的两旁故∠1和∠2是直线b、a被c所截而成的内错角.故选A.【点睛】本题考查了同位角、内错角、同旁内角的定义.在截线的同旁找同位角和同旁内角在截线的两旁找内错角.要结合图形熟记同位角、内错角、同旁内角的位置特点比较它们的区别与联系.两条直线被第三条直线所截所形成的八个角中有四对同位角两对内错角两对同旁内角.10.如图下列判断正确的是()A.∠2与∠5是对顶角B.∠2与∠4是同位角C.∠3与∠6是同位角D.∠5与∠3是内错角【答案】A【分析】根据对顶角、同位角、同旁内角、内错角的定义分别进行分析即可.【详解】解:A、∠2与∠5是对顶角故此选项正确;B、∠2与∠4是不是同位角故此选项错误;C、∠3与∠6是同旁内角故此选项错误;D、∠5与∠3不是内错角故此选项错误;故选A.【点睛】本题考查同位角、内错角、同旁内角;对顶角、邻补角.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题11.(1)如图:①所示两条水平的直线被一条倾斜的直线所截同位角有____________对内错角有__________对同旁内角有___________对;(2)如图②所示三条水平的直线被一条倾斜的直线所截同位角有_____________对内错角有__________对同旁内角有_____________对;(3)根据以上探究的结果n(n为大于1的整数)条水平直线被一条倾斜的直线所截同位角有___________对内错角有___________对同旁内角有___________对(用含n的式子表示).根据以上探究的结果n(n为大于1的整数)条水平直线被一条竖直直线所截同位角有2n(n-1)对内错角有n(n-1)对同旁内角有n(n-1)对故答案为:2n(n-1) n(n-1) n(n-1).【点睛】本题考查了同位角、内错角、同旁内角解答此类题确定三线八角是关键可直接从截线入手.对平面几何中概念的理解一定要紧扣概念中的关键词语要做到对它们正确理解对不同的几何语言的表达要注意理解它们所包含的意义.12.如图∠1和∠3是直线______ 和______ 被直线______ 所截而成的______ 角;图中与∠2是同旁内角的角有______ 个.【答案】AB AC DE内错3【分析】根据内错角和同旁内角的定义得出即可.【详解】解:∠1和∠3是直线AB和AC被直线DE所截而成的内错角;图中与∠2是同旁内角的角有∠6、∠5、∠7 共3个.故答案为AB;AC;DE;内错;3.【点睛】此题考查同位角、内错角、同旁内角等知识点能根据图形找出各对角是解题的关键.根据内错角和同旁内角的定义得出即可.13.如图AB、DC被BD所截得的内错角是___________ AB、CD被AC所截是的内错角是_________ AD、BC被BD所截得的内错角是_________ AD、BC被AC所截得的内错角是_____________.【答案】∠1和∠5 ∠4和∠8 ∠6和∠2 ∠3和∠7【分析】根据内错角(两条直线被第三条直线所截形成的角中若两个角都在两直线的之间并且在第三条直线(截线)的两旁则这样一对角叫做内错角)的定义即可得.【详解】解:AB、DC被BD所截得的内错角是∠1和∠5 AB、CD被AC所截是的内错角是∠4和∠8 AD、BC被BD所截得的内错角是∠6和∠2 AD、BC被AC所截得的内错角是∠3和∠7.故答案为:∠1和∠5 ∠4和∠8 ∠6和∠2 ∠3和∠7.14.如图直线l截直线a b所得的同位角有__对它们是___;内错角有___对它们是___;同旁内角有___对 它们是___;对顶角___对 它们是___.【答案】 4 6∠与4∠ 5∠与1∠ 7∠与3∠ 8∠与2∠ 2 4∠与8∠ 3∠与5∠ 2 4∠与5∠ 3∠与8∠ 4 1∠与3∠ 2∠与4∠ 5∠与7∠ 6∠与8∠【分析】根据对顶角的定义 内错角的定义 同旁内角的定义 同位角的定义解答即可.