第八章:空间解析几何与向量代数(数学三不考)

合集下载

高等数学下册第八章 向量代数与空间解析几何

高等数学下册第八章 向量代数与空间解析几何

离.因为
PA 32 ( y 1)2 (z 2)2 , PB 42 ( y 2)2 (z 2)2 ,
PC 02 ( y 5)2 (z 1)2 ,
所以 32 ( y 1)2 (z 2)2 42 ( y 2)2 (z 2)2 02 ( y 5)2 (z 1)2 ,
零向量: 模为 0 的向量,
向量相等、向量平行向量共线、负向量、向量共面.
DMU
第一节 向量的线性运算与空间直角坐标系
向量线性运算的几何表达 ➢加法
平行四边形法则:
b ab
(a b) c
c
bc
三角形法则: a ab
a (b c) ab b
b a
a
运算规律 : 交换律 a b b a
结合律 ( a b ) c a (b c ) a b c
解 4u 3v 4 2a b 2c 3 a 4b c 5a 16b 11c.
例 如果平面上一个四边形的对角线互相平分试用向量证明
这是平行四边形
证 ABOBOA , DC OCOD 而 OC OA OD OB
所以
DC OA OB OB OA AB
这说明四边形 ABCD 的对边 AB CD 且 AB // CD 从而四边形
第八章
向量代数与空间解析几何
第一部分 向量代数 第二部分 空间解析几何
在三维空间中: 空间形式 — 点, 线, 面
数量关系 — 坐标, 方程(组) 基本方法 — 坐标法; 向量法
DMU
第八章 向量代数与空间解析几何
第一节 向量的线性运算与空间直角坐标系 第二节 数量积 向量积 混合积 第三节 平面及其方程 第四节 空间直线及其方程 第五节 曲面方程 第六节 空间曲线方程

(完整版)第八章向量代数与空间解析几何教案(同济大学版高数)(最新整理)

(完整版)第八章向量代数与空间解析几何教案(同济大学版高数)(最新整理)

形对角线的交点(。见图 7-5)
图 7-4
解: a
b
AC
2
AM
,于是
MA
1
(a
b)
2
由于 MC MA ,
于是
MC
1
(a
b)
2
又由于
a
b
BD
2 MD
,于是
MD
1
(b
a)
2
由于 MB MD ,
于是
MB
1
(b
a)
2
三、空间直角坐标系
1.将数轴(一维)、平面直角坐标系(二维)进一步推广建立空间直角坐标系(三维)
五、向量的模、方向角、投影
设 a {ax , a y , az } ,可以用它与三个坐
标轴的夹角、、 (均大于等于 0,小
5
于等于 )来表示它的方向,称、、 为非零向量 a 的方向角,见图 7-6,其余弦表示
形式cos、cos 、cos 称为方向余弦。
1. 模
a
a
2 x
a
2 y
a
2 z
2. 方向余弦
PP1 x2 2 2 32 x2 11 PP2 x2 12 12 x2 2
PP为: (1,0,0) , (1,0,0)
四、利用坐标系作向量的线性运算
1.向量在坐标系上的分向量与向 量的坐标
通过坐标法,使平面上或空间的 点与有序数组之间建立了一一对应关 系,同样地,为了沟通数与向量的研 究,需要建立向量与有序数之间的对 应关系。
◆ 任意向量的方向余弦有性质: cos2 cos2 cos2 1
◆ 与非零向量 a 同方向的单位向量为:
a 0 a 1 {a x , a y , a z } {cos, cos , cos } aa

8第八章空间解析几何答案

8第八章空间解析几何答案

8第八章空间解析几何答案第八章空间解析几何与向量代数§8.1向量及其线性运算1.填空题(1)点关于面对称的点为(),关于面对称的点为(),关于面对称的点为().(2)点关于轴对称的点为(),关于轴对称的点为(),关于轴对称的点为(),关于坐标原点对称的点为().2. 已知两点和,计算向量的模、方向余弦和方向角.解:因为,故,方向余弦为,,,方向角为,, .3. 在平面上,求与、、等距离的点.解:设该点为,则,即,解得,则该点为.4. 求平行于向量的单位向量的分解式.解:所求的向量有两个,一个与同向,一个与反向. 因为,所以.5. 已知点且向量在x轴、y轴和z轴上的投影分别为,求点的坐标.解:设点的坐标为,由题意可知,则,即点的坐标为.§8.2 数量积向量积1.若,求的模.解:所以.2.已知,证明:.证明:由,可得,可知,展开可得,即,故.3. 。

4.已知,,求与的夹角及在上的投影.解:,,. 因为,所以.5..§8.3 曲面及其方程1.填空题(1)将xOz坐标面上的抛物线绕轴旋转一周,所生成的旋转曲面的方程为(),绕轴旋转一周,所生成的旋转曲面的方程为().(2)以点为球心,且通过坐标原点的球面方程为().(3)将坐标面的圆绕轴旋转一周,所生成的旋转曲面的方程为(). 2.求与点与点之比为的动点的轨迹,并注明它是什么曲面.解:设动点为,由于,所以,解之,可得,即,所以所求的动点的轨迹为以点为心,半径为的球面.3§8.4 空间曲线及其方程1. 填空题(1)二元一次方程组在平面解析几何中表示的图形是(两相交直线的交点);它在空间解析几何中表示的图形是(两平面的交线,平行于轴且过点).(2)旋转抛物面在面上的投影为(),在面上的投影为(),在面上的投影为().2.求球面与平面的交线在面上的投影方程.解:将代入,得,因此投影方程为.4.分别求母线平行于轴、轴及轴且通过曲线的柱面方程.解:在中消去得,即为母线平行于轴且通过曲线的柱面方程.在中消去得,即为母线平行于轴且通过曲线的柱面方程.在中消去得,即为母线平行于轴且通过曲线的柱面方程.4.将下列曲线的一般方程化为参数方程:(1).解:将代入得,即. 令,,所求的参数方程为..§8.5 平面及其方程1. 填空题(1)一平面过点且平行于向量和,平面的点法式方程为(),平面的一般方程为(),平面的截距式方程(),平面的一个单位法向量为().(2)设直线的方程为,当()时,直线过原点;当()且(或有一个成立)时,直线平行于轴但不与轴相交;当()时,直线与轴相交;当()时,直线与轴重合.2.求过三点,和的平面方程.解:由平面的三点式方程知,所求的平面方程为=0,即.3.求过点且垂直于两平面和的平面方程.解:该平面的法向量为,平面的方程为,即.4.分别按下列条件求平面方程:(1)平行于平面且经过点;(2)通过轴和点;(3)求平行于轴,且经过两点和的平面方程.解:(1)平面的法向量是,可作为所求平面的法向量,因此所求平面的方程为,即.(2)所求平面的法向量即垂直于轴又垂直于向量,所以所求平面的法向量为,因此所求平面的方程为,即.(3)由于所求平面平行于轴,故设所求平面方程为. 将点和分别代入得及,解得及. 因此所得方程为,即.§8.6 空间直线及其方程1. 填空题(1)直线和平面的关系是(平面与直线互相垂直).(2)过点且与直线平行的直线的方程是().(3)直线与直线的夹角为().2.化直线为对称式方程和参数方程.解:直线的方向向量为. 取,代入直线方程可得,. 所以直线的对称式方程为.令,所给直线的参数方程为.3.求过点且与直线垂直的平面方程.解:直线的方向向量可作为所求平面的法向量,即.所求平面的方程为,即.4. 确定的值,使直线与平面平行,并求直线与平面之间的距离.解:直线的方向向量,要使直线与平面平行,只要(其中为平面的法向量),即,解得. 令,代入直线的方程可得,,直线与平面之间的距离.第八章空间解析几何与向量代数综合练习1.填空题:(1)已知,,且与夹角为,则().(2)若向量,平行,则().(3)已知向量的模为,且与轴的夹角为,与y轴的夹角为,与z 轴的夹角为锐角,则=().(4)曲线 (a、b为常数)在xOy平面上投影曲线是().(5)xOy平面上曲线绕x轴旋转一周所得旋转曲面方程是().(6)直线与平面的夹角的正弦().(7)方程所表示的曲面名称为(双曲抛物面).(8)与两直线及都平行,且过原点的平面方程是().(9)已知动点到平面的距离与点到点的距离相等,则点的轨迹方程为().(10)与两平面和等距离的平面方程为().2. 设,,求向量,使得成立,这样的有多少个,求其中长度最短的.解:设,则,则,因此这样的,有无穷个.由于,因此,当时,即长度最短.3.已知点和点,试在轴上求一点,使得的面积最小.解:设,则,,,故的面积为,显然,当时,的面积最小,为,所求点为.4. 求曲线在各坐标平面上的投影曲线方程.解:在平面投影为;在平面投影为;在zOx平面投影为.5.求原点关于平面的对称点的坐标.解:过原点作垂直于平面的直线,该直线的方向向量等于平面的法向量,所求直线的对称式方程为,即为其参数方程. 将此参数方程代入平面,有,解得,即直线与平面的交点为. 设所求的对称点为,则,,,即所求的对称点为.6.求直线在平面上的投影直线绕轴线转一周所成曲面的方程.解:过作垂直于平面的平面,所求的直线在平面上的投影就是平面和的交线. 平面的法向量为:,则过点的平面的方程为:,即. 所以投影线为. 将投影线表示为以为参数的形式:,则绕轴的旋转面的方程为,即.7.求球心在直线上,且过点和点的球面方程.解:设球心为,则,即.又因为球心在直线上,直线的参数方程为,将直线的参数方程代入,可得,球心坐标为,所求球面方程为.8.已知两条直线的方程是,,求过且平行于的平面方程.解:因为所求平面过,所以点在平面上. 由于平面的法向量垂直于两直线的方向向量,因此平面的法向量为. 因此所求平面的方程为,即.9. 在过直线的所有平面中,求和原点距离最大的平面.解:设平面束方程为,即,平面与原点的距离为要使平面与原点的距离最大,只要,即该平面方程为.10. 设两个平面的方程为和(1)求两个平面的夹角. (2)求两个平面的角平分面方程.(3)求通过两个平面的交线,且和坐标面垂直的平面方程.解:(1)两个平面的法向量为和,设两个平面的夹角为,则,所以.(2)因为角平分面上任意一点到两个平面的距离相等,由点到平面的距离公式,可得,即,所求的角平分面方程为或.(3)设通过两个平面的交线的平面方程为,即,由于该平面垂直于坐标面,所以,可得,因此所求的平面方程为.。

