名校课堂数学七下答案
人教版七年级数学下册名校课堂练习5.4平移(含答案)
5.4 平移01课前预习要点感知1把一个图形整体沿着某一直线方向移动,会得到一个新的图形,这种移动就叫做________.预习练习1-1以下现象中属于平移的是()①温度计中,液柱的上升或下降;②打气筒打气时,活塞的运动;③钟摆的摆动;④传送带上瓶装饮料的移动.A.①②B.①③C.②③D.②④1-2(朝阳中考)下列图形中,由如图经过一次平移得到的图形是()要点感知2平移的过程中,新图形中的每一点,都是由原图形中的某一点移动后得到的,这两点是________,连接各组对应点的线段________.画平移后的图形,是由平移的________和平移的________决定的.预习练习2-1将长度为5 cm的线段向上平移10 cm所得线段长度是()A.10 cm B.5 cmC.0 cm D.无法确定02当堂训练知识点1认识平移现象1.下列现象不属于平移的是()A.飞机起飞前在跑道上加速滑行B.汽车在笔直的公路上行驶C.游乐场的过山车在翻筋斗D.起重机将重物由地面竖直吊起到一定高度2.(赵县期末)在A、B、C、D四个选项中,能通过如图所示的图案平移得到的是()3.如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A.a户最长B.b户最长C.c户最长D.三户一样长4.如图,三角形A′B′C′是由三角形ABC沿射线AC方向平移2 cm得到,若AC=3 cm,则A′C=________.5.如图,三角形DEF是三角形ABC平移所得,观察图形:(1)点A的对应点是点________,点B的对应点是点________,点C的对应点是点;(2)线段AD,BE,CF叫做对应点间的连线,这三条线段之间有什么关系呢?知识点2画平移图形6.在5×5的方格纸中将图1中的图形N平移后的位置如图2所示,那么下面平移中正确的是()A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格7.请在如图所示的方格中,将“箭头”向右平移3个单位长度.8.(甘肃模拟)如图所示,三角形ABC是通过平移三角形DEF得到的,已知ED和BA是对应线段,请在图中画出三角形DEF.03课后作业9.(曲靖期中)下面生活中的物体的运动情况可以看成平移的是()A.随风摆动的旗帜B.摆动的钟摆C.汽车玻璃上的雨刷的运动D.从楼顶自由下落的球(球不旋转)10.将左边的图案通过平移后可以得到的图案是()11.如图,在10×6的网格中,每个小方格的边长都是1个单位,将三角形ABC平移到三角形DEF的位置,下面正确的平移步骤是()A.先向左平移5个单位,再向下平移2个单位B.先向右平移5个单位,再向下平移2个单位C.先向左平移5个单位,再向上平移2个单位D.先向右平移5个单位,再向上平移2个单位12.(邵阳中考)某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长13.(高邮模拟)如图,将三角形ABC平移到三角形A′B′C′的位置(点B′在AC边上),若∠B=55°,∠C=100°,则∠AB′A′的度数为________.14.如图,三角形ABC经过一次平移到三角形DFE的位置,请回答下列问题:(1)点C的对应点是点________,∠D=________,BC=________;(2)连接CE,那么平移的方向就是________的方向,平移的距离就是线段________的长度,可量出约为________cm;(3)连接AD,BF,BE,与线段CE相等的线段有________.15.如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为________;(2)画出小鱼向左平移3格后的图形(不要求写作图步骤和过程).挑战自我16.(1)已知图1是将线段AB向右平移1个单位长度,图2是将线段AB折一下再向右平移1个单位长度,请在图3中画出一条有两个折点的折线向右平移1个单位长度的图形;(2)若长方形的长为a,宽为b,请分别写出三个图形中除去阴影部分后剩下部分的面积;(3)如图4,在宽为10 m,长为40 m的长方形菜地上有一条弯曲的小路,小路宽度为1 m,求这块菜地的面积.参考答案课前预习要点感知1平移预习练习1-1D1-2 C要点感知2对应点平行且相等方向距离预习练习2-1 B当堂训练1.C 2.C 3.D 4.1 cm 5.(1)D E F(2)AD∥BE∥CF,AD=BE=CF. 6.C7.图略.8.图略.课后作业9.D10.A11.A12.D13.25°14.(1)E∠A FE(2)点C到点E CE2(3)AD,BF15.(1)16(2)图略.16.(1)图略.(2)三个图形中除去阴影部分后剩下部分的面积均为ab-b.(3)10×40-10×1=390(m2).。
人教版七年级数学下册名校课堂期末复习(五)不等式与不等式组(含答案)
期末复习(五) 不等式与不等式组01各个击破 命题点1 一元一次不等式(组)的解法【例1】 解不等式2x -13-5x +12≤1,并把它的解集在数轴上表示出来.【思路点拨】 解不等式一般会涉及去括号和去分母,去括号时应注意去括号法则的正确使用,去分母时应注意每一项都要乘最简公分母.【解答】【方法归纳】 先直接按一元一次不等式的解法步骤解出其解集,然后将解集在数轴上表示出来.同时,要注意在数轴上表示不等式的解集时区分实心点与空心圆圈.1.(防城港中考)在数轴上表示不等式x +5≥1的解集,正确的是( )2.(三明中考)解不等式2(x -2)<1-3x ,并把它的解集在数轴上表示出来.3.(北京中考)解不等式组⎩⎪⎨⎪⎧4(x +1)≤7x +10,①x -5<x -83,②并写出它的所有非负整数解.命题点2 由不等式(组)解的情况,求不等式(组)中字母的取值范围【例2】 (1)若不等式组⎩⎪⎨⎪⎧x<m +1,x>2m -1无解,则m 的取值范围是________.(2)已知关于x 的不等式组⎩⎪⎨⎪⎧x -a>03-2x>0的整数解共有6个,则a 的取值范围是________.【思路点拨】 (1)由不等式组的解集,来确定字母m 的取值范围.因为原不等式组无解,所以可得到:m +1≤2m -1,解这个关于m 的不等式即可;(2)由已知结论探求字母的取值范围,要先求出不等式组的解集,再来确定字母a 的取值范围.不等式组的解集为a <x <32,则6个整数解为:1,0,-1,-2,-3,-4,故a 的范围可得. 【方法归纳】 解决这类问题的思路一般是逆用不等式(组)的解集,借助不等式(组)解集的特点,构造出不等式(组)来求出字母的取值范围.4.(泰安中考)若不等式组⎩⎪⎨⎪⎧1+x<a ,x +92+1≥x +13-1有解,则实数a 的取值范围是( )A .a<-36B .a ≤-36C .a>-36D .a ≥-365.若关于x 的不等式组⎩⎪⎨⎪⎧x -3(x -2)<2,a +2x 4>x有解,则实数a 的取值范围是________.6.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a≥0,5-2x>1只有四个整数解,则实数a 的取值范围是________.命题点3 不等式的实际应用【例3】 小宏准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买多少瓶甲饮料?【思路点拨】 先设小宏买了x 瓶甲饮料,则买了(10-x)瓶乙饮料,由买甲饮料的总费用+买乙饮料的总费用小于或等于50元列不等式求解,x 取最大整数即满足题意.【解答】【方法归纳】 列不等式解决实际问题时,解法与列一元一次方程解决实际问题的步骤相同,在列不等式解决实际问题时,设未知数时不能出现“至多、最少、最低”等表示不等关系的词语,但在问题的答中要出现这些表示不等关系的词语.7.(东营中考)东营市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x 千米,出租车费为15.5元,那么x 的最大值是( )A .11B .8C .7D .58.天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10 000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1 000元,则这个小区的住户至少有多少户?02整合集训 一、选择题(每小题3分,共30分)1.如果不等式ax <b 的解集是x <ba,那么a 的取值范围是( )A .a ≥0B .a ≤0C .a >0D .a <02.若0<a<1,则下列四个不等式中正确的是( )A .a<1<1aB .a<1a<1C.1a<a<1D .1<1a<a3.(恩施中考)关于x 的不等式-x +a≥1的解集如图所示,则a 的值为( )A .-1B .0C .1D .24.(盘锦中考)不等式组⎩⎪⎨⎪⎧2(x +3)≥2,5-x>4的解集是( )A .-2≤x <1B .-2<x≤1C .-1<x≤2D .-1≤x <25.(鞍山中考)不等式组⎩⎪⎨⎪⎧3x +4>7,6-x≥-3+2x 的解集在数轴上表示为( )6.已知点M(3a -9,1-a)在第三象限,且它的坐标都是整数,则a =( )A .1B .2C .3D .47.已知x =3是关于x 的不等式3x -ax +22>2x3的解,则a 的取值范围( )A .a<4B .a<2C .a>-2D .a>-48.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.娜娜得分要超过90分,设她答对了x 道题,则根据题意可列不等式为( )A .10x -5(20-x)≥90B .10x -5(20-x)>90C .10x -(20-x)≥90D .10x -(20-x)>909.(德阳中考)适合不等式组⎩⎪⎨⎪⎧5x -1>3x -4,23-x≥-13的全部整数解的和是( ) A .-1B .0C .1D .210.(南通中考)若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -1<0,x -a>0无解,则a 的取值范围是( )A .a ≥1B .a >1C .a ≤-1D .a <-1二、填空题(每小题4分,共20分)11.请你写出满足不等式3x +1≥-8的负整数x 的值:________.12.一罐饮料净重500克,罐上注有“蛋白质含量≥0.4%”,则这罐饮料中蛋白质的含量至少为________克.13.(新疆中考)不等式组⎩⎪⎨⎪⎧2x +13>-3,1-2x>5的解集是________.14.若不等式组⎩⎪⎨⎪⎧x -a>2,b -2x>0的解集是-1<x<1,则(a +b)2 016=________.15.某班级从文化用品市场购买签字笔和圆珠笔共15支,所付金额不超过27元.已知签字笔每支2元,圆珠笔每支1.5元,则最多购买签字笔________支. 三、解答题(共50分)16.(10分)(1)(宁波中考)解不等式:5(x -2)-2(x +1)>3.(2)(北京中考)解不等式12x -1≤23x -12,并把它的解集在数轴上表示出来.17.(8分)(广安中考)解不等式组⎩⎪⎨⎪⎧3x +2≤2(x +3),①2x -13>x 2,②并写出不等式组的整数解.18.(8分)某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票每张50元,持票者进入公园时需再购买每次2元的门票.某游客一年中进入该公园至少要超过多少次时,购买年票才合算?19.(12分)当m在什么范围内取值时,关于x的方程(m-2)x+2=1-m(4-x):(1)有正数解;(2)有负数解;(3)有不大于2的解.20.(12分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息:(说明:①每户产生的污水量等于该户用水量;②水费=自来水费用+污水处理费)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a,b的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9 200元,则小王家6月份最多能用水多少吨?参考答案各个击破例1 去分母,得2(2x -1)-3(5x +1)≤6.去括号,得4x -2-15x -3≤6. 移项、合并同类项,得-11x≤11. 系数化为1,得x≥-1.这个不等式的解集在数轴上表示为:例2 (1)m≥2 (2)-5≤a <-4例3 设小宏买了x 瓶甲饮料,则买了(10-x)瓶乙饮料,根据题意,得7x +4(10-x)≤50.解得x≤103.由于饮料的瓶数必须为整数,所以x 的最大值为3.答:小宏最多能买3瓶甲饮料.题组训练 1.B2.解:去括号,得2x -4<1-3x 移项、合并同类项,得5x <5. 系数化为1,得x <1. 其解集在数轴表示为:3.解:解不等式①,得x≥-2.解不等式②,得x <72.∴不等式组的解集为-2≤x <72.∴不等式组的非负整数解为0,1,2,3. 4.C 5.a>4 6.-3<a≤-2 7.B8.解:设这个小区的住户为x 户,由题意,得 1 000x>10 000+500x.解得x>20.由于住户数必须是整数,所以x 的最小值为21. 答:这个小区的住户至少有21户. 整合集训1.C 2.A 3.D 4.A 5.A 6.B 7.A 8.B 9.B 10.A 11.-1,-2,-3 12.2 13.-5<x <-2 14.1 15.916.(1)解:去括号,得5x -10-2x -2>3.移项、合并同类项,得3x>15.系数化为1,得x>5. (2)解:去分母,得3x -6≤4x -3. 移项,得3x -4x≤-3+6.合并同类项,得-x≤3.系数化为1,得x≥-3. 原不等式的解集在数轴上表示为:17.解:解不等式①,得x≤4.解不等式②,得x >2.所以这个不等式组的解集为2<x≤4. ∴不等式组的整数解为3,4.18.解:设某游客一年中进入该公园x 次,则50+2x<10x.解得x>614.∵次数为整数,∴x 最小取7.答:某游客一年进入该公园至少超过7次时,购买年票合算. 19.解:解方程,得x =4m +12.(1)方程有正数解,则4m +12>0.解得m>-14.(2)方程有负数解,则4m +12<0.解得m<-14.(3)方程有不大于2的解,则4m +12≤2.解得m≤34.20.解:(1)由题意,得⎩⎪⎨⎪⎧17(a +0.8)+3(b +0.8)=66,17(a +0.8)+8(b +0.8)=91.解得⎩⎪⎨⎪⎧a =2.2,b =4.2.答:a 的值为2.2,b 的值为4.2.(2)当用水量为30吨时,水费为:17×3+13×5=116(元).∵9 200×2%=184(元),116<184,∴小王家6月份的用水量可以超过30吨. 设小王家6月份用水量为x 吨,由题意,得17×3+13×5+6.8(x -30)≤184.解得x≤40. 答:小王家6月份最多能用水40吨.。
数学名校课堂七下答案 数学名校课堂七年级下册答案
数学名校课堂七下答案数学名校课堂七年级下册答案一、选择题(每小题3分,共30分)1.下列计算正确是()A.a2n+an=a3nB.a2nan=a3nC.(a4)2=x6D.(xy)5xy3=(xy)22.下列各组长度的三条线段能组成三角形的是()A.1cm,2cm,3cmB.1cm,1cm,2cmC.1cm,2cm,2cmD.1cm,3cm,5cm3.纳米是一种长度单位,1纳米=10﹣9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为()A.3.5104米B.3.510﹣4米C.3.510﹣5米D.3.510﹣9米4.(x﹣1)(2x+3)的计算结果是()A.2x2+x﹣3B.2x2﹣x﹣3C.2x2﹣x+3D.x2﹣2x﹣35.如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是()A.1=2B.3=4C.5=BD.B+BDC=1806.下列乘法中,不能运用平方差公式进行运算的是()A.(x+a)(x﹣a)B.(b+m)(m﹣b)C.(﹣x﹣b)(x﹣b)D.(a+b)(﹣a﹣b)7.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()A.7cmB.7cm或5cmC.5cmD.3cm8.如图,下列条件不能证明△ABC≌△DCB的是()A.AB=DC,AC=DBB.A=D,ABC=DCBC.BO=CO,A=DD.AB=DB,AC=DC9.下列说法中正确的个数有()(1)在同一平面内,不相交的两条直线必平行;(2)同旁内角互补;(3)相等的角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;(5)经过直线外一点,有且只有一条直线与已知直线平行.A.2个B.3个C.4个D.5个10.如图,△ABC中,A=,延长BC到D,ABC与ACD的平分线相交于点A1,A1BC与A1CD的平分线相交于点A2,依此类推,An﹣1BC与An﹣1CD 的平分线相交于点An,则An的度数为()A. B. C. D.二、填空题(每小题3分,共15分)11.计算:(﹣2xy3z2)2=.12.如图,直线AB、CD、EF相交于一点,1=50,2=64,则COF=度.13.将两张长方形纸片如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则1+2=.14.如果多项式x2+8x+k是一个完全平方式,则k的值是.15.如图,△ABC中,BF、CF分别平分ABC和ACB,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①△BDF和△CEF都是等腰三角形;②DFB=EFC;③△ADE的周长等于AB与AC的和;④BF=CF.其中正确的是.(填序号,错选、漏选不得分)三、计算与求值(每小题24分,共24分)16.计算与求值(1)(﹣)﹣2﹣(﹣2016)0+( )11(﹣)12;(2)(3x﹣2)2+(﹣3+x)(﹣x﹣3);(3)(9x4y3﹣6x2y+3xy2)(﹣3xy);(4)先化简,再求值[(2x+y)2﹣y(y+4x)﹣8xy](﹣2x).其中x=2,y=﹣1.四、解答题(共31分)17.解关于x的方程:(x+2)2﹣(x﹣2)(x+2)=6.18.已知:a﹣b=4,ab=﹣1,求:(a+b)2和a2﹣6ab+b2的值.19.如图,已知点A、F、E、C在同一直线上,AB∥CD,ABE=CDF,AF=CE.(1)从图中任找两对全等三角形,并用≌符号连接起来;(2)求证:AB=CD.20.平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB∥CD,点P在AB、CD外部,则有B=BOD,又因BOD 是△POD的外角,故BOD=BPD+D.得BPD=B﹣D.将点P移到AB、CD内部,如图2,以上结论是否成立?若成立,说明理由;若不成立,则BPD、B、D之间有何数量关系?请证明你的结论;(2)在如图2中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图3,则BPD、B、D、BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图4中A+B+C+D+E的度数.五、填空题(4分,共20分)21.已知:3m=2,9n=5,33m﹣2n+1=.22.若(x﹣2)(x2+ax+b)的积中不含x的二次项和一次项,则a=.b=.23.若a2﹣3a+1=0,则=.24.已知等腰△ABC中一腰上的高与另一腰的夹角为30,则△ABC的底角度数为度.25.