北师大版 简单的幂函数 课件(37张)

合集下载

2.5简单的幂函数课件(北师大版)

2.5简单的幂函数课件(北师大版)

(2) y x2 x1
(5) y=x-5
(3) y= -x2
(6) y=(2x)3
2.幂函数y=f(x)的图像过点(2,8),求函数的解析式.
答案:y=x3
例1 画出函数f(x)=x3的图像,讨论其单调性.
解 :(1)列表
y
8
x … -2 -1 1 0 1 1 2 …
2
2
6
y … -8 -1 1 0 1 1 8 …
3.下图中,只画出了函数图像的一半,请你画 出它们的另一半,并说出画法的根据.
小结
幂函数
y x 常数
自变量
奇函数 奇 偶 性
偶函数
f(x)=-f(-x) 图像关于原点对称
f(x)=f(-x)
图像关于y轴对称
所以 0.20.3 < 0.30.3 < 0.30.2
*
11
三.函数的奇偶性 (1)视察f(x)=x3的图象
奇函数定义:
y
一般地,图像关于原点
A(x,y)
对称的函数叫作奇函数
o
x
在奇函数中,f(-x)和 f(x)的
绝对值相等,符号相反,即 A‘(-x,-y)
f(-x)= - f(x)
结论:函数f(x)=x3 的图像关于原点对 称。
-3
方法二
根据定义,判断其奇偶性.
(1) y 3 x
(2) y x2 , x (3,3]
(3) y x2 3 (4) y 2(x 1)2 1
自测
自评
2.函数
f(x)=(m2-3m+3)xm+2
是幂函数且函数
f(x)为
偶函数,求 m 的值.

解析:∵f(x)=(m2-3m+3)xm+2是幂函数,∴m2-3m+3=1,目 链 即m2-3m+2=0,∴m=1或m=2.当m=1,f(x)=x3为奇函数,不 接 符合题意;当m=2时,f(x)=x4为偶函数,符合题意,∴m=2.

北师大版高中数学必修第一册 第二章 4-2《简单幂函数的图象和性质》课件PPT

北师大版高中数学必修第一册 第二章 4-2《简单幂函数的图象和性质》课件PPT
1
1
∵点 −2, 4 在幂函数g(x)的图象上,∴4=(-2)b,解得b=-2.∴g(x)=x-2.
在同一直角坐标系中作出f(x)=x2和g(x)=x-2的图象,如图所示:
(1)当x>1或x<-1时,f(x)>g(x);
(2)当x=1或x=-1时,f(x)=g(x);
(3)当-1<x<1且x≠0时,f(x)<g(x).
数为常数;(3)后面不加任何项.反之,若一个函数为幂函数,则该函数必具有这种形式.
变式训练
如果幂函数 = 2 − 3 + 3
2 −−2
的图象不过原点,求实数m的取值.
解:由幂函数的定义得m2-3m+3=1,解得m=1或m=2;
当m=1时,m2-m-2=-2,函数为y=x-2,其图象不过原点,满足条件;
D.既不是奇函数,又不是偶函数且在(0,+∞)上单调递减
典例剖析
例1
幂函数的概念
函数f(x)=(m2-m-5)xm-1是幂函数,且当x∈(0,+∞)时,f(x)单调递增,试确定m的值.
分析:由f(x)=(m2-m-5)xm-1是幂函数,且当x>0时单调递增,可先利用幂函数的定义求出m的值,再利用单调性
奇函数
偶函数
奇函数
奇偶性
单调性
公共点
在R上是 增函数
在[0,+∞)上单调递增 ,
在(-∞,0]上 单调递减
在R上是 增函数
(0,0), (1,1)
=
既不是奇函数,
也不是偶函数
在[0,+∞)上是增函数
= −
奇函数
在(0,+∞)上 单调递减 ,