数学三不考的内容

数学三不考的内容

首先明确数学三不考的内容。

高等数学包括空间解析几何与向量代数、三重积分、曲线积分与曲面积分、重积分,曲线积分与曲面积分的应用,这几大块都不考,小伙伴们,你们是不是很开心呀!
还有"局部地区"也有不考的内容哟,例如:导数应用中的曲率和曲率圆,导数的物理应用,不定积分中有理函数的积分,三角函数的有理式积分,简单无理函数的积分(对于三角函数的有理式积分和简单无理函数的积分,这几年的考题中数一数二数三的要求没有明确的界限,还请各位同学能够完全掌握),定积分应用中旋转的侧面积与曲线弧长,平行截面积为已知的立体体积,物理应用(功,引力,压力,质心,形心等),多元函数微分学中的方向导数和梯度,空间曲线的切线和法平面及曲面的切平面和法线,傅里叶级数,常微分方程中可用简单的变量代换求解的某些微分方程,可降阶的微分方程,高于二阶的某些常系数齐次线性微分方程,欧拉方程,微分方程应用中物理应用.
数学三独家特有的考试内容,
这也充分的体现了数学三的魅力所在,数学三独考的内容有导数应用中的经济应用(边际与弹性等),定积分应用中的经济应用,二重积分中无界区间上的简单的反常二重积分,无穷级数,微分方程应用中的经济应用,差分方程,这些都是数学三独考的,这里没有提到的都是数学一二三共同考的,就不在赘述了,希望可以帮助到你,祝考研成功!。

高数下册常用常见知识点

高数下册常用常见知识点

高数下册常用常见知识点高等数学下册常用知识点第八章:空间解析几何与向量代数一、向量及其线性运算1.向量的概念及基本性质:包括向量相等、单位向量、零向量、向量平行、共线、共面等基本概念。

2.向量的线性运算:包括加减法和数乘。

3.空间直角坐标系:包括坐标轴、坐标面、卦限和向量的坐标分解式等。

4.利用坐标进行向量的运算:设向量a=(ax。

ay。

az),向量b=(bx。

by。

bz),则a±b=(ax±bx。

ay±by。

az±bz),λa=(λax。

λay。

λaz)。

5.向量的模、方向角、投影:包括向量的模、两点间的距离公式、方向角、方向余弦和投影等。

二、数量积和向量积1.数量积:包括数量积的概念、性质和计算公式等。

2.向量积:包括向量积的概念、性质和计算公式等。

三、曲面及其方程1.曲面方程的概念:包括曲面方程的定义和基本性质等。

2.旋转曲面:包括旋转曲面的定义、方程和旋转后方程的计算等。

3.柱面:包括柱面的特点、方程和母线的概念等。

4.二次曲面:包括椭圆锥面的方程和图形等。

2.椭球面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$3.旋转椭球面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$4.单叶双曲面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$5.双叶双曲面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=-1$6.椭圆抛物面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=z$7.双曲抛物面(马鞍面):$\frac{x^2}{a^2}-\frac{y^2}{b^2}=z$8.椭圆柱面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$9.双曲柱面:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$10.抛物柱面:$2x=ay^2$空间曲线及其方程:1.参数方程:$\begin{cases}x=x(t)\\y=y(t)\\z=z(t)\end{cases}$,如螺旋线:$\begin{cases}x=a\cos t\\y=a\sin t\\z=bt\end{cases}$2.一般方程:$F(x,y,z)=0$,消去$z$,得到曲线在面$xoy$上的投影。

同济版高等数学考研数学三不要求部分

同济版高等数学考研数学三不要求部分

同济版高等数学考研数学三不要求部分示例文章篇一:《同济版高等数学考研数学三不要求部分》在考研的大军里,我就像一个小小的探险家,要在同济版高等数学这本“大宝藏”里,找出对于考研数学三不要求的部分。

这就好比在一个大果园里,我要知道哪些果子我不用摘,这样我就能把精力都放在该摘的果子上啦。

首先,多元函数微积分这一块。

那些超级复杂的多元复合函数高阶偏导数的公式推导,对于数学三来说,就像是天空中遥远的星星,虽然好看但是够不着也不用够。

比如说,一些极其复杂的混合偏导数在不同顺序下相等的特殊情况的证明,我们不需要去深挖。

我有个同学,刚开始复习的时候,在这上面浪费了好多时间,就像一个在迷宫里乱转的小老鼠,后来才发现这是不需要掌握的。

我就问他:“你傻不傻呀,这都不考,你还费那么大劲儿?”他才恍然大悟。

再看看向量分析这部分。

什么向量场的散度、旋度的那些复杂物理意义的深入探究,对于我们考数学三的人来说,就像是外星的语言一样,不用去理会。

想象一下,散度和旋度就像两个住在遥远星球的生物,我们数学三的飞船不用飞到那里去。

有次我和辅导老师聊天,我说我在看向量场的旋度的复杂物理模型,老师瞪大了眼睛说:“你看这个干嘛呀,这不是你该操心的内容,就像你要去北京,你却朝着广州的方向走一样。

”还有无穷级数这一章。

那些超级复杂的幂级数收敛区间端点处收敛性的特殊判别法,就像隐藏在深山里的宝藏,我们不需要去挖掘。

比如说,阿贝尔定理的一些超级深入的延伸情况,对于我们来说,就像奢侈品店里昂贵又不需要的东西。

我在复习小组里听到有个同学在纠结一个关于幂级数端点收敛性的超级难的判别法,我就对他说:“哎呀,你这是给自己找麻烦呢,这都不在数学三的考察范围内。

”在微分方程这部分。

那些特别古怪的非线性微分方程的特殊解法,像是一个神秘的魔法,我们数学三的考生不用去学会这个魔法。

就好比魔法世界里有些高级魔法只有特定的魔法师才要学,我们不是那类魔法师。

我记得有个学长跟我说他以前复习的时候,在一个非线性微分方程的特殊解法上卡了好久,后来才知道白费劲了,我就想,他当时肯定特别懊恼,就像自己辛辛苦苦种了一棵不会结果的树。

考研数学三考查内容知多少

考研数学三考查内容知多少

考研数学三考查内容知多少
来源:文都图书
许多参加2017考研数学三的同学们,经历过春节假期与朋友相聚的快乐时光后,我们可以开始认真复习考研数学三了。

那么,在正式着手复习之前,先让我们了解一下考研数学三考查的内容有哪些。

高等数学:同济六版高等数学中所有带*号的都不考;所有“近似”的问题都不考;第三章微分中值定理与导数的应用不考曲率;第四章不定积分不考积分表的使用;不考第六章定积分在物理学上的应用以及曲线的弧长。

第七章微分方程不考可降阶的高阶微分方程,另外补充差分方程。

不考第八章空间解析几何与向量代数。

第九章第五节不考方程组的情形,第十章二重积分为止,第十二章的级数中不考傅里叶级数;
线性代数:数学一用的参考教材是同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。

数三不考向量组的线性相关性中的向量空间,线性方程组跟空间解析几何结合的问题;
概率与数理统计:1、概率论的基本概念;2、随机变量及其分布;
3、多维随机变量及其分布;
4、随机变量的数字特征;
5、大数定律及中心极限定理;
6、样本及抽样分布;
7、参数估计,其中数三的同学不考参数估计中的区间估计。

了解了考研数学三的考查内容后,同学们可以看看2017《考研数学复习大全·数学三》,书中根据考纲对考研数学三的要求,考查内容全面,对我们复习很有帮助。

高等数学第八章空间解析几何与向量代数

高等数学第八章空间解析几何与向量代数

|
c
|
102 52 5 5,
c0
|
c c
|
2
j
5
1 5
k
.
k
4 10 j 5k, 2
作业 P23习题8-2
1(1)、(3),3,4,9
第三节 平面及其方程
一、平面的点法式方程
z
如果一非零向量垂直于一
平面,这向量就叫做该平
面的法线向量.
o
y
x
法线向量的特征: 垂直于平面内的任一向量.
定的平面, 指向符合右手系。
定义
向量
a

b
的向量积为
c
a
b
(其中
为a
与b
的夹角)
c 的方向既垂直于a,又垂直于b ,
指向符合右手系。
向量积也称为“叉积”、“外积”。
1、关于向量积的说明:
(1)
a
a
0.
( 0 sin 0)
(2) a//b
a b 0.
(a
0,
b
,
ab .
()
ab,
,
2
cos 0,
ab
|
a
|| b
2
| cos
0.
2、数量积符合下列运算规律:
(1) 交换律:
a
b
b
a
(2) 分配律:
(a b) c a c b c
(3) 若 为常数:
若 、 为常数:
(a)
b
a
(b)
(a
(a)
( b )
(a
b ).
3、向量积的坐标表达式

a
axi

高等数学(第八章)向量代数与空间解析几何(全)

高等数学(第八章)向量代数与空间解析几何(全)

