卢瑟福背散射分析(RBS)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– 在某一深度处的背散射产额:
• H(E1)= Npσ(E)ΩNδkE/S(E)
单元素厚靶
– δkE=( S(kE)/ S(E1))δE1 – H(E1)= – Npσ(E)ΩN {S(kE)/[ S(E1) S(E)]}δE1
返回
2.2 卢瑟福背散射分析的原理
RBS是利用带电粒子与靶核间的大角度库仑 散射的能谱和产额确定样品中元素的质量 数、含量及深度分布。该分析中有三个基 本点,即:
运动学因子—质量分析 背散射微分截面—含量分析 能损因子—深度分析
2.3最佳实验条件的选取
• 由背散射的原理可导出最佳的实验条件:
– 质量分辨 – 含量分辨 – 深度分辨
• 采用表面能近似误差为5% • 采用数值积分法误差为0.2%
返 回
质量分辨
• 在K因子的推导中曾得出这样一个结论:
M 2 E1 M 2 M 1 ( 4 2 ) E0
2
• 增大散射角
• 增大入射粒子质量 • 增大入射粒子能量 • 提高探测系统的分辨
返回
含量分辨
• 由于散射粒子计数N正比于散射截面σ,故 截面越大,计数越多,分辨越好
2 1/ 2
d L 1 4 d 0
2
Z1 Z 2 e 2 E sin 2 L
2
2
2
2.2.2 背散射微分截面—含量分析
• 因为探测器所张的立体角是有限的,故取平均散 射截面: (其定义式如下)
1
– 轻基体上的重元素有很好的分辨 – 重基体上的轻元素分辨差
返回
深度分辨
• 由表面能近似可值不同深度x1和x2处散射 的粒子能量差ΔE=S Δx,
– 即: Δx= ΔE/S由此式可知,要使Δx尽可能的 小,应从两方面着手 :
• 提高探测系统的分辨,即减小ΔE • 增大S
– 采用重离子入射 – 采用倾角入射,即增大θ1 θ2
d d d
2.2.2 背散射微分截面—含量分析
• 探测系统的计数与平 均截面的关系为:
N s N p N 0 dx
返 回
2.2.3能损因子—深度分析
• 背散射中入射离子与靶物质的作用过程机制图:
2.2.3能损因子—深度分析
• 在入射路程中
E E0
x / cos1 0
2.4实验设备
• 一台小型加速器,目前实验式采用 2X1.7MeV串列加速器(如图)
2.4实验设备
• 电子学探测系统
2.5背散射能谱和产额
• 薄靶
– 单元素 – 多元素
• 厚靶
– 单元素 – 多元素
2.6 RBS技术的应用
• 表面层厚度的分析 • 杂质的深度分布 • 应用于阻止本领测定 • 利用共振背散射探测重基体上得轻元素
Lanzhou University
卢瑟福背散射分析
Rutherford Backscattering Spectrometry (RBS)
主讲:Zhang Xiaodong E-mail: zhangxd@lzu.edu.cn
Department of Modern Physics in Lanzhou University
dE dx x dx in dE dx x dx out
x / cos 2 dE dE dx x dx 0 dx x dx in out
• 在出射路程中
E1 k E
x / cos 2 0
计数
返回
单元素厚靶
• 表面产额
– 取δE为探测系统每一道对应的能量, δx为对应 于能量间隔的靶厚度,
– 则表面层的产额为:
• H=Npσ(E0)ΩNδx/cosθ1 • 为简化,令θ1 =0 • H=Npσ(E0)ΩNδx,利用表面能近似结论 • H=Npσ(E0)ΩNδE/S(E0)
单元素厚靶
• 这里只介绍表面能近似和数值积分法
表面能近似
• 由于薄靶和厚靶的近表面 区是一薄层,故近似认为 其能损值为一常量
– 入射路径上取:
dE dE dx x dx x in E0
– 出射路径上取:
dE dE dx x dx x out kE 0
2
2.2.1 运动学因子—质量分析
• 令δ=π-θ, δ为一小量,且M2>>M1,则对K因子公式 求M2的偏导数并化减得:
M 1 ( 4 2 ) E0 E1 k E0 2 M 2 M 2 M2
由上式得出要提高质量分辨率:
1.增大入射离子能量
2.利用大质量的入射离子
3.散射角尽可能大
返 回
2.2.2 背散射微分截面—含量分析
• 卢瑟福散射截面公式为: (参见下式,详细推 导参见褚圣麟《原子物理学》P12或王广厚 《粒子同固体物质的相互作用》P8和P105)
M 1 cos 1 M sin 2 2 1/ 2 M 1 1 sin M 2
– 说明:表面能近似适用于薄靶,靶厚一般要小 于10000埃,近似误差大概在5%左右(对于 alpha粒子)
数值积分法
• 该方法是建立在表面能近似的基础上的ቤተ መጻሕፍቲ ባይዱ 对于厚靶,进行切片处理,对每一个薄片 采用表面能近似,再进行积分,这样处理 会提高精度,
– 例:2M alpha粒子入射到Si上,厚度8000埃
– ΔE与x的关系是可化简为:
dE k 1 dE x x E x dx E0 cos1 dx kE0 cos 2
表面能近似
• 则在表面能近似下能损因子S定义如下:
k 1 dE dE x x S dx E0 cos1 dx kE0 cos 2
• 由上式可得:
E k E0 E1 k
x / cos1 0
2.2.3能损因子—深度分析
• 上面导出了ΔE与深度x的关系式,由于式子比较复杂, 故在实际的应用中采用多种近似方法,(参见王广 厚《粒子同固体物质的相互作用》 P111)
– 表面能近似—适用于薄靶或厚靶的近表面区
– 平均能量近似—适用于厚靶 – 能量损失比法—适用于薄靶,对厚靶也适用,但精度差 – 数值积分法—适用于薄靶和厚靶
返回
单元素薄靶
• 下图为单元素薄靶的背散射图
薄靶背散射图 1200 800 400 0 350 370 390 410 道数 430 450 470
返回
计数
多元素薄靶
• 下图为单元素薄靶的背散射图
多元素薄靶 1200 800 400 0 300 320 340 360 道数 380 400 420
2.1 背散射研究的发展史
1909年,盖革(H. Geiger) 和马斯顿(E. Marsden)观 察到了α粒子散射实验现象 1911年,卢瑟福(Lord Ernest Rutherford)揭示了该 现象,并确立了原子的核式 结构模型 1957年,茹宾(Rubin)首次 利用质子和氘束分析收集在 滤膜上的烟尘粒子的成份 1967年,美国的测量员5号空 间飞船发回月球表面土壤的 背散射分析结果
结束
2.2.1 运动学因子—质量分析
运动学因子的 定义: K=E1/E0, 其中E0是入射 粒子能量,E1 是散射粒子能 量。
2.2.1 运动学因子—质量分析
实验室坐标系中的K因子的表达式为(详细的推导参见 王广厚--《粒子同固体物质相互作用》P102):
2 2 M 1 sin M 1 cos 1 M M2 2 E1 K M1 E0 1 M2 1