数学建模期末考试A试的题目与答案

合集下载

广西大学数学建模考试试题A及参考答案

广西大学数学建模考试试题A及参考答案

广西大学数学建模考试试题A及参考答案一.概念题(共3小题,每小题5分,本大题共15分)1、什么是数学模型?(5分)答:数学模型可以描述为,对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。

2、数学建模有哪几个过程?(5分)答:数学建模有如下几个过程:模型准备,模型假设,模型构成,模型求解,模型分析,模型检验,模型应用。

3、试写出神经元的数学模型。

答:神经元的数学模型是其中某=(某1,…某m)输入向量,y为输出,wi是权系数;输入与输出具有如下关系:Tθ为阈值,f(某)是激发函数;它可以是线性函数,也可以是非线性函数.(5分)二、模型求证题(共2小题,每小题10分,本大题共20分)1、(l)以雇员一天的工作时间t和工资w分别为横坐标和纵坐标,画出雇员无差别曲线族的示意图。

解释曲线为什么是你画的那种形状。

(5分)(2)如果雇主付计时工资,对不同的工资率(单位时间的工资)画出计时工资线族。

根据雇员的无差别曲线族和雇主的计时工资线族,讨论双方将在怎样的一条曲线上达成协议。

(5分)答:(l)雇员的无差别曲线族f(w,t)=C是下凸的,如图1,因为工资低时,他愿以较多的工作时间换取较少的工资;而当工资高时,就要求以较多的工资来增加一点工作时间.(2)雇主的计时工资族是w=at,a是工资率.这族直线与f(w,t)=c的切点P1,P2,P3,…的连线PQ为雇员与雇主的协议线.通常PQ是上升的(至少有一段应该是上升的),见图1.2、试作一些合理的假设,证明在起伏不平的地面上可以将一张椅子放稳。

(7分)又问命题对长凳是否成立,为什么?(3分)答:(一)假设:电影场地面是一光滑曲面,方凳的四脚连线构成一正方形。

如图建立坐标系:其中A,B,C,D代表方凳的四个脚,以正方形ABCD的中心为坐标系原点。

图二记H为脚A,C与地面距离之和,G为脚B,D与地面距离之和,θ为AC连线与某轴的夹角,不妨设H(0)>0,G(0)=0,(为什么)令f(θ)=H(θ)-G(θ)则f是θ的连续函数,且f(0)=H(0)>0,将方凳旋转90°,则由对称性知H(π/2)=0,G(π/2)=H(0)从而f(π/2)=-H(0)<0由连续函数的介值定理知,存在θ∈(0,π/2),使f(θ)=0(二)命题对长凳也成立,只须记H为脚A,B与地面距离之和,G为脚C,D与地面距离之和,θ为AC连线与某轴的夹角,将θ旋转180同理可证。

数学建模2021a题

数学建模2021a题

数学建模2021a题
2021年数学建模竞赛A题《太阳影子定位》答案如下:
1. 建立影子长度变化的数学模型
根据日出和日落时间,确定太阳的高度角变化范围,再根据影子的长度变化,得到太阳高度角与影子长度之间的关系。

利用这个模型,可以预测任何给定时间点的影子长度。

2. 建立基于深度学习的模型
使用深度学习技术,建立一个能够预测影子长度的模型。

该模型可以处理大量的历史数据,并使用这些数据来训练模型,使其能够准确预测未来的影子长度。

3. 建立基于时间序列分析的模型
利用时间序列分析技术,建立一个能够预测影子长度的模型。

该模型可以处理时间序列数据,并使用这些数据来训练模型,使其能够准确预测未来的影子长度。

4. 建立基于神经网络的模型
利用神经网络技术,建立一个能够预测影子长度的模型。

该模型可以处理非线性数据,并使用历史数据来训练模型,使其能够准确预测未来的影子长度。

5. 综合以上三种方法
结合深度学习、时间序列分析和神经网络技术,建立一个综合性的模型。

该模型可以处理大量的历史数据,并使用这些数据来训练模型,使其能够准确预测未来的影子长度。

以上答案仅供参考,如有疑问,建议咨询专业人士。

2024年数学建模a题

2024年数学建模a题

2024年数学建模a 题一、单选题1.复数满足(12)3z i i -=-,则z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限2.2020年,一场突如其来的“肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[9,11)的学生人数为25,则n 的值为( )A .40B .50C .80D .103.“1<x <2”是“x <2”成立的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.要得到函数2sin x y e =的图像,只需将函数cos2x y e =的图像( )A .向右平移4π个单位B .向右平移2π个单位C .向左平移4π个单位D .向左平移2π个单位5.设32x y +=,则函数327x y z =+的最小值是( )A.12B.6C.27D.306.已知函数()2,01ln ,0x x f x x x -⎧≤⎪=⎨>⎪⎩,()()g x f x x a =--.若()g x 有2个零点,则实数a的取值范围是( )A.[)1,0-B.[)0,∞+C.[)1,-+∞D.[)1,+∞7.袋中有2个白球,2个黑球,若从中任意摸出2个,则至少摸出1个黑球的概率是( )A .16B .13C .34D .568.已知函数()f x 的定义域为[0,2],则(2)()1f x g x x =-的定义域为( ) A.[)(]0,11,2 B.[)(]0,11,4 C.[0,1) D.(1,4]9.下列计算正确的是A.()22x y x y +=+B.()2222x y x xy y -=-- C.()()2111x x x +-=- D.()2211x x -=-10.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线3y x =上,则sin 4πα⎛⎫+= ⎪⎝⎭( ) A.2525 5 D.511.已知双曲线C 的渐近线方程为230x y ±=,且C 经过点(6,22-,则C的标准方程为( )A. 221188x y -=B. 22194x y -= C. 221818y x -= D. 22149y x -=二、选择题:在每小题给出的选项中,有多项符合题目要求。

数学建模试卷A参考答案

数学建模试卷A参考答案

数学建模试卷(A )卷参考答案一、答:二、解:对应的约束条件代表的区域为如下图中阴影部分:两线的交点坐标为()()12,6,4x x =,由图可知z 值在交点处最大,即max 36z =。

三、解:设z 为利润,123,,x x x 分别表示,,A B C 生产的件数,123,,y y y 分别表示,,A B C 生产是否生产(为0-1变量,0表示不生产,1表示生产)。

则 目标函数:()()()123112233max 200025003000300503208040070z y y y y x y x y x =+++-+-+-约束条件:1231231231231232350024000350000,0,0;,0 1;x x x x x x x x x x x x y y or ++≤⎧⎪++≤⎪⎨++≤⎪⎪≥≥≥=⎩四、解:(一)(二)目标层准则层方案层11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦1(),0,ij n n ij ji ijA a a a a ⨯=>=层次分析法的基本步骤成对比较阵和权向量元素之间两两对比,对比采用相对尺度设要比较各准则C 1,C 2,… , C n 对目标O 的重要性:i j ijC C a ⇒A ~成对比较阵 A 是正互反阵要由A 确定C 1,… , C n 对O 的权向量选择旅游地(三)111122221212n n n n n n w w w w w w w w w w w w A w w w w w w ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎤⎥⎢⎥⎢⎥⎣⎦23a =一致比较允许不一致,但要确定不一致的允许范围考察完全一致的情况12(1),,nW w w w =⇒/ij i ja w w =令12(,,)~T n w w w w =权向量“选择旅游地”中准则层对目标的权向量及一致性检验11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦准则层对目标的成对比较阵最大特征根λ=5.073权向量(特征向量)w =(0.263,0.475,0.055,0.090,0.110)T 5.07350.01851CI -==-一致性指标随机一致性指标 RI=1.12 (查表) 一致性比率CR =0.018/1.12=0.016<0.1通过一致性检验五、解:()221max ni i i a bx y =+-∑,对,a b 分别求偏导数,可以求解得0.9726,0.0500b a ==。