数学必修Ⅰ北师大版25简单的幂函数PPT课件

数学必修Ⅰ北师大版25简单的幂函数PPT课件
10
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
演讲人:XXXXXX 时 间:XX年XX月XX日
11
x2 6x 9 3
(2)g(x) 3x3 4x 2 3x 2
(3)h(x) x 3 1 1 x 3
(4)u(x) ( x )2
6
拓展性训练题
1x2,x0 1.已知 f(x)0,x0, ,试判断
2.已知函数f(x)=(m-1)x2+2mx+3是偶函
数 ,则f(x)在(-∞,0]上是( A )
A.增加的 C.先增后减
B .减少的 D.先减后增
3.已知函数y=f(x)是奇函数,在[a,b]上是
减少的,则它在[-b,-a]上是( B )
A.增加的 C.先增后减
B .减少的 D.先减后增
8
拓展性训练题
4.已知y=f(x)是定义在(-1,1)上的奇函数, 且在(-1,1)上是单调递减的,则不等
式f(1-x)+f(1-x2)<0的解集是( )C
A.(-1,1) B.(0,√2) C.(0,1) D.(1,√2)
9
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
简单的幂函数
1
y=x , y 1 ( y=x-1 ), y=x2
x
如果一个函数,底数是自变量x,
指数是常量,即
y x
这样的函数称为幂函数.

2.5简单的幂函数 课件-北师大版高中数学必修1

2.5简单的幂函数 课件-北师大版高中数学必修1

(3) (f x) x2;
(4) (f x) x2,x (1, 2].
解:
(1)因为在R上f (x) 2x5, f (x) 2(x)5 2x5, 所以f (x)是奇函数.
(2)因为在R上f (x) x2 2, f (x) (x)2 2 x2 2,
所以f (x)是偶函数.
导入课题 新知探究 例题讲解 课堂小结
函数f (x)是奇函数或偶函数时,称函数具有奇偶性. 具有奇偶性的函数f (x)的定义域关于原点对称.
导入课题 新知探究 例题讲解 课堂小结
1
例2 画出下列函数y x, y x2 , y x1, y x 2 图像.
(1)讨论函数在(0, )内的单调性;
(2)观察函数的奇偶性.
y增
1
y增
1
O1 x
1 O 1 x
y

1
O1
x
yx
y x2
y x1
关于原点对称 关于y轴对称 关于原点对称
y

1
O 1x
1
y x2 既不关于原点对称, 也不关于y轴对称
导入课题 新知探究 例题讲解 课堂小结
4 幂函数的图像特征
4 y y x3y x2 y x
3
1
2
y x2
幂函数y xa的恒过定点(1,1).
1
y x1
y
–4
x
1
–3
–2
–1 O 1
–1
2
3
4x
当a 0时,幂函数y xa在(0, )上单调递增;
–2
当a 0时,幂函数y xa在(0, )上单调递减.
–3
–4
导入课题 新知探究 例题讲解 课堂小结

数学北师大版必修第一册2.4.2简单幂函数的图象和性质课件

数学北师大版必修第一册2.4.2简单幂函数的图象和性质课件

2、总结幂函数性质
⑴所有的幂函数在都有定义 0,, 并且图象都过点(1 , 1)(原因:1x=1);
⑵a>0时,幂函数的图象都通过原点,且在0, 上,是增函 数(从左往右看,函数图象逐渐上升).
⑶a<0时,幂函数的图象在区间 0, 上是减函数.
在第一象限内,当x向原点靠近时,图象在y轴的右方无限 逼近x轴正半轴,当x慢慢地变大时,图象在x轴上方并无限逼 近x轴的正半轴.
题型归类
题型一:判断下列那些是幂函数
(1) y axm
(3)y xn (5) y 2x2
(2) y x x2 (4) y (x 2)5
(6) y 1 x2
答案
(3),(6)
题型二:幂函数图像问题
2.如图所示,曲线是幂函数y=xa在第一象限内的图象,已知a分别取 1,1, 1 , 2 四个值,则相应图象依次为:
第二章 函 数 2.4.2 简单幂函数的图像和性质
课题引入
我们已经熟悉,y=x是正比例函数,
y1 x
是反比例函数,
y=x2是一元二次函数,
还有,y=x3,它们都是简单的幂函数.
一般地,形如 y=xa(a为常数)的函数,即底数是自变量,指数是常 数
的函数称为幂函数。
这里的 y 1x和
在y今 后x的学习中可以分别写成y=x-1和y=x-2
2
答案:
C4,C2,C3,C1
题型三:根据幂函数性质,求解参数值
3.幂函数
在(0,+∞)时是减函
数,则实数m的值为( )
A.2或﹣1 B.﹣1 C.2 D.﹣2或1
答案: 解:由于幂函数
是减函数,故有
解得 m=﹣1, 故选:B.