【详解】直线l 截直线a b 所得的同位角有4对 分别是6∠与4∠ 5∠与1∠ 7∠与3∠ 8∠与2∠;内错角有2对 它们是4∠与8∠ 3∠与5∠;同旁内角有2对 它们是4∠与5∠ 3∠与8∠;对顶角有4对 它们是1∠与3∠ 2∠与4∠ 5∠与7∠ 6∠与8∠.故答案为:4;6∠与4∠ 5∠与1∠ 7∠与3∠ 8∠与2∠;2;4∠与8∠ 3∠与5∠;2;4∠与5∠ 3∠与8∠;4;1∠与3∠ 2∠与4∠ 5∠与7∠ 6∠与8∠【点睛】此题考查两直线相交所成的角 对顶角的定义 内错角的定义 同旁内角的定义 同位角的定义 熟记各定义是解题的关键.15.如图 射线DE 、DC 被直线AB 所截得的用数字表示的角中 ∠4与 ___ 是同位角 ∠4与 ___ 是内错角 ∠4与 ___ 是同旁内角.【答案】 ∠1 ∠2 ∠5、∠3【分析】根据同位角 内错角和同旁内角的定义解答即可.【详解】解:如图 射线DE 、DC 被直线AB 所截得的用数字表示的角中 ∠4与∠1是同位角 ∠4与∠2是内错角 ∠4与∠5、∠3是同旁内角.故答案为∠1 ∠2 ∠5、∠3.【点睛】本题考查了同位角、内错角、同旁内角.解答此类题确定三线八角是关键 可直接从截线入手.对平面几何中概念的理解一定要紧扣概念中的关键词语要做到对它们正确理解对不同的几何语言的表达要注意理解它们所包含的意义.16.如图标有角号的7个角中共有_____对内错角___对同位角____对同旁内角.【答案】 4 2 4.【分析】根据内错角同位角及同旁内角的定义即可求得此题.【详解】解:如图共有4对内错角:分别是∠1和∠4 ∠2和∠5 ∠6和∠1 ∠5和∠7;2对同位角:分别是∠7和∠1 ∠5和∠6;4对同旁内角:分别是∠1和∠5、∠3和∠4、∠3和∠2、∠4和∠2.故答案为(1). 4 (2). 2 (3). 4.【点睛】本题考查内错角同位角同旁内角的定义解题关键是熟练掌握定义.三、解答题17.如图∠1、∠2、∠3、∠4、∠5中哪些是同位角?哪些是内错角?哪些是同旁内角?【答案】同位角有∠1和∠5;∠4和∠3;内错角有∠2和∠3;∠1和∠4;同旁内角有∠3和∠5;∠4和∠5;∠4和∠2.【分析】同位角:两条直线被第三条直线所截形成的角中若两个角都在两直线的同侧并且在第三条直线(截线)的同旁则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中若两个角都在两直线的之间并且在第三条直线(截线)的两旁则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中若两个角都在两直线的之间并且在第三条直线(截线)的同旁则这样一对角叫做同旁内角.依此即可得出答案.【详解】解:∠∠1和∠5在截线AC同侧在被截直线BE CE同方向所成的角;∠4和∠3 在截线CE的上方被截直线DB、EB的左侧∠同位角有∠1和∠5;∠4和∠3 共2对;∠∠2和∠3在截线BD两侧被截直线AC与CE内部;∠1和∠4在截线BE两侧被截直线AC与CE 内部∠内错角有∠2和∠3;∠1和∠4 共2对;∠∠3和∠5在截线CD同侧被截直线CB与DB内部;∠4和∠5在截线CE同侧被截直线CB与EB 的内部;∠4和∠2在截线BE同侧被截直线DB与DE的内部∠同旁内角有∠3和∠5;∠4和∠5;∠4和∠2 共3对.【点睛】本题考查了同位角、内错角、同旁内角三线八角中的某两个角是不是同位角、内错角或同旁内角完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时应从角的两边入手具有上述关系的角必有两边在同一直线上此直线即为截线而另外不在同一直线上的两边它们所在的直线即为被截的线.同位角的边构成“F“形内错角的边构成“Z“形同旁内角的边构成“U”形.18.如图已知AC与EH交于点B BF与AC交于点D.问图中同位角和对顶角各有几对?并具体写出各对同位角和对顶角.