2023国赛数学建模a题

2023国赛数学建模a题

2023国赛数学建模a题一、选择题(每题4分,共20分)下列函数中,是奇函数的是()A. y = x^2B. y = |x|C. y = 1/xD. y = x^3已知直线l 过点P(1, 2),且与直线y = 3x 平行,则直线l 的方程是()A. y = 3x - 1B. y = 3x + 1C. y = 3x - 5D. y = 3x + 5下列等式中正确的是()A. sin(π/2 + α) = cosαB. cos(π/2 + α) = sinαC. tan(π/2 + α) = -cotαD. sin(π - α) = -sinα设随机变量X 服从正态分布N(2, σ^2),若P(X < 4) = 0.9,则P(0 < X < 2) = ()A. 0.4B. 0.3C. 0.2D. 0.1在△ABC中,若 A = 60°,b = 1,S△ABC = √3,则 a = ()A. 1B. 2C. √3D. √2二、填空题(每题4分,共16分)函数y = √(x - 1) 的定义域是_______。

若直线x + y + k = 0 与圆x^2 + y^2 = 1 相切,则k = _______。

已知等差数列{an} 的前n 项和为Sn,若a1 = 1,S3 = 9,则a2 + a4 = _______。

若x, y 满足约束条件{ x + y ≤ 1, x - y ≥ -1, y ≥ 0 },则z = 2x + y 的最大值为_______。

三、解答题(共64分)10.(12分)求函数y = 2sin(2x - π/6) 的单调递增区间。

11.(12分)在△ABC中,已知a = 5,b = 8,cosC = 11/16,求sinA 的值。

12.(12分)已知函数f(x) = x^3 + ax^2 + bx + c 在x = 1 与x = -1 时取得极值。

(1)求a,b 的值;(2)若对于任意x ∈ [-2, 2],都有f(x) < c^2 成立,求 c 的取值范围。

《数学建模》期末试卷A

《数学建模》期末试卷A

《数学建模》期末试卷A一、填空题(每题2分,共20分)1、在数学建模中,我们将所要研究的问题________化。

2、在解决实际问题时,我们常常需要收集大量的数据,这些数据通常是不________的。

3、在建立数学模型时,我们通常需要对变量进行假设,这些假设通常是对________的描述。

4、在解决实际问题时,我们通常需要对多个因素进行________,以确定哪些因素对所要研究的问题有显著影响。

5、在建立数学模型时,我们通常需要对数据进行________,以发现数据之间的规律和关系。

6、在解决实际问题时,我们通常需要将复杂的问题________化,以方便我们更好地理解和解决它们。

7、在建立数学模型时,我们通常需要将实际问题________化,以将其转化为数学问题。

8、在解决实际问题时,我们通常需要考虑实际情况的________性,以避免我们的解决方案过于理想化。

9、在建立数学模型时,我们通常需要使用数学语言来________模型,以方便我们更好地描述和解决它。

10、在解决实际问题时,我们通常需要使用计算机来帮助我们进行________和计算。

二、选择题(每题3分,共30分)11、在下列选项中,不属于数学建模步骤的是()。

A.确定变量和参数B.建立模型C.进行实验D.验证模型12、在下列选项中,不属于数学建模方法的是()。

A.归纳法B.演绎法C.类比法D.反证法13、在下列选项中,不属于数学建模应用领域的是()。

A.物理学B.工程学C.经济学D.政治学14、在下列选项中,不属于数学建模语言的是()。

A.文字语言B.符号语言C.图形语言D.自然语言15、在下列选项中,不属于数学建模原则的是()。

A.简洁性原则B.一致性原则C.可行性原则D.可重复性原则16、在下列选项中,不属于数学建模步骤的是()。

A.对数据进行分析和处理B.对模型进行假设和定义C.对模型进行检验和修正D.对结果进行解释和应用17、在下列选项中,不属于数学建模应用领域的是()。

全国大学生数学建模竞赛A题解析

全国大学生数学建模竞赛A题解析

三、解题思路(续)
(4)对于实际储油罐,建立罐体变位后罐内储油量
V与油位高度h及纵向倾斜角度 和 横向偏转角度 之间 的关系模型,即 V。F(,,h)
由于本问较复杂,需要分情况建立模型,可以先考 虑只发生纵向变位的情况。
三、解题思路(续)
球冠Ⅰ的体积表达式为:
其中
三、解题思路(续)
球冠III的体积表达式为:
atabnhaaltanz a2z2a2arcsinaz2a2dz, 0hLltan
V( ,h) atabn
haltan haLltanz
a2z2a2arcsinaz2a2dz,
(Ll)tanh2altan
LabaahLltanz a2z2a2arcsinaz2a2dz, 0hLltan
180
190
200
L 19265.60 21941.18 24674.88 27450.77 30253.25 33066.99 35876.76 38667.27 41423.11 44128.48
h 210
220
230
240
250
260
270
280
290
3400
L 46767.21 49322.44 51776.40 54109.93 56302.12 58329.27 60163.39 61768.90 63093.63 64026.17
ax
h
三、解题思路(续)
利用积分可以计算出油位高度为h时实验罐的截面 面积,于是得到油位高度与储油量的计算公式:
V (H ) 2 a b b a (h b )2 b h h 2 a b a rc s in h b b L
其中a,b,L分别是实验罐截面椭圆的长半轴、短半轴 和罐体长度,h为油位高度。

数学建模期末试题及答案

数学建模期末试题及答案

数学建模期末试题及答案1. 题目描述这是一份数学建模期末试题,包含多个问题,旨在考察学生对数学建模的理解和应用能力。

以下是试题的具体描述及答案解析。

2. 问题一某城市的交通流量与时间呈周期性变化,根据历史数据,可以得到一个交通流量函数,如下所示:\[f(t) = 100 + 50\sin(\frac{2\pi}{24}t)\]其中,t表示时间(小时),f(t)表示交通流量。