若向量a = x1i y1 j z1k,b = x2i y2 j z2k,由数量积的运算性质得
a b = x1x2 y1 y2 z1z2.
设非零向量a = x1, y1, z1,b = x2, y2, z2,则
(1) | a | a a x12 y12 z12;
(2) cos a, b a b
2
向量代数与空间解析几何
空间直角坐标系
一、空间直角坐标系 空间两点间的距离
向量的概念---大小,方向,相等,向径,坐标等.
二、向量代数 向量的运算---加减,数乘,点乘,叉乘,混合积.
❖ 向量位置关系的刻画 ---平行,垂直,夹角. ❖ 向量的方向角、方向余弦.
平面的方程
三、空间的平面 两平面的位置关系
五、 向量的坐标
空间直角坐标系Oxyz 中,在x 轴、y 轴、z 轴上各取一个与坐标轴同向的单位 向量,以此记作i,j,k,把它们称为基本单位向量或基向量.任一向量都可以 唯一地表示为i,j,k 数乘之积.
设M (x, y, z)是空间任意一点,记OM r,则r xi yj zk,我们把上式称为 向量r 的坐标分解式,xi,yj 和zk 称为向量r 沿3 个坐标轴方向的分向量,i,j,
d (x2 x1)2 ( y2 y1)2 (z2 z1)2 .
11
二、 空间两点间的距离 例 1 在z轴上求与点A(3,5, 2)和B(4,1,5)等距离的点M .
解 由于所求的点M 在z 轴上,因此M 点的坐标可设为(0, 0, z),又由于
MA MB ,
由空间两点间的距离公式,得
(3)结合律:(a) b = (a b) a (b);
(4)a a = a 2 ; (5)a b = 0 a b; (6) | a b || a | | b | . 特别地,有

高等数学-第8章-空间解析几何与向量代数

高等数学-第8章-空间解析几何与向量代数

-。

b与a的差b a.向量加法的性质〔运算律〕②结合律+的模一般地不等于a的模加b的模,而有a b a ba b+≤+,即三角形两边之和大于等于第三向量与数的乘法Array、向量的定义:向量a与数m的乘积是一个向量,它的模等于m a,方向与a相同〔假设反〔假设m<0〕。

、向量与数量乘法的性质(运算律)②分配律≠,则向量b平行于a得充分必要条件是:存在唯一实数λ,使b=λa。

a0在实际问题中,有些向量与其起点有关,有些向量与其起点无关。

由于一切向量的共性是它们都有大小和方向,所以在数学上我们研究与起点无关的向量,并称这种向量为自由向量〔以后简称向量〕,即只考虑向量的大小和方向,而不管它的起点在什么地方。

当遇到与起点有关的向量时〔例如,谈到某一质点的运动速度时,这速度就是与所考虑的那一质点的位置有关的向量〕,可在一般原则下作特别处理。

上的射影。

投影向量的定义:AB 的始点A B ''就定义AB 在轴u 上的投影向量。

向量在轴上的投影:向量A B ''在轴AB 在轴u 上的投影,记为投影AB 。

向量在轴上的投影性质:性质1〔投影定理〕AB =cos AB ϕ与向量AB 的夹角。

推论:相等矢量在同一轴上的射影相等。

性质2:Prj(12a a +)=Prj 1a +Prj 2a 。

性质2可推广到有限个向量的情形。

性质3:Prj u λa =λPrj u a 。

向量在坐标轴上的分向量与向量的坐标:向量a 在坐标轴上的投影向量,,y z i a j a k 称为向量在坐标轴上的分向量。

向量a 在三条坐标轴上的投影,y z a a 叫做向量的坐标,记为:a ={,,x y a a 由向量在轴上的投影定义,a 在直角坐标系Oxyz 中的坐标{,,x y z a a a a ,由此可知,向量的投影具有与坐标相同的性质。

利用向量的坐标,可得向量的加法、减法以及向量与数的乘法的运算如下:a ={,x y a a ,{,,}x y zb b b b =利用向量加法的交换律与结合律,以及向量与数乘法的结合律与分配律,有{,x y z z a b a b b a b +=+++{x a b a b -=-{,}x y a a a λλλ=由此可见,对向量进行加、减及与数相乘,只须对向量的各个坐标分别进行相应的数量运算就行了。

第八章空间解析几何与向量代数知识点题库与答案

第八章空间解析几何与向量代数知识点题库与答案

第八章:空间解析几何与向量代数一、重点与难点1重点① 向量的基本概念、向量的线性运算、向量的模、方向角; ② 数量积(是个数)、向量积(是个向量); ③ 几种常见的旋转曲面、柱面、二次曲面;④ 平面的几种方程的表示方法(点法式、一般式方程、三点式方程、截距式方程) 的夹角;⑤ 空间直线的几种表示方法(参数方程、对称式方程、一般方程、两点式方程) 两直线的夹角、直线与平面的夹角;2、难点① 向量积(方向)、混合积(计算);② 掌握几种常见的旋转曲面、柱面的方程和二次曲面所对应的图形; ③ 空间曲线在坐标面上的投影;④ 特殊位置的平面方程(过原点、平行于坐标轴、垂直于坐标轴等; )⑤ 平面方程的几种表示方式之间的转化; ⑥ 直线方程的几种表示方式之间的转化;二、基本知识1、向量和其线性运算① 向量的基本概念:向量 既有大小 又有方向的量;向量表示方法:用一条有方向的线段(称为有向线段)来表示向量有向线段的长度表示向量的大小 有向线段的方向表示向量的方向 .;向量的符号 以A 为起点、B 为终点的有向线段所表示的向量记作表示 也可用上加箭头书写体字母表示例如a 、r 、v 、F 或a 、r 、v 、F ;向量的模 向量的大小叫做向量的模 向量a 、a 、AB 的模分别记为|a|、|a|、|AB |单位向量模等于1的向量叫做单位向量;向量的平行 两个非零向量如果它们的方向相同或相反就称这两个向量平行向量a 与b平行 记作a // b 零向量认为是与任何向量都平行; 两向量平行又称两向量共线零向量 模等于0的向量叫做零向量记作0或0 零向量的起点与终点重合 它的方向可以看作是任意的共面向量:设有k (k 3)个向量 当把它们的起点放在同一点时如果k 个终点和公共起点在一个平面上 就称这k 个向量共面;,两平面AB 向量可用粗体字母两向量夹角:当把两个非零向量a与b的起点放到同一点时两个向量之间的不超过的夹角称为向量a 与b 的夹角 记作(a :b)或(b :a)如果向量a 与b 中有一个是零向量 规定它们的夹角可以在 0与 之间任意取值;② 向量的线性运算向量的加法(三角形法则):设有两个向量a 与b 平移向量使b 的起点与a 的终点重合 此 时从a 的起点到b 的终点的向量c 称为向量a 与b 的和 记作a+b 即 c a+b .平行四边形法则 向量a 与b 不平行时 平移向量使a 与b 的起点重合 以a 、b 为邻边作一平行四边形 从公共起点到对角的向量等于向量a 与b 的和a b向量的加法的运算规律(1)交换律abba(2)结合律(a b) c a (b c)负向量 设a 为一向量 与a 的模相同而方向相反的向量叫做a 的负向量 记为a把向量a 与b 移到同一起点 0则从a 的终点A 向b 的终点B 所引向量AB 便是向量b 与a 的差b a向量a 与实数 的乘积记作规定 a 是一个向量 方向当>0时与a 相同 当<0时与a 相反 当 向量这时它的方向可以是任意的a③ 空间直角坐标系在空间中任意取定一点 O 和三个两两垂直的单位向量 i 、j 、k 就确定了三条都以 O 为 原点的两两垂直的数轴依次记为x 轴(横轴卜y 轴(纵轴卜z 轴(竖轴)统称为坐标轴 它们 构成一个空间直角坐标系称为Oxyz 坐标系注:(1)通常三个数轴应具有相同的长度单位(2) 通常把x 轴和y 轴配置在水平面上 而z 轴则是铅垂线(3) 数轴的的正向通常符合右手规则坐标面 在空间直角坐标系中 任意两个坐标轴可以确定一个平面 这种平面称为坐标面x 轴和y 轴所确定的坐标面叫做xOy 面 另两个坐标面是 yOz 面和zOx 面 卦限三个坐标面把空间分成八个部分每一部分叫做卦限含有三个正半轴的卦限叫做第一卦限它位于xOy 面的上方在xOy 面的上方按逆时针方向排列着第二卦限、 第三卦限和第四卦限 在xOy 面的下方 与第一卦限对应的是第五卦限 按逆时针方向还排列着第六卦限、 第七卦限和第八卦限 八个卦限分别用字母I 、II 、III 、IV 、V 、VI 、VII 、VIII 表示向量的坐标分解式任给向量r 对应有点M 使OM r 以OM 为对角线、三条坐标轴为棱作长方体 有 r OM OP PN NM OP OQ OR向量的减法 向量与数的乘法: 它的模| a| | ||a|它的 0时| a| 0即a 为零运算规律(1)结合律 (a) ( a) ( )a ;(2)分配律()a a a ; (a b) a b 向量的单位化 设a0则向量看是与a 同方向的单位向量记为e a ,于是a |a|e a定理1 设向量a 0那么向量b 平行于a 的充分必要条件是存在唯一的实数设 OP Xi OQ yj OR zk 贝U r OM xi yj zk上式称为向量r 的坐标分解式xi 、yj 、zk 称为向量r 沿三个坐标轴方向的分向量点M 、向量r 与三个有序x 、y 、z 之间有一一对应的关系M r OM xi yj zk (x, y, z)投影的性质性质1 (a)u |a|cos (即Prj u a |a|cos )其中 为向量与u 轴的夹角 性质 2 (a b)u (a)u (b)u (即 Prj u (a b) Prj u a Prj u b) 性质 3 ( a)u (a)u (即 Prj u ( a) Prj u a)有序数x 、y 、z 称为向量 r (在坐标系Oxyz )中的坐标 记作r (x y z) 向量r OM 称为点M 关于原点O 的向径 ④ 利用坐标作向量的线性运算设 a (a x a y a z ) b (b x b y b z )a b (a x b x a y b y a z b z ) a b (a x b x a y b y a z b z ) a ( a x a y a z )利用向量的坐标判断两个向量的平行设 a (a x a y a z ) 0 b (b x b y b z )向量 b//a b a即 b//a (b x b y b z )(a x a y a z )于是 bx b y axaybzaz⑤ 向量的模、方向角、投影 设向量r (x y z )作OM r 则 向量的模长公式|r| ..x 2 y 2 z 2设有点 A(x i y i z i )、B(x y 2 z 2) AB OB OA(x 2 y 2 Z 2)(X 1 y 1 Z 1)(X 2 X 1 y 2 y 1 Z 2 z”A 、B 两点间的距离公式为: |AB| |AB|、(X 2 %)2 (y 2 yj 2厶 乙)2方向角:非零向量r 与三条坐标轴的夹角 称为向量r 的方向角设 r (x y z) 则 x |r|cos y |r|cos z |r|coscos 、cos 、cos 称为向量 r 的方向余弦cos x cos|r|从而(cos ,cos 1,COS ) F|r e r2 2 2cos cos cos 12、数量积、向量积、混合积① 两向量的数量积数量积 对于两个向量a 和b 它们的模|a|、|b|和它们的夹角 的 余弦的乘积称为向量 a 和b 的数量积记作ab 即a b |a| |b| cos数量积的性质⑴ a a |a| 2(2)对于两个非零向量 a 、b 如果a b 0贝U a b;反之如果a b 则a b 0如果认为零向量与任何向量都垂直 则a b a b 0两向量夹角的余弦的坐标表示设 (a 人b)则当a 0、b 0时有数量积的坐标表示设 a (a x a y a z ) b (b x b y b z )贝U a b a x b x a y b y a z b z 数量积的运算律 (1) 交换律 a b b a;⑵分配律 (a b) c a c b c(3) ( a) b a ( b) (a b)(a) (• b) (a b)、为数② 两向量的向量积向量积 设向量c 是由两个向量a 与b 按下列方式定出c 的模|c| |a||b|sin其中 为a 与b 间的夹角;c 的方向垂直于a 与b 所决定的平面 c 的指向按右手规则从 a 转向b 来确定那么 向量c 叫做向量a 与b 的向量积 记作a b 即c a b向量积的性质(1) a a 0(2) 对于两个非零向量 a 、b 如果a b 0则a//b 反之 如果a//b 则a b 0 如果认为零向量与任何向量都平行 则a//b a b 0数量积的运算律(1) 交换律a b b a (2) 分配律(a b) c a c b c (3) ( a) b a ( b) (a b)(为数)数量积的坐标表示 设a (a x a y a z ) b (b x b y b z )a b (a yb z a z b y ) i ( a z b xa xb z ) j (a xb y a y b x ) kcosa xb x a y b y a z b z|a||b|X a 2 a z为了邦助记忆利用三阶行列式符号 上式可写成a yb z i a z b x j a x b y k a y b x k a x b z j a z b y ii j k a x a y a z b x b y b z(a y b z a z b y ) i ( a z b x a x b z ) j ( a x b y a y b x ) k③三向量的混合积混合积的几何意义: 混合积[abc]是这样一个数,它的绝对值表示以向量a 、b 、c 为棱的平行六面体的体积,如果向量a 、b 、c 组成右手系,那么混合积的符号是正的,如果a 、b 、c 组成左手系,那么混合积的符号是负的。