已知△ABC的面积为1,把它的各边延长一倍得△A1B1C1;再△A1B1C1的各边延长两倍得△A2B2C2;在△A2B2C2的各边延长三倍得△A3B3C3,△A3B3C3的面积为.六、解答题(每小题10分,共30分)26.(1)已知△ABC三边长是a、b、c,化简代数式:|a+b﹣c|﹣|c﹣a+b|﹣|b﹣c ﹣a|+|b﹣a﹣c|;(2)已知x2+3x﹣1=0,求:x3+5x2+5x+2015的值.27.先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)20(y+2)2+44y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?28.如图(1),在Rt△ABC中,ACB=90,CDAB,垂足为D.AF平分CAB,交CD于点E,交CB于点F.(1)求证:CE=CF;(2)若AD= AB,CF= CB,△ABC、△CEF、△ADE的面积分别为S△ABC、S△CEF、S△ADE,且S△ABC=24,则S△CEF﹣S△ADE=;(3)将图(1)中的△ADE沿AB向右平移到△ADE的位置,使点E落在BC边上,其它条件不变,如图(2)所示,试猜想:BE与CF有怎样的数量关系?并证明你的结论.2015-2016学年四川省成都七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.下列计算正确是()A.a2n+an=a3nB.a2nan=a3nC.(a4)2=x6D.(xy)5xy3=(xy)2【考点】整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据整式的除法,合并同类项的方法,以及同底数幂的乘法和幂的乘方与积的乘方的运算方法逐一判断即可.【解答】解:∵a2n+ana3n,选项A不正确;∵a2nan=a3n,选项B正确;∵(a4)2=a8,选项C不正确;∵(xy)5xy3=x4y2,选项D不正确.故选:B.2.下列各组长度的三条线段能组成三角形的是()A.1cm,2cm,3cmB.1cm,1cm,2cmC.1cm,2cm,2cmD.1cm,3cm,5cm【考点】三角形三边关系.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.【解答】解:根据三角形任意两边的和大于第三边,A、1+2=3,不能组成三角形,故错误,B、1+1=2,不能组成三角形,故错误,C、1+2=32,2﹣2=01,能够组成三角形,故正确,D、1+3=45,5﹣3=21,不能组成三角形,故错误,故选C.3.纳米是一种长度单位,1纳米=10﹣9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为()A.3.5104米B.3.510﹣4米C.3.510﹣5米D.3.510﹣9米【考点】科学记数法表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:35000纳米=3500010﹣9米=3.510﹣5米.故选:C.4.(x﹣1)(2x+3)的计算结果是()A.2x2+x﹣3B.2x2﹣x﹣3C.2x2﹣x+3D.x2﹣2x﹣3【考点】多项式乘多项式.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.【解答】解:(x﹣1)(2x+3),=2x2﹣2x+3x﹣3,=2x2+x﹣3.故选:A.5.如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是()A.1=2B.3=4C.5=BD.B+BDC=180【考点】平行线的判定.【分析】根据平行线的判定方法直接判定.【解答】解:选项B中,∵3=4,AB∥CD (内错角相等,两直线平行),所以正确;选项C中,∵5=B,AB∥CD (内错角相等,两直线平行),所以正确;选项D中,∵B+BDC=180,AB∥CD(同旁内角互补,两直线平行),所以正确;而选项A中,1与2是直线AC、BD被AD所截形成的内错角,因为1=2,所以应是AC∥BD,故A错误.故选A.6.下列乘法中,不能运用平方差公式进行运算的是()A.(x+a)(x﹣a)B.(b+m)(m﹣b)C.(﹣x﹣b)(x﹣b)D.(a+b)(﹣a﹣b)【考点】平方差公式.【分析】根据平方差公式的特点:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数解答.【解答】解:A、B、C、符合平方差公式的特点,故能运用平方差公式进行运算;D,两项都互为相反数,故不能运用平方差公式进行运算.故选D.7.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()A.7cmB.7cm或5cmC.5cmD.3cm【考点】等腰三角形的性质;三角形三边关系.【分析】分3cm长的边是腰和底边两种情况,分别利用三角形的周长,等腰三角形的性质和三角形的三边关系进行讨论即可求解.【解答】解:当长是3cm的边是底边时,三边为3cm,5cm,5cm,等腰三角形成立;当长是3cm的边是腰时,底边长是13﹣3﹣3=7cm,而3+37,不满足三角形的三边关系.故底边长是3cm.故选D.8.如图,下列条件不能证明△ABC≌△DCB的是()A.AB=DC,AC=DBB.A=D,ABC=DCBC.BO=CO,A=DD.AB=DB,AC=DC【考点】全等三角形的判定.【分析】利用全等三角形的判定方法:SSS、SAS、ASA、AAS、HL分别进行分析即可.【解答】解:A、AB=DC,AC=DB再加公共边BC=BC可利用SSS判定△ABC ≌△DCB,故此选项不合题意;B、A=D,ABC=DCB再加公共边BC=BC可利用AAS判定△ABC≌△DCB,故此选项不合题意;C、BO=CO,A=D再加对顶角AOB=DOC可利用AAS判定△AOB≌△DOC,可得AO=DO,AB=CD,进而可得AC=BD,再加公共边BC=BC可利用SSS判定△ABC≌△DCB,故此选项不合题意;D、AB=DB,AC=DC不能判定△ABC≌△DCB,故此选项不合题意;故选:D.9.下列说法中正确的个数有()(1)在同一平面内,不相交的两条直线必平行;(2)同旁内角互补;(3)相等的角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;(5)经过直线外一点,有且只有一条直线与已知直线平行.A.2个B.3个C.4个D.5个【考点】平行线的性质;余角和补角;对顶角、邻补角.【分析】(1)根据平行线的定义解答;(2)根据平行线的性质解答;(3)根据对顶角的定义解答;(4)根据点到直线的距离的定义解答;(5)根据平行公理解答.【解答】解:(1)符合平行线的定义,故本选项正确;(2)应为两直线平行,同旁内角互补,故本选项错误;(3)相等的角是指度数相等的角,未必为对顶角,故本选项错误;(4)应为从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离股本选项错误;(5)这是平行公理,故本选项正确;故选A.10.如图,△ABC中,A=,延长BC到D,ABC与ACD的平分线相交于点A1,A1BC与A1CD的平分线相交于点A2,依此类推,An﹣1BC与An﹣1CD 的平分线相交于点An,则An的度数为()A. B. C. D.【考点】三角形内角和定理;三角形的外角性质.【分析】由A1CD=A1+A1BC,ACD=ABC+A,而A1B、A1C分别平分ABC 和ACD,得到ACD=2A1CD,ABC=2A1BC,于是有A=2A1,同理可得A1=2A2,即A=22A2,因此找出规律.【解答】解:∵A1B、A1C分别平分ABC和ACD,ACD=2A1CD,ABC=2A1BC,而A1CD=A1+A1BC,ACD=ABC+A,A=2A1=,A1= ,同理可得A1=2A2,即A=22A2=,A2= ,A=2nAn,An=( )n=( ).故选C.二、填空题(每小题3分,共15分)11.计算:(﹣2xy3z2)2=4x2y6z4.【考点】幂的乘方与积的乘方.【分析】根据积的乘方,即可解答.【解答】解:(﹣2xy3z2)2=4x2y6z4,故答案为:4x2y6z4.12.如图,直线AB、CD、EF相交于一点,1=50,2=64,则COF=74度.【考点】对顶角、邻补角.【分析】根据平角意义求得EOD,再根据对顶角求得结论.【解答】解:∵1=50,2=64,EOD=180﹣1﹣2=74COF=EOD=74,故答案为:74.13.将两张长方形纸片如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则1+2=90.【考点】平行线的性质.【分析】过点B作BN∥FG,根据矩形的性质可得BN∥EH∥FG,再根据两直线平行,内错角相等可得1=3,2=4,然后求出1+2=ABC,从而得证.【解答】证明:如图,过点B作BN∥FG,∵四边形EFGH是矩形纸片,EH∥FG,BN∥EH∥FG,1=3,2=4,1+2=3+4=ABC=90,即1+2=90.故答案为:90.14.如果多项式x2+8x+k是一个完全平方式,则k的值是16.【考点】完全平方式.【分析】根据完全平方公式的乘积二倍项和已知平方项先确定出另一个数是4,平方即可.【解答】解:∵8x=24x,k=42=16.15.如图,△ABC中,BF、CF分别平分ABC和ACB,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①△BDF和△CEF都是等腰三角形;②DFB=EFC;③△ADE的周长等于AB与AC的和;④BF=CF.其中正确的是①③.(填序号,错选、漏选不得分)【考点】等腰三角形的判定;平行线的性质.【分析】由平行线得到角相等,由角平分线得角相等,根据平行线的性质及等腰三角形的判定和性质.【解答】解:①∵DE∥BC,DFB=FBC,EFC=FCB,∵BF是ABC的平分线,CF是ACB的平分线,FBC=DFB,FCE=FCB,∵DBF=DFB,EFC=ECF,△DFB,△FEC都是等腰三角形.①正确;②∵△ABC不是等腰三角形,②DFB=EFC,是错误的;③∵△DFB,△FEC都是等腰三角形.DF=DB,FE=EC,即有DE=DF+FE=DB+EC,△ADE的周长AD+AE+DE=AD+AE+DB+EC=AB+AC.③正确,共2个正确的;④∵△ABC不是等腰三角形,ABCACB,FBCFCB,BF=CF是错误的;故答案为:①③.三、计算与求值(每小题24分,共24分)16.计算与求值(1)(﹣)﹣2﹣(﹣2016)0+( )11(﹣)12;(2)(3x﹣2)2+(﹣3+x)(﹣x﹣3);(3)(9x4y3﹣6x2y+3xy2)(﹣3xy);(4)先化简,再求值[(2x+y)2﹣y(y+4x)﹣8xy](﹣2x).其中x=2,y=﹣1.【考点】整式的混合运算化简求值;零指数幂;负整数指数幂.【分析】(1) =(﹣4)2=16,对于( )11(﹣)12;先将(﹣)12化为,再拆项变成,利用积的乘方的逆运算进行计算;(2)利用完全平方差公式和平方差公式计算,注意(﹣3+x)(﹣x﹣3)=(﹣3+x)(﹣3﹣x)=9﹣x2;(3)多项式除以单项式,把多项式的每一项都与单项式相除,最后相加即可;(4)先化简,按运算顺序,再代入求值.【解答】解:(1)(﹣)﹣2﹣(﹣2016)0+( )11(﹣)12,=16﹣1+( )11 ,=15+ ,=16.5;(2)(3x﹣2)2+(﹣3+x)(﹣x﹣3),=9x2﹣12x+4+9﹣x2,=8x2﹣12x+13;(3)(9x4y3﹣6x2y+3xy2)(﹣3xy),=9x4y3(﹣3xy)﹣6x2y(﹣3xy)+3xy2(﹣3xy),=﹣3x3y2+2x﹣y;(4)先化简,再求值[(2x+y)2﹣y(y+4x)﹣8xy](﹣2x).其中x=2,y=﹣1.原式=[4x2+4xy+y2﹣y2﹣4xy﹣8xy](﹣2x),=(4x2﹣8xy)(﹣2x),=﹣2x+4y.当x=2,y=﹣1时,原式=﹣22+4(﹣1)=﹣4﹣4=﹣8.四、解答题(共31分)17.解关于x的方程:(x+2)2﹣(x﹣2)(x+2)=6.【考点】平方差公式;完全平方公式;解一元一次方程.【分析】先转化为一般式方程,然后解关于x的一元一次方程.【解答】解:(x+2)2﹣(x﹣2)(x+2)=6,x2+4x+4﹣x2+4=6,4x=6﹣8,x=﹣.18.已知:a﹣b=4,ab=﹣1,求:(a+b)2和a2﹣6ab+b2的值.【考点】完全平方公式.【分析】依据完全平方公式对代数式进行变形,然后整体代入进行求解即可.【解答】解:(a+b)2=(a﹣b)2+4ab=42+4(﹣1)=16﹣4=12.a2﹣6ab+b2=(a﹣b)2﹣4ab=16+4=20.19.如图,已知点A、F、E、C在同一直线上,AB∥CD,ABE=CDF,AF=CE.(1)从图中任找两对全等三角形,并用≌符号连接起来;(2)求证:AB=CD.【考点】全等三角形的判定与性质.【分析】(1)本题有三对三角形全等,分别是△ABE≌△CDF,△ABC≌△CDA,△BEC≌△DFA(2)先根据AF=CE利用等式的性质得:AE=FC,由AB∥CD得内错角相等,则△ABE≌△CDF,得出结论.【解答】解:(1)△ABE≌△CDF,△ABC≌△CDA,(2)∵AF=CE,AF+EF=CE+EF,即AE=CF,∵AB∥CD,BAC=DCA,∵ABE=CDF,△ABE≌△CDF(AAS),AB=CD.20.平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB∥CD,点P在AB、CD外部,则有B=BOD,又因BOD 是△POD的外角,故BOD=BPD+D.得BPD=B﹣D.将点P移到AB、CD内部,如图2,以上结论是否成立?若成立,说明理由;若不成立,则BPD、B、D之间有何数量关系?请证明你的结论;(2)在如图2中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图3,则BPD、B、D、BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图4中A+B+C+D+E的度数.【考点】平行线的性质;三角形内角和定理;三角形的外角性质.【分析】(1)延长BP交CD于点E,根据AB∥CD得出B=BED,再由三角形外角的性质即可得出结论;(2)连接QP并延长,由三角形外角的性质得出BPE=B+BQE,DPE=D+DQP,由此可得出结论;(3)由(2)的结论得:AFG=B+E.AGF=C+D.再根据A+AFG+AGF=180即可得出结论.【解答】解:(1)不成立,结论是BPD=B+D.延长BP交CD于点E,∵AB∥CD,B=BED,又∵BPD=BED+D,BPD=B+D;(2)结论:BPD=BQD+B+D.连接QP并延长,∵BPE是△BPQ的外角,DPE是△PDQ的外角,BPE=B+BQE,DPE=D+DQP,BPE+DPE=B+D+BQE+DQP,即BPD=BQD+B+D;(3)由(2)的结论得:AFG=B+E.AGF=C+D.又∵A+AFG+AGF=180A+B+C+D+E=180.(或由(2)的结论得:AGB=A+B+E且AGB=CGD,A+B+C+D+E=180.五、填空题(4分,共20分)21.已知:3m=2,9n=5,33m﹣2n+1=.【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】逆运用同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加以及幂的乘方,底数不变指数相乘进行计算即可得解.【解答】解:33m﹣2n+1=33m32n31,=(3m)3(32)n3,=239n3,=893,= .故答案为:.22.若(x﹣2)(x2+ax+b)的积中不含x的二次项和一次项,则a=2.b=4.【考点】多项式乘多项式.【分析】本题需先根据已知条件求出(x﹣2)与(x2+ax+b)的积,再根据积中不出现一次项和二次项这个条件,即可求出a、b的值.【解答】解:(x﹣2)(x2+ax+b)=x3+ax2+bx﹣2x2﹣2ax﹣2b∵积中不含x的二次项和一次项,a﹣2=0,b﹣2a=0,解得a=2,b=4.故答案为:2,4.23.若a2﹣3a+1=0,则=7.【考点】完全平方公式.【分析】将配方为完全平方式,再通分,然后将a2﹣3a+1=0变形为a2+1=﹣3a,再代入完全平方式求值.【解答】解:∵=(a2+ +2﹣2)=(a+ )2﹣2=( )2﹣2①;又∵a2﹣3a+1=0,于是a2+1=3a②,将②代入①得,原式=( )2﹣2=9﹣2=7.故答案为7.24.已知等腰△ABC中一腰上的高与另一腰的夹角为30,则△ABC的底角度数为30或60度.【考点】等腰三角形的性质.【分析】等腰三角形一腰上的高与另一腰的夹角为30,但没有明确此等腰三角形是锐角三角形还是钝角三角形,因此,有两种情况,需分类讨论.【解答】解:当等腰三角形为锐角三角形时,如图1,由已知可知,ABD=30,又∵BDAC,ADB=90,A=60,ABC=C=60.当等腰三角形为钝角三角形时,如图2,由已知可知,ABD=30,又∵BDAC,DAB=60,C=ABC=30.故答案为:30或60.25.已知△ABC的面积为1,把它的各边延长一倍得△A1B1C1;再△A1B1C1的各边延长两倍得△A2B2C2;在△A2B2C2的各边延长三倍得△A3B3C3,△A3B3C3的面积为4921.【考点】三角形的面积.【分析】先根据根据等底的三角形高的比等于面积比求出△A1B1C1及△A2B2C2的面积,再根据两三角形的倍数关系求解即可.【解答】解:△ABC与△A1BB1底相等(AB=A1B),高为1:2(BB1=2BC),故面积比为1:2,∵△ABC面积为1,S△A1B1B=2.同理可得,S△C1B1C=2,S△AA1C=2,S△A1B1C1=S△C1B1C+S△AA1C+S△A1B1B+S△ABC=2+2+2+1=7;如图,连接A2C1,根据A2B1=2A1B1,得到:A1B1:A2A1=1:3,因而若过点B1,A2作△A1B1C1与△A1A2C1的A1C1边上的高,则高线的比是1:3,因而面积的比是1:3,则△A2B1C1的面积是△A1B1C1的面积的2倍,则△A2B1C1的面积是14,同理可以得到△A2B2C1的面积是△A2B1C1面积的2倍,是28,则△A2B2B1的面积是42,同理△B2C2C1和△A2C2A1的面积都是42,△A2B2C2的面积是719=133,同理△A3B3C3的面积是71937=4921,故答案为:4921.六、解答题(每小题10分,共30分)26.(1)已知△ABC三边长是a、b、c,化简代数式:|a+b﹣c|﹣|c﹣a+b|﹣|b﹣c ﹣a|+|b﹣a﹣c|;(2)已知x2+3x﹣1=0,求:x3+5x2+5x+2015的值.【考点】因式分解的应用;整式的加减;三角形三边关系.【分析】(1)根据三角形的三边关系即三角形的两边之和大于第三边,两边之差小于第三边,去掉绝对值,再根据整式加减的法则即可得出答案.(2)先据x2+3x﹣1=0,得出x2+3x=1,再将x3+5x2+5x+2015化简为含有x2+3x 的代数式,然后整体代入即可求出所求的结果.【解答】解:(1)∵a、b、c是△ABC三边的长,|a+b﹣c|﹣|c﹣a+b|﹣|b﹣c﹣a|+|b﹣a﹣c|=a+b﹣c﹣(c﹣a+b)﹣(﹣b+c+a)+(﹣b+a+c)=a+b﹣c﹣c+a﹣b+b﹣c﹣a﹣b+a+c=2a﹣2c;(2)∵x2+3x﹣1=0,x2+3x=1,x3+5x2+5x+2015,=x(x2+3x)+2x2+5x+2015=2x2+6x+2015=2(x2+3x)+2015=2+2015=2017.27.