请回答以下问题:a) 请解释一下该函数的含义。

b) 根据该函数,该城市的最大交通流量是多少?c) 在哪个时间段,该城市的交通流量较低?【解析】a) 该函数表示交通流量f(t)随时间t的变化规律。

通过观察函数,可以发现交通流量与时间的关系是周期性变化,每24小时一个周期。

函数中的sin函数表示交通流量在周期内的变化,振幅为50,即交通流量的最大值与最小值之差为50。

基准流量为100,表示在交通最不繁忙的时刻,流量为100辆。

b) 最大交通流量为基准流量100辆与振幅50辆之和,即150辆。

c) 交通流量较低的时间段为振幅为负值的时刻,即最小值出现的时间段。

3. 问题二某学校的图书馆借书规则如下:- 学生每次最多可以借5本书,每本书的借阅期限为30天。

- 学生可以在借阅期限结束后进行续借,每次续借可以延长借阅期限30天。

请回答以下问题:a) 一个学生在10天内连续借了3次书,分别是2本、3本和4本,请写出该学生在每次借书后的总借书数。

b) 如果一个学生借了5本书,每本都是在借阅期限后进行续借,借了10年,最后一次续借后,该学生一共续借了几次书?【解析】a) 总的借书数为每次借书的累加和。

学生第一次借2本,总共借书数为2本;第二次借3本,总共借书数为2 + 3 = 5本;第三次借4本,总共借书数为5 + 4 = 9本。

b) 学生每本书借阅期限为30天,10年为3650天,每次借书续借可以延长借阅期限30天。

因此,学生续借次数为10年÷30天= 121次。

福建师范大学2020年秋作业《数学建模》期末考试A卷答案

福建师范大学2020年秋作业《数学建模》期末考试A卷答案

《数学建模》期末考试A卷姓名:专业:学号:学习中心:一、判断题(每题3分,共15分)1、模型具有可转移性。

------------------------------(对)2、一个原型,为了不同的目的可以有多种不同的模型。

----(对)3、一个理想的数学模型需满足模型的适用性和模型的可靠性。

-------------------------------------------(对)4、力学中把质量、长度、时间的量纲作为基本量纲。

------(对)5、数学模型是原型的复制品。

----------------- (错)二、不定项选择题(每题3分,共15分)1、下列说法正确的有AC 。

A、评价模型优劣的唯一标准是实践检验。

B、模型误差是可以避免的。

C、生态模型属于按模型的应用领域分的模型。

D、白箱模型意味着人们对原型的内在机理了解不清楚。

2、建模能力包括ABCD 。

A、理解实际问题的能力B、抽象分析问题的能力C、运用工具知识的能力D、试验调试的能力3、按照模型的应用领域分的模型有AE 。

A、传染病模型B、代数模型C、几何模型D、微分模型E、生态模型4、对黑箱系统一般采用的建模方法是 C 。

A、机理分析法B、几何法C、系统辩识法D、代数法5、一个理想的数学模型需满足AB 。

A、模型的适用性B、模型的可靠性C、模型的复杂性D、模型的美观性三、用框图说明数学建模的过程。

(10分)答:概括的说,数学模型就是一个迭代的过程,其一般建模步骤用框架图表示如下:四、建模题(每题15分,共60分)1、四条腿长度相等的椅子放在起伏不平的地面上,4条腿能否同时着地?解:4条腿能同时着地(一)模型假设对椅子和地面都要作一些必要的假设:对于此题,如果不用任何假设很难证明,结果很可能是否定的。

因此对这个问题我们假设:(1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的(4)方桌的腿只要有一点接触地面就算着地。

《数学建模》期末考试题(A卷)

《数学建模》期末考试题(A卷)

云南财经大学 2006 至 2007 学年第 一 学期《数学建模》 课程期末考试试卷(A 卷)(全校性选修课)一、 题目:要求:以小组为单位(不超过3人)以论文形式提交答卷,要求包括摘要(10发分)、关键词(5分)、问题重述(10分)、模型假设(5分)、模型求解(50分)、模型评价(5分)、模型改进(5分)、模型推广(5分)、参考文献(5分)几个部分。

煤矿瓦斯和煤尘的监测与控制煤矿安全生产是我国目前亟待解决的问题之一,做好井下瓦斯和煤尘的监测与控制是实现安全生产的关键环节(见附件1)。

瓦斯是一种无毒、无色、无味的可燃气体,其主要成分是甲烷,在矿井中它通常从煤岩裂缝中涌出。

瓦斯爆炸需要三个条件:空气中瓦斯达到一定的浓度;足够的氧气;一定温度的引火源。

煤尘是在煤炭开采过程中产生的可燃性粉尘。

煤尘爆炸必须具备三个条件:煤尘本身具有爆炸性;煤尘悬浮于空气中并达到一定的浓度;存在引爆的高温热源。

试验表明,一般情况下煤尘的爆炸浓度是30~ 2000g/m 3,而当矿井空气中瓦斯浓度增加时,会使煤尘爆炸下限降低,结果如附表1所示。

国家《煤矿安全规程》给出了煤矿预防瓦斯爆炸的措施和操作规程,以及相应的专业标准 (见附件2)。

规程要求煤矿必须安装完善的通风系统和瓦斯自动监控系统,所有的采煤工作面、掘进面和回风巷都要安装甲烷传感器,每个传感器都与地面控制中心相连,当井下瓦斯浓度超标时,控制中心将自动切断电源,停止采煤作业,人员撤离采煤现场。

具体内容见附件2的第二章和第三章。

附图1是有两个采煤工作面和一个掘进工作面的矿井通风系统示意图,请你结合附表2的监测数据,按照煤矿开采的实际情况研究下列问题:(1)根据《煤矿安全规程》第一百三十三条的分类标准 (见附件2),鉴别该矿是属于“低瓦斯矿井”还是“高瓦斯矿井”。

(2)根据《煤矿安全规程》第一百六十八条的规定,并参照附表1,判断该煤矿不安全的程度(即发生爆炸事故的可能性)有多大?(3)为了保障安全生产,利用两个可控风门调节各采煤工作面的风量,通过一个局部通风机和风筒实现掘进巷的通风(见下面的注)。

数学建模a题答案

数学建模a题答案

葡萄酒的质量葡萄酒的质量即葡萄酒优秀的程度,它是产品的一种特性,且决定购买者的可接受性。

因此,葡萄酒能够满足人类需求的各种特性的总和即构成了它的质量。

葡萄酒质量属性主要指:复杂性、协调性以及能够激发消费者感情的能力;复杂性意味着葡萄酒有浓郁的令人愉快的香气与滋味,及它的潜力与精巧性。

协调性是指各种感官成分的结合是平衡的,每一种成分与其它成分相比,它的存在及其含量是非常适宜的,而且它的复杂性、颜色强度、香气、滋味、后味是稳定一致的。

影响质量的因素葡萄酒是葡萄的发酵产品,所以葡萄酒的质量取决于原料的质量、所采用的加工工艺及相应的陈酿技术。

影响质量的因素有:——品种及其适应性;——适宜于品种良好生长的生态条件(包括土壤、大气候、微区气候);——原料的质量:包括葡萄的成熟度(糖酸及其平衡、酚类、香味成分的种类及其比例)、葡萄的新鲜度及健康卫生状况;——酿酒工艺:采用的酵母菌、浸渍方式与发酵时间,发酵温度,分离时间,压榨方式等;——陈酿技术:采用的贮藏容器及贮藏时间,是否带酒脚贮藏,瓶贮与否及时间长短等。

葡萄酒质量的评价葡萄酒质量的评价是人们为了反映葡萄酒的客观性而人为采取的一些方法,主要包括感官指标,理化指标,卫生指标。

感官指标包括葡萄酒的外观(颜色、浓度、色调、澄清度、气泡存在与否及持续性);香气(类型、浓度、和谐程度);滋味(协调性、结构感、平衡性、后味等);典型性(外观、香气与滋味之间的平衡性);感官指标是评价葡萄酒质量的最终及最有效的指标。