【答案】同位角有7对具体见解析;对顶角有4对具体见解析【分析】根据同位角和对顶角的定义解答.【详解】同位角有7对 分别为:A ∠与HBC ∠ A ∠与FBC ∠ A ∠与GDB ∠ FBC ∠与FDG ∠ FBH ∠与FDG ∠ ABD ∠与ADF ∠ EBD ∠与ADF ∠;对顶角有4对 分别为:EBC ∠与ABH ∠ ABE ∠与HBC ∠ ADB ∠与FDG ∠ ADF ∠与GDB ∠. 【点睛】此题考查同位角和对顶角的定义 熟记定义是解题的关键.19.如图所示.①∠AED 和∠ABC 可看成是直线__________、__________被直线__________所截得的__________角; ②∠EDB 和∠DBC 可看成是直线__________、__________被直线__________所截得的__________角; ③∠EDC 和∠C 可看成是直线__________、__________被直线__________所截得的__________角.【答案】ED ;BC ;AB ;同位;ED ;BC ;BD ;内错;ED ;BC ;AC ;同旁内【详解】解:(1)∠AED 和∠ABC 可看成是直线ED 、BC 被直线AB 所截得的同位角;(2)∠EDB 和∠DBC 可看成是直线ED 、BC 被直线BD 所截得的内错角;(3)∠EDC 和∠C 可看成是直线ED 、BC 被直线AC 所截得的同旁内角.故答案为ED BC AB 同位;ED BC BD 内错;ED BC AC 同旁内.点睛:本题考查了同位角、内错角、同旁内角.两条直线被第三条直线所截形成的角中 若两个角都在两直线的同侧 并且在第三条直线(截线)的同旁 则这样一对角叫做同位角;两条直线被第三条直线所截形成的角中 若两个角都在两直线的之间 并且在第三条直线(截线)的两旁 则这样一对角叫做内错角;两条直线被第三条直线所截形成的角中 若两个角都在两直线的之间 并且在第三条直线(截线)的同旁 则这样一对角叫做同旁内角.20.如图:(1)写出图中EDM ∠的同位角: ;(2)如果AB ∠CD 那么图中与FHC ∠相等的角有 个(FHC ∠除外);(3)当EDM ∠=∠ 时 AB ∠CD 理由: ;(4)如果A ∠与ABD ∠互补 那么E ∠与F ∠有什么关系?说明理由.【答案】(1)EHM ∠ ACM ∠;(2)3;(3)ABD 内错角相等 两直线平行;(4)E F ∠=∠ 理由见解析.【分析】(1)根据同位角的定义即可求解; (2)先根据AB ∥CD 得到=FHC FGA ∠∠ 再根据对顶角相等得到∠FHC =∠DHE =∠FGA =∠EGB 即可求解;(3)根据内错角相等 两直线平行;确定EDM ∠的内错角即可求解;(4)根据A ∠与ABD ∠互补 得到AF ∥DE 即可得到E F ∠=∠.【详解】解:(1)因为直线EF 和ED 被直线CM 所截所以EDM ∠的同位角是EHM ∠因为直线AC 和ED 被直线CM 所截所以EDM ∠的同位角是ACM ∠故答案为:EHM ∠ ACM ∠;(2)∠AB ∥CD∠=FHC FGA ∠∠∠∠FHC 和∠DHE 互为对顶角 ∠FGA 和∠EGB 互为对顶角∠∠FHC =∠DHE =∠FGA =∠EGB故答案为:3;(3)当EDM ∠=∠ABD 时 AB ∥CD 理由:内错角相等 两直线平行;故答案为:ABD 内错角相等 两直线平行;(4)E F ∠=∠ 理由如下:因为A ∠与ABD ∠互补 (已知)所以AF ∥DE (同旁内角互补 两直线平行)所以E F ∠=∠.(两直线平行 内错角相等)【点睛】本题考查了平行线的性质与判定 对顶角相等等知识 熟知相关知识点并能结合图形灵活应用是解题关键.21.如图找出标注角中的同位角、内错角和同旁内角.【答案】同位角有∠4与∠8、∠4与∠7、∠2与∠3;内错角有∠1与∠3、∠7与∠6、∠6与∠8;同旁内角有∠1与∠4、∠3与∠8 ∠1与∠7.