先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)20(y+2)2+44y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?【考点】配方法的应用;非负数的性质:偶次方.【分析】(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值;(3)根据题意列出关系式,配方后根据完全平方式恒大于等于0,即可求出最大值以及x的值即可.【解答】解:(1)m2+m+4=(m+ )2+ ,∵(m+ )20,(m+ )2+ ,则m2+m+4的最小值是;(2)4﹣x2+2x=﹣(x﹣1)2+5,∵﹣(x﹣1)20,﹣(x﹣1)2+55,则4﹣x2+2x的最大值为5;(3)由题意,得花园的面积是x(20﹣2x)=﹣2x2+20x,∵﹣2x2+20x=﹣2(x﹣5)2+50∵﹣2(x﹣5)20,﹣2(x﹣5)2+5050,﹣2x2+20x的最大值是50,此时x=5,则当x=5m时,花园的面积最大,最大面积是50m2.28.如图(1),在Rt△ABC中,ACB=90,CDAB,垂足为D.AF平分CAB,交CD于点E,交CB于点F.(1)求证:CE=CF;(2)若AD= AB,CF= CB,△ABC、△CEF、△ADE的面积分别为S△ABC、S△CEF、S△ADE,且S△ABC=24,则S△CEF﹣S△ADE=2;(3)将图(1)中的△ADE沿AB向右平移到△ADE的位置,使点E落在BC边上,其它条件不变,如图(2)所示,试猜想:BE与CF有怎样的数量关系?并证明你的结论.【考点】全等三角形的判定与性质;三角形的面积;角平分线的性质;等腰三角形的判定与性质.【分析】(1)求出CAF=BAF,B=ACD,根据三角形外角性质得出CEF=CFE,即可得出答案;(2)求出△CAF和△ACD的面积,再相减即可求出答案;(3)过F作FHAB于H,求出CF=FH=CE,证△CEE≌△FHB,推出CE=BF,都减去FE即可.【解答】(1)证明:如图(1),∵在Rt△ABC中,ACB=90,CDAB,CDB=ACB=90,ACD+BCD=90,BCD+B=90,ACD=B,∵AF平分CAB,CAE=BAF,ACD+CAE=B+BAF,CEF=CFE,CE=CF.(2)解:∵S△ACB=24,AD= AB,CF= CB,S△ACD=S△ADE+S△ACE= 24=6①,S△ACF=S△CEF+S△ACE= 24=8②,②﹣①得:S△CEF﹣S△ADE=8﹣6=2,故答案为:2.(3)BE=CF,证明:如图(2),过F作FHAB于H,∵CDAB,CD∥FH,ECE=HFB,∵△ADE沿AB平移到△ADE,DE=DE,EE=DD,四边形EDDE是平行四边形,EE∥AB,∵CDB=90,CEE=CDB=90=FHB,∵AF平分CAB,ACF=90,FHAB,CF=FH,∵CF=CE,CE=FH,在△CEE和△FHB中△CEE≌△FHB(ASA),CE=BF,CE﹣FE=BF﹣EF,即BE=CF.。
人教版七年级数学下册名校课堂练习7.1.1有序数对(含答案)
第七章平面直角坐标系7. 1平面直角坐标系7. 1.1有序数对课前预习重点感知有序数对:有次序的 ________个数构成的数对,称为有序数对.理解有序数对时要注意: (1)不可以任意互换两个数的________; (2)两个数构成的有序数对是个整体,不可以分开.预习练习用有序数对(2,9)表示某住户住 2 单元9 号房,请问(3,11)表示住户住________单元 ________号房.当堂训练知识点1有序数对1.一个有序数对能够()A.确立一个点的地点B.确立两个点的地点C.确立一个或两个点的地点D.不可以确立点的地点2.以下对于有序数对的说法正确的选项是()A. (3, 2)与 (2, 3)表示的地点相同B. (a, b)与 (b, a)表示的地点必定不一样C. (3,- 2)与 (- 2,3)是表示不一样地点的两个有序数对D. (4, 4)与 (4, 4)表示两个不一样的地点3.假如在教室内的地点用某列某行来表示,懒羊羊在教室里的座位是(a, 4),那么下边说法错误的选项是 ()A.懒羊羊的座位必定在第 4 列B.懒羊羊的座位必定在第4行C.懒羊羊的座位可能在第4列D.懒羊羊的座位地点可能是(4, 4)4.以下有污迹的电影票中能让小华正确找到座位的是()知识点 2有序数对的应用5.依据以下表述,能确立地点的是()A.红星电影院第 2 排B.北京市四环路C.北偏东30°D.东经118°,北纬40°6.电影院里的座位按“×排×号”编排,小明的座位简记为(12,6),小菲的地点简记为(12,12),则小明与小菲坐的地点为()A.同一排B.前后同一条直线上C.中间隔六个人D.前后隔六排7.如图是某电视塔四周的建筑群平面表示图,这个电视塔的地点用 A 表示.某人由点 B 出(注:街在前,巷在后)()发到电视塔,他的路径表示错误的选项是A. (2, 2) → (2, 5) → (5,6)B. (2, 2) → (2, 5) → (6, 5)C. (2, 2) → (6, 2) → (6, 5)D. (2, 2) → (2, 3) → (6,3) → (6, 5)8.电影票上的“6排15号”简记作(6,15),则“20排12号”记作(________),(12,16)表示________排 ________号.9.若图中的有序数对(4,1)对应字母D,有一个英文单词的字母次序对应图中的有序数对为(1, 1), (2, 3), (2, 3),(5 ,2), (5, 1),则这个英文单词是 ________.10.如下图,围棋盘的左下角体现的是一局围棋竞赛中的几手棋,为记录棋谱方便,横线用数字表示,纵线用英文字母表示,这样,黑棋的地点可记为 (C,4),白棋②的地点可记为 (E , 3),则黑棋的地点应记为 ________.课后作业11.如下图,一方队正沿箭头所指的方向行进,A 的地点为三列四行,表示为(3, 4),那么C的地点是()A. (4, 5)B.(5,4)C. (4, 2)D.(4,3)12.垂钓岛及其隶属岛屿自古以来就是中国的固有国土,在明朝垂钓岛归入中国领土领土.能够正确表示垂钓岛这个地址的是()A.北纬25° 40′~ 26°B.东经123°~ 124° 34′C.福建的正东方向D.东经 123°~ 124° 34′,北纬25° 40′~ 26°13.如图,雷达探测器测得六个目标 A , B,C,D ,E,F 出现,依据规定的目标表示方法,目标 C,F 的地点分别表示为C(6 ,120° ),F(5,210°) ,依据此方法在表示目标 A ,B ,D,()E 的地点时,此中表示不正确的选项是A. A(5 ,30° )B.B(2,90°)C. D(4 ,240° ) D . E(3, 60° )14.若将正整数按如下图的规律摆列.若用有序数对(a, b)表示第 a 排,从左至右第 b 个数.比如(4, 3)表示的数是9,则 (7,2)表示的数是________.15.如图,A表示三经路与一纬路的十字路口, B 表示一经路与三纬路的十字路口,假如用(3, 1)(3, 2) (3, 3) (2 , 3) (1, 3)表示由 A 到 B 的一条路径,用相同的方式写出一条由 A 到 B 的路径: ________________ .16.如图是游玩园的一角.(1)假如用 (3,2)表示跳跳床的地点,你能用数对表示其余游玩设备的地点吗?请你写出来;(2)请你在图中标出秋千的地点,秋千在大门以东400 m,再往北300 m 处.17.如图用点A(3 ,1)表示搁置 3 个胡萝卜、 1 棵青菜,点B(2, 3)表示搁置 2 个胡萝卜、 3棵青菜.(1)请你写出其余各点C,D , E, F 所表示的意义;(2)若一只兔子从 A 抵达 B( 顺着方格线走),有以下几条路能够选择:①A→ C→ D→B;② A→F→D→B;③ A→F→E→B,帮可爱的小白兔选一条路,使它吃到的食品最多.挑战自我18.五子连珠棋和象棋、围棋相同,深受广大棋友的喜欢,其规则是:15×15 的正方形棋盘中,由黑方先行,轮番弈子,在任一方向上连成五子者为胜.如图是两个五子棋喜好者甲和乙的棋战图 (甲执黑子先行,乙执白子后走 ) ,察看棋盘思虑:若 A 点的地点记作 (8, 4),甲一定在哪个地点上落子,才不会让乙在短时间内获胜?为何?参照答案课前预习重点感知两次序预习练习 3 11当堂训练1.A 2.C 3.A 4.D 5.D 6.A 7.A 8.20,12 12 16 9.APPLE10.(D,6)课后作业11.D12.D13.D14.2315.(3,1)(2,1) (2, 2) (2, 3)(1, 3)16.(1) 跷跷板 (2, 4),碰碰车 (5, 1),摩天轮 (6, 5). (2)略.17.(1)C(2 ,1)表示搁置 2 个胡萝卜、 1 棵青菜; D(2 ,2)表示搁置 2 个胡萝卜、 2 棵青菜; E(3,3)表示搁置 3 个胡萝卜、 3 棵青菜;F(3, 2)表示搁置 3 个胡萝卜、 2 棵青菜.(2) 走①有9 个胡萝卜、7 棵青菜;走②有10 个胡萝卜、8 棵青菜;走③有11 个胡萝卜、9棵青菜.故小白兔走③吃到的萝卜、青菜都最多.18.甲一定在(1,7)或(5,3)处落子.由于若甲不第一截断以上两处之一,而让乙在(1,7)或(5,3)处落子,则无论截断哪处,乙总有一处落子可连成五子,乙必胜无疑.。
(完整版)名校课堂七年级下册数学答案
一、判断题(每道小题 2分共 16分 ) 1. 一个数的约数的个数是有限的,一个数的倍数的个数是无限的.( ) 2. 个位上是1、3、5、7、9的自然数,都是奇数. ( ) 3. 12×10的积一定能被2、5、3整除. ( ) 4. 互质的两个数没有公约数. ( ) 5. 把6分解质因数是:6=1×2×3. ( ) 6. 2、3、4的最小公倍数是2×3×4=24. ( ) 7. 边长是自然数的正方形,它的周长一定是合数. ( ) 8. a是自然数,b=a+1,那么a和b的最大公约数是1. ( )二、单选题(第1小题 2分, 2-4每题 3分, 共 11分) 1. 1、3、9都是9的. [ ]A.质因数B.质数C.约数 2. 20的质因数有几个. [ ]A.1B.2C.3 3. 从323中至少减去多少才能被3整除. [ ]A.减去3B.减去2C.减去1 4. 4和6的公倍数有. [ ]A.1个B.4个C.无数个三、填空题(1-10每题 2分, 11-15每题 3分, 第16小题 4分, 共 39分) 1. 10和5这两个数,5能( )10,5是10的( )数,10是5的( )数. 2. 50以内6和8的公倍数有( ). 3. 24的最大约数是( ),最小倍数是( ). 4. 自然数的( )是无限的,所以没有( )的自然数. 5. 10以内质数的和是( ). 6. 一个数的最小倍数是99,这个数是( ),将它分解质因数是( ). 7. 1021至少加上一个整数( )就能被3整除. 8. 自然数a是自然数b的约数,a、b的最大公约数是( ),最小公倍数是( ). 9. 12的约数有( ),其中( )是奇数,( )是偶数,( )是质数,( )是合数. 10. 两个互质数的最小公倍数是143,这两个互质数是( )和( )或( )和( ). 11. 4的倍数:2□,5□,4□0 12. 3的倍数:□60,70□0,310□ 13. 甲数能被乙数整除,那么甲数一定能被乙数除尽。
《名校课堂》(人教版)七年级(下册)数学
湖北世纪华章文化传播有限公司公司简介湖北世纪华章文化传播有限公司创建于2001年,是一家以中小学教育辅导类图书开发为重点,集内容策划、出版发行于一体的民营股份制企业,是全国一流的基础教育图书供应商。
公司成功研发出版的《名校课堂》、《火线100天》等系列图书已经成为全国中小学教育类图书的一线品牌,每年有2000余万人次中小学生、98万余人次的教师、超过4.8万所学校使用本公司的图书,产品畅销不衰。
目前,公司拥有4项注册商标、一项国家专利,并与广西师范大学出版社、黑龙江教育出版社、北京市海淀区教师进修学校、黄冈市教育科学研究院等全国知名出版社、教育研发机构深度合作,重点研发教育类图书、报刊、网站等项目。
公司宗旨:服务教师、服务教学、服务教育公司使命:以图书出版推动教育进步公司愿景:让每一位学生以较小的成本分享到高品质的教育七年级(下册)数学(人教版)Word 版习题教学资源包导学案第五章相交线与平行线第六章实数第七章平面直角坐标系第八章二元一次方程组第九章不等式与不等式组第十章数据的收集、整理与描述期末复习第五章相交线与平行线5.1 相交线5.2 平行线及其判定周周练(5.1~5.2)5.3 平行线的性质小专题(一)平行线的性质与判定5.4 平移周周练(5.3~5.4)单元测试(一)相交线与平行线第六章实数6.1 平方根6.2 立方根6.3实数单元测试(二)实数第七章平面直角坐标系7.1 平面直角坐标系7.2 坐标方法的简单应用单元测试(三)平面直角坐标系期中测试第八章二元一次方程组8.1 二元一次方程组8.2 消元——解二元一次方程组小专题(二)二元一次方程组的解法8.3 实际问题与二元一次方程组小专题(三)二元一次方程组的实际应用周周练(8.1~8.3)8.4 三元一次方程组的解法单元测试(四)二元一次方程组第九章不等式与不等式组9.1 不等式9.2 一元一次不等式周周练(9.1~9.2)9.3 一元一次不等式组小专题(四)解一元一次不等式(组)单元测试(五) 不等式与不等式组第十章数据的收集、整理与描述10.1 统计调查10.2 直方图小专题(五)从图表中获取信息单元测试(六)数据的收集、整理与描述期末测试期末复习期末复习(一) 相交线与平行线期末复习(二) 实数期末复习(三) 平面直角坐标系期末复习(四) 二元一次方程组期末复习(五) 不等式与不等式组期末复习(六) 数据的收集、整理与描述第五章相交线与平行线5.1 相交线5.1.1相交线5.1.2垂线5.1.3同位角、内错角、同旁内角第五章相交线与平行线5.2 平行线及其判定5.2.1平行线5.2.2平行线的判定第五章相交线与平行线5.3 平行线的性质5.3.1平行线的性质5.3.2命题、定理、证明第六章实数6.1 平方根第1课时算术平方根第2课时平方根第七章平面直角坐标系7.1 平面直角坐标系7.1.1有序数对7.1.2平面直角坐标系第七章平面直角坐标系7.2 坐标方法的简单应用7.2.1用坐标表示地理位置7.2.2用坐标表示平移第八章二元一次方程组8.2 消元——解二元一次方程组第1课时用代入消元法解方程组第2课时用加减消元法解方程组第九章不等式与不等式组9.1 不等式9.1.1不等式及其解集9.1.2不等式的性质第九章不等式与不等式组9.2 一元一次不等式第1课时一元一次不等式的解法第2课时一元一次不等式的应用第十章数据的收集、整理与描述10.1 统计调查第1课时全面调查第2课时抽样调查第五章相交线与平行线第六章实数第七章平面直角坐标系第八章二元一次方程组第九章不等式与不等式组第十章数据的收集、整理与描述第五章相交线与平行线5.1 相交线5.2 平行线及其判定5.3 平行线的性质5.4 平移第六章实数6.1 平方根6.2 立方根6.3实数第七章平面直角坐标系7.1 平面直角坐标系7.2 坐标方法的简单应用第八章二元一次方程组8.1 二元一次方程组8.2 消元——解二元一次方程组8.3 实际问题与二元一次方程组8.4 三元一次方程组的解法第九章不等式与不等式组9.1 不等式9.2 一元一次不等式9.3 一元一次不等式组第十章数据的收集、整理与描述10.1 统计调查10.2 直方图10.3 课题学习从数据谈节水第五章相交线与平行线5.1 相交线5.1.1相交线5.1.2垂线5.1.3同位角、内错角、同旁内角第五章相交线与平行线5.2 平行线及其判定5.2.1平行线5.2.2平行线的判定第五章相交线与平行线5.3 平行线的性质5.3.1平行线的性质5.3.2命题、定理、证明第六章实数6.1 平方根第1课时算术平方根第2课时平方根第六章实数6.3 实数第1课时实数第2课时实数的运算第七章平面直角坐标系7.1 平面直角坐标系7.1.1有序数对7.1.2平面直角坐标系第七章平面直角坐标系7.2 坐标方法的简单应用7.2.1用坐标表示地理位置7.2.2用坐标表示平移第八章二元一次方程组8.2 消元——解二元一次方程组第1课时用代入消元法解方程组第2课时用加减消元法解方程组第八章二元一次方程组8.3 实际问题与二元一次方程组第1课时利用二元一次方程组解决实际问题第2课时利用二元一次方程组的解作决策第九章不等式与不等式组9.1 不等式9.1.1不等式及其解集9.1.2不等式的性质第九章不等式与不等式组9.2 一元一次不等式第1课时一元一次不等式的解法第2课时一元一次不等式的应用第十章数据的收集、整理与描述10.1 统计调查第1课时全面调查第2课时抽样调查第五章相交线与平行线导学案7年级教学资源包导学案Word 版习题第六章实数第七章平面直角坐标系第八章二元一次方程组第九章不等式与不等式组第十章数据的收集、整理与描述第五章相交线与平行线5.1 相交线5.2 平行线及其判定5.3 平行线的性质5.4 平移第六章实数6.1 平方根6.2 立方根6.3实数第七章平面直角坐标系7.1 平面直角坐标系7.2 坐标方法的简单应用第八章二元一次方程组8.1 二元一次方程组8.2 消元——解二元一次方程组8.3 实际问题与二元一次方程组8.4 三元一次方程组的解法第九章不等式与不等式组9.1 不等式9.2 一元一次不等式9.3 一元一次不等式组第十章数据的收集、整理与描述10.1 统计调查10.2 直方图10.3 课题学习从数据谈节水第五章相交线与平行线5.1 相交线5.1.1相交线5.1.2垂线5.1.3同位角、内错角、同旁内角第五章相交线与平行线5.2 平行线及其判定5.2.1平行线5.2.2平行线的判定第五章相交线与平行线5.3 平行线的性质5.3.1平行线的性质5.3.2命题、定理、证明5.3 平行线的性质5.3.1平行线的性质第1课时平行线的性质第2课时平行线的性质与判定的综合运用。
人教版七年级数学下册名校课堂训练:实数测试(二)解析