理化指标指由葡萄酒的成分(糖、酒精、矿物质元素、干浸出物、有机酸等)所构成的指标。

卫生指标指葡萄酒中的微生物(酵母菌、细菌、大肠杆菌)和一些对人体健康有影响的限量成分。

下面主要论述酿酒葡萄和葡萄酒的理化指标对葡萄酒的影响酿酒葡萄的理化指标与葡萄酒质量的关系酿酒行业很多人把葡萄园作为葡萄酒厂的第一车间,这个比喻充分说明了原料质量对成品质量的重要性。

葡萄酒厂关注葡萄质量的主要理化指标是糖含量和干浸出物。

2020.8月福师离线 《数学建模》期末试卷A及答案

2020.8月福师离线 《数学建模》期末试卷A及答案

▆■■■■■■■■■■■■《数学建模》期末考试A卷姓名:专业:学号:学习中心:一、判断题(每题3分,共15分)1、模型具有可转移性。

----------------------- (√)2、一个原型,为了不同的目的可以有多种不同的模型-----(√)3、一个理想的数学模型需满足模型的适用性和模型的可靠性。

---------------------------------------- (√)4、力学中把质量、长度、时间的量纲作为基本量纲。

----(√)5、数学模型是原型的复制品。

----------------- (×)二、不定项选择题(每题3分,共15分)1、下列说法正确的有AC 。

A、评价模型优劣的唯一标准是实践检验。

B、模型误差是可以避免的。

C、生态模型属于按模型的应用领域分的模型。

D、白箱模型意味着人们对原型的内在机理了解不清楚。

2、建模能力包括ABCD 。

A、理解实际问题的能力B、抽象分析问题的能力C、运用工具知识的能力D、试验调试的能力3、按照模型的应用领域分的模型有AE 。

A、传染病模型B、代数模型C、几何模型D、微分模型E、生态模型4、对黑箱系统一般采用的建模方法是 C 。

A、机理分析法B、几何法C、系统辩识法D、代数法5、一个理想的数学模型需满足AB 。

A、模型的适用性B、模型的可靠性C、模型的复杂性D、模型的美观性三、用框图说明数学建模的过程。

(10分)答:概括的说,数学模型就是一个迭代的过程,其一般建模步骤用框架图表示如下:四、建模题(每题15分,共60分)1、四条腿长度相等的椅子放在起伏不平的地面上,4条腿能否同时着地?解:4条腿能同时着地(一)模型假设对椅子和地面都要作一些必要的假设:对于此题,如果不用任何假设很难证明,结果很可能是否定的。

因此对这个问题我们假设:(1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的(4)方桌的腿只要有一点接触地面就算着地。

数学建模竞赛a题

数学建模竞赛a题

数学建模竞赛A题的题目可能涉及各种主题,例如经济、金融、人口、环境、医疗等等。

由于题目未提供具体细节,我将提供一个通用的回答框架和示例来帮助你回答这个问题。

请注意,这只是一个示例,你可能需要根据你的具体问题和数据来调整答案。

一、回答框架1. 介绍:简要说明题目背景和目的。

2. 建模思路:阐述你的建模思路和方法,包括假设、变量、模型类型等。

3. 求解过程:详细描述求解过程,包括数据收集、处理、模型拟合、参数估计等步骤。

4. 结果分析:对模型结果进行分析,讨论误差来源、预测精度等。

5. 结论和建议:总结你的结论,提出可能的改进和建议。

二、示例答案1. 介绍:数学建模竞赛A题可能涉及各种主题,例如经济、金融、人口、环境、医疗等等。

本次回答将基于一个假设的主题进行建模,旨在说明建模的一般思路和方法。

2. 建模思路:* 假设:假设数据符合某种分布(例如正态分布),并考虑随机误差的影响。

* 变量:建立变量之间的关系,包括因变量和自变量。

根据题目要求,可能需要考虑多个自变量。

* 模型类型:选择合适的模型类型(例如线性回归模型),并考虑模型的适用性。

* 求解方法:使用适当的求解方法(例如最小二乘法)进行参数估计和拟合。

3. 求解过程:* 数据收集:收集相关数据,包括自变量和因变量的观测值。

* 数据处理:对数据进行清洗和预处理,包括缺失值填充、异常值处理等。

* 模型拟合:使用最小二乘法等方法进行参数估计和拟合,得到模型的系数和标准误差等参数。

* 模型验证:通过与其他数据和方法进行比较和验证,评估模型的预测精度和适用性。

4. 结果分析:* 模型检验:对模型的拟合程度进行检验,如决定系数R-squared等指标。

* 结果解释:解释模型的结果,包括各自变量的影响程度和趋势。

对于本题,可以分析自变量对因变量的影响程度和方向,并解释模型的预测精度和适用性。

5. 结论和建议:* 结论:总结模型的结论,包括自变量对因变量的影响程度和趋势,以及模型的预测精度和适用性。

数学建模期末试卷A及答案

数学建模期末试卷A及答案

1.〔10分〕表达数学建模根本步骤,并简要说明每一步根本要求。

(1)模型打算:首先要理解问题实际背景,明确题目要求,搜集各种必要信息。

(2)模型假设:为了利用数学方法,通常要对问题做出必要、合理假设,使问题主要特征凸现出来,忽视问题次要方面。

(3)模型构成:依据所做假设以及事物之间联络,构造各种量之间关系,把问题化为数学问题,留意要尽量采纳简洁数学工具。

4)模型求解:利用数学方法来求解上一步所得到数学问题,此时往往还要作出进一步简化或假设。

(5)模型分析:对所得到解答进展分析,特殊要留意当数据改变时所得结果是否稳定。

(6)模型检验:分析所得结果实际意义,与实际状况进展比较,看是否符合实际,假如不够志向,应当修改、补充假设,或重新建模,不断完善。

(7)模型应用:所建立模型必需在实际应用中才能产生效益,在应用中不断改进和完善。

2.〔10分〕试建立不允许缺货消费销售存贮模型。

设消费速率为常数k ,销售速率为常数r ,k r <。

在每个消费周期T 内,开始一段时间〔00T t ≤≤〕 边消费边销售,后一段时间〔T t T ≤≤0〕只销售不 消费,存贮量)(t q 改变如下图。

设每次消费开工费为1c ,每件产品单位时间存贮费为2c ,以总费用最小为准那么确定最优周期T ,并探讨k r <<和k r ≈状况。

单位时间总费用k T r k r c T c T c 2)()(21-+=,使)(T c 到达最小最优周期)(2T 21*r k r c k c -=。

当k r <<时,r c c 21*2T =,相当于不考虑消费状况;当k r ≈时,∞→*T ,因为产量被售量抵消,无法形成贮存量。

3.〔10分〕设)(t x 表示时刻t 人口,试说明阻滞增长〔Logistic 〕模型⎪⎩⎪⎨⎧=-=0)0()1(x x x x x r dtdxm中涉及全部变量、参数,并用完可能简洁语言表述清晰该模型建模思想。