空间解析几何与向量代数复习题答案

空间解析几何与向量代数复习题答案

第八章 空间解析几何与向量代数答案一、选择题1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 AB 的模是(A ) A 5 B 3 C 6 D 92. 设a =(1,-1,3), b =(2,-1,2),求c =3a -2b 是( B )A (-1,1,5).B (-1,-1,5).C (1,-1,5).D (-1,-1,6).3. 设a =(1,-1,3), b =(2, 1,-2),求用标准基i , j , k 表示向量c=a-b 为(A )A -i -2j +5kB -i -j +3kC -i -j +5kD -2i -j +5k4. 求两平面032=--+z y x 和052=+++z y x 的夹角是( C )A 2πB 4πC 3π D π 5. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是( C )A 2πB 4πC 3π D π 6. 求点)10,1,2(-M 到直线L :12213+=-=z y x 的距离是:( A )A 138B 118C 158D 17. 设,23,a i k b i j k =-=++求a b ⨯是:( D )A -i -2j +5kB -i -j +3kC -i -j +5kD 3i -3j +3k8. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( A )A B 364 C 32D 39. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程是:( D )A 2x+3y=5=0B x-y+1=0C x+y+1=0D 01=-+y x .10、若非零向量a,b 满足关系式-=+a b a b ,则必有( C );A -+a b =a b ;B =a b ;C 0⋅a b =;D ⨯a b =0.11、设,a b 为非零向量,且a b ⊥, 则必有( C ) A a b a b +=+ B a b a b -=- C +=-a b a b D +=-a b a b12、已知()()2,1,21,3,2---a =,b =,则Pr j b a =( D );A 53; B 5; C 3; D . 13、直线11z 01y 11x -=-=--与平面04z y x 2=+-+的夹角为 (B ) A 6π; B 3π; C 4π; D 2π. 14、点(1,1,1)在平面02=+-+1z y x 的投影为 (A )(A )⎪⎭⎫ ⎝⎛23,0,21; (B )13,0,22⎛⎫-- ⎪⎝⎭; (C )()1,1,0-;(D )11,1,22⎛⎫-- ⎪⎝⎭. 15、向量a 与b 的数量积⋅a b =( C ).A a rj P b a ;B ⋅a rj P a b ;C a rj P a b ;D b rj P a b .16、非零向量,a b 满足0⋅=a b ,则有( C ).A a ∥b ;B =λa b (λ为实数);C ⊥a b ;D 0+=a b .17、设a 与b 为非零向量,则0⨯=a b 是(A ).A a ∥b 的充要条件;B a ⊥b 的充要条件;C =a b 的充要条件;D a ∥b 的必要但不充分的条件.18、设234,5=+-=-+a i j k b i j k ,则向量2=-c a b 在y 轴上的分向量是(B ).A 7B 7jC –1;D -9k19、方程组2222491x y z x ⎧++=⎪⎨=⎪⎩表示 ( B ). A 椭球面; B 1=x 平面上的椭圆;C 椭圆柱面; D 空间曲线在1=x 平面上的投影.20、方程 220x y +=在空间直角坐标系下表示 (C ).A 坐标原点(0,0,0);B xoy 坐标面的原点)0,0(;C z 轴;D xoy 坐标面.21、设空间直线的对称式方程为012x y z ==则该直线必( A ). A 过原点且垂直于x 轴; B 过原点且垂直于y 轴;C 过原点且垂直于z 轴;D 过原点且平行于x 轴.22、设空间三直线的方程分别为123321034:;:13;:2025327x t x y z x y z L L y t L x y z z t =⎧+-+=⎧++⎪===-+⎨⎨+-=--⎩⎪=+⎩,则必有( D ). A 1L ∥2L ; B 1L ∥3L ; C 32L L ⊥; D 21L L ⊥.23、直线 34273x y z ++==--与平面4223x y z --=的关系为 ( A ). A 平行但直线不在平面上; B 直线在平面上;C 垂直相交;D 相交但不垂直.24、已知1,==a b 且(,)4∧π=a b , 则 +a b = ( D ).A 1; B1 C 2; D .25、下列等式中正确的是( C ).A +=i j k ;B ⋅=i j k ;C ⋅=⋅i i j j ;D ⨯=⋅i i i i .26、曲面22x y z -=在xoz 平面上的截线方程为 (D).A 2x z =;B 20y z x ⎧=-⎪⎨=⎪⎩;C 2200x y z ⎧-=⎪⎨=⎪⎩;D 20x z y ⎧=⎪⎨=⎪⎩. 二、计算题1.已知()2,2,21M ,()0,3,12M ,求21M M 的模、方向余弦与方向角。

数三不考内容总结

数三不考内容总结

同济五版
不考的如下:
第三章微分中值定理与导数的应用
第7节曲率
第四章不定积分
第4节有理函数的积分
第五章定积分
第5节反常积分的审敛法
第六章定积分的应用
第2节定积分在几何上的应用中三平面曲线的弧长第3节定积分在物理学上的应用
第七章空间解析几何与向量代数(全部)
第八章多元函数微分法及其应用
第6节多元函数微分学的几何应用
第7节方向导数与梯度
第9节二元函数的xx公式
第10节最小二乘法
第九章重积分
第3节三重积分
第4节重积分的应用第五节含参变量的积分
第十章曲线积分与曲面积分(全部)
第十一章无穷级数
第5节函数的幂级数xx的应用
第6节函数项级数的一致收敛性及一致收敛级数的基本性质
第7节xx级数
第8节一般周期函数的xx级数
第十二章微分方程
第4节一阶线性微分方程中二xx方程
第5节全微分方程第六节可降阶的高阶微分方程
第10节欧拉方程第十一节微分方程的幂级数解法
第12节常系数线性微分方程组解法举例
可以参照大纲,对比数一与数三的考试内容,会对考察的内容还有要求掌握的程度有更清晰的把握。