【分析】根据同位角:两条直线被第三条直线所截形成的角中若两个角都在两直线的同侧并且在第三条直线(截线)的同旁则这样一对角叫做同位角;内错角:两条直线被第三条直线所截形成的角中若两个角都在两直线的之间并且在第三条直线(截线)的两旁则这样一对角叫做内错角;同旁内角:两条直线被第三条直线所截形成的角中若两个角都在两直线的之间并且在第三条直线(截线)的同旁则这样一对角叫做同旁内角结合图形进行分析即可.【详解】同位角有∠4与∠8、∠4与∠7、∠2与∠3;内错角有∠1与∠3、∠7与∠6、∠6与∠8;同旁内角有∠1与∠4、∠3与∠8 ∠1与∠7.【点睛】本题主要考查了三线八角解题关键是掌握同位角的边构成“F”形内错角的边构成“Z”形同旁内角的边构成“U”形.22.如图BE是AB的延长线指出下面各组中的两个角是由哪两条直线被哪一条直线所截形成的?它们是什么角?(1)∠A和∠D;(2)∠A和∠CBA;(3)∠C和∠CBE.【答案】见解析【详解】试题分析:(1)(2)同旁内角 “同旁”指在第三条直线的同侧;“内”指在被截两条直线之间.(3)内错角 “内”指在被截两条直线之间;“错”即交错 在第三条直线的两侧.(一个角在第三直线左侧 另一角在第三直线右侧)试题解析:(1)∠A 和∠D 是由直线AE 、CD 被直线AD 所截形成的 它们是同旁内角;(2)∠A 和∠CBA 是由直线AD 、BC 被直线AE 所截形成的 它们是同旁内角;(3)∠C 和∠CBE 是由直线CD 、AE 被直线BC 所截形成的 它们是内错角.23.已知:如图是一个跳棋棋盘 其游戏规则是一个棋子从某一个起始角开始 经过若干步跳动以后 到达终点角跳动时 每一步只能跳到它的同位角或内错角或同旁内角的位置上例如:从起始位置1∠跳到终点位置3∠有两种不同路径 路径1:193∠−−−−→∠−−−→∠同旁内角内错角;路径2:1126103∠−−−→∠−−−→∠−−−→∠−−−−→∠内错角内错角同位角同旁内角.试一试:(1)写出从起始位置1∠跳到终点位置8∠的一种路径;(2)从起始位置1∠依次按同位角、内错角、同旁内角的顺序跳 能否跳到终点位置8∠? 【答案】(1)1128∠→∠→∠内错角同旁内角(答案不唯一);(2)能跳到终点位置8∠.其路径为1105118∠→∠→∠→∠→∠同位角内错角同旁内角同位角(答案不唯一) 【分析】(1)根据同旁内角、内错角和同位角的定义进行选择路径即可;(2)先判断能够到达终点位置 在根据定义给出具体路径即可.【详解】(1)可以是这样的路径:1128∠→∠→∠内错角同旁内角.(答案不唯一)(2)从起始位置1∠依次按同位角内错角同旁内角的顺序跳 能跳到终点位置8∠.其路径为 1105118∠→∠→∠→∠→∠同位角内错角同旁内角同位角(答案不唯一). 【点睛】本题考查的是同位角、内错角和同旁内角的定义 熟知这些角的特征是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年七年级下数学《对顶角、邻补角》练习题
1.如图,直线AB与CD相交于点O,OE平分∠AOD,OF平分∠BOD.(1)若∠AOC=70°,求∠DOE和∠EOF的度数;
(2)请写出图中∠AOD的补角和∠AOE的余角.
【分析】(1)根据邻补角的定义求出∠AOC,再根据角平分线的定义求解即可得到∠DOE,根据对顶角相等可得∠BOD=∠AOC,再根据角平分线的定义∠DOF,然后根据∠EOF =∠DOE+∠DOF计算即可得解;
(2)根据互余的角和互补的角的定义解答即可.
【解答】解:(1)∵∠AOC=70°,
∴∠AOD=180°﹣70°=110°,
∵OE平分∠AOD,
∴,
∵OF平分∠BOD,
∴,
∴∠EOF=∠DOE+∠DOF=55°+35°=90°;
(2)与∠AOD互补的角有∠AOC和∠BOD;
与∠AOE互余的角有∠BOF和∠DOF.
【点评】本题考查了余角和补角,是基础题,熟记概念并准确识图理清图中各角度之间的关系是解题的关键.
1。