(完整版)数学建模期末试卷A及答案

(完整版)数学建模期末试卷A及答案

用。
且阻滞作用随人口数量增加而变大,从而人口增长率 r(x) 是人口数量 x(t) 的的减函数。
假设 r(x) 为 x(t) 的线性函数:
The shortest way to do many things is
r(x) r sx (r 0, s 0)

其中, r 称为人口的固有增长率,表示人口很少时(理论上是 x 0 )的增长率。
在每个生产周期T 内,开始一段时间( 0 t T0 ) 边生产边销售,后一段时间(T0 t T )只销售不 生产,存贮量 q(t) 的变化如图所示。设每次生产开工
费为 c1 ,每件产品单位时间的存贮费为 c2 ,以总费用最小为准则确定最优周 期T ,并讨论 r k 和 r k 的情况。
c(T )
某家具厂生产桌子和椅子两种家具,桌子售价 50 元/个,椅子销售价格 30 元/个,生 产桌子和椅子要求需要木工和油漆工两种工种。生产一个桌子需要木工 4 小时,油漆工 2 小时。生产一个椅子需要木工 3 小时,油漆工 1 小时。该厂每个月可用木工工时为 120 小 时,油漆工工时为 50 小时。问该厂如何组织生产才能使每月的销售收入最大?(建立模型 不计算)(10’)
s r 当 x xm 时人口不再增长,即增长率 r(xm ) 0 ,代入有 xm ,从而有
根据 Malthus 人口模型,有
r(x)
r1
x xm

dx r(1 x )x
dt
xm
x(0) x0
4.(25 分)已知 8 个城市 v0,v1,…,v7 之间有一个公路网(如图所示), 每条公路为图中的边,边上的权数表示通过该公路所需的时间.
(1)设你处在城市 v0,那么从 v0 到其他各城市,应选择什么路径使所需 的时间最短? (1) v0 到其它各点的最短路如下图:

2020-2021《数学建模》期末课程考试试卷A(含答案)

2020-2021《数学建模》期末课程考试试卷A(含答案)

2020-2021《数学建模》期末课程考试试卷A适用专业:信息与计算科学; 考试日期:考试时间:120分钟;考试方式:闭卷;总分100分一.简答题(30分).1. 简要介绍数学建模的一般步骤.2. 层次分析法的一般步骤是什么?3. 根据建立数学模型的数学方法, 数学模型可以分成哪些类型? 二、计算题1. (10分)某学校有3个系共有300名学生, 其中甲系137名, 乙系56名, 丙系107名, 若学生代表会议设30个席位. 试用下列方法求出各系应分配的席位数.(1) 按比例分配取整数的名额后, 剩下的名额按惯例分给小数部分较大者;(2) 利用Q值法进行分配.2.(10分)考察阻尼摆的周期, 即在单摆运动中考虑阻力, 并设阻力与摆得速度成正比. 阻尼摆的周期t与摆长l, 摆球质量m, 重力加速度g, 阻力系数k有关.(1) 用量纲分析法证明: t=, 其中ϕ为未知函数.(2) 讨论物理模拟的比例模型, 怎样由模型摆的周期计算原型摆的周期.3.(15分)设某产品的生产周期为T, 产量为Q, 每天的需求量为常数r, 每次生产准备费为1c, 每天每件产品贮存费为2c.(1)不允许缺货的存贮模型要求: 产品需求稳定不变, 生产准备费和产品贮存费为常数、生产能力无限、不允许缺货. 试建立不允许缺货的存贮模型并确定生产周期和产量, 使总费用最小.(2)设每天每件产品的缺货损失费为3c,试建立允许缺货的存贮模型并确定生产周期和产量, 使总费用最小.(3) 上述模型中增加货物本身的费用, 重新确定最优订货周期和订货批量. 证明在不允许缺货模型中与原来的一样, 而在允许缺货模型中最优订货周期和订货批量都比原来的结果减小.4.(10分)设总人口N不变, 将人群分为健康者、病人和病愈免疫的移出者三类, 三类人在总人数N中占的比例分别记作(),(),()s t i t r t, 病人的日接触率为λ, 日治愈率为μ. 试建立描述三类人数量变化的SIR传染病模型. 5. (15分)设鱼群鱼量的自然增长服从Gompertz规律: lndx Nrxdt x, 单位时间的捕捞量为h Ex, 则渔场的鱼量满足: lndx Nrx Exdt x. 其中()x t表示种群在t时刻的数量, r表示固有增长率, N表示鱼群的最大容许数量.(1) 求渔场鱼量的平衡点及其稳定性;(2) 求最大持续产量mh及获得最大产量的捕捞强度mE和渔场鱼量水平*0x.6. (10分)按年龄分组的种群增长的差分方程模型中, 设一群动物的最高年龄为18岁, 每6岁一组, 分为3个年龄组, 各组的繁殖率为1230,6,2b b b, 存活率为1211,24s s, 开始时3组各1000只.求(1) 18年后各组分别有多少只?(2) 时间充分长以后种群的增长率(即固有增长率)和按年龄组的分布.2020-2021《数学建模》期末课程考试试卷A 答案适用专业:信息与计算科学; 考试日期:考试时间:120分钟; 考试方式:闭卷;总分100分一.简答题(30分).1. 简要介绍数学建模的一般步骤.答:模型准备, 模型假设, 模型求解, 模型分析, 模型检验, 模型应用.2. 层次分析法的一般步骤是什么?答: (1) 将决策问题分为3个层次: 目标层, 准则层, 方案层(2)通过相互比较确定各准则对目标的权重, 及各方案对每一准则的权重.(3) 将方案层对准则层的权重及准则层对目标层的权重进行综合, 给出决策结果.3. 根据建立数学模型的数学方法, 数学模型可以分成哪些类型?答: 初等模型, 几何模型, 微分方程模型, 统计回归模型, 数学规划模型.二、计算题1. 解:(1)甲分13.7个, 乙系5.6个, 丙系10.7个, 取整后甲系14个, 乙系5个, 丙系11个.(2)第29个席位的分配:21137103.1313*14n ==,222356107104.53,104.085*610*11n n ==== 故分给乙系;第30个席位的分配:2'25674.677*6n ==故分给丙系.由Q 值法: 甲系13个, 乙系6个, 丙系12个.2.(10分)解: 设阻尼摆的周期为t , 摆长为l , 质量为m , 重力加速度为g , 阻力系数为k , 设(,,,,)0f t l m g k 则各物理量的量纲为2[],[],[],[]t T l L m M g LT,211[][][]f MLT k MTvLT量纲矩阵为010100010110021A解齐次方程0Ay 的基本解为:1211(1,,0,,0)2211(0,,1,,1)22y y 得到2个无量钢量11221111222tlg l m g k故121122()()llk l tg g m glg (2) 'm m 时,有''t l lt3.(15分) 解: (1)一个周期的总费用为:2221122c QT c rT C c c =+=+每天的平均费用为:122c c rTC T =+由0,0C CT Q∂∂==∂∂得:T Q ==(2) 一个周期的总费用为:231211()22c r T T c QT C c -=++每天的平均费用为:22312()22c rT Q c c Q C Tr rT-=++由0,0C CT Q∂∂==∂∂得: ''T Q ==(3) 设购买单位重量货物的费用为k,对于不允许缺货模型,每天的平均费用为12()2c c rTC T kr T =++T, Q 的最优结果不变.对于允许缺货模型, 每天平均费用为:()223211(,)22c c Q C T Q c rT Q kQ T r r ⎡⎤=++-+⎢⎥⎣⎦利用0,0C CT Q∂∂==∂∂得T,Q 的最优结果为:**23krT Q c c ==+ **,T Q 均比不考虑费用k 时的结果减小.4.(10分)解: disi i dt dssi dt dri dt λμλμ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩5. (15分)设鱼群鱼量的自然增长服从Gompertz 规律: ln dx Nrx dt x, 单位时间的捕捞量为h Ex , 则渔场的鱼量满足:ln dx Nrx Ex dt x. 其中()x t 表示种群在t 时刻的数量, r 表示固有增长率, N 表示鱼群的最大容许数量.(1) 求渔场鱼量的平衡点及其稳定性;(2) 求最大持续产量m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平*0x .解: (1)模型为lndxN rx Ex dtx, 有两个平衡点/00,E r x x Ne -==,可以证明0x =不稳定, 0x 稳定(与E,r 的大小无关). (2) 最大持续产量为0/;,/m m h rN e E r x N e ===6. (10分)按年龄分组的种群增长的差分方程模型中, 设一群动物的最高年龄为18岁, 每6岁一组, 分为3个年龄组, 各组的繁殖率为1230,6,2b b b , 存活率为1211,24s s , 开始时3组各1000只.求 (1) 18年后各组分别有多少只?(2) 时间充分长以后种群的增长率(即固有增长率)和按年龄组的分布. 解:0431*******L ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭因为()(0)k x k L x =(1) 18年后,即()3(3)(0)14375,1375,875Tx L x ==(2) L 的特征方程为33208λλ--=所以固有增长率为1.5 按年龄组的稳定分布为:()*1122(1,,)1,1/3,1/18T T s s s x λλ==。