我也是照大纲自己捋出来的。

相比数一与数三,考察的深度相近,只是数三就要少很多内容了,还是省了很大力气的。

希望复习愉快,方向是对的,要把课本及课后题过一遍。

时间充裕,前途明朗。

(转)。

同济大学(高等数学)-第八章-向量代数与解析几何

同济大学(高等数学)-第八章-向量代数与解析几何

第五篇 向量代数与空间解析几何第八章 向量代数与空间解析几何解析几何的基本思想是用代数的方法来研究几何的问题,为了把代数运算引入几何中来,最根本的做法就是设法把空间的几何结构有系统的代数化,数量化. 平面解析几何使一元函数微积分有了直观的几何意义,所以为了更好的学习多元函数微积分,空间解析几何的知识就有着非常重要的地位.本章首先给出空间直角坐标系,然后介绍向量的基础知识,以向量为工具讨论空间的平面和直线,最后介绍空间曲面和空间曲线的部分容.第1节 空间直角坐标系1.1 空间直角坐标系用代数的方法来研究几何的问题,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现.1.1.1 空间直角坐标系过定点O ,作三条互相垂直的数轴,这三条数轴分别叫做x 轴(横轴)、y 轴(纵轴)、z 轴(竖轴),它们都以O 为原点且具有相同的长度单位. 通常把x 轴和y 轴配置在水平面上,而z 轴则是铅垂线;它们的正方向要符合右手规则:右手握住z 轴,当右手的四指从x 轴的正向转过2角度指向y 轴正向时,大拇指的指向就是z 轴的正向,这样就建立了一个空间直角坐标系(图8-1),称为Oxyz 直角坐标系,点O 叫做坐标原点.图8-1在Oxyz 直角坐标系下,数轴Ox ,Oy ,Oz 统称为坐标轴,三条坐标轴中每两条可以确定一个平面,称为坐标面,分别为xOy ,yOz ,zOx ,三个坐标平面将空间分为八个部分,每一部分叫做一个卦限(图8-2),分别用Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ、Ⅷ表示.yxzO图8-21.1.2 空间点的直角坐标设M 为空间中的任一点,过点M 分别作垂直于三个坐标轴的三个平面,与x 轴、y 轴和z 轴依次交于A 、B 、C 三点,若这三点在x 轴、y 轴、z 轴上的坐标分别为x ,y ,z ,于是点M 就唯一确定了一个有序数组(, , )x y z ,则称该数组(, , )x y z 为点M 在空间直角坐标系Oxyz 中的坐标,如图8-3.x ,y ,z 分别称为点M 的横坐标、纵坐标和竖坐标.图8-3反之,若任意给定一个有序数组(, , )x y z ,在x 轴、y 轴、z 轴上分别取坐标为x ,y ,z 的三个点A 、B 、C ,过这三个点分别作垂直于三个坐标轴的平面,这三个平面只有一个交点M ,该点就是以有序数组(, , )x y z 为坐标的点,因此空间中的点M 就与有序数组(, , )x y z 之间建立了一一对应的关系.注:A 、B 、C 这三点正好是过M 点作三个坐标轴的垂线的垂足.yxzOyxzAB C(,,)M x y z1.2 空间中两点之间的距离设两点111(, , )M x y z ,222(, , )N x y z ,则M 与N 之间的距离为212212212)()()(z z y y x x d -+-+-= (8-1-1)事实上,过点M 和N 作垂直于xOy 平面的直线,分别交xOy 平面于点1M 和1N ,则1MM ∥1NN ,显然,点1M 的坐标为11(, , 0)x y ,点1N 的坐标为22(, , 0)x y (如图8-4).图8-4由平面解析几何的两点间距离公式知,1M 和1N 的距离为:21221211)()(||y y x x N M -+-=.过点M 作平行于xOy 平面的平面,交直线1NN 于2N ,则11M N ∥2MN ,因此2N 的坐标为221(, , )x y z ,且212212112)()(||||y y x x N M MN -+-==,在直角三角形N MN 2中,||||122z z N N -=,所以点M 与N 间的距离为2122122122222)()()(||||z z y y x x N N MN d -+-+-=+=.例1 设(1, 2, 0)A -与(1, 0, 2)B --为空间两点,求A 与B 两点间的距离. 解 由公式(8-1-1)可得,A 与B 两点间的距离为d ==例2 在z 轴上求与点(3, 5, 2)A -和(4, 1, 5)B -等距的点M .解 由于所求的点M 在z 轴上,因而M 点的坐标可设为(0, 0, )z ,又由于MA MB =,由公式(8-1-1),得222222)5(1)4()2(53z z -++-=--++.从而解得72=z ,即所求的点为2(0, 0, )7M .习题8-11.讨论空间直角坐标系的八个卦限中的点的坐标的符号. 2.在坐标轴上的点和在坐标平面上的点的坐标各有何特点? 3.在空间直角坐标系中,画出以下各点:(2, 0, 0)A ;(0, 3, 0)B -;(3, 0, 1)C ;(3, 2, 1)D -.4.求点(1, 2, 3)-关于各坐标平面对称的点的坐标. 5.求点(1, 2, 3)关于各坐标轴对称的点的坐标. 6.求以下各对点间的距离: (1) (0, 1, 3)A -与(2, 1, 4)B ;(2) (1, 4, 2)C -与D(2, 7, 3).7.在坐标平面yOz 上求与三点(3, 1, 2)A 、(4, 2, 2)B --和(0, 5, 1)C 等距的点. 8.求点(12, 3, 4)A -与原点、各坐标平面和各坐标轴的距离.9. 证明以()()()A 4,3,1,B 7,1,2,C 5,2,3为顶点的三角形△ABC 是一等腰三角形.第2节 空间向量的代数运算2.1 空间向量的概念在日常生活中,我们经常会遇到一些量,如质量、时间、面积、温度等,它们在取定一个度量单位后,就可以用一个数来表示.这种只有大小没有方向的量,叫做数量(或标量).但有一些量,如力、位移、速度、电场强度等,仅仅用一个实数是无法将它们确切表示出来,因为它们不仅有大小,而且还有方向,这种既有大小又有方向的量,叫做向量(或矢量).在数学上,我们用有向线段AB 来表示向量,A 称为向量的起点,B 称为向量的终点,有向线段的长度就表示向量的大小,有向线段的方向就表示向量的方向.通常在印刷时用黑体小写字母a ,b ,c ,…来表示向量,手写时用带箭头的小写字母, ,,a b c来记向量.向量的长度称为向量的模,记作a 或AB ,模为1的向量叫做单位向量,模为0的向量叫做零向量,记作0,规定:零向量的方向可以是任意的.本章我们讨论的是自由向量,即只考虑向量的大小和方向,而不考虑向量的起点,因此,我们把大小相等,方向相同的向量叫做相等向量,记作a =b .规定:所有的零向量都相等.与向量a 大小相等,方向相反的向量叫做a 的负向量(或反向量),记作 a . 平行于同一直线的一组向量称为平行向量(或共线向量).平行于同一平面的一组向量,叫做共面向量,零向量与任何共面的向量组共面.2.2 向量的线性运算2.2.1 向量的加法我们在物理学中知道力与位移都是向量,求两个力的合力用的是平行四边形法则,我们可以类似地定义两个向量的加法.定义1 对向量a ,b ,从同一起点A 作有向线段AB 、AD 分别表示a 与b ,然后以AB 、AD 为邻边作平行四边形ABCD ,则我们把从起点A 到顶点C 的向量AC 称为向量a 与b 的和(图8-5),记作a +b .这种求和方法称为平行四边形法则.图8-5 图8-6若将向量b 平移,使其起点与向量a 的终点重合,则以a 的起点为起点,b 的终点为终ab Cabc =a +b点的向量c 就是a 与b 的和(图8-6),该法则称为三角形法则.多个向量,如a 、b 、c 、d 首尾相接,则从第一个向量的起点到最后一个向量的终点的向量就是它们的和a +b +c +d (图8-7).图8-7对于任意向量a ,b ,c ,满足以下运算法则: (1)a +b =b +a (交换律).(2)()()a +b +c =a +b +c (结合律). (3)0a +=a .2.2.2 向量的减法定义2 向量a 与b 的负向量-b 的和,称为向量a 与b 的差,即()--a b =a +b .特别地,当b =a 时,有()-0a +a =.由向量减法的定义,我们从同一起点O 作有向线段OA ,OB 分别表示a ,b ,则()OA OB OA OB --=+-a b =OA BO BA =+=.也就是说,若向量a 与b 的起点放在一起,则a ,b 的差向量就是以b 的终点为起点,以a 的终点为终点的向量(图8-8).图8-82.2.3数乘向量定义3 实数λ与向量a 的乘积是一个向量,记作λa ,λa 的模是λa ,方向: 当0λ>时,λa 与a 同向;当0λ<时,λa 与a 反向;当0λ=时,λ0a =.abcda +b +c +daabb -a bBAC对于任意向量a ,b 以与任意实数λ,μ,有运算法则: (1) ()()λμλμa =a . (2) ()+λμλμ+a =a a .(3) ()+λλλ+a b =a b .向量的加法、减法与数乘向量运算统称为向量的线性运算,λμa +b 称为a ,b 的一个线性组合(, )R λμ∈.特别地,与 a 同方向的单位向量叫做a 的单位向量,记做a e ,即aa e a=.上式说明:一个非零向量除以它的模的结果是一个与原向量同方向的单位向量.例1 如图8-9,在平行六面体///ABCD B C D /—A 中,设/=AA ,a AD =b AB =c ,试用,,a b c 来表示对角线向量//,.AC A C图8-9解 ''AC AB BC CC =++'AB BC AA =++a b c =++;'''AC A A AB BC AA AB AD =++=-++a b c =++.由于向量λa 与a 平行,所以我们通常用数与向量的乘积来说明两个向量的平行关系.即有,定理1 向量a 与非零向量b 平行的充分必要条件是存在一个实数λ,使得λa =b .2.3 向量的坐标表示2.3.1向量在坐标轴上的投影设A 为空间中一点,过点A 作轴u 的垂线,垂足为'A ,则'A 称为点A 在轴u 上的投影(图8-10).图8-10若M 为空间直角坐标系中的一点,则M 在x 轴、y 轴、z 轴上的投影为A 、B 、C ,如图8-11所示.图8-11设向量AB 的始点与终点B 在轴u 的投影分别为A '、B ',那么轴u 上的有向线段A B ''的值A B ''叫做向量AB 在轴u 上的投影,记作u prj AB A B ''=,轴u 称为投影轴.图8-12当A B ''与轴u 同向时,投影取正号,当A B ''与轴u 反向时,投影取负号. 注 (1) 向量在轴上投影是标量.(2) 设MN 为空间直角坐标系中的一个向量,点M 的坐标为111(, , )x y z ,点N 的坐标为222(, , )x y z ,显然,向量MN 在三个坐标轴上的投影分别为12x x -,12y y -,12z z -. 2.3.2向量的坐标表示yxzOA B CM取空间直角坐标系Oxyz ,在x 轴、y 轴、z 轴上各取一个与坐标轴同向的单位向量,依次记作, , i j k ,它们称为坐标向量.空间中任一向量a ,它都可以唯一地表示为, , i j k 数乘之和. 事实上,设MN a =,过M 、N 作坐标轴的投影,如图8-13所示.MN =MA+AP +PN =MA+MB +MC a =.由于MA 与i 平行,MB 与j 平行,MC 与k 平行,所以,存在唯一的实数, , x y z ,使得MA x =i ,MB y =j ,MC z =k ,即x y z a =i +j +k . (8-2-1)图 8-13我们把(8-2-1)式中, , i j k 系数组成的有序数组(, , )x y z 叫做向量a 的直角坐标,记为{, , }x y z a =,向量的坐标确定了,向量也就确定了.显然,(8-2-1)中的, , x y z 是向量a 分别在x 轴、y 轴、z 轴上的投影.因此,在空间直角坐标系中的向量a 的坐标就是该向量在三个坐标轴上的投影组成的有序数组.例2 在空间直角坐标系中设点(3, 1, 5)M -,(2, 3, 1)N -,求向量MN 与NM 的直角坐标.解 由于向量的坐标即为向量在坐标轴上的投影组成的有序数组,而向量的各投影即为终点坐标与起点坐标对应分量的差.所以向量MN 的坐标为{5, 4, 4}--,向量NM 的坐标为{5, 4, 4}-. 例3(定比分点公式) 设111(,,)A x y z 和222(,,)B x y z 为两已知点,有向线段AB 上的点M 将它分为两条有向线段AM 和MB ,使它们的值的比等于数(1)λλ≠-,即AMMBλ=,求分点(,,)M x y z 的坐标.图8-14 解 如图8-14,因为AM 与MB 在同一直线上,且同方向,故AM MB λ=⋅,而122{,,}AM x x y y z z =---, 222{,,}MB x x y y z z =---222{(),(),()}MB x x y y z z λλλλ=---所以 12()x x x x λ-=-,12()y y y y λ-=-,12()z z z z λ-=- 解得121212,,.111x x y y z z x y z λλλλλλ+⋅+⋅+⋅===+++当λ=1, 点M 的有向线段→AB x 2.3.3向量可以用它的模与方向来表示,设空间向量12a M M =分别为,,αβγ,规定: 0,0απ≤≤≤称,,αβγ为向量a 的方向角因为向量a 12cos cos x a M M a αα=⋅=⋅12cos cos y a M M a ββ=⋅=⋅(8-2-2)12cos cos z a M M a γγ=⋅=⋅公式(8.2.2)中出现的cos ,cos ,cos αβγ称为向量a 的方向余弦.而{,,}{cos ,cos ,cos }x y z a a a a a a a αβγ==⋅⋅⋅{cos ,cos ,cos }a a a e αβγ=⋅=⋅{cos ,cos ,cos }a e αβγ=是与向量a 同方向的单位向量.而 a =M M =12,,x y z M P a M Q a M R a ===111,故向量a 的模为 x a a a =+2(8-2-3)从而向量a 的方向余弦为cos a αβγ===(8-2-4)并且 222cos cos cos 1αβγ++=.例4 已知两点1M 和()21,3,0M ,求向量12M M 的模、方向余弦和方向角.