一、选择题1.按如图所示的程序计算,若开始输入的值为25,则最后输出的y 值是( )A .5B .5±C .5D .5±2.设[x]表示最接近x 的整数(x≠n+0.5,n 为整数),则[1]+[2]+[3]+…+[36]=( ) A .132B .146C .161D .6663.一列数1a , 2a , 3a ,…… n a ,其中1a =﹣1, 2a =111a -, 3a =211a -,……,n a =111n a --,则1a ×2a ×3a ×…×2017a =( ) A .1 B .-1 C .2017 D .-2017 4.若29x =,|y |=7,且0x y ->,则x +y 的值为( )A .﹣4或10B .﹣4或﹣10C .4或10D .4或﹣105.若实数p ,q ,m ,n 在数轴上的对应点的位置如图所示,且满足0p q m n +++=,则绝对值最小的数是( )A .pB .qC .mD .n6.已知T 1=22119311242++==,T 2=2211497123366++==,T 3=22111=34++21313()1212=,⋯,T n=22111(1)n n +++,其中n 为正整数.设S n =T 1+T 2+T 3+⋯+T n ,则S 2021值是( ) A .202120212022B .202120222022C .120212021D .1202220217.如图,在数轴上表示1,3的对应点分别为A B 、,点B 关于点A 的对称点为C ,则点C 表示的数为( )A 31B .13C .23D 328.下列说法中,正确的个数是( ).(1)64-的立方根是4-;(2)49的算术平方根是7±;(3)2的立方根为32;(4)7是7的平方根.A .1B .2C .3D .49.任何一个正整数n 都可以进行这样的分解:n=p×q (p ,q 都是正整数,且p≤q ),如果p×q 在n 的所有分解中两个因数之差的绝对值最小,我们就称p×q 是n 的黄金分解,并规定:F(n)=p q ,例如:18可以分解为1×18;2×9;3×6这三种,这时F(18)=3162=,现给出下列关于F(n)的说法:①F(2) =12;② F(24)=38;③F(27)=3;④若n 是一个完全平方数,则F(n)=1,其中说法正确的个数有( ) A .1个B .2个C .3个D .4个10.在求234567891666666666+++++++++的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:234567891666666666S =+++++++++……① 然后在①式的两边都乘以6,得:234567891066666666666S =+++++++++……② ②-①得10661S S -=-,即10561S =-,所以10615S -=.得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出23420181...a a a a a ++++++的值?你的答案是 A .201811a a --B .201911a a --C .20181a a-D .20191a -二、填空题11.对于正数x 规定1()1f x x=+,例如:11115(3),()11345615f f ====++,则f (2020)+f(2019)+……+f (2)+f (1)+1111()()()()2320192020f f f f ++⋯++=___________ 12.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___13.对于有理数a ,b ,规定一种新运算:a ※b=ab+b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上). 14.a ※b 是新规定的这样一种运算法则:a ※b=a+2b ,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x ,则x 的值是_____.15.如图所示为一个按某种规律排列的数阵:根据数阵的规律,第7行倒数第二个数是_____.16.已知220a b a -+-=,则2+a b 的值是__________;17.将1,2,3,6按如图方式排列.若规定m ,n 表示第m 排从左向右第n 个数,则()7,3所表示的数是___________.18.已知31y -与312x -互为相反数,则xy的值是____. 19.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A 点表示的数是_____.若点B 表示 3.14-,则点B 在点A 的______边(填“左”或“右”).20.对任意两个实数a ,b 定义新运算:a ⊕b=()()a a b b a b ≥⎧⎨⎩若若<,并且定义新运算程序仍然是先52)⊕3=___.三、解答题21.我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小华受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A 类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B 类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C 类,例如3,6,9等.(1)2020属于 类(填A ,B 或C );(2)①从A 类数中任取两个数,则它们的和属于 类(填A ,B 或C ); ②从A 、B 类数中任取一数,则它们的和属于 类(填A ,B 或C );③从A 类数中任意取出8个数,从B 类数中任意取出9个数,从C 类数中任意取出10个数,把它们都加起来,则最后的结果属于 类(填A ,B 或C );(3)从A 类数中任意取出m 个数,从B 类数中任意取出n 个数,把它们都加起来,若最后的结果属于C 类,则下列关于m ,n 的叙述中正确的是 (填序号). ①2m n +属于C 类;②m n -属于A 类;③m ,n 属于同一类. 22.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即; 仿照以上方法计算:(1)2320191222...2+++++= . (2)计算:2320191333...3+++++ (3)计算:101102103200555...5++++23.阅读下面的文字,解答问题:大家知道2是无理数,而无理是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用21-来表示2的小数部分,事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是2的小数部分,又例如:∵()232273<<,即273<<,∴7的整数部分为2,小数部分为()72-。
人教版七年级数学下册名校课堂期末复习(二)实数(含答案)
期末复习(二) 实数01各个击破 命题点1 平方根、立方根、算术平方根的意义 【例1】 下列说法中错误的是( )A .0没有平方根 B.225的算术平方根是15 C .任何实数都有立方根 D .(-9)2的平方根是±9【方法归纳】 求一个数的平方根、算术平方根以及立方根时,首先应对该数进行化简,然后结合它们的意义求解.只有非负数才有平方根和算术平方根,而所有实数都有立方根,且实数与其立方根的符号一致.1.(日照中考)4的算术平方根是( )A .2B .±2C. 2D .±22.求下列各数的平方根:(1)2549; (2)214; (3)(-2)2.3.求下列各式的值:(1)3-64; (2)-30.216.命题点2 实数的分类【例2】 把下列各数分别填入相应的数集里.-π3,-2213,7,3-27,0.324 371,0.5,39,-0.4,16,0.808 008 000 8… (1)无理数集合:{ …}; (2)有理数集合:{ …}; (3)分数集合:{ …}; (4)负无理数集合:{ …}.【方法归纳】 我们学过的无理数有以下类型:π,π3等含π的式子;2,33等开方开不尽的数;0.101 001 000 1…等特殊结构的数.注意区分各类数之间的不同点,不能只根据外形进行判断,如误认为3-27是无理数.4.(呼和浩特中考)下列实数是无理数的是( )A .-1B .0C .πD.135.实数-7.5,15,4,38,-π,0.1·5·,23中,有理数的个数为a ,无理数的个数为b ,则a -b 的值为( )A .2B .3C .4D .56.把下列各数分别填入相应的集合中:+17.3,12,0,π,-323,227,9.32%,-316,-25.(1)有理数集合:{ …}; (2)无理数集合:{ …}; (3)分数集合:{ …}; (4)整数集合:{ …}. 命题点3 实数与数轴【例3】 在如图所示的数轴上,AB =AC ,A ,B 两点对应的实数分别是3和-1,则点C 所对应的实数是( )A .1+ 3B .2+ 3C .23-1D .23+1【思路点拨】 由题意得AB =3-(-1)=3+1,所以AC =3+1.所以C 点对应的实数为3+(3+1),计算即可.【方法归纳】实数与数轴上的点一一对应.求数轴上两点间的距离就是用右边的数减去左边的数;求较小的数就用较大的数减去两点间的距离;求较大的数就用较小的数加上两点间的距离.7.(枣庄中考)实数a,b,c在数轴上对应的点如图所示,下列式子中,正确的是()A.ac>bc B.||a-b=a-b C.-a<-b<c D.-a-c>-b-c8.(金华中考)如图,数轴上的A,B,C,D四点中,与表示数-3的点最接近的是()A.点A B.点BC.点C D.点D命题点4实数的性质与运算【例4】计算:||2-3-(22-33).【思路点拨】先去绝对值符号和括号,然后利用加法的交换律、结合律、分配律计算.【解答】【方法归纳】根据绝对值的性质,先判断绝对值里面的数与0的大小,然后去掉绝对值符号.括号前是“-”号的,去掉“-”号与括号,括号里面的每一项都要改变符号.如果被开方数相同,则利用加法的分配律,将系数相加减,被开方数以及根号不变.9.下列各组数中互为相反数的是()A.-2与(-2)2B.-2与3-8C .2与(-2)2D.||-2与 210.(河南中考)计算:||-3-4=________. 11.计算:3512-81+3-1.02整合集训 一、选择题(每小题3分,共30分) 1.下列说法正确的是( )A .-2是-4的平方根B .2是(-2)2的算术平方根C .(-2)2的平方根是2D .8的平方根是4 2.下列说法错误的是( )A .实数包括有理数和无理数B .有理数是有限小数C .无限不循环小数是无理数D .数轴上的点与实数一一对应 3.下列各式错误的是( )A.30.008=0.2 B.3-127=-13C.121=±11D.3-106=-1024.在3.125 78,-5,227,3,5.27,π3,2-1中,无理数的个数是( )A .1个B .2个C .3个D .4个5.(淮安中考)如图,数轴上A ,B 两点表示的数分别为2和5.1,则A ,B 两点之间表示整数的点共有( )A .6个B .5个C .4个D .3个6.估计10+1的值( )A .在2和3之间B .在3和4之间C .在4和5之间D .在5和6之间7.在x ,3x ,x 2+1,(-x )2中,一定有意义的有( )A .4个B .3个C .2个D .1个8.若3a +3b =0,则a 与b 的关系是( )A .a =b =0B .a 与b 相等C .a 与b 互为相反数D .a =1b9.若a 2=-a ,则实数a 在数轴上的对应点一定在( )A .原点左侧B .原点右侧C .原点或原点左侧D .原点或原点右侧10.已知实数x ,y 满足x -2+(y +1)2=0,则x -y 等于( )A .3B .-3C .1D .-1二、填空题(每小题4分,共20分)11.比较大小:(1)3______5;(2)-5______-26;(3)32______23(填“>”或“<”). 12.若x +2=2,则2x +5的平方根是________. 13.3.14-π的相反数是________,绝对值是________. 14.对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b =a +b a -b ,如3※2=3+23-2= 5.那么12※4=________. 15.由下列等式2+23=223,3+38=338,4+415=4415,…所提示的规律,可得出一般性的结论是________________________________(用含n 的式子表示). 三、解答题(共50分)16.(8分)把下列各数填在相应的表示集合的大括号内.-6,π,-23,-|-3|,227,-0.4,1.6,6,0,1.101 001 000 1….(1)整数:{ ,…};(2)负分数:{,…};(3)无理数:{,…}.17.(15分)计算:(1)25-55+35;(2)3+1+3+||1-3;(3)25-3-1+144+3-64.18.(10分)求下列各式中的x的值:(1)25(x-1)2=49;(2)64(x-2)3-1=0.19.(8分)已知||x<3π,x是整数,求x的值,并写出求得的数的积的平方根.20.(9分)已知:M=a-ba+b+3是a+b+3的算术平方根,N=a-2b+2a+6b是a+6b的算术平方根,求M·N的值.参考答案各个击破 例1 A例2 (1)-π3,7,39,-0.4,0.808 008 000 8…, (2)-2213,3-27,0.324 371,0.5,16, (3)-2213,0.324 371,0.5, (4)-π3,-0.4,例3 D 例4 43-3 2. 题组训练1.C 2.解:(1)±57.(2)±32.(3)±2.3.解:(1)-4.(2)-0.6. 4.C5.B6.(1)+17.3,12,0,-323,227,9.32%,-25, (2)π,-316, (3)+17.3,-323,227,9.32%, (4)12,0,-25, 7.D 8.B 9.A 10.1 11.-2. 整合集训1.B 2.B 3.C 4.D 5.C 6.C 7.B 8.C 9.C 10.A 11.< > > 12.±3 13.π-3.14 π-3.14 14.1215.n +nn 2-1=n nn 2-1(n 为大于或等于2的自然数) 16.(1)-6,-|-3|,0 (2)-23,-0.4 (3)π,6,1.101 001 000 1…17.(1)0.(2)23+3.(3)14. 18.(1)x =125或x =-25.(2)x =94.19.解:因为||x <3π,x 是整数,所以满足条件的x 有±9,±8,±7,±6,±5,±4,±3,±2,±1,0.这些数的积为0.所以积的平方根为0.20.解:由题意,得⎩⎪⎨⎪⎧a -b =2,a -2b +2=2.解得⎩⎪⎨⎪⎧a =4,b =2.∴M =a +b +3=4+2+3=9=3,N =a +6b =4+6×2=16=4. 于是M·N =3×4=12.。
人教版七年级数学下册名校课堂练习5.3.1平行线的性质(含答案)
5.3平行线的性质5.3.1平行线的性质01课前预习要点感知平行线的性质:性质1:两直线平行,同位角________;性质2:两直线________,内错角相等;性质3:两直线平行,________互补.预习练习1-1(宜宾中考)如图,直线a、b被第三条直线c所截,如果a∥b,∠1=70°,那么∠3的度数是________.1-2如图,在A,B两地挖一条笔直的水渠,从A地测得水渠的走向是北偏西42°,A,B两地同时开工,B地所挖水渠走向应为南偏东________.1-3如图,AB∥CD,∠1=85°,则∠2=________.02当堂训练知识点1平行线的性质1.(枣庄中考)如图,AB∥CD,∠CDE=140°,则∠A的度数为()A.140°B.60°C.50°D.40°2.(重庆中考)如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为() A.40°B.35°C.50°D.45°3.(滨州模拟)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A.32°B.68°C.58°D.60°4.如图,AB∥CD,直线EF分别与AB,CD交于点G,H,∠1=50°,求∠2和∠CHG 的度数.知识点2平行线性质的应用5.某商品的商标可以抽象为如图所示的三条线段,其中AB∥CD,∠EAB=45°,则∠FDC 的度数是()A.30°B.45°C.60°D.75°6.一只因损坏而倾斜的椅子,从背后看到的形状如图所示,其中两组对边的平行关系没有发生变化,若∠1=76°,则∠2的大小是()A.76°B.86°C.104°D.114°7.某次考古发掘出的一个梯形残缺玉片,工作人员从玉片上量得∠A=115°,∠D=100°,已知梯形的两底AD∥BC,请你帮助工作人员求出另外两个角的度数,并说明理由.03课后作业8.(丽水中考)如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是()A.50°B.45°C.35°D.30°9.(黄冈中考)如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=() A.60°B.120°C.150°D.180°10.将一直角三角板与两边平行的纸条如图所示放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2+∠4=90°;④∠4+∠5=180°.其中正确的个数是()A.1个B.2个C.3个D.4个11.一大门的栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD =________.12.如图,一只船从点A 出发沿北偏东60°方向航行到点B ,再以南偏西25°方向返回,则∠ABC =________.13.如图所示,请根据图形填空: ∵AB ∥CD(已知),∴∠AEF =∠CFN(________________). ∵EG 平分∠AEF ,FH 平分∠CFN(已知), ∴∠1=12∠CFN ,∠2=12∠AEF(_______________________________________________________). ∴∠1=∠2(________). ∴EG ∥FH(________________).14.(益阳中考)如图,EF ∥BC ,AC 平分∠BAF ,∠B =80°.求∠C 的度数.15.如图,若AB ∥CD ,∠B =38°,∠D =38°,那么BC 与DE 平行吗?请说明你的理由.16.如图:已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,求∠BCD的度数.挑战自我17.阅读下列解答过程:如图甲,AB∥CD,探索∠P与∠A、∠C之间的关系.解:过点P作PE∥AB.∵AB∥CD,∴PE∥AB∥CD(平行于同一条直线的两条直线互相平行).∴∠1+∠A=180°(两直线平行,同旁内角互补),∠2+∠C=180°(两直线平行,同旁内角互补).∴∠1+∠A+∠2+∠C=360°.又∵∠APC=∠1+∠2,∴∠APC+∠A+∠C=360°.如图乙和图丙,AB∥CD,请根据上述方法分别探索两图中∠P与∠A、∠C之间的关系.参考答案课前预习要点感知相等平行同旁内角预习练习1-170°1-242°1-395°当堂训练1.D 2.A 3.C4.∵AB∥CD,∴∠DHE=∠1=50°.∵∠2=∠DHE,∴∠2=∠1=50°.∵∠2+∠CHG=180°,∴∠CHG=180°-∠2=130°.5.B6.C7.∵AD∥BC,∠A=115°,∠D=100°,∴∠B=180°-∠A=180°-115°=65°,∠C=180°-∠D=180°-100°=80°. 课后作业8.D9.A10.D11.270°12.35°13.两直线平行,同位角相等角平分线定义等量代换同位角相等,两直线平行14.∵EF∥BC,∴∠BAF=180°-∠B=100°.∵AC平分∠BAF,∴∠CAF=12∠BAF=50°.∵EF∥BC,∴∠C=∠CAF=50°.15.BC∥DE.理由如下:∵AB∥CD,∴∠B=∠C.∵∠B=38°,∠D=38°,∴∠B=∠D.∴∠C=∠D.∴BC∥DE.16.∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°.又∵DE∥CF,∠CDE=130°,∴∠DCF+∠CDE=180°.∴∠DCF=50°.∴∠BCD=∠BCF-∠DCF=70°-50°=20°.17.如图乙,过P作PE∥AB.∵AB∥CD(已知),∴PE∥AB∥CD(平行于同一直线的两条直线平行).∴∠A=∠EPA,∠EPC=∠C(两直线平行,内错角相等).∵∠APC=∠EPA+∠EPC,∴∠APC=∠A+∠C(等量代换).如图丙,过点P作PF∥AB. ∴∠FPA=∠A(两直线平行,内错角相等).∵AB∥CD(已知),∴PF∥CD(平行于同一直线的两条直线平行).∴∠FPC=∠C(两直线平行,内错角相等).∵∠FPC-∠FPA=∠APC,∴∠C-∠A=∠APC(等量代换).。