数学建模期末试卷A及答案精编版

数学建模期末试卷A及答案精编版

2009《数学建模》期末试卷A考试形式:开卷 考试时间:120分钟姓名: 学号: 成绩: ___ 1.(10分)叙述数学建模的基本步骤,并简要说明每一步的基本要求。

2.(10分)试建立不允许缺货的生产销售存贮模型。

设生产速率为常数k ,销售速率为常数r ,k r <。

在每个生产周期T 内,开始一段时间(00T t ≤≤) 边生产边销售,后一段时间(T t T ≤≤0)只销售不 生产,存贮量)(t q 的变化如图所示。

设每次生产开工费为1c ,每件产品单位时间的存贮费为2c ,以总费用最小为准则确定最优周期T ,并讨论k r <<和k r ≈的情况。

3.(10分)设)(t x 表示时刻t 的人口,试解释阻滞增长(Logistic )模型⎪⎩⎪⎨⎧=-=0)0()1(x x xx x r dtdxm中涉及的所有变量、参数,并用尽可能简洁的语言表述清楚该模型的建模思想。

4.(25分)已知8个城市v 0,v 1,…,v 7之间有一个公路网(如图所示), 每条公路为图中的边,边上的权数表示通过该公路所需的时间.(1)设你处在城市v 0,那么从v 0到其他各城市,应选择什么路径使所需的时间最短?(2)求出该图的一棵最小生成树。

5.(15分)求解如下非线性规划:20 s.t.2 1222121≤≤≤+-=x x x x x z Max 6.(20分)某种合金的主要成分使金属甲与金属乙.经试验与分析, 发现这两种金属成分所占的百分比之和x 与合金的膨胀系数y 之间有一定的相关关系.先测试了12次, 得数据如下表:的模型。

7.(10分)有12个苹果,其中有一个与其它的11个不同,或者比它们轻,或者比它们重,试用没有砝码的天平称量三次,找出这个苹果,并说明它的轻重情况。

《数学建模》模拟试卷(三)参考解答1.数学模型是对于现实世界的某一特定对象,为了某个特定目的,作出一些必要的简化和假设,运用适当的数学工具得到的一个数学结构。

2023高教社数学建模a题

2023高教社数学建模a题

2023高教社数学建模a题2023年高教社数学建模竞赛A题为:A题:连续复利1. 连续复利的概念连续复利是指在一个无限短的时间间隔内,对一个货币的金额进行投资的回报。

其计算公式为:\(FV=p×e^{rt}\)其中,\(FV\) 是未来价值,\(p\) 是本金,\(r\) 是年利率,\(t\) 是时间。

2. 题目要求(1)利用给定的数据,计算出连续复利在未来30年内的增长情况。

数据包括本金、年利率和时间。

(2)分析连续复利在不同投资期限下的增长情况,并解释原因。

(3)讨论连续复利在实际应用中的优缺点。

(4)根据分析结果,给出投资者在实际应用中的建议。

3. 数据的获取为了计算连续复利在未来30年内的增长情况,需要以下数据:本金、年利率和时间。

这些数据可以从银行、证券公司、保险公司等金融机构获取,也可以从互联网上获取。

在获取数据时,需要注意数据的准确性和可靠性。

4. 计算过程首先,我们需要将时间转换为年数,例如5年、10年、20年等。

然后,将本金和年利率代入连续复利公式中,计算出未来价值。

最后,比较不同投资期限下的未来价值,分析增长情况并解释原因。

5. 结果分析根据计算结果,我们可以得出以下结论:连续复利的增长情况与投资期限、年利率和本金有关。

随着时间的推移,未来价值会不断增加。

因此,投资者应该尽早开始投资,以获得更大的收益。

此外,年利率越高,未来价值越大。

因此,投资者应该选择高利率的投资产品。

但是,连续复利也存在一些缺点,例如无法保证本金的安全性和可能面临通货膨胀的影响。

因此,投资者应该根据自己的风险承受能力和投资目标选择合适的投资产品。

最新数学建模(数学模型)期末考试题(试卷)及答案详解(附答案)

最新数学建模(数学模型)期末考试题(试卷)及答案详解(附答案)