解12(12,32,0(1,1,M M =--=-2)2(1)1(222=-++-=;11cos ,cos ,cos 22αβγ=-==; 23,,334πππαβγ===. 例5 已知两点(4,0,5)A 和(7,1,3)B ,求与AB 同方向的单位向量e . 解 因为{74,10,35}{3,1,2},AB =---=-所以23AB == 于是 {}.e =2.4 向量的数量积在物理中我们知道,一质点在恒力F 的作用下,由A 点沿直线移到B 点,若力F 与位移向量AB 的夹角为θ,则力F 所作的功为||||cos W F AB θ=⋅⋅.类似的情况在其他问题中也经常遇到.由此,我们引入两向量的数量积的概念. 定义1 设a ,b 为空间中的两个向量,则数cos ,a b a b叫做向量a 与b 的数量积(也称积或点积),记作⋅a b ,读作“a 点乘b ”.即cos ,⋅a b =a b a b (8-2-5)其中,a b 表示向量a 与b 的夹角,并且规定0, π≤≤a b .两向量的数量积是一个数量而不是向量,特别地当两向量中一个为零向量时,就有0⋅a b =.由向量数量积的定义易知:(1)2⋅a a =a ,因此=a(2) 对于两个非零向量a ,b ,a 与b 垂直的充要条件是它们的数量积为零,即⊥a b ⇔0⋅a b =.注 数量积在解决有关长度、角度、垂直等度量问题上起着重要作用. 数量积的运算满足如下运算性质: 对于任意向量a ,b 与任意实数λ,有 (1) 交换律:⋅⋅a b =b a .(2) 分配律:()⋅⋅⋅a b +c =a b +a c .(3) 与数乘结合律:()()()λλλ⋅⋅=⋅a b =a b a b . (4)0⋅≥a a 当且仅当0a =时,等号成立.例6 对坐标向量i ,j ,k ,求⋅i i ,⋅j j ,⋅k k ,⋅i j ,⋅j k ,⋅k i . 解 由坐标向量的特点与向量积的定义得1⋅⋅⋅i i =j j =k k =, 0⋅⋅⋅i j =j k =k i =.例7 已知2=a ,3=b ,2, 3π=a b ,求a b ⋅,(2)()-+a b a b ⋅,+a b . 解 由两向量的数量积定义有2cos , 23cos 3π⋅=⨯⨯a b =a b a b 123()=32=⨯⨯--.(2)()=22-⋅+⋅⋅-⋅-⋅a b a b a a +a b b a b b22=2-⋅-a a b b 222(3)23=11=---⨯-.2()()+=⋅+a b a +b a b =⋅⋅+⋅+⋅a a +a b b a b b222=+⋅+a a b b 2222(3)3=7=+⨯-+,因此+=a b .在空间直角坐标系下,设向量111{,,}x y z a =,向量222{,,}x y z b =,即111x y z ++a =i j k , 222x y z ++b =i j k .则111222()()x y z x y z ⋅++⋅++a b =i j k i j k121212()()+()x x x y x z ⋅+⋅⋅=i i i j i k 121212()()+()y x y y y z ⋅+⋅⋅+j i j j j k 121212()()+()z x z y z z ⋅+⋅⋅+k i k j k k .由于1⋅⋅⋅i i =j j =k k =, 0⋅⋅⋅i j =j k =k i =,所以121212x x y y z z ⋅++a b =.(8-2-6)也就是说,在直角坐标系下,两向量的数量积等于它们对应坐标分量的乘积之和.同样,利用向量的直角坐标也可以求出向量的模、两向量的夹角公式以与两向量垂直的充要条件,即设非零向量111{,,}x y z a =,向量222{,,}x y z b =,则=a (8-2-7)cos ||||⋅=a ba,b a b=. (8-2-8)⊥a b ⇔1212120x x y y z z ++=. (8-2-9)例8 在空间直角坐标系中,设三点(5, 4, 1)A -,(3, 2, 1)B ,(2, 5, 0)C -.证明:ABC ∆是直角三角形.证明 由题意可知{2, 6, 0}AB =-,={3, 1, 1}AC ---,则(2)(3)6(1)0(1)0AB AC ⋅=-⨯-+⨯-+⨯-=,所以AB AC ⊥.即ABC ∆是直角三角形.2.5向量的向量积在物理学中我们知道,要表示一外力对物体的转动所产生的影响,我们用力矩的概念来描述.设一杠杆的一端O 固定,力F 作用于杠杆上的点A 处,F 与OA 的夹角为θ,则杠杆在F 的作用下绕O 点转动,这时,可用力矩M 来描述.力F 对O 的力矩M 是个向量,M 的大小为||||||sin OA OA =M F ,F .M 的方向与OA 与F 都垂直,且OA ,F ,M 成右手系,如图8-16所示.图8-162.5.1向量积的定义在实际生活中,我们会经常遇到象这样由两个向量所决定的另一个向量,由此,我们引入两向量的向量积的概念.定义2 设a ,b 为空间中的两个向量,若由a ,b 所决定的向量c ,其模为sin , c =a b a b . (8-2-10)其方向与a ,b 均垂直且a ,b ,c 成右手系(如图8-17),则向量c 叫做向量a 与b 的向量积(也称外积或叉积).记作⨯a b ,读作“a 叉乘b ”.注 (1) 两向量a 与b 的向量积⨯a b 是一个向量,其模⨯a b 的几何意义是以a ,b 为邻边的平行四边形的面积. (2)⨯0a a =这是因为夹角θ=0,所以⨯0a a = 图8-17(3)对两个非零向量a 与b ,a 与b 平行(即平行)的充要条件是它们的向量积为零向量.a ∥b ⇔⨯0a b =.向量积的运算满足如下性质:对任意向量a ,b 与任意实数λ,有 (1) 反交换律:⨯-⨯a b =b a . (2) 分配律:()⨯⨯⨯a b +c =a b +a c ,()⨯⨯⨯a +b c =a c +b c .(3) 与数乘的结合律:()()()λλλ⨯⨯⨯a b =a b =a b .例9 对坐标向量i ,j ,k ,求⨯i i ,⨯j j ,⨯k k ,⨯i j ,⨯j k ,⨯k i . 解⨯⨯⨯0i i =j j =k k =.⨯i j =k ,⨯j k =i ,⨯k i =j .2.5.2向量积的直角坐标运算在空间直角坐标系下,设向量111{, , }x y z a =,向量222{, , }x y z b =,即111x y z ++a =i j k ,222x y z ++b =i j k ,因为⨯⨯⨯0i i =j j =k k =. ⨯i j =k ,⨯j k =i ,⨯k i =j , ⨯-j i =k ,⨯-k j =i ,⨯-i k =j .则111222()()x y z x y z ⨯++⨯++a b =i j k i j k121212()()+()x x x y x z ⨯+⨯⨯=i i i j i k 121212()()+()y x y y y z ⨯+⨯⨯+j i j j j k 121212()()+()z x z y z z ⨯+⨯⨯+k i k j k k121212121212()()+()()()()x y y x y z z y x z z x -⨯-⨯--⨯=i j j k k i 121212121212()()+()y z z y x z z x x y y x ----=i j k .为了便于记忆,借助于线性代数中的二阶行列式与三阶行列式有111111222222y z x z x y y z x z x y ⨯-a b =i j +k 111222x y z x y z =i j k . 注 设两个非零向量111{, , }x y z a =,222{, , }x y z b =,则a ∥b ⇔⨯0a b =,⇔212121z z y y x x ==. 若某个分母为零,则规定相应的分子为零.例10 设向量{1,2,1}--a =,{2,0,1}b =,求⨯a b 的坐标.解211112121012120201----⨯--=-i j ka b =i j +k 234=--i j +k .因此⨯a b 的直角坐标为{2, 3, 4}--.例11 在空间直角坐标系中,设向量{3, 0, 2}a =,{1, 1, 1}--b =,求同时垂直于向量a 与b 的单位向量.解 设向量⨯c =a b ,则c 同时与a ,b 垂直.而302111⨯--i j kc =a b =23=-+i j +k ,所以向量c 的坐标为{2, 1, 3}-.再将c 单位化,得02,1,3}={=-c ,即{与-- 为所求的向量. 例12 在空间直角坐标系中,设点(4, 1, 2)A -,(1, 2, 2)B -,(2, 0, 1)C ,求ABC ∆的面积.解 由两向量积的模的几何意义知:以AB 、AC 为邻边的平行四边形的面积为AB AC ⨯,由于{3, 3, 4}AB =--,{2, 1, 1}AC =--,因此33453211AB AC ⨯=--=++--i j ki j k ,所以21AB AC ⨯=故ABC ∆的面积为235=∆ABC S .2.6向量的混合积定义3 给定空间三个向量,,a b c ,如果先作前两个向量a 与b 的向量积,再作所得的向量与第三个向量c 的数量积,最后得到的这个数叫做三向量,,a b c 的混合积,记做()a b c ⨯⋅或abc ⎡⎤⎣⎦.说明:三个不共面向量,,a b c 的混合积的绝对值等于以,,a b c 为棱的平行六面体的体积V .定理如果111a X i Y j Z k =++,222b X i Y j Z k =++,333c X i Y j Z k =++,那么 111222333.X Y Z abc X Y Z X Y Z ⎡⎤=⎣⎦习题8-21.,,,,,().ABCD AB AD AC DB MA M ==设为一平行四边形试用表示为平行四边形对角线的交点a b.a b12.,().2M AB O OM OA OB =+设为线段的中点,为空间中的任意一点证明 2223.?(1)()();(2)();(3)()().==⨯=⨯对于任意三个向量与判断下列各式是否成立a,b c,a b c b c a a b a b a b c c a b4.:(1);(2)(3).利用向量证明三角形的余弦定理正弦定理;勾股定理5.设,,a b c 为单位向量,且满足0a b c ++=,求.a b b c c a ++6.1(3,2,2),(1,3,2),(8,6,2),322a b c a b + c.求=-==--7.已知三点(3,0,2),A B AB ==求的坐标、模、方向余弦和方向角.8.一向量的终点在点B(2,-1,7),它在x 轴、y 轴和z 轴上的投影依次为4,-4和7.求这向量的起点A 的坐标.9.设2=a ,4=b ,3πa,b =,求⋅a b ,(2)-⋅a b b ,-a b . 10.设向量a ,b ,c 两两垂直,且1=a ,2=b ,3=c ,求向量d =a +b +c 的模与d,a .11.在空间直角坐标系中,已知{1,2,3}-a = ,{2,2,1}-b = ,求: (1)⋅a b ;(2) 25⋅a b ;(3) a ;(4)cos a,b .12.已知向量2332和,,a i j k b i j k c i j =-+=-+=-,计算 (1)()();a b c a c b -(2)()();a b b c +⨯+(3)()a b c ⨯.13.设向量a ,b 的直角坐标分别为{1, 3, 2}--和{2, 4, }k -,若a b ⊥,求k 的值.14.设向量{2, 1, 1}-a =,{1, 3, 0}-b =,求以、a b 为邻边构造的平行四边形面积. 15.求同时垂直于向量{3, 2, 4}-a =和纵轴的单位向量.16.已知三角形三个顶点(4, 1, 2)A -,(3, 0, 1)B -,(5, 1, 2)C ,求ABC ∆的面积.第3节 空间中的平面与直线方程在本节我们以向量为工具,在空间直角坐标系中讨论最简单的曲面和曲线——平面和直线.3.1平面与其方程首先利用向量的概念,在空间直角坐标系中建立平面的方程,下面我们将给出几种由不同条件所确定的平面的方程.3.1.1平面的点法式方程若一个非零向量n 垂直于平面π,则称向量n 为平面π的一个法向量.显然,若n 是平面π的一个法向量,则λn (λ为任意非零实数)都是π的法向量,即平面上的任一向量均与该平面的法向量垂直.由立体几何知识知道,过一个定点0000(, , )M x y z 且垂直于一个非零向量{, , }A B C n =有且只有一个平面π.设(, , )M x y z 为平面π上的任一点,由于π⊥n ,因此0M M ⊥n .由两向量垂直的充要条件,得00M M =⋅n ,而0000{, , }M M x x y y z z =---,{, , }A B C n =,所以可得0)()()(000=-+-+-z z C y y B x x A . (8-3-1)由于平面π上任意一点(, , )M x y z 都满足方程(8-3-1),而不在平面π上的点都不满足方程(8-3-1),因此方程(8-3-1)就是平面π的方程.由于方程(8-3-1)是给定点0000(, , )M x y z 和法向量{, , }A B C n =所确定的,因而称式(8-3-1)叫做平面π的点法式方程.图8-18例1 求通过点0(1, 2, 4)M -且垂直于向量{3, 2, 1}-n =的平面方程.解 由于{3, 2, 1}-n =为所求平面的一个法向量,平面又过点0(1, 2, 4)M -,所以,由平面的点法式方程(6-14)可得所求平面的方程为3(1)2(2)1(4)=0x y z --⋅++⋅-,整理,得32110x y z -+-=.例2 求过三点()12,1,4M -,()2M 1,3,2--,()3M 0,2,3 的平面π的方程. 解 所求平面π的法向量必定同时垂直于12M M 与13M M .因此可取12M M 与13M M 的向量积1213M M M M ⨯为该平面的一个法向量n .即1213n =M M M M ⨯.由于12{3, 4, 6}M M =--,13{2, 3, 1}M M =--,因此1213-631i j kn =M M M M =342⨯---149i j k,=+-,因此所求平面π的方程为0419214=--++-)()()(z y x ,化简得.015914=--+z y x一般地,过三点(,,)(1,2,3)k k k k M x y z k =的平面方程为1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 称为平面的三点式方程。