人教版七年级数学下册名校课堂练习6.2立方根(含答案)
6.2 立方根01课前预习要点感知1 一般地,如果一个数的立方等于a ,那么这个数叫做a 的________,即如果x 3=a ,那么________叫做________的立方根.预习练习1-1 -64的立方根是________,-13是________的立方根.要点感知2 求一个数的立方根的运算,叫做开立方,开立方与立方互为逆运算.正数的立方根是________;负数的立方根是________;0的立方根是________. 预习练习2-1 下列说法正确的是( )A .如果一个数的立方根是这个数本身,那么这个数一定是0B .一个数的立方根不是正数就是负数C .负数没有立方根D .一个不为零的数的立方根和这个数同号,0的立方根是0要点感知3 一个数a 的立方根可以用3a 表示,读作“________”,其中________是被开方数,________是根指数.3-a =-3a.预习练习3-1 (包头一模)3-8等于( ) A .2 B .2 3 C .-12D .-202当堂训练 知识点1 立方根1.(酒泉中考)64的立方根是( ) A .4 B .±4 C .8D .±82.(百色中考)化简:38=( ) A .±2 B .-2 C .2D .2 23.若一个数的立方根是-3,则该数为( ) A .-33B .-27C.±33 D.±274.下列判断:①一个数的立方根有两个,它们互为相反数;②若x3=(-2)3,则x=-2;③15的立方根是315;④任何有理数都有立方根,它不是正数就是负数.其中正确的有()A.1个B.2个C.3个D.4个5.立方根等于本身的数为________.6.364的平方根是________.7.若x-1是125的立方根,则x-7的立方根是________.8.求下列各数的立方根:(1)0.216;(2)0;(3)-21027;(4)-5.9.求下列各式的值:(1)30.001;(2)3-343125;(3)-31-1927.知识点2用计算器求立方根10.用计算器计算328.36的值约为()A.3.049 B.3.050C.3.051 D.3.052 11.一个正方体的水晶砖,体积为100 cm3,它的棱长大约在()A.4 cm~5 cm之间B.5 cm~6 cm之间C.6 cm~7 cm之间D.7 cm~8 cm之间12.计算:325≈________(精确到百分位).13.(1)填表:(2)由上表你发现了什么规律?请用语言叙述这个规律:________________;(3)根据你发现的规律填空:①已知33=1.442,则33 000=________,30.003=________;②已知30.000 456=0.076 97,则3456=________.03课后作业14.(潍坊中考)3(-1)2的立方根是( ) A .-1B .0C .1D .±115.下列说法正确的是( )A .一个数的立方根有两个,它们互为相反数B .一个数的立方根比这个数平方根小C .如果一个数有立方根,那么它一定有平方根 D.3a 与3-a 互为相反数16.计算3(-7)3的正确结果是( ) A .7B .-7C .±7D .无意义17.正方体A 的体积是正方体B 的体积的27倍,那么正方体A 的棱长是正方体B 的棱长的( ) A .2倍 B .3倍 C .4倍D .5倍18.-27的立方根与81的平方根之和是________. 19.(松江区月考)-338的立方根是________.20.已知2x +1的平方根是±5,则5x +4的立方根是________. 21.求下列各式的值: (1)3-1 000;(2)-3-64;(3)-3729+3512;(4)30.027-31-124125+3-0.001.22.比较下列各数的大小:(1)39与3;(2)-342与-3.4.23.求下列各式中的x:(1)8x3+125=0; (2)(x+3)3+27=0.24.若a+8与(b-27)2互为相反数,求3a-3b的立方根.25.将一个体积为0.216 m3的大立方体铝块改铸成8个一样大的小立方体铝块,求每个小立方体铝块的表面积.26.(巩留县校级月考)某居民生活小区需要建一个大型的球形储水罐,需储水13.5立方米,那么这个球罐的半径r 为多少米(球的体积V =43πr 3,π取3.14,结果精确到0.1米)?挑战自我27.请先观察下列等式: 3227=2327, 33326=33326, 34463=43463, …(1)请再举两个类似的例子;(2)经过观察,写出满足上述各式规则的一般公式.参考答案课前预习要点感知1 立方根(或三次方根) x a 预习练习1-1 -4 -127要点感知2 正数 负数 0 预习练习2-1 D要点感知3 三次根号a a 3 预习练习3-1 D 当堂训练1.A 2.C 3.B 4.B 5.0,1或-1 6.±2 7.-1 8.(1)∵0.63=0.216,∴0.216的立方根是0.6,即30.216=0.6. (2)∵03=0,∴0的立方根是0,即30=0. (3)∵-21027=-6427,且(-43)3=-6427,∴-21027的立方根是-43,即3-21027=-43.(4)-5的立方根是3-5. 9.(1)0.1.(2)-75.(3)-23.10.B 11.A 12.2.9213.(1)0.01 (2)被开方数扩大1 000倍,则立方根扩大10倍 (3)①14.42 0.144 2 ②7.697 课后作业14.C 15.D 16.B 17.B 18.0或-6 19.-32 20.4 21.(1)-10.(2)4.(3)-1.(4)0.22.(1)39> 3.(2)-342<-3.4. 23.(2)x =-52.(2)x =-6.24.由题意知a =-8,b =27,所以3a -3b =-5.故3a -3b 的立方根是-35. 25.设每个小立方体铝块的棱长为x m ,则8x 3=0.216. ∴x 3=0.027. ∴x =0.3.∴6×0.32=0.54(m 2),即每个小立方体铝块的表面积为0.54 m 2.26.根据球的体积公式,得43πr 3=13.5.解得r≈1.5.故这个球罐的半径r 约为1.5米.355124=535124,366215=636215.(2)3n+nn3-1=n3nn3-1(n≠1,且n为整数).27.(1)。
《名校课堂》(人教版)七年级(下册)数学
《名校课堂》(人教版)七年级(下册)数学湖北世纪华章文化传播有限公司公司简介湖北世纪华章文化传播有限公司创建于2001年,是一家以中小学教育辅导类图书开发为重点,集内容策划、出版发行于一体的民营股份制企业,是全国一流的基础教育图书供应商。
公司成功研发出版的《名校课堂》、《火线100天》等系列图书已经成为全国中小学教育类图书的一线品牌,每年有2000余万人次中小学生、98万余人次的教师、超过4.8万所学校使用本公司的图书,产品畅销不衰。
目前,公司拥有4项注册商标、一项国家专利,并与广西师范大学出版社、黑龙江教育出版社、北京市海淀区教师进修学校、黄冈市教育科学研究院等全国知名出版社、教育研发机构深度合作,重点研发教育类图书、报刊、网站等项目。
公司宗旨:服务教师、服务教学、服务教育公司使命:以图书出版推动教育进步公司愿景:让每一位学生以较小的成本分享到高品质的教育七年级(下册)数学(人教版)Word 版习题教学资源包导学案第五章相交线与平行线第六章实数第七章平面直角坐标系第八章二元一次方程组第九章不等式与不等式组第十章数据的收集、整理与描述期末复习第五章相交线与平行线5.1 相交线5.2 平行线及其判定周周练(5.1~5.2)5.3 平行线的性质小专题(一)平行线的性质与判定5.4 平移周周练(5.3~5.4)单元测试(一)相交线与平行线第六章实数6.1 平方根6.2 立方根6.3实数单元测试(二)实数第七章平面直角坐标系7.1 平面直角坐标系7.2 坐标方法的简单应用单元测试(三)平面直角坐标系期中测试第八章二元一次方程组8.1 二元一次方程组8.2 消元——解二元一次方程组小专题(二)二元一次方程组的解法8.3 实际问题与二元一次方程组小专题(三)二元一次方程组的实际应用周周练(8.1~8.3)8.4 三元一次方程组的解法单元测试(四)二元一次方程组第九章不等式与不等式组9.1 不等式9.2 一元一次不等式周周练(9.1~9.2)9.3 一元一次不等式组小专题(四)解一元一次不等式(组)单元测试(五) 不等式与不等式组第十章数据的收集、整理与描述10.1 统计调查10.2 直方图小专题(五)从图表中获取信息单元测试(六)数据的收集、整理与描述期末测试期末复习期末复习(一) 相交线与平行线期末复习(二) 实数期末复习(三) 平面直角坐标系期末复习(四) 二元一次方程组期末复习(五) 不等式与不等式组期末复习(六) 数据的收集、整理与描述第五章相交线与平行线5.1 相交线5.1.1相交线5.1.2垂线5.1.3同位角、内错角、同旁内角第五章相交线与平行线5.2 平行线及其判定5.2.1平行线5.2.2平行线的判定第五章相交线与平行线5.3 平行线的性质5.3.1平行线的性质5.3.2命题、定理、证明第六章实数6.1 平方根第1课时算术平方根第2课时平方根第七章平面直角坐标系7.1 平面直角坐标系7.1.1有序数对7.1.2平面直角坐标系第七章平面直角坐标系7.2 坐标方法的简单应用7.2.1用坐标表示地理位置7.2.2用坐标表示平移第八章二元一次方程组8.2 消元——解二元一次方程组第1课时用代入消元法解方程组第2课时用加减消元法解方程组第九章不等式与不等式组9.1 不等式9.1.1不等式及其解集9.1.2不等式的性质第九章不等式与不等式组9.2 一元一次不等式第1课时一元一次不等式的解法第2课时一元一次不等式的应用。
人教版七年级数学下册名校课堂期末复习(四)二元一次方程组(含答案)
期末复习(四) 二元一次方程组01各个击破 命题点1 二元一次方程组的解法【例1】 (厦门中考)解方程组:⎩⎪⎨⎪⎧2x +y =4,①2y +1=5x.②【思路点拨】 方法一:将①变形为y =4-2x ,然后代入②,消去y ,转化为一元一次方程求解;方法二:①×2-②,消去y ,转化为一元一次方程求解. 【解答】【方法归纳】 二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法.如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.1.方程组 ⎩⎪⎨⎪⎧x +2y =-5,7x -2y =13的解是________.2.(滨州中考)解方程组:⎩⎪⎨⎪⎧3x +4y =19,①x -y =4.②命题点2 由解的关系求方程组中字母的取值【例2】 若关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧3x +y =1+a ,x +3y =3①②的解满足x +y<2,则a 的取值范围为( )A .a<4B .a>4C .a<-4D .a>-4【思路点拨】 本题运用整体思想,把二元一次方程组中两个方程相加,得到x 、y 的关系,再根据x +y<2,求得本题答案;也可以按常规方法求出二元一次方程组的解,再由x +y<2求出a 的取值范围,但计算量大.【方法归纳】 通过观察两个方程,运用整体思想解题,这是中考中常用的解题方法.3.已知⎩⎪⎨⎪⎧x =2,y =1是二元一次方程组⎩⎪⎨⎪⎧mx +ny =8,nx -my =1的解,则2m -n 的算术平方根为( )A .4B .2 C. 2D .±24.已知x 、y 满足方程组⎩⎪⎨⎪⎧2x +y =5,x +2y =4,则x -y 的值为________.5.已知方程组⎩⎪⎨⎪⎧ax +by =1,2x -y =1和方程组⎩⎪⎨⎪⎧ax -by =5,x +2y =3的解相同,求a 和b 的值.命题点3 二元一次方程组的应用【例3】 (临泉二中模拟)某中学拟组织九年级师生去黄山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5 000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.” 根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?【思路点拨】(1)根据题目给出的条件得出的等量关系是60座客车每辆每天的租金-45座客车每辆每天的租金=200元,4辆60座一天的租金+2辆45座的一天的租金=5 000元,由此可列出方程组求解;(2)可根据“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案.【解答】【方法归纳】列方程解决实际问题的解题步骤是:1.审题:弄清已知量和未知量;2.设未知数,并根据相等关系列出符合题意的方程;3.解这个方程;4.验根并作答:检验方程的根是否符合题意,并写出完整的答.6.(呼伦贝尔中考)从甲地到乙地的路有一段上坡,一段下坡.如果上坡平均每分钟走50米,下坡平均每分钟走100米,那么从甲地走到乙地需要25分钟,从乙地走到甲地需要20分钟.甲地到乙地上坡与下坡的路程各是多少?7.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?02整合集训 一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是( )A.⎩⎪⎨⎪⎧2x +y =-1y +z =2B.⎩⎪⎨⎪⎧5x -3y =3y =2+3x C.⎩⎪⎨⎪⎧x -5y =1xy =2D.⎩⎪⎨⎪⎧3x -y =7x 2+y =1 2.方程2x +y =9的正整数解有( )A .1组B .2组C .3组D .4组3.方程组⎩⎪⎨⎪⎧3x -y =2 ①,3x +2y =11 ②的最优解法是( )A .由①得y =3x -2,再代入②B .由②得3x =11-2y ,再代入①C .由②-①,消去xD .由①×2+②,消去y 4.(巴中中考)若单项式2x 2y a+b与-13x a -b y 4是同类项,则a ,b 的值分别为( )A .a =3,b =1B .a =-3,b =1C .a =3,b =-1D .a =-3,b =-15.A 、B 两地相距6 km ,甲、乙两人从A 、B 两地同时出发,若同向而行,甲3 h 可追上乙;若相向而行,1 h 相遇,求甲、乙两人的速度各是多少?若设甲的速度为x km/h ,乙的速度为y km/h ,则得方程组为( )A. ⎩⎪⎨⎪⎧x +y =63x +3y =6B.⎩⎪⎨⎪⎧x +y =63x -y =6 C.⎩⎪⎨⎪⎧x -y =63x +3y =6D.⎩⎪⎨⎪⎧x +y =63x -3y =66.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A .3场B .4场C .5场D .6场7.(抚州中考)已知a 、b 满足方程组⎩⎪⎨⎪⎧2a -b =2,a +2b =6,则3a +b 的值为( )A .8B .4C .-4D .-88.方程组⎩⎪⎨⎪⎧2x +y =4,x +3z =1,x +y +z =7的解是( )A.⎩⎪⎨⎪⎧x =2y =2z =1B.⎩⎪⎨⎪⎧x =2y =1z =1C.⎩⎪⎨⎪⎧x =-2y =8z =1D.⎩⎪⎨⎪⎧x =2y =2z =29.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A .50人,40人B .30人,60人C .40人,50人D .60人,30人10.甲、乙二人收入之比为4∶3,支出之比为8∶5,一年间两人各存5 000元(设两人剩余的钱都存入银行),则甲、乙两人年收入分别为( )A .15 000元,12 000元B .12 000元,15 000元C .15 000元,11 250元D .11 250元,15 000元 二、填空题(每小题4分,共20分) 11.(安顺中考)如果4x a+2b -5-2y 3a-b -3=8是二元一次方程,那么a -b =________.12.已知a 、b 是有理数,观察下表中的运算,并在空格内填上相应的数.13.孔明同学在解方程组⎩⎪⎨⎪⎧y =kx +b ,y =-2x 的过程中,错把b 看成了6,他其余的解题过程没有出错,解得此方程组的解为⎩⎪⎨⎪⎧x =-1,y =2,又已知3k +b =1,则b 的正确值应该是________.14.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为________. 15.(武汉中考)定义运算“*”,规定x*y =ax 2+by ,其中a ,b 为常数,且1*2=5,2*1=6,则2*3=________. 三、解答题(共50分) 16.(14分)解方程组:(1)⎩⎪⎨⎪⎧3x -5y =3,①x 2-y 3=1;②(2)⎩⎪⎨⎪⎧x +y -z =11,①y +z -x =5,②z +x -y =1.③17.(10分)(宁德中考)为支持亚太地区国家基础设施建设,由中国倡议设立亚投行.截至2015年4月15日,亚投行意向创始成员国确定为57个.其中意向创始成员国数亚洲是欧洲的2倍少2个,其余洲共5个,求亚洲和欧洲意向创始成员国各有多少个?18.(12分)已知方程组⎩⎪⎨⎪⎧5x +y =3,ax +5y =4与方程组⎩⎪⎨⎪⎧x -2y =5,5x +by =1有相同的解,求a ,b 的值.19.(14分)某商场计划拨款9万元从厂家购进50台电冰箱,已知该厂家生产三种不同型号的电冰箱,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元.(1)某商场同时购进其中两种不同型号电冰箱共50台,用去9万元,请你研究一下商场的进货方案;(2)该商场销售一台甲种电冰箱可获利150元,销售一台乙种电冰箱可获利200元,销售一台丙种电冰箱可获利250元,在同时购进两种不同型号的方案中,为使销售时获利最多,你选择哪种进货方案?参考答案各个击破例1 方法一:由①得y =4-2x ,③代入②,得2(4-2x)+1=5x ,解得x =1,把x =1代入③,得y =2,∴方程组的解为⎩⎪⎨⎪⎧x =1,y =2.方法二:①×2,得4x +2y =8.③③-②,得4x -1=8-5x.解得x =1.把x =1代入②,得y =2,∴方程组的解为⎩⎪⎨⎪⎧x =1,y =2.例2 A例3 (1)设平安客运公司60座和45座的客车每辆每天的租金分别为x 元,y 元.由题意,得⎩⎪⎨⎪⎧x -y =200,4x +2y =5 000.解得⎩⎪⎨⎪⎧x =900,y =700.答:平安客运公司60座和45座的客车每辆每天的租金分别为900元和700元.(2)5×900+1×700=5 200(元).答:九年级师生租车一天共需租金5 200元. 题组训练1.⎩⎪⎨⎪⎧x =1y =-3 2.解:由②,得x =4+y.③把③代入①,得3(4+y)+4y =19.解得y =1.把y =1代入③,得x =4+1=5.∴原方程组的解为⎩⎪⎨⎪⎧x =5,y =1.3.B4.15.解:解方程组⎩⎪⎨⎪⎧2x -y =1,x +2y =3,得⎩⎪⎨⎪⎧x =1,y =1.将⎩⎪⎨⎪⎧x =1,y =1代入⎩⎪⎨⎪⎧ax +by =1,ax -by =5,得{a +b =1,a -b =5,即⎩⎪⎨⎪⎧a =3,b =-2. 6.解:设甲地到乙地上坡路x 米,下坡路y 米,根据题意,得⎩⎨⎧x 50+y100=25,y 50+x 100=20.解得⎩⎪⎨⎪⎧x =1 000,y =500.答:甲地到乙地上坡路1 000米,下坡路500米.7.解:设应分配x 名工人生产脖子上的丝巾,y 名工人生产手上的丝巾,由题意得⎩⎪⎨⎪⎧x +y =70,1 200x ×2=1 800y.解得⎩⎪⎨⎪⎧x =30,y =40.答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾. 整合集训1.B 2.D 3.C 4.A 5.D 6.C 7.A 8.C 9.C 10.C 11.0 12.6 13.-11 14.35 15.1016.(1)解:②×6,得3x -2y =6.③ ③-①,得3y =3. ∴y =1.把y =1代入①,得3x -5=3. ∴x =83.∴方程组的解为⎩⎪⎨⎪⎧x =83,y =1.(2)解:①+②+③,得x +y +z =17.④ ④-①,得2z =6,即z =3.④-②,得2x =12,即x =6.④-③,得2y =16,即y =8.所以原方程组的解是⎩⎪⎨⎪⎧x =6,y =8,z =3.17.解:设亚洲有x 个成员国,欧洲有y 个成员国,根据题意,得⎩⎪⎨⎪⎧x =2y -2,x +y +5=57.解得⎩⎪⎨⎪⎧x =34,y =18.答:亚洲和欧洲意向创始成员国分别有34个、18个.18.解:解方程组⎩⎪⎨⎪⎧5x +y =3,x -2y =5,得⎩⎪⎨⎪⎧x =1,y =-2.将x =1,y =-2代入ax +5y =4,得a =14.将x =1,y =-2代入5x +by =1,得b =2.19.解:(1)①设购进甲种电冰箱x 台,购进乙种电冰箱y 台,根据题意,得⎩⎪⎨⎪⎧x +y =50,1 500x +2 100y =90 000.解得⎩⎪⎨⎪⎧x =25,y =25.故第一种进货方案是购甲、乙两种型号的电冰箱各25台.②设购进甲种电冰箱x 台,购进丙种电冰箱z 台,根据题意,得⎩⎪⎨⎪⎧x +z =50,1 500x +2 500z =90 000.解得⎩⎪⎨⎪⎧x =35,z =15.故第二种进货方案是购进甲种电冰箱35台,丙种电冰箱15台.③设购进乙种电冰箱y 台,购进丙种电冰箱z 台,根据题意,得⎩⎪⎨⎪⎧y +z =50,2 100y +2 500z =90 000.解得⎩⎪⎨⎪⎧y =87.5,z =-37.5.不合题意,舍去.故此种方案不可行. (2)上述的第一种方案可获利:150×25+200×25=8 750(元),第二种方案可获利:150×35+250×15=9 000(元),因为8 750<9 000,故应选择第二种进货方案,即购进甲种电冰箱35台,乙种电冰箱15台.。