高中数学北师大必修1课件:2.5 简单的幂函数共49页PPT

高中数学北师大必修1课件:2.5 简单的幂函数共49页PPT
高中数学北不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左

北师版数学高一北师大版必修一课件简单的幂函数

北师版数学高一北师大版必修一课件简单的幂函数

解析答案
3.函数f(x)=|x|+1是( B ) A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D.非奇非偶函数 解析 函数定义域为R,f(-x)=|-x|+1=f(x), 所以f(x)是偶函数,故选B.
12345
解析答案
12345
4.函数f(x)=ax2+bx+c是定义在实数集上的奇函数,则( C ) A.a=0,b≠0,c≠0 B.ac=0,b≠0 C.a=0,c=0,b取任意实数 D.a,b,c均可取任意实数 解析 函数f(x)的定义域为R,关于原点对称,又因函数是奇函数.所以 f(-x)=a(-x)2+b(-x)+c=-f(x)=-ax2-bx-c,从而得ax2+c=0, 又因为x可以取任意实数,所以a=0,c=0,b取任意实数,故选C.
解析答案
课堂小结 1.判断一个函数是不是幂函数应严格按其定义判断. 2.幂函数性质可以通过其图像研究,只需掌握α=1,2,3,12,-1这几种 情况即可,其他的不做研究. 3.判断函数的奇偶性的方法: (1)定义法; (2)图像法:若函数的图像关于原点对称,函数是奇函数;若函数的图 像关于y轴对称,函数是偶函数.
第二章 函 数
§5 简单的幂函数
学习 目标
1.了解幂函数的定义及几个常见的幂函数的图像与性质. 2.理解函数奇偶性及其几何意义,会判断函数的奇偶性.
栏目 索引
知识梳理 题型探究 当堂检测
自主学习 重点突破 自查自纠
知识梳理
自主学习
知识点一 幂函数的定义 如果一个函数, 底数 是自变量x, 指数 是常量α,即y=xα,这样的函数 称为幂函数.
D.f(x)=|x|(|x|-2)
解析 ∵f(x)在R上是偶函数,且x≥0时,f(x)=x2-2x, ∴当x<0时,-x>0,f(-x)=(-x)2+2x=x2+2x,

3.3 幂函数 课件(37张)

3.3 幂函数    课件(37张)

[教材提炼]
预习教材,思考问题
函数 f(x)=x、f(x)=x2、f(x)=1x,以前叫什么函数,它们有什么共同特征?
知识梳理 (1)一般地,函数__y_=__x_α__叫做幂函数(power function),其中 x 是自变量, α 是常数. (2)幂函数解析式的结构特征 ①指数为常数; ②底数是自变量,自变量的系数为 1; ③幂 xα 的系数为 1; ④只有 1 项.
若函数 f(x)=(2m+3)xm2-3 是幂函数,则 m 的值为( )
A.-1
B.0
C.1
D.2
解析:幂函数是形如 f(x)=xα 的函数,所以 2m+3=1,∴m=-1.
答案:A
探究二 幂函ቤተ መጻሕፍቲ ባይዱ的图象
[例 2] 幂函数 y=x2,y=x-1,y= 内的图象依次是图中的曲线( ) A.C2,C1,C3,C4 B.C4,C1,C3,C2 C.C3,C2,C1,C4 D.C1,C4,C2,C3
由题意得(a+
.
∵y= 在(-∞,0),(0,+∞)上均单调递减, ∴a+1>3-2a>0 或 0>a+1>3-2a 或 a+1<0<3-2a, 解得23<a<32或 a<-1.
利用幂函数解不等式的步骤 利用幂函数解不等式,实质是已知两个函数值的大小,判断自变量的大小,常与 幂函数的单调性、奇偶性等综合命题.求解步骤如下: (1)确定可以利用的幂函数; (2)借助相应的幂函数的单调性,将不等式的大小关系,转化为自变量的大小关系; (3)解不等式求参数范围,注意分类讨论思想的应用.
[解析] y= =3 x2≥0,故只有 D 中的图象适合. [答案] D
3.如果一个函数 f(x)在其定义域内对任意 x,y 都满足 fx+2 y≤12[f(x)+f(y)],则称这 个函数为下凸函数.下列函数:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档