最新第八章:空间解析几何与向量代数(数学三不考)

最新第八章:空间解析几何与向量代数(数学三不考)

精品文档高联教育集团2015考研数学学习重点及计划-数学三[第九章、第十章、第十二章]错误!未找到引用源。

第八章:空间解析几何与向量代数(数学三不考)数学三考生不考2015考研数学学习重点及计划-数学三数学三(sj-01)(九、十、十二章)《高等数学》第九单元、多元函数微分学核心掌握知识点:计划对应教材:高等数学下册同济大学数学系编高等教育出版社第六版本单元中我们应当学习——1.二元函数的概念与几何意义;2.二元函数的极限与连续的概念,有界闭区域上连续函数的性质;3.多元函数偏导数和全微分的概念,全微分存在的必要条件和充分条件,全微分形式的不变性,会求全微分;4.多元复合函数一阶、二阶偏导数的求法;5.隐函数存在定理,计算多元隐函数的偏导数;6.多元函数极值和条件极值的概念,二元函数极值存在的必要条件、充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值.第十章、重积分计划对应教材:高等数学下册同济大学数学系编高等教育出版社第六版本单元中我们应当学习——1.2.二重积分的概念和性质,二重积分的中值定理;3.会利用直角坐标、极坐标计算二重积分.第十一章、曲线积分与曲面积分(考研数学三不要求)第十二章、无穷级数计划对应教材:高等数学下册同济大学数学系编高等教育出版社第六版本单元中我们应当学习——1.常数项级数收敛、发散以及收敛级数的和的概念,级数的基本性质及收敛的必要条件;2.几何级数与p级数的收敛与发散的条件;3.正项级数收敛性的比较判别法和比值判别法;4. 交错级数和莱布尼茨判别法;5. 任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系;6. 函数项级数的收敛域及和函数的概念;7. 幂级数的收敛半径、收敛区间及收敛域的求法;8.幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数;9. 函数展开为泰勒级数的充分必要条件;10. xe ,sin x ,cos x ,ln(1)x +及(1)x α+的麦克劳林(Maclaurin )展开式,会用它们将一些简单函数间接展开为幂级数.。

高等数学 第八章

高等数学 第八章

22 (3) 232 11 .
因 | a b |2 (a b) (a b) |a |2 2a b | b |2 22 2 (3) 32 = 7 ,
故可 得
| a b| 7 .
二、数量积的坐标运算
设非零向量 a (x1 ,y1 ,z1) , b (x2 ,y2 ,z2 ) ,则
于是可得向量 r (x ,y ,z) 的模的坐标表达式为 | r | x2 y2 z2 .
向量 M1M2 的模即为点 M1 (x1 ,y1 ,z1) 和点 M2 (x2 ,y2 ,z2 ) 之间的距离,即 | M1M2 | (x2 x1)2 (y2 y1)2 (z2 z1)2 .
方向 角为
2 , , 3 .
3
3
4
第三节
向量的数量积与向量积
一、数量积的定义及性质
定义 1 设 a,b 为空间中的两个向量,则数| a | | b | cos a ,b 称为向量 a,b 的数量积(也
称内积或点积),记作 a b ,读作“a 点乘 b”,即
a b | a | | b | cos a ,b .
在空间直角坐标系中,设点 M1 的坐标为 (x1 ,y1 ,z1) ,点 M 2 的坐标为 (x2 ,y2 ,z2 ) ,则以 M1 为
起点、 M 2 为终点的向量为
M1M2 OM2 OM1 .
因为 OM2 与 OM1 均为向径,所以 M1M2 OM2 OM1 (x2i y2 j z2k) (x1i y1 j z1k)
图8-7
交换律:a+b=b+a 结合律:(a+b)+c=a+(b+c) a+0=a a+(-a)=a
(二)向量的减法