最新人教版七年级数学下册名校课堂训练:实数测试(一)解析
一、选择题1.已知a ,b 为两个连续的整数,且18a b <<,则a b +的值等于( )A .4B .3C .5 D.102.以下11个命题:①负数没有平方根;②内错角相等;③同旁内角互补,两直线平行;④一个正数有两个立方根,它们互为相反数;⑤无限不循环小数是无理数;⑥数轴上的点与实数有一一对应关系;⑦过一点有且只有一条直线和已知直线垂直;⑧不相交的两条直线叫做平行线;⑨从直线外一点到这条直线的垂线段,叫做这点到直线的距离.⑩开方开不尽的数是无理数;⑪相等的两个角是对顶角;其中真命题的个数为( )A .5B .6C .7D .8 3.估算193+的值应在( ) A .5和6之间 B .6和7之间 C .7和8之间 D .8和9之间 4.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( )A .135B .220C .345D .407 5.已知n 是正整数,并且n -1<326+<n ,则n 的值为( ) A .7 B .8 C .9 D .106.若15的整数部分为a ,小数部分为b ,则a-b 的值为() A .615- B .156- C .815-D .158- 7.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n8.有一个数阵排列如下:1 2 4 7 11 16 223 5 8 12 17 236 9 13 18 2410 14 19 25 15 20 2621 2728则第20行从左至右第10个数为( )A .425B .426C .427D .4289.已知f(1)=2 (取12⨯的末位数字),f(2)=6 (取2?3的末位数字),f(3)=2 (取34⨯的末位数字),…, 则()()()()f 1f 2f 3f 2021++++的值为( ) A .4036 B .4038 C .4042 D .404410.如图,数轴上O 、A 、B 、C 四点,若数轴上有一点M ,点M 所表示的数为m ,且5m m c -=-,则关于M 点的位置,下列叙述正确的是( )A .在A 点左侧B .在线段AC 上 C .在线段OC 上D .在线段OB 上二、填空题11.在数轴上,点M ,N 分别表示数m ,n ,则点M ,N 之间的距离为|m ﹣n |.(1)若数轴上的点M ,N 分别对应的数为222M ,N 间的距离为 ___,MN 中点表示的数是 ___.(2)已知点A ,B ,C ,D 在数轴上分别表示数a ,b ,c ,d ,且|a ﹣c |=|b ﹣c |=23|d ﹣a |=1(a ≠b ),则线段BD 的长度为 ___.12.用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++,如果5213⊕=,那么45⊕=__________.13.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______.14.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________.15.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示). 16.220a b a --=,则2+a b 的值是__________;17.若202120212a b -+=,其中a ,b 均为整数,则符合题意的有序数对(),a b 的组数是______.18.定义:如果将一个正整数a 写在每一个正整数的右边,所得到的新的正整数能被a 整除,则这个正整数a 称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为x ,将这个数写在正整数n 的右边,得到的新的正整数可表示为()100n x +,请你找出所有的两位数中的“魔术数”是_____________. 19.已知M 是满足不等式27a <N 52M N+的平方根为__________.20.已知有理数1a ≠,我们把11a -称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--,如果13a =-,2a 是1a 的差倒数,4a 是3a 的差倒数,4a 是5a 的差倒数…依此类推,那么的12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-值是______.三、解答题21.三个自然数x 、y 、z 组成一个有序数组(),,x y z ,如果满足x y y z -=-,那么我们称数组(),,x y z 为“蹦蹦数组”.例如:数组()2,5,8中2558-=-,故()2,5,8是“蹦蹦数组”;数组()4,6,12中46612-≠-,故()4,6,12不是“蹦蹦数组”.(1)分别判断数组()437,307,177和()601,473,346是否为“蹦蹦数组”;(2)s 和t 均是三位数的自然数,其中s 的十位数字是3,个位数字是2,t 的百位数字是2,十位数字是5,且274s t -=.是否存在一个整数b ,使得数组(),,s b t 为“蹦蹦数组”.若存在,求出b 的值;若不存在,请说明理由;(3)有一个三位数的自然数,百位数字是1,十位数字是p ,个位数字是q ,若数组()1,,p q 为“蹦蹦数组”,且该三位数是7的倍数,求这个三位数.22.规律探究,观察下列等式:第1个等式:111111434a ⎛⎫==⨯- ⎪⨯⎝⎭ 第2个等式:2111147347a ⎛⎫==⨯- ⎪⨯⎝⎭ 第3个等式:311117103710a ⎛⎫==⨯- ⎪⨯⎝⎭ 第4个等式:41111101331013a ⎛⎫==⨯- ⎪⨯⎝⎭请回答下列问题:(1)按以上规律写出第5个等式:= ___________ = ___________(2)用含n 的式子表示第n 个等式:= ___________ = ___________(n 为正整数) (3)求1234100a a a a a +++++23.阅读材料:求值:2342017122222+++++⋯+,解答:设2342017122222S =+++++⋯+,①将等式两边同时乘2得:2342018222222S =++++⋯+,②将-②①得:201821S =-,即2342017201812222221S =+++++⋯+=-.请你类比此方法计算:()234201122222+++++⋯+.()2342133333(n +++++⋯+其中n 为正整数)24.探究与应用:观察下列各式:1+3= 21+3+5= 21+3+5+7= 21+3+5+7+9= 2……问题:(1)在横线上填上适当的数;(2)写出一个能反映此计算一般规律的式子;(3)根据规律计算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(结果用科学记数法表示)25.阅读材料:求1+2+22+23+24+…+22017的值.解:设S=1+2+22+23+24+ (22017)将等式两边同时乘以2得:2S=2+22+23+24+…+22017+22018将下式减去上式得2S-S=22018-1即S=22018-1即1+2+22+23+24+…+22017=22018-1请你仿照此法计算:(1)1+2+22+23+…+29=_____;(2)1+5+52+53+54+…+5n (其中n 为正整数);(3)1+2×2+3×22+4×23+…+9×28+10×29.26.阅读材料:求2320192020122222++++++的值. 解:设2320192020122222S =++++++①,将等式①的两边同乘以2, 得234202020212222222S =++++++②, 用②-①得,2021221S S -=- 即202121S =-.即2320192020202112222221++++++=-. 请仿照此法计算:(1)请直接填写231222+++的值为______;(2)求231015555+++++值;(3)请直接写出20212345201920201011010101010101011-+-+-+-+-的值. 27.观察下列两个等式:5532321,44133+=⨯-+=⨯-,给出定义如下:我们称使等式1a b ab +=-成立的一对有理数,a b 为“白马有理数对”,记为(,)a b ,如:数对5(3,2),4,3⎛⎫ ⎪⎝⎭都是“白马有理数对”.(1)数对3(2,1),5,2⎛⎫- ⎪⎝⎭中是“白马有理数对”的是_________; (2)若(,3)a 是“白马有理数对”,求a 的值;(3)若(,)m n 是“白马有理数对”,则(,)n m --是“白马有理数对”吗?请说明理由.(4)请再写出一对符合条件的“白马有理数对”_________(注意:不能与题目中已有的“白马有理数对”重复)28.观察下来等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”:52×_____=______×25;(2)设这类等式左边的两位数中,个位数字为a ,十位数字为b ,且2≤a +b≤9,则用含a ,b 的式子表示这类“数字对称等式”的规律是_______.29.先阅读材料,再解答问题:我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出,给出了答案,众人十分惊讶,忙问计算的奥妙,你知道华罗庚怎样迅速而准确地计算出结果吗?请你按下面的步骤也试一试:(110100,那么,请你猜想:59319的立方根是_______位数(2)在自然数1到9这九个数字中,33311,327,5===________,37=________,39=________.猜想:59319的个位数字是9,则59319的立方根的个位数字是________.(3)如果划去59319后面的三位“319”得到数59,而3327=,3464=,由此可确定59319的立方根的十位数字是________,因此59319的立方根是________.(4)现在换一个数103823,你能按这种方法得出它的立方根吗?30.阅读材料:求1+2+22+23+24+…+22017的值.解:设S=1+2+22+23+24+ (22017)将等式两边同时乘以2得:2S=2+22+23+24+…+22017+22018将下式减去上式得2S-S=22018-1即S=22018-1即1+2+22+23+24+…+22017=22018-1请你仿照此法计算:(1)1+2+22+23+…+29=_____;(2)1+5+52+53+54+…+5n (其中n 为正整数);(3)1+2×2+3×22+4×23+…+9×28+10×29.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】“夹逼法”求得a、b的值,然后代入求值即可.【详解】解:∵16<18<25,∴45.∵a,b为两个连续的整数,且a b,∴a=4,b=5,∴.故选:B.【点睛】本题考查了估算无理数的大小,熟知估算无理数的大小要用逼近法是解答此题的关键.2.A解析:A【分析】根据相关知识逐项判断即可求解.【详解】解:①“负数没有平方根”,是真命题②“内错角相等”,缺少两直线平行这一条件,是假命题;③“同旁内角互补,两直线平行”,是真命题;④“一个正数有两个立方根,它们互为相反数”,一个正数有一个立方根,是假命题;⑤“无限不循环小数是无理数”,是真命题;⑥“数轴上的点与实数有一一对应关系”,是真命题;⑦“过一点有且只有一条直线和已知直线垂直”,缺少在同一平面内条件,是假命题;⑧“不相交的两条直线叫做平行线”,缺少在同一平面内条件,是假命题;⑨“从直线外一点到这条直线的垂线段,叫做这点到直线的距离”,应为“从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离”,是假命题.⑩“开方开不尽的数是无理数”,是真命题;⑪“相等的两个角是对顶角”,相等的角有可能是对顶角,但不一定是对顶角,是假命题.所以真命题有5个.故选:A【点睛】本题考查判断真假命题、平方根、立方根、平行线的判定、无理数、实数与数轴关系、直线外一点到直线的距离、对顶角等知识,综合性较强,熟知相关知识点是解题关键.3.C解析:C【分析】先根据19位于两个相邻平方数16和25【详解】解:由于16<19<25,所以45<<,因此738<<,故选:C.【点睛】本题主要考查了估算无理数的大小的能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.4.D解析:D【分析】分别算出某数各个数位上数字的立方和,看其是否等于某数本身,若等于即为“水仙花数”,若不等于,即不是“水仙花数” .【详解】解:∵333++=≠,∴A不是“水仙花数”;135153135∵332216220+=≠,∴B不是“水仙花数”;∵333++=≠,∴C不是“水仙花数”;345216345∵33+=,∴D是“水仙花数”;47407故选D .【点睛】本题考查新定义下的实数运算,正确理解题目所给概念并熟练应用实数运算法则去完成有关计算是解题关键.5.C解析:C【分析】根据实数的大小关系比较,得到56,从而得到n的值.【详解】解:∵56,∴8<9,∴n=9.故选:C.【点睛】6.A解析:A【分析】先根据无理数的估算求出a、b的值,由此即可得.【详解】<<,91516<34<<,∴==,a b3,3)∴-=-=a b336故选:A.【点睛】本题考查了无理数的估算,熟练掌握估算方法是解题关键.7.B解析:B【分析】根据n+p=0可以得到n和p互为相反数,原点在线段PN的中点处,从而可以得到绝对值最大的数.【详解】解:∵n+p=0,∴n和p互为相反数,∴原点在线段PN的中点处,∴绝对值最大的一个是Q点对应的q.故选B.【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.8.B解析:B【解析】试题解析:寻找每行数之间的关系,抓住每行之间的公差成等差数列,便知第20行第一个数为210,而每行的公差为等差数列,则第20行第10个数为426,故选B.9.C解析:C【分析】先计算部分数的乘积,观察运算结果,发相规律,每运算5次后结果重复出现,求出f(1)+f(2)+f(3)+f(4)+f(5)和,再求2021次运算重复的次数,用除数5,商和余数表示2021=5×404+1,说明重复404次和f(2021)=2的结果,(f(1)+f(2)+f(3)+f(4)+f(5))×10+2计算结果即可.【详解】解:f(1)=2,f(2)=6,f(3)=2,f(4)=0,f(5)=0,f(6)=2,f(7)=6,f(8)=2,f(9)=0,f(10)=0,f(11)=2,每5次运算一循环,f(1)+f(2)+f(3)+f(4)+f(5)=2+6+2+0+0=10,2021=5×404+1,()()()()f 1f 2f 3f 2021++++=10×404+2=4040+2=4042.故选:C .【点睛】 本题考查新定义运算,读懂题目的含义与要求,掌握运算的方法,观察部分运算结果,从中找出规律,用规律解决问题是解题关键.10.D解析:D【分析】根据A 、C 、O 、B 四点在数轴上的位置以及绝对值的定义即可得出答案.【详解】∵|m-5|表示点M 与5表示的点B 之间的距离,|m−c|表示点M 与数c 表示的点C 之间的距离,|m-5|=|m−c|,∴MB =MC .∴点M 在线段OB 上.故选:D .【点睛】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应的关系是解答此题的关键.二、填空题11.2【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c|=|b ﹣c|与a≠解析:2【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c |=|b ﹣c |与a ≠b 推出C 为AB 的中点,然后根据题意分类讨论求解即可.【详解】解:(1)由题意,M ,N 间的距离为(222==;∵2MN =, ∴112MN =, 由题意知,在数轴上,M 点在N 点右侧, ∴MN 的中点表示的数为21-+;(2)∵1a c b c -=-=且a b ,∴数轴上点A 、B 与点C 不重合,且到点C 的距离相等,都为1, ∴点C 为AB 的中点,2AB =,∵213d a -=, ∴32d a -=, 即:数轴上点A 和点D 的距离为32,讨论如下: 1>若点A 位于点B 左边:①若点D 在点A 左边,如图所示:此时,37222BD AD AB =+=+=; ②若点D 在点A 右边,如图所示:此时,31222BD AB AD =-=-=; 2>若点A 位于点B 右边:①若点D 在点A 左边,如图所示:此时,31222BD AB AD =-=-=; ②若点D 在点A 右边,如图所示:此时,37222BD AD AB =+=+=; 综上,线段BD 的长度为12或72, 故答案为:2;21;12或72. 【点睛】本题考查数轴上两点间的距离,以及与线段中点相关的计算问题,理解数轴上点的特征以及两点间的距离表示方法,灵活根据题意分类讨论是解题关键.12.【分析】按照新定义的运算法先求出x ,然后再进行计算即可.【详解】解:由解得:x=8故答案为.