数学建模(数学模型)期末考试卷及答案详解第一部分 基本理论和应用1、计算题(满分10分)设电路供电网内有10000盏灯,夜间每一盏灯开着的概率为0.7,假设各灯的开关是相互独立的,利用中心极限定理计算同时开着的灯数在6900与7100之间的概率.2、计算题(满分10分)设某种电子元件的使用寿命服从正态分布) ,(2σμN ,现随机抽取了10个元件进行检测, 得到样本均值(h)1500=x ,样本标准差(h)14=S . 求总体均值μ的置信概率为99%的置信区间3、计算题(满分10分)从正态总体)6 ,4.3(~2N X 中抽取容量为n 的样本,如果要求样本均值位于区间 (1.4,5.4) 内的概率不小于0.95,问样本容量n 至少应取多大?4、计算题(满分10分) 设总体X 的概率密度为:⎩⎨⎧<<+=其他,,0,10,)1();(x x x f θθθ )1(->θn X X X ,,,21 是来自总体X 的简单随机样本,求参数θ的矩估计量和极大似然估计量.5.(15分)设总体X 服从区间[0,θ]上的均匀分布,θ>0未知,12,,,n X X X 是来自X的样本,(1)求θ的矩估计和极大似然估计;(2)上述两个估计量是否为无偏估计量,若不是请修正为无偏估计量;(3)试问(2)中的两个无偏估计量哪一个更有效?6. (15分)设),(~2σμN X ,n X X X ,,,21 是取自总体的简单随机样本,X 为样本均值,2nS 为样本二阶中心矩,2S 为样本方差,问下列统计量:(1)22σnnS ,(2)1/--n S X n μ,(3)212)(σμ∑=-ni iX各服从什么分布?7. (10分)一个小班有8位学生,其中有5人能正确回答老师的一个问题.老师随意地逐个请学生回答,直到得到正确的回答为止,求在得到正确的回答以前不能正确回答问题的学生个数的概率分布.8. (10分)设某人有100位朋友都会向他发送电子邮件,在一天中每位朋友向他发出电子邮件的概率都是0.04,问一天中他至少收到4位朋友的电子邮件的概率是多少?试用二项分布公式和泊松近似律分别计算.9. (10分)某商品的每包重量2~(200,)X N σ.若要求{195205}0.98P X <<≥,则需要把σ控制在什么范围内.10. (15分)设系统L 由两个相互独立的子系统12,L L 联接而成,联接的方式分别为串联,并联和备用(当系统1L 损坏时,系统2L 开始工作),如图7.1所示.1L 和2L 的寿命为X 和Y ,分别有密度(0,)()()x X p x e I x αα-+∞=和(0,)()()y Y p y e I y ββ-+∞=,其中0,0αβ>>且αβ≠.请就这三种联接方式分别写出系统L 的寿命Z 的密度.答案第一部分 基本理论和应用 1、计算题(满分10分)设电路供电网内有10000盏灯,夜间每一盏灯开着的概率为0.7,假设各灯的开关是相互独立的,利用中心极限定理计算同时开着的灯数在6900与7100之间的概率. 解:设同时开着的灯数为X ,(10000,0.7)Xb ……………2分(0,1)N (近似) ……………3分 {69007100}210.971P X ≤≤=Φ-= …………5分 2、计算题(满分10分)设某种电子元件的使用寿命服从正态分布) ,(2σμN ,现随机抽取了10个元件进行检测,得到样本均值(h)1500=x ,样本标准差(h)14=S . 求总体均值μ的置信概率为99%的置信区间. 解: T =(1)X t n - 0.005{(1)}0.99P T t n <-= ………4分0.0050.005{(1)(1)}0.99P X n X X n -<<+-= ………………4分 所求为(1485.61,1514.39) …………2分3、计算题(满分10分)从正态总体)6 ,4.3(~2N X 中抽取容量为n 的样本,如果要求样本均值位于区间 (1.4,5.4) 内的概率不小于0.95,问样本容量n 至少应取多大? 解:(0,1)X N ………………3分{1.4 5.4}21P X P <<=<=Φ- ……………4分解210.95Φ-≥ 得34.6n ≥ n 至少取35 ……………3分4、计算题(满分10分) 设总体X 的概率密度为:⎩⎨⎧<<+=其他,,0,10,)1();(x x x f θθθ )1(->θn X X X ,,,21 是来自总体X 的简单随机样本,求参数θ的矩估计量和极大似然估计量.解: 1101()(2E X dx θθθθ++==+⎰+1)x ……………3分 解12X θθ+=+,得θ的矩估计量为211X X -- ……………2分 1()1()ni i L x θθθ=+∏n=() 1ln ln 1ln nii L n x θθ==+∑()+ ……………2分令1ln ln 01ni i d L nx d θθ==+=+∑ 得θ的极大似然估计量为11ln nii nX=--∑ …………3分5.(15分)设总体X 服从区间[0,θ]上的均匀分布,θ>0未知,12,,,n X X X 是来自X的样本,(1)求θ的矩估计和极大似然估计;(2)上述两个估计量是否为无偏估计量,若不是请修正为无偏估计量;(3)试问(2)中的两个无偏估计量哪一个更有效? 解:(1)2EX θ=,令2X θ=,得θ的矩估计量1ˆ2X θ=; ……………5分 似然函数为:()12121,0,,,(,,,;)0n n n x x x L x x x θθθ⎧<<⎪=⎨⎪⎩,其它其为θ的单调递减函数,因此θ的极大似然估计为{}212()ˆmax ,,,n n X X X X θ==。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华南农业大学期末考试试卷(A 卷)2012-2013学年第 二 学期 考试科目:数学建模考试类型:(闭卷)考试 考试时间: 120 分钟学号 姓名 年级专业一、(满分12分) 一人摆渡希望用一条船将一只狼,一只羊,一篮白菜从河岸一边带到河岸对面,由于船的限制,一次只能带一样东西过河,绝不能在无人看守的情况下将狼和羊放在一起;羊和白菜放在一起,怎样才能将它们安全的带到河对岸去? 建立多步决策模型,将人、狼、羊、白菜分别记为i = 1,2,3,4,当i 在此岸时记x i = 1,否则为0;此岸的状态下用s =(x 1,x 2,x 3,x 4)表示。

该问题中决策为乘船方案,记为d = (u 1, u 2, u 3, u 4),当i 在船上时记u i = 1,否则记u i = 0。

(1) 写出该问题的所有允许状态集合;(3分)(2) 写出该问题的所有允许决策集合;(3分)(3) 写出该问题的状态转移率。

(3分)(4) 利用图解法给出渡河方案. (3分)解:(1) S={(1,1,1,1), (1,1,1,0), (1,1,0,1), (1,0,1,1), (1,0,1,0)} 及他们的5个反状(3分)(2) D = {(1,1,0,0), (1,0,1,0), (1,0,0,1), (1,0,0,0)} (6分)(3) s k+1 = s k + (-1) k d k (9分)(4)方法:人先带羊,然后回来,带狼过河,然后把羊带回来,放下羊,带白菜过去,然后再回来把羊带过去。

或: 人先带羊过河,然后自己回来,带白菜过去,放下白菜,带着羊回来,然后放下羊,把狼带过去,最后再回转来,带羊过去。

(12分)1、 二、(满分12分) 在举重比赛中,运动员在高度和体重方面差别很大,请就下面两种假设,建立一个举重能力和体重之间关系的模型:(1) 假设肌肉的强度和其横截面的面积成比例。

6分(2) 假定体重中有一部分是与成年人的尺寸无关,请给出一个改进模型。

6分解:设体重w (千克)与举重成绩y (千克)(1) 由于肌肉强度(I)与其横截面积(S)成比例,所以 y ∝I ∝S设h 为个人身高,又横截面积正比于身高的平方,则S ∝ h2 再体重正比于身高的三次方,则w ∝ h3(6分)(2)12分)三、(满分14分) 某学校规定,运筹学专业的学生毕业时必须至少学习过两门数学课、三门运筹学课和两门计算机课。