空间解析几何与向量代数数学三不考

空间解析几何与向量代数数学三不考

高联教育集团2015考研数学学习重点及计划-数学三[第九章、第十章、第十二章]错误!未找到引用源。

第八章:空间解析几何与向量代数(数学三不考)数学三考生不考2015考研数学学习重点及计划-数学三数学三(sj-01)(九、十、十二章)《高等数学》第九单元、多元函数微分学核心掌握知识点:计划对应教材:高等数学下册同济大学数学系编高等教育出版社第六版本单元中我们应当学习——1.二元函数的概念与几何意义;2.二元函数的极限与连续的概念,有界闭区域上连续函数的性质;3.多元函数偏导数和全微分的概念,全微分存在的必要条件和充分条件,全微分形式的不变性,会求全微分;4.多元复合函数一阶、二阶偏导数的求法;5.隐函数存在定理,计算多元隐函数的偏导数;6.多元函数极值和条件极值的概念,二元函数极值存在的必要条件、充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值.天数学习时间学习章节学习知识点习题章节必做题目巩固习题(选做)备注第一天2h 第9章第1节多元函数的基本概念二元函数的极限、连续性、有界性与最大值最小值定理、介值定理习题9—12,5(1)(2),6(1)(4),7(1),85(4)(6),6(3)(5),7(2),9考研不要求的内容:1.“一、平面点集 n维空间”;2.本节最后——“性质3(一致连续性定理)”.第二天3h 第9章第2节偏导数偏导数的概念,高阶偏导数的求解习题9—21(4)(5)(6)★,4★,6(2)★,8,9(2) ★1(3)(7)(8),3,6(3),9(1)——第9章第3节全微分全微分的定义,可微分的必要条件和充分条件习题9—31(1) ★(4) ★,2★,3,5★1(2)(3),41.可不看的内容:“定理2”的证明过程;2.考研不要求的内容:“二、全微分在近似计算中的应用”.第三天3h 第9章第4节多元复合函数的求导法则多元复合函数求导法则(共3个定理)全导数全微分形式不变性习题9—42★,4★,6★,8(1) ★,10★12(1) ★1,3,5,8(3),11,12(3) ——第四天2h第9章第5节隐函数的求导公式一个方程的情形(定理1,定理2)习题9—51,4★,6,8★2,3,9考研不要求的内容:“二、方程组的情形”.第五天3h 第9章第8节多元函数的极值及其求法多元函数极值、极值点的概念多元函数极值的必要条件、充分条件条件极值,拉格朗日乘数法习题9—81,2★,6,9 4,5,8 考研不要求的内容:例9.第六天2h 第9章总复习题总结归纳本章的基本概念、基本定理、基本公式、基本方法总复习题九1,5,6(2)★, 8,9,11★,19★3,4,6(1),7,10,12 ——第七天2h 2015高联考研章节基础测试练习第十章、重积分计划对应教材:高等数学下册同济大学数学系编高等教育出版社第六版本单元中我们应当学习——1.二重积分的概念和性质,二重积分的中值定理;2.会利用直角坐标、极坐标计算二重积分.天数学习时间学习章节学习知识点习题章节必做题目巩固习题(选做)备注第一天2h 第10章第1节二重积分的概念与性质二重积分的定义、几何意义和物理意义二重积分的性质(6个)二重积分的中值定理习题10—12,4(1)(2)(3) ★,5(1)(4) 4(4),5(2)(3) ——第二天3h 第10章第2节二重积分的计算法利用直角坐标计算二重积分习题10—21(1)(3)(4) ★, 2(1)(2) ★(3)(4),4(1)(2)★ (3),6(1)(2)(3)★ (6) ★1(2),4(4),6(4)(5)考研不要求的内容:“三、二重积分的换元法”.第三天2h 第10章第2节二重积分的计算法利用极坐标计算二重积分习题10—211(1)(3)★,12(1)(3)★,13(1)★(3)★(4),14(1) ★(2) ★(3)★,15(1) ★(2)(3) ★(4)★11(2)(4),12(2)(4), 13(2)考研不要求的内容:“三、二重积分的换元法”.第四天2h 第10章总复习题总结归纳本章的基本概念、基本定理、基本公式、基本方法总复习题十1(2) ★(3) ★,2(1)(4),3(1)(2)★, 5,6★2(2)(3),3(3) —第五天2h 2015高联考研章节基础测试练习第十一章、曲线积分与曲面积分(考研数学三不要求)第十二章、无穷级数计划对应教材:高等数学下册 同济大学数学系编 高等教育出版社 第六版 本单元中我们应当学习——1. 常数项级数收敛、发散以及收敛级数的和的概念,级数的基本性质及收敛的必要条件;2. 几何级数与p 级数的收敛与发散的条件;3. 正项级数收敛性的比较判别法和比值判别法;4. 交错级数和莱布尼茨判别法;5. 任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系;6. 函数项级数的收敛域及和函数的概念;7. 幂级数的收敛半径、收敛区间及收敛域的求法;8. 幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数; 9.函数展开为泰勒级数的充分必要条件;10. xe ,sin x ,cos x ,ln(1)x +及(1)x α+的麦克劳林(Maclaurin )展开式,会用它们将一些简单函数间接展开为幂级数.天数学习时间学习章节学习知识点习题章节必做题目巩固习题(选做)备注第一天3h第12章 第1节常数项级数的概念和性质常数项级数的概念 收敛级数的基本性质等比级数(几何级数)敛散性的判别 级数收敛的必要条件习题 12—12(3)(4),3(1)(2)★,4(1)(2)(5) ★2(1),4(3)(4)考研不要求的内容:“三、柯西审敛原理”.第二天3h 第12章第2节常数项级数的审敛法正项级数及其审敛法(正项级数收敛的充要条件,比较审敛法及其推论、比较审敛法的极限形式,比值审敛法、根值审敛法,极限审敛法)p级数敛散性的判别交错级数及其审敛法(莱布尼茨定理)绝对收敛与条件收敛习题12—21(1)(4)(5)★,2(1)(4)★,4(1)★(3)(5) ★,5(2)(3)★(5)★1(2)(3),2(2)(3),4(2)(4)考研不要求的内容:1.“定理5(根植审敛法)”.2.“绝对收敛级数的性质”第三天3h 第12章第3节幂级数函数项级数的概念幂级数及其收敛性(阿贝尔定理及其推论,幂级数的收敛半径)幂级数的运算(幂级数的和函数的性质)习题12—31(1)★(2)★(3)(6)★,2(1)★(2)★1(4)(5)(8),2(3) ——第四天3h 第12章第4节函数展开成幂级数泰勒级数、麦克劳林级数把函数展开成幂级数的步骤xe、sin x、cos x、ln(1)x+、(1)xα+的麦克劳林展开式用间接法把函数展开成幂级数习题12—42(1) ★(2)(4) ★,4,5,6★2(3)(6)熟记以下公式,以后直接使用:公式(7)—公式(12)第五天2h 第12章总复习题总结归纳本章的基本概念、基本定理、基本公式、基本方法总复习题十二1,2(1)(5),4★, 5(1)★,7(1)(4),8(1)(3)★,10(2)★2(3),5(3),7(2),8(2) ——第六天2h 2015高联考研章节基础测试练习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015考研数学学习重点及计划-数学三
[第九章、第十章、第十二章]
错误!未找到引用源。

第八章:空间解析几何与向量代数(数学三不考)数学三考生不考
2015考研数学学习重点及计划-数学三
数学三(sj-01)(九、十、十二章)
《高等数学》
第九单元、多元函数微分学
核心掌握知识点:
计划对应教材:高等数学下册同济大学数学系编高等教育出版社第六版
本单元中我们应当学习——
1.二元函数的概念与几何意义;
2.二元函数的极限与连续的概念,有界闭区域上连续函数的性质;
3.多元函数偏导数和全微分的概念,全微分存在的必要条件和充分条件,全微分形式的不变性,会求全微
分;
4.多元复合函数一阶、二阶偏导数的求法;
5.隐函数存在定理,计算多元隐函数的偏导数;
6.多元函数极值和条件极值的概念,二元函数极值存在的必要条件、充分条件,会求二元函数的极值,会
用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值.
第十章、重积分
计划对应教材:高等数学下册同济大学数学系编高等教育出版社第六版本单元中我们应当学习——
1.二重积分的概念和性质,二重积分的中值定理;
2.会利用直角坐标、极坐标计算二重积分.
第十一章、曲线积分与曲面积分(考研数学三不要求)
第十二章、无穷级数
计划对应教材:高等数学下册同济大学数学系编高等教育出版社第六版
本单元中我们应当学习——
1.常数项级数收敛、发散以及收敛级数的和的概念,级数的基本性质及收敛的必要条件;
2.几何级数与p级数的收敛与发散的条件;
3.正项级数收敛性的比较判别法和比值判别法;
4.交错级数和莱布尼茨判别法;
5.任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系;
6. 函数项级数的收敛域及和函数的概念;
7. 幂级数的收敛半径、收敛区间及收敛域的求法;
8. 幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区
间内的和函数;
9. 函数展开为泰勒级数的充分必要条件;
10. x
e ,sin x ,cos x ,ln(1)x +及(1)x α
+的麦克劳林(Maclaurin )展开式,会用它们将一些简单函数间
接展开为幂级数.。

相关文档
最新文档