【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的 解析:1745【分析】按照新定义的运算法先求出x ,然后再进行计算即可.【详解】 解:由1521=21(21)(11)3x ⊕=++++ 解得:x=818181745==45(41)(51)93045⊕=+++++ 故答案为1745. 【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的值.13.或【详解】【分析】根据题中的运算规则得到M{3,2x +1,4x -1}=1+2x ,然后再根据min{2,-x +3,5x}的规则分情况讨论即可得.【详解】M{3,2x +1,4x -1}==2x+1 解析:12或13【详解】【分析】根据题中的运算规则得到M{3,2x +1,4x -1}=1+2x ,然后再根据min{2,-x +3,5x}的规则分情况讨论即可得.【详解】M{3,2x +1,4x -1}=321413x x +++-=2x+1,∵M{3,2x +1,4x -1}=min{2,-x +3,5x},∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x +3,5x}= min{2,52,52}=2,成立; ②2x+1=-x+3,x=23,此时min{2,-x +3,5x}= min{2,73,103}=2,不成立; ③2x+1=5x ,x=13,此时min{2,-x +3,5x}= min{2,83,53}=53,成立, ∴x=12或13, 故答案为12或13. 【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.14.403【解析】当k=6时,x6=T (1)+1=1+1=2,当k=2011时,=T()+1=403.故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达解析:403【解析】当k=6时,x 6=T (1)+1=1+1=2,当k=2011时,2011 x =T(20105)+1=403. 故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达式并写出用T 表示出的表达式是解题的关键.15..【详解】根据题意按规律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=. 解:根据以上分析bn=2(1-a1)(1-a2)…(1-an )=.“点睛”本题 解析:21n n ++. 【详解】根据题意按规律求解:b 1=2(1-a 1)=131221-4211+⎛⎫⨯== ⎪+⎝⎭,b 2=2(1-a 1)(1-a 2)=314221-29321+⎛⎫⨯== ⎪+⎝⎭,…,所以可得:b n =21n n ++. 解:根据以上分析b n =2(1-a 1)(1-a 2)…(1-a n )=21n n ++. “点睛”本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题中表示b 值时要先算出a 的值,要注意a 中n 的取值.16.10【分析】根据二次根式的性质和绝对值的性质求出a ,b 计算即可;【详解】∵,∴,∴,∴.故答案是10.【点睛】本题主要考查了代数式求值,结合二次根式的性质和绝对值的性质计算即可. 解析:10【分析】根据二次根式的性质和绝对值的性质求出a ,b 计算即可;【详解】∵20b a -=,∴2020a b a -=⎧⎨-=⎩, ∴24a b =⎧⎨=⎩, ∴22810a b +=+=.故答案是10.【点睛】本题主要考查了代数式求值,结合二次根式的性质和绝对值的性质计算即可.17.5【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案.【详解】解:∵,且,均为整数,又∵,,∴可分为以下几种情况:①,,解得:,;②,,解得:或,;③,解析:5【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案.【详解】解:∵20212a -=,且a ,b 均为整数,又∵20210a -≥0≥,∴可分为以下几种情况:①20210a -=2,解得:2021a =,2017b =-;②20211a -=1=,解得:2020a =或2022a =,2020b =-;③20212a -=0解得:2019a =或2023a =,2021b =-;∴符合题意的有序数对(),a b 共由5组;故答案为:5.【点睛】本题考查了绝对值的非负性,算术平方根的非负性,解题的关键是掌握非负的性质进行解题.18.10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”;②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据解析:10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”; ②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据题意,①把3写在1的右边,得13,由于13不能被3整除,故3不是魔术数;把4写在1的右边,得14,由于14不能被4整除,故4不是魔术数;把5写在1的右边,得15,写在2的右边得25,……由于个位上是5的数都能被5整除,故5是魔术数;故答案为:5;②根据题意,这个两位数的“魔术数”为x ,则1001001n x n x x+=+, ∴100n x为整数, ∵n 为整数, ∴100x为整数, ∴x 的可能值为:10、20、25、50; 故答案为:10、20、25、50.【点睛】本题考查了新定义的应用和整数的特点,解题的关键是熟练掌握新定义进行解题. 19.±3【分析】先通过估算确定M 、N 的值,再求M+N 的平方根.【详解】解:∵,∴,∵,∴,∵,∴,∴a 的整数值为:-1,0,1,2,M=-1+0+1+2=2,∵,∴,N=7解析:±3【分析】先通过估算确定M 、N 的值,再求M+N 的平方根.【详解】解:∵<∴221,∵∴23<,∵a <∴23a -<<,∴a 的整数值为:-1,0,1,2,M=-1+0+1+2=2,∵∴78<,N=7,M+N=9,9的平方根是±3;故答案为:±3.【点睛】本题考查了算术平方根的估算,用“夹逼法”估算算术平方根是解题关键.20..【分析】根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.【详解】∵,∴,,,,……∴,每三个数一个循环,∵,∴,则 +--3 -3-++解析:1312. 【分析】根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.【详解】∵13a =-,∴()211134a ==--,3441131a ,443131a ,()511134a ==--,……∴1a ,2n a a ⋅⋅⋅每三个数一个循环,∵202036731÷=⋅⋅⋅,∴202013a a ==-,则12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-143343=--+++14-43-3 -3-14+43+3 =-3-14+43+3 1312=. 故答案为:1312. 【点晴】 本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值.三、解答题21.(1)(437,307,177)是“蹦蹦数组”, (601,473,346)不是“蹦蹦数组”;(2)存在,数组为(532,395,258);(3)这个三位数是147.【分析】(1)由“蹦蹦数组”的定义进行验证即可;(2)设s 为32m ,t 为25n ,则3225274m n -=,先后求得n 、s 的值,根据“蹦蹦数组”的定义即可求解;(3)设这个数为1pq ,则21q p =-,由p 和q 都是0到9的正整数,列举法即可得出这个三位数.【详解】解:(1)数组(437,307,177)中,437-307=130,307-177=130,∴437-307=307-177,故(437,307,177)是“蹦蹦数组”;数组(601,473,346)中,601-473=128,473-346=127,∴601-473≠473-346,故(601,473,346)不是“蹦蹦数组”;(2)设s 为32m ,t 为25n ,则3225274m n -=,∵m 、n 为整数,∴8n =,则t 为258,∴s 为532,而2742137÷=,则b 为532-137=395,验算:532-395=395-258=137,故数组为(532,395,258);(3)根据题意,设这个数为1pq ,则1p p q -=-,∴21q p =-,而p 和q 都是0到9的正整数,讨论:且1-4=4-7=-3,数组(1,4,7)为“蹦蹦数组”,故这个三位数是147.【点睛】本题是一道新定义题目,解决的关键是能够根据定义,通过列举法找到合适的数,进而求解.22.(1)11316⨯;11131316⎛⎫⨯- ⎪⎝⎭;(2)[]13(1)(131)n n +-⋅+;13(3111311)n n ⎡⎤--+⎢⎣+⎥⎦;(3)100301. 【分析】(1)观察前4个等式的分母先得出第5个式子的分母,再依照前4个等式即可得出答案;(2)根据前4个等式归纳类推出一般规律即可;(3)利用题(2)的结论,先写出1234100a a a a a +++++中各数的值,然后通过提取公因式、有理数加减法、乘法运算计算即可.【详解】(1)观察前4个等式的分母可知,第5个式子的分母为1316⨯则第5个式子为:51111131631316a ⎛⎫==⨯- ⎪⨯⎝⎭ 故应填:11316⨯;11131316⎛⎫⨯- ⎪⎝⎭; (2)第1个等式的分母为:14(130)(131)⨯=+⨯⨯+⨯第2个等式的分母为:47(131)(132)⨯=+⨯⨯+⨯第3个等式的分母为:710(132)(133)⨯=+⨯⨯+⨯第4个等式的分母为:1013(133)(134)⨯=+⨯⨯+⨯归纳类推得,第n 个等式的分母为:[]13(1)(13)n n +-⋅+则第n 个等式为:[]1111313(1)(13)13(1)13n a n n n n +-⋅++⎡⎤==-⎢⎥⎣-⎦+(n 为正整数) 故应填:[]13(1)(131)n n +-⋅+;13(3111311)n n ⎡⎤--+⎢⎣+⎥⎦;(3)由(2)的结论得:[]10013(1001)(13100)298301311111329801a ⎛⎫==+⨯-⨯+⨯⨯=⨯- ⎪⎝⎭ 则1234100a a a a a +++++ 1111144771010132983011+++++⨯⨯⨯⨯⨯= 111111111111343473711132981031013301⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-+⨯-++ ⎪ ⎪ ⎛⎫=⨯-⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ⎪⎝⎭ 111111111++++344771*********3018=-⎛⎫⨯-+--- ⎪⎝⎭1330111⎛=⨯-⎫ ⎪⎝⎭30130103⨯= 110030=. 【点睛】本题考查了有理数运算的规律类问题,依据已知等式归纳总结出等式的一般规律是解题关键.23.(1)2121-;(2)()n 11312+-. 【解析】【分析】 ()1设23420S 122222=+++++⋯+,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;()2同理即可得到所求式子的值.【详解】解:()1设23420S 122222=+++++⋯+,将等式两边同时乘2得:2345212S 222222=++++⋯+,将下式减去上式得:212S S 21-=-,即21S 21=-,则234202112222221+++++⋯+=-;()2设234n S 133333=+++++⋯+①,两边同时乘3得:234n n 13S 333333+=++++⋯++②,-②①得:n 13S S 31+-=-,即()n 11S 312+=-, 则()234n n 11133333312++++++⋯+=-. 【点睛】本题考查了规律型:数字的变化类,有理数的混合运算,解题的关键是明确题意,运用题目中的解题方法,运用类比的数学思想解答问题.24.(1)2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=n 2; (3)﹣1.008016×106.【分析】(1) 根据从1开始连续n 各奇数的和等于奇数的个数的平方即可得到.(2) 根据规律写出即可.(3) 先提取符号,再用规律解题.【详解】解:(1)1+3=221+3+5=321+3+5+7=421+3+5+7+9=52……故答案为:2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=2(1)n +(3)原式=﹣(1+3+5+7+9+ (2019)=﹣10102=﹣1.0201×106.【点睛】本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可.25.(1)210-1;(2)n 1514+-;(3)9×210+1. 【分析】(1)根据题目中材料可以得到用类比的方法得到1+2+22+23+…+29的值; (2)根据题目中材料可以得到用类比的方法得到1+5+52+53+54+…+5n 的值. (3)根据题目中的信息,运用类比的数学思想可以解答本题.【详解】解:(1)设S=1+2+22+23+ (29)将等式两边同时乘以2得:2S=2+22+23+24+…+29+210,将下式减去上式得2S-S=210-1,即S=210-1,即1+2+22+23+…+29=210-1.故答案为210-1;(2)设S=1+5+52+53+54+…+5n ,将等式两边同时乘以5得:5S=5+52+53+54+55+…+5n +5n+1,将下式减去上式得5S-S=5n+1-1,即S=n 1514+-, 即1+5+52+53+54+…+5n =n 1514+-; (3)设S=1+2×2+3×22+4×23+…+9×28+10×29,将等式两边同时乘以2得:2S=2+2×22+3×23+4×24+…+9×29+10×210,将上式减去下式得-S=1+2+22+23+…+29+10×210,-S=210-1-10×210,S=9×210+1,即1+2×2+3×22+4×23+…+9×28+10×29=9×210+1.【点睛】本题考查有理数的混合运算、数字的变化类,解题的关键是明确题意,发现数字的变化规律.26.(1)15;(2)11514-;(3)111. 【分析】(1)先计算乘方,即可求出答案;(2)根据题目中的运算法则进行计算,即可求出答案;(3)根据题目中的运算法则进行计算,即可求出答案;【详解】解:(1)231248125122=++++=++;故答案为:15;(2)设231015555T =+++++①,把等式①两边同时乘以5,得 112310555555T =+++++②,由②-①,得:11451T =-, ∴11514T -=, ∴31121015551455++=+++-; (3)设234520192020110101010101010M =-+-+-+-+①, 把等式①乘以10,得:3456222019020202110101010101010101010M =-+-+-+-++②,把①+②,得:202111110M =+, ∴202110111M +=, ∴232452019200022111010101010110010111-+-+-+-++=, ∴20212345201920201011010101010101011-+-+-+-+- 20212021101101111+=- 111=. 【点睛】本题考查了数字的变化规律,熟练掌握运算法则,熟练运用有理数乘法,以及运用消项的思想是解题的关键.27.(1)35,2⎛⎫ ⎪⎝⎭;(2)2;(3)不是;(4)(6,75) 【分析】(1)根据“白马有理数对”的定义,把数对3(2,1),5,2⎛⎫- ⎪⎝⎭分别代入1a b ab +=-计算即可判断;(2)根据“白马有理数对”的定义,构建方程即可解决问题;(3)根据“白马有理数对”的定义即可判断;(4)根据“白马有理数对”的定义即可解决问题.【详解】(1)∵-2+1=-1,而-2×1-1=-3,∴-2+1≠-3,∴(-2,1)不是“白马有理数对”,∵5+32=132,5×32-1=132, ∴5+32=5×32-1, ∴35,2⎛⎫ ⎪⎝⎭是“白马有理数对”, 故答案为:35,2⎛⎫ ⎪⎝⎭; (2)若(,3)a 是“白马有理数对”,则a+3=3a-1,解得:a=2,故答案为:2;(3)若(,)m n 是“白马有理数对”,则m+n=mn-1,那么-n+(-m )=-(m+n )=-(mn-1)=-mn+1,∵-mn+1≠ mn-1∴(-n ,-m )不是“白马有理数对”,故答案为:不是;(4)取m=6,则6+x=6x-1,∴x=75,∴(6,75)是“白马有理数对”,故答案为:(6,75).【点睛】本题考查了“白马有理数对”的定义,有理数的加减运算,一次方程的列式求解,理解“白马有理数对”的定义是解题的关键.28.(1)275,572;(2)(10b+a )[100a+10(a+b )+b]=(10a+b[100b+10(a+b )+a].【分析】(1)观察等式,发现规律,等式的左边:两位数所乘的数是这个两位数的个位数字变为百位数字,十位数字变为个位数字,两个数字的和放在十位;等式的右边:三位数与左边的三位数字百位与个位数字交换,两位数与左边的两位数十位与个位数字交换然后相乘,根据此规律进行填空即可;(2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行写出即可.【详解】解:(1)∵5+2=7,∴左边的三位数是275,右边的三位数是572,∴52×275=572×25,(2)左边的两位数是10b+a ,三位数是100a+10(a+b )+b ;右边的两位数是10a+b ,三位数是100b+10(a+b )+a ;“数字对称等式”为:(10b+a )[100a+10(a+b )+b]=(10a+b[100b+10(a+b )+a]. 故答案为275,572;(10b+a )[100a+10(a+b )+b]=(10a+b[100b+10(a+b )+a].【点睛】本题是对数字变化规律的考查,根据已知信息,理清利用左边的两位数的十位数字与个位数字变化得到其它的三个数字是解题的关键.29.(1)两;(2)125,343,729,9;(3)3,39;(4)47【分析】(1)根据夹逼法和立方根的定义进行解答;(2)先分别求得1至9中奇数的立方,然后根据末位数字是几进行判断即可;(3)先利用(2)中的方法判断出个数数字,然后再利用夹逼法判断出十位数字即可; (4)利用(3)中的方法确定出个位数字和十位数字即可.【详解】(1)∵1000<59319<1000000,∴59319的立方根是两位数;(2)∵3311,327,==35=125,37=343,39=729,∴59319的个位数字是9,则59319的立方根的个位数字是9;(3)∵3327=59<<3464=,且59319的立方根是两位数,∴59319的立方根的十位数字是3,又∵59319的立方根的个位数字是9,∴59319的立方根是39;(4)∵1000<103823<1000000,∴103823的立方根是两位数;∵3311,327,==35=125,37=343,39=729,∴103823的个位数字是3,则103823的立方根的个位数字是7;∵3464=3195552<<=,且103823的立方根是两位数,∴103823的立方根的十位数字是4,又∵103823的立方根的个位数字是7,∴103823的立方根是47.【点睛】考查了立方根的概念和求法,解题关键是理解一个数的立方的个位数就是这个数的个位数的立方的个位数.30.(1)210-1;(2)n1514+-;(3)9×210+1.【分析】(1)根据题目中材料可以得到用类比的方法得到1+2+22+23+…+29的值;(2)根据题目中材料可以得到用类比的方法得到1+5+52+53+54+…+5n的值.(3)根据题目中的信息,运用类比的数学思想可以解答本题.【详解】解:(1)设S=1+2+22+23+ (29)将等式两边同时乘以2得:2S=2+22+23+24+…+29+210,将下式减去上式得2S-S=210-1,即S=210-1,即1+2+22+23+…+29=210-1.故答案为210-1;(2)设S=1+5+52+53+54+…+5n,将等式两边同时乘以5得:5S=5+52+53+54+55+…+5n+5n+1,将下式减去上式得5S-S=5n+1-1,即S=n1514+-,即1+5+52+53+54+…+5n=n1514+-;(3)设S=1+2×2+3×22+4×23+…+9×28+10×29,将等式两边同时乘以2得:2S=2+2×22+3×23+4×24+…+9×29+10×210,将上式减去下式得-S=1+2+22+23+…+29+10×210,-S=210-1-10×210,S=9×210+1,即1+2×2+3×22+4×23+…+9×28+10×29=9×210+1.【点睛】本题考查有理数的混合运算、数字的变化类,解题的关键是明确题意,发现数字的变化规律.。