这些课程的编号、名称、学分、所属类别和先修课要求如下表所示。

那么,毕业时学生最少可以学习这些课程中哪些课程?记i=1,2,…,9表示9门课程的编号。

设i 表示第i 门课程选修,i 表示第i 门课程不选, 建立数学规划模型(1) 写出问题的目标函数(4分)(2) 每人至少学习过两门数学课、三门运筹学课和两门计算机课,如何表示此约束条件? (5分)(3) 某些课程有先修课要求, 如何表示此约束条件? (5分)解(1) 91min i i Z x ==∑ (4分)(2) 123452x x x x x ++++≥356893x x x x x ++++≥ (9分)46792x x x x +++≥(3) 2313,x x x x ≤≤47x x ≤5152,x x x x ≤≤67x x ≤9192,x x x x ≤≤85x x ≤ (14分)四、(满分10分) 雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的量纲[μ]=11L MT -- 1,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0, [μ]=11L MT --[g ]=LM 0T -2,其中L ,M ,T 是基本量纲. (3分)量纲矩阵为 A=)()()()()()()(210101101131g v T M L μρ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----- 齐次线性方程组Ay=0 ,即⎪⎩⎪⎨⎧==+=+02y -y - y -0y y 0y y -3y -y 431324321 的基本解为y=(-3 ,-1 ,1 ,1) (7分) 由量纲PI 定理 得 g v μρπ13--=. 3ρμλg v =∴,其中λ是无量纲常数. (10分)五、(满分12分)设某种群t 时刻的数量为()x t ,初始数量为0x ,(1) 写出种群数量的指数增长模型并求解;(2) 设容许的资源环境最大数量为N , 写出种群数量的阻滞增长模型(logistic), 并求其平衡点.解 (1) x rx =& (3分)0()rx x t x e = (6分) (2) ()(1)x x t rx N=-& (9分) (1)0,x rx N-= 平衡点为0x = 和x N = (12分)六、(满分10分)设在一个岛屿上栖居着食肉爬行动物和哺乳动物,又长着茂盛的植物。

爬行动物以哺乳动物为食,哺乳动物又依赖植物生存,假设食肉爬行动物和哺乳动物独自生存时服从Logistic 变化规律,植物独自生存时其数量增长服从指数增长规律。

现有研究发现,当哺乳动物吃食植物后,植物能释放某些化学物质对吃食的哺乳动物产生一定的毒害作用。

通过适当的假设,建立这三者间的关系模型.解:设植物、哺乳动物和食肉爬行动物的数量分别为x 1(t), x 2(t), x 3(t)假设单位数量的植物所释放的化学物质对吃食植物后的哺乳动物的毒害作用率为k , (3分) 11112222221323333323()[()]()x x r x x x x r k x x K x x x r x K λλμλ⎧⎪=-⎪⎪=--+--⎨⎪⎪=--+⎪⎩&&& (10分)七、(满分15分))经过一番打探及亲身体验,你准备从三种车型(记为a,b,c)中选出一种购买,选择的标准主要有价格,耗油量大小,舒适程度和外表美观。

经反复思考比较,构造了它们之间的成对比较矩阵13781/31551/71/5131/81/51/31A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦已知其最大特征值近似为4.1983.另外,下列矩阵分别是三种车型关于价格、耗油量、舒适度、及你对它们外表的喜欢程度的成对比较阵:其中矩阵1234,,,C C C C 的元素是分别是a,b,c 三种车型对于四种标准的优越性的比较尺度. 假定这些成对比较阵(包括A )都通过了一致性检验,且已知1234,,,C C C C 的最大特征值与对应的归一化特征向量(见下表):(1) 根据上述矩阵将四项标准在你心目中的比重由重到轻的顺序排出(5分);(2) 分别确定哪种车最便宜、最省油、最舒适、最漂亮(5分);(3) 确定你对这三种车型的喜欢程度(用百分比表示)(5分);解: 记4个准则价格,耗油量大小,舒适程度和外表美观分别为C1,C2,C3,C4,则12:3C C =即12C C 比的影响稍强23:5C C =即23C C 比的影响强34:3C C =即34C C 比的影响稍强所以四项标准在心目中的比重由重到轻的顺序为:价格、耗油量大小、适合程序、外观美观 (5分)(2)考虑比较阵C1122a =表明车型a 的价格优越性高于车型b ,即车型a 比车型b 便宜232a =表明车型b 的价格优越性高于车型c ,即车型b 比车型c 便宜所以最便宜的车型为a. (71351/3141/51/41C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦3舒适度411/535171/31/71C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦外表11/51/251721/71C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦2耗油量11231/2121/31/21C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦价格分)同理可得最省油的车型为b ; (8分) 最舒适的车型为a ; (9分) 最漂亮的车型为b 。

(10分)(3)车型a 的组合权重(0.5820,0.2786,0.0899,0.0495)·(0.5396,0.1056,0.6267,0.1884)T =0.41车型b 的组合权重(0.5820,0.2786,0.0899,0.0495)·(0.2970,0.7445,0.2797,0.7306)T =0.44车型c 的组合权重(0.5820,0.2786,0.0899,0.0495)·(0.1634,0.1499,0.0936,0.0810)T =0.15(13分)车型a ,b ,c 的喜欢程度分别为41%,44%,15% (15分)八、(满分15分)A,B,C 三个厂家都生产某产品, 2009年它们在某地区的市场占有率2009年分别为: A 厂家:40%, B 厂家:40%, C 厂家: 20%。

已知在每年各个厂家之间的市场占有率转移的基本情况是:A 厂家的客户有60%继续用该厂家的产品,20%转为B 厂家,20%转为C 厂家;B 厂家的客户有80%继续用该厂家的产品,10%转为A 厂家,10%转为C 厂家;C 厂家的客户有50%继续用该厂家的产品,10%转为A 厂家,40%转为B 厂家。

(1)预测2010年哪个厂家的市场占有率最大。

(6分)(2)经过很长时间以后,哪个厂家的市场占有率最大?(6分) 解:状态转移概率矩阵为:0.60.20.20.10.80.10.10.40.5P ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(2分) (0)(0.4,0.4,0.2)a = (4分)0.60.20.2(1)(0)(0.4,0.4,0.2)0.10.80.1(0.30.480.22)0.10.40.5a a P ⎡⎤⎢⎥===⎢⎥⎢⎥⎣⎦(6分)2010年B 厂家市场占有率最大 。

(8分)(2)设稳态概率123(,,)w w w w =,则,wp w =1231230.60.20.2(,,)0.10.80.1(,,)0.10.40.5w w w w w w ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(10分) 又因为1231w w w ++= (12分) 联立解得(0.2,0.6,0.2)w = (14分) B 厂家市场占有率最大.(15分)二、简答题(每小题满分8分,共24分)1.模型的分类答:按照模型替代原型的方式,模型可以简单分为形象模型和抽象模型两类, 形象模型:直观模型、物理模型、分子结构模型等; 抽象模型:思维模型、符号模型,数学模型等。

2.数学建模的基本步骤 答:(1)建模准备:数学建模是一项创新活动,它所面临的课题是人们在生产和科研中为了使认识和实践进一步发展必须解决的问题。

建模准备就是要了解问题的实际背景,明确建模的目的,掌握对象的各种信息,弄清实际对象的特征,情况明才能方法对;(2)建模假设:根据实际对象的的特征和建模的目的,在掌握必要资料的基础上,对原型进行抽象、简化,把那些反映问题本质属性的形态、量及其关系抽象出来,简化掉那些非本质的因素,使之摆脱原型的具体复杂形态,形成对建模有用的信息资源和前提条件,并且用精确的语言作出假设,是建模过程关键的一步。

相关文档
最新文档