名校课堂七年级下册数学答案2022江西专版
名校课堂七年级下册数学答案2022江西专版
(一)第一章数学运算
1、2-3+6=5
2、3+(-1)·5=-2
3、2·(-3)+(-8)=-14
4、(-3)·(-3)+(-7)=-14
5、5+(-3)+(-7)=-5
(二)第二章基本不等式
1、若-3<a<8,则-3<a<8
2、若x+2<20,则x<18
3、若x-2≥30,则x≥32
4、若a+5>25,则a>20
5、若b-3≤17,则b≤20
(三)第三章方程的解法
1、3x-2=11的解为x=5
2、5p+3=18的解为p=2.5
3、2x-5=13的解为x=9
4、7y+14=45的解为y=5
5、3a-7=17的解为a=8
(四)第四章组合数学
1、把一些笔用在橡皮上共有多少种方法:24种方法
2、一只鸟在5棵树上共有多少种安置方法:120种安置方法
3、从5个学生中选3个委员的方法有多少种:10种方法
4、在6个中文单词当中选出3个的组合种数:120种
5、在7个数字中,任取3个数构成不同的三位数,有多少种:210种。
七下名校课堂单元测试卷福建专版答案A本
七下名校课堂单元测试卷福建专版答案A本一、单选题1、下列方程中,一元一次方程共有(C)个。
14x-3=5x-2:23x-4y:33x+1450;5x+3x+1=0;6x-1=12。
A、1个B、2个C、3个D、4个2、已知(m-2)x×l=5是关于x的一元一次方程,则m的值为(A)。
A、-2B、2C、2D、03、若(m+2)xm2-3-2m=1是关于x的一元一次方程,则m=(B)。
A、±2B、2C、-2D、14、下列四个式子中,是一元一次方程的是(B)。
A、3+2=5B、7x+5=6xC、3x-y=2D、x2-2x-3=05、已知关于x的方程2x=5+ax的解是x=1,则a的值是(C)。
A、-5B、-6C、-3D、86、若关于x的方程3x-7=2x+a的解与方程4x+3a=7a-8的解互为相反数,则a的值为(A)。
A、-2.5B、2.5C、1D、-1.27、当x=-1时,代数式2ax+3bx+8的值是12,则6b-4a+2=(C)。
A、-12B、10C、-6D、-227、当x=-1时,代数式2ax+3bx+8的值是12,则6b-4a+2=(C)。
A、-12B、10C、-6D、-228、若x=2是关于x的方程3x+4m-2=0的解,则m的值为(C)。
A、1B、0C、-1D、1/39、已知x=m是关于x的方程2x+m=6的解,则m的值是()A、-3B、3C、-2D、2二、填空题10、若x=2是关于x的方程2x+a=3的解,则a=(10)。
11、若关于x的方程3x-kx-3=0的解为3,则k的值为(2)。
12、当m=(1-2)时,方程x-2m=0的解为x=1。
13、列等式表示“x与5的和的2倍等于x的3倍”为(2(x+5)=3x)。
14、若(m+1)xml-2=0是关于x的一元一次方程,则m=(1)。
人教版七年级数学下册名校课堂第六章单元测试(含答案)
单元测试(二) 实数(时间:45分钟 总分:100分)一、选择题(每小题3分,共24分) 1.25的平方根是( ) A .5 B .-5 C .±5D .± 52.下列运算中,正确的是( ) A.252-1=24 B.914=312C.81=±9D .-(-13)2=-133.下列说法不正确的是( ) A .8的立方根是2 B .-8的立方根是-2 C .0的立方根是0D .125的立方根是±54.在实数:3.141 59,364,1.010 010 001,4.21··,π,227中,无理数有( )A .1个B .2个C .3个D .4个5.有下列说法:①-3是81的平方根;②-7是(-7)2的算术平方根;③25的平方根是±5;④-9的平方根是±3;⑤0没有算术平方根.其中,正确的有( ) A .0个 B .1个 C .2个D .3个6.下列结论正确的是( )A .数轴上任一点都表示唯一的有理数B .数轴上任一点都表示唯一的无理数C .两个无理数之和一定是无理数D .数轴上任意两点之间还有无数个点7.如果m =7-1,那么m 的取值范围是( )A .0<m<1B .1<m<2C .2<m<3D .3<m<48.规定用符号[m]表示一个实数m 的整数部分,例如:[23]=0,[3.14]=3.按此规定[10+1]的值为( ) A .3 B .4 C .5D .6二、填空题(每小题4分,共16分) 9.14的算术平方根是________. 10.3-2的相反数是________,绝对值是________.11.小红做了一个棱长为5 cm 的正方体盒子,小明说:“我做的盒子的体积比你的大218 cm 3.”则小明的盒子的棱长为________cm. 12.实数28-2的整数部分是________. 三、解答题(共60分) 13.(6分)求下列各式的值: (1)-1625; (2)±0.016 9; (3)0.09-3-8.14.(9分)将下列各数填入相应的集合内. -7,0.32,12,0,8,12,-364,π,0.303 003…. (1)有理数集合:{ ,…}; (2)无理数集合:{ ,…}; (3)负实数集合:{ ,…}. 15.(12分)计算:(1)|-2|+(-3)2-4;(2)2+32-52;(3)6(16-6);(4)||3-2+||3-2-||2-1.16.(8分)求下列各式中x的值.(1)4x2-9=0;(2)8(x-1)3=-1258.17.(7分)已知一个正方体的体积是1 000 cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使得截去后余下的体积是488 cm3,问截得的每个小正方体的棱长是多少?18.(8分)已知a是10的整数部分,b是它的小数部分,求(-a)3+(b+3)2的值.19.(10分)借助于计算器计算下列各题:(1)11-2;(2) 1 111-22;(3)111 111-222;(4)11 111 111-2222.仔细观察上面几道题及其计算结果,你能发现什么规律,并用发现的这一规律直接写出下面的结果:=33…3________参考答案1.C 2.D 3.D 4.A 5.C 6.D 7.B 8.B 9.12 10.2-3 2-3 11.7 12.313.解:(1)-45.(2)±0.13.(3)2.3.14.(1)-7,0.32,12,0,-364 (2)8,12,π,0.303 003… (3)-7,-364 15.(1)9.(2)- 2.(3)-5.(4)3-2 2. 16.(1)x =±32.(2)x =-14.17.解:设截得的每个小正方体的棱长为x cm.依题意,得 1 000-8x 3=488. ∴8x 3=512. ∴x =4.答:截得的每个小正方体的棱长是4 cm. 18.解:根据题意,得a =3,b =10-3,∴(-a)3+(b +3)2=(-3)3+(10-3+3)2=-27+10=-17.19.解:(1)11-2=3;(2) 1 111-22=33;(3)111 111-222=333;(4)11 111 111-2222=3 333.(n 为正整数),即发现规律:根号内被开方数是2n 个数字1和n 个数字2的差,结果为n 个数字3.。
七年级名校课堂数学答案
七年级名校课堂数学答案【篇一:名校课堂助教型教辅初中数学七年级下册第五章】p> 省份:无城市:无学校名称:无学习阶段:初中学期:下册试卷类型:无试卷对应的教材版本:无学科:数学年级:七年级满分:无考试时长:无命题人:《名校课堂》丛书编写组来源途径:习题来源途径具体名称:《名校课堂助教型教辅》试卷出版社名称:黑龙江教育出版社原始试卷提供者所在地区:无试卷整体难度:中等试题解答教师姓名:田琼____.题型:填空题分值:无难度:基础题考点:余角和补角解题思路:用邻补角的概念作答.点拨:ao、ob互为反向延长线,确定∠boc与∠aoc互为邻补角是关键.____.题型:填空题分值:无难度:基础题考点:余角;补角;对顶角解题思路:确定∠1、∠2的关系,进而求解.点拨:对顶角相等.题目:1.如图所示,∠1和∠2是对顶角的图形有( )a.1个b.2个c.3个d.4个题型:选择题分值:无难度:基础题考点:余角;补角;对顶角解题思路:图中的两角是否是两条直线相交所得角,且角的两边是否互为反向延长线. 解析:由上面思路只有③符合.答案:a点拨:紧扣对顶角是定义中的两点判断.题目:2.下列说法中,正确的是( )a.相等的两个角是对顶角b.有一条公共边的两个角是邻补角c.有公共顶点的两个角是对顶角d.一条直线与端点在这条直线上的一条射线组成的两个角是邻补角题型:选择题分值:无难度:基础题考点:余角;补角;对顶角解题思路:利用对顶角、邻补角的概念作答.解析:对顶角、邻补角要注意它们的位置和数量关系,a没有确定位置,所以不对,b每确定是另一边的关系,c中对顶角的两边的关系不明确,所以不对,d是正确的.答案:d点拨:注意对顶角、邻补角定义中的关键词.题目:3.如图所示,取两根木条a、b将它们钉在一起,就得到一个相交线的模型,其中∠1和∠2是____,且∠1+∠2=____,同理∠2与∠4,∠3与____,∠1与∠3都是邻补角.题型:填空题分值:无难度:基础题考点:余角;补角;对顶角解题思路:利用对顶角、邻补角的概念作答.点拨:两直线相交,有4对邻补角.____.题型:填空题分值:无难度:基础题考点:余角;补角;对顶角解题思路:利用对顶角的性质作答.解析:如图,∠1与∠2其对顶角,所以∠1=∠2.点拨:熟练准确找出对顶点,对顶角相等.2( ).题型:填空题分值:无难度:基础题考点:补角和余角解题思路:利用补角的性质解答.∴∠1=∠2(同角的补角相等).答案:邻补角的定义同角的补角相等点拨:熟练掌握补角的性质,同角的补角相等.( )题型:选择题分值:无难度:基础题考点:角平分线;对顶角解题思路:要求∠bod,先求∠aoc.解析:∵oa平分∠eoc,∴∠aoc=12∠eoc=1答案:c点拨:本题关键利用角平分线的定义求∠aoc的度数. ( )a.∠2和∠3b.∠1和∠3c.∠1和∠4d.∠1和∠2题型:选择题分值:无难度:基础题考点:余角;补角;对顶角解题思路:利用对顶角定义作答.解析:对顶角是两条直线相交所成角,所以只有∠2与∠3是对顶角. 答案:a点拨:对顶角关键是两条直线相交所成角,且角的两边互为反向延长线.题目:8.如图,三条直线l1、l2、l3相交于一点,则∠1+∠2+∠3等于( )题型:选择题分值:无难度:基础题考点:余角;补角;对顶角解题思路:先利用对顶角性质把∠1、∠2、∠3转化到直线l2的同侧,再利用邻补角定义作答.解析:由图知:∠2=∠4答案:c点拨:利用对顶角相等实现转化是关键..【篇二:七年级下册思品名校课堂练习】xt>一、单项选择题:请将每题最符合题意选项的字母填写在下列表格相应的题号下,每小题限选一项。
7年级名校课堂数学练习答案
7年级名校课堂数学练习答案一、选择题(每题2分,共18分)1.下列各对数中,互为相反数的是()A.﹣(﹣2)和2 B. +(﹣3)和﹣(+3) C. D.﹣(﹣5)和﹣|﹣5|2.下列式子:中,整式的个数是()A. 6 B. 5 C. 4 D. 33.一个数的平方和它的倒数相等,则这个数是()A. 1 B.﹣1 C.±1 D.±1和04.下列计算正确的是()A.﹣12﹣8=﹣4 B.﹣5+4=﹣9 C.﹣1﹣9=﹣10 D.﹣32=95.数轴上点A,B,C,D对应的有理数都是整数,若点A对应有理数a,点B对应有理数b,且b﹣2a=7,则数轴上原点应是()A. A点 B. B点 C. C点 D. D点6.若(2a﹣1)2+2|b﹣3|=0,则ab=()A. B. C. 6 D.7.下列说法正确的`是()A.若|a|=﹣a,则a<0B.若a<0,ab<0,则b>0C.式子3xy2﹣4x3y+12是七次三项式D.若a=b,m是有理数,则8.方程1﹣3y=7的解是()A. B. y= C. y=﹣2 D. y=29.一个多项式加上3x2y﹣3xy2得x3﹣3x2y,则这个多项式是()A. x3+3xy2 B. x3﹣3xy2 C. x3﹣6x2y+3xy2 D. x3﹣6x2y ﹣3x2y二、填空题(共10小题,每小题3分,满分30分)10.绝对值不小于1而小于3的整数的和为.11.﹣的倒数的绝对值是.12.若a、b互为相反数,c、d互为倒数,则2a+3cd+2b=.13.用科学记数法表示:2007应记为14.单项式的系数是,次数是.15.若3xny3与是同类项,则m+n=.16.若x=﹣3是方程k(x+4)﹣2k﹣x=5的解,则k的值是.17.如果5x+3与﹣2x+9是互为相反数,则x﹣2的值是.18.每件a元的上衣先提价10%,再打九折以后出售的价格是元/件.19.观察并填表:梯形个数1 2 3 … n图形周长5a 8a 11a …三、计算题(共小题4分,满分30分)20.(30分)(1)﹣4÷ ﹣(﹣)×(﹣30)(2)﹣20+(﹣14)﹣(﹣18)﹣13(3)﹣22+|5﹣8|+24÷(﹣3)×(4)(﹣125 )÷(﹣5)﹣2.5÷ ×(﹣)(5)﹣5m2n+4mn2﹣2mn+6m2n+3mn(6)2(2a﹣3b)﹣3(2b﹣3a)(7)先化简,再求值:5x2﹣[2xy﹣3( xy+2)+4x2].其中x=﹣2,y= .四.解答题(每小题6分,共12分)21.解下列方程并检验.﹣3+ x=2x+9.22.一本小说共m页,一位同学第一天看了全书的少6页,第二天看了全书剩下的多6页,第三天把剩下的全部看完,该同学第三天看了多少页?若m=800,则第三天看了多少页?五.列方程解应用题(每小题6分,共12分)23.把一批图书分给2014-2015学年七年级(11)班的同学阅读,若每人分3本,则剩余20本,若每人分4本,则缺25本,这个班有多少学生?24.小明去文具店买铅笔,店主说:“如果多买一些,可以打八折”,小明算了一下,如果买50支,比原价可以便宜6元,那么每支铅笔的原价是多少元?六.解答题25.若(2a﹣1)2+|2a+b|=0,且|c﹣1|=2,求c(a3﹣b)的值.附加题(每小题10分,共20分,不计入总分)26.有一列数按一定规律排列为1,﹣3,5,﹣7,9,…,如果其中三个相邻的数之和为﹣201,求这三个数?27.计算.【7年级名校课堂数学练习答案】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空。
18%
1. 2小时18分=()分 3.06千米=()米
2. ○里填上“<”“>”或“=”符号
0.65×1.3○1.3 6.72×0.99○6.72
1.11÷0.37○1.11 3.87×10○3.87÷0.1
4. 9.9546精确到十分位约是(),保留两位小数是()。
5. 已知81.6×1.6=130.56,那么8.16×0.16=()。
已知18.24÷3.2=5.7,那么1.824÷0.32 =()。
6. 把70.2的小数点先向左移动三位,再向右移动两位,结果是()。
7. 张丽、李华到水果店买苹果,每千克苹果售价3.7元。
张丽买了2.8千克,李华买了3.4千克,张丽应付()元,李华应付()元。
8. 一桶油连桶重8.4千克,用去一半油后连桶还重4.5千克。
油重()千克,桶重()千克。
9. 张明5分钟加工4个零件,平均每加工一个零件要()分钟。
二、判断题。
5%
1. 在近似数6.0中,末尾的0可以写也可以不写。
()
2. 两个都比1小的数相乘(0除外),积一定小于其中的每个因数。
()
3. 0.4×6与0.6×4的计算结果相同。
()
4. 0.995保留一位小数是0.1。
()
5. 如果α×0.9 < 0.9那么α< 1 。
()
三、选择题。
10%
1. 与0.3×1.21的积相等的式子是()。
A、3×1.21
B、12.1×0.03
C、 0.03×0.121
D、 3×0.121
2. 0.25除以0.15,当除到商1.6时,余数是()。
A、10
B、1
C、 0.1
D、 0.01
3. 4.7÷a(a≠0),当a()时,商一定大于4.7。
A、大于1
B、小于1
C、等于1
4. 下列算式中,得数最大的算式是()。
A、0.3×1.2
B、0.3÷1.2
C、1.2÷0.3
D、1.2×0.3
5. 10.9÷
6.2的商四舍五入法精确到百分位约是()。
A、0.17
B、1.75
C、1.80
D、1.76
四、计算。
37%
1.口算。
5%
0.16×5 ﹦ 1.78+2.2 = 9.6÷0.6 = 6.6÷0.66 =
0.7÷0.01 = 2.5×0.4 = 12-3.97= 4÷0.8 =
1.25×8÷1.25= 5.37×0+4.63 =
2、列竖式计算。
(带“ ”要求用乘法验算)5%
67.9×1.3 17.696÷5.6
3、递等式计算。
(能简算的要简算)18%
9.6÷0.4×0.25 29.7÷(5.85÷0.65)
7.4×9.9 3.84-2.7×0.64
8.68-8.68÷0.56× 0.5 4.7×4.7+4.7+4.3×4.7
4、求未知数X。
9%
X÷0.83 = 2.3 X×0.34 = 17 7.08-X = 5.19
五、文字题:6%
5.16减去0.8与5.2的积,差是多少?
0.299除以0.23的商加上15.4与2.5的积,和是多少?
六、应用题:(25%)
1.一种山核桃每千克售价51.2元,买0.8千克应付多少元?买0.25千克应付多少元?
2.某农具厂原计划每天生产12件农具,10天完成一批任务。
实际提前2天完
成任务,实际每天生产农具多少件?
3. 一个玩具厂计划生产5.2万辆电动汽车,已经生产了8天,每天生产0.35万辆,余下的要
求在4天内完成。
平均每天应生产多少万辆?
4.在地球上重1千克的物体,在月球上约重0.16千克,如果一个物体在月球上约重9.5千克,那么它在地球上约重多少千克?(得数保留一位小数)
5.百姓超市进了一种毛巾共50箱,批发价每箱615元,零售价每块毛巾
6.8元,全部卖出可
得毛利多少元?(一箱内有100块毛巾)。