常见曲线的切点弦方程49165
圆锥曲线切点弦方程的推导
![圆锥曲线切点弦方程的推导](https://img.taocdn.com/s3/m/06d9048929ea81c758f5f61fb7360b4c2e3f2aeb.png)
圆锥曲线切点弦方程的推导针对中学生《探索圆锥曲线切点弦方程的奇妙之旅》同学们,今天咱们一起来研究一个超有趣的数学问题——圆锥曲线切点弦方程的推导!想象一下,有一个圆圆的椭圆,就像一个压扁的足球。
假设在这个椭圆上有一个点,咱们就叫它“切点”吧。
从这个切点出发,咱们可以画一条切线。
比如说,有一个椭圆方程是\(x^2/4 + y^2/3 = 1\),在点\((1, \sqrt{3/2})\)处有一个切点。
那怎么求切线方程呢?咱们可以用一种巧妙的方法。
先对椭圆方程求导,得到一些关于斜率的信息,然后把切点的坐标代进去,就能求出切线的斜率啦。
求出切线后,再假设有另外一个点也在这条切线上,咱们就能得到切点弦方程啦!数学就是这么神奇,只要咱们用心去探索,就能发现其中的奥秘!《圆锥曲线切点弦方程:不再神秘》嘿,小伙伴们!咱们来聊聊圆锥曲线的切点弦方程,这可一点儿都不难!就拿抛物线来说吧,比如\(y^2 = 4x\)。
假如有个点\((1, 2)\)在上面是切点,那切线方程怎么来呢?其实啊,咱们可以先把抛物线方程变一变,变成\(y =2\sqrt{x}\),然后求导,算出在\(x = 1\)处的导数,这就是切线的斜率。
知道了斜率,再用点斜式就能写出切线方程。
如果再有其他点也在这条线上,那这一堆点形成的直线方程就是切点弦方程啦。
比如说,又有个点\((2, 2\sqrt{2})\)也在这条切线上,那咱们就能确定切点弦方程了。
是不是挺简单的?数学就是这么有趣!《轻松搞定圆锥曲线切点弦方程》同学们,别害怕圆锥曲线的切点弦方程,跟着我一起轻松搞定它!比如说有个双曲线\(x^2 y^2 = 1\),在点\((\sqrt{2}, 1)\)是切点。
咱们先把方程变形,然后求导。
求导就像是找一个密码,找到这个密码就能算出切线的斜率。
有了斜率,再用切点的坐标,就能写出切线方程。
如果还有好多点都在这条切线上,那这条线就是切点弦方程啦。
就像我们一起解谜一样,一步一步来,就能找到答案。
(整理版)求切点弦所在直线方程的多种方法
![(整理版)求切点弦所在直线方程的多种方法](https://img.taocdn.com/s3/m/896350656529647d2628525d.png)
求切点弦所在直线方程的多种方法在学习平面解析几何“直线与圆的方程〞一章时,我们会遇到求切点弦所在直线方程的问题,这类问题涉及到的知识点比拟多,让初学者感到费解,本文将从不同的角度来探讨它的求法。
1:圆O :x y r 222+=上一点M 〔x y 11,〕,那么以点M 为切点的圆的切线方程为x x y y r 112+=。
2:两相交圆O 1:x y D x E y F D E F 2211112121040++++=+->(),圆O x y D x E y D E F 2222222222040:+++=+->(),那么两圆的公共弦所在的直线方程为()()D D x E E y F F 2121210-+-+-=例:点P 〔x y 00,〕为圆O :x y r 222+=外一点,过点P 作圆的切线PM PM 12、,其中M M 12、为切点,求切点弦M M 12所在的直线方程。
解法1:由题意知PM OM PM OM 1122⊥⊥,所以,O 、M 1、P 、M 2四点共圆O ',且OP 为此圆的直径,即圆O ':()()()x x y y x y -+-=+020*********即x y x x y y 22000+--=又M M 12为圆O 、圆O '2知,切点弦M M 12所在直线方程为x x y y r 002+=。
解法2:设M x y M x y 111222(,),(,)1得,PM 1方程为x x yy r PM 1122+=,方程为x x y y r 222+=。
由P PM P PM ∈∈12,,可得x x y y r x x y y r 1010220202+=+=⎧⎨⎪⎩⎪, ∴M x y M x y 111222(,),(,)两点坐标都满足关于x y ,的二元一次方程x x y y r 002+=,而过M M 12、两点的直线有且只有一条,因此,切点弦M M 12所在直线方程为x x y y r 002+=。
过一点求曲线的切线方程的三种类型知识分享
![过一点求曲线的切线方程的三种类型知识分享](https://img.taocdn.com/s3/m/57aba4e43c1ec5da51e27051.png)
过一点求曲线的切线方程的三种类型过一点求曲线的切线方程的三种类型舒云水过一点求曲线的切线方程有三种不同的类型,下面举例说明.1•已知曲线y f(x)上一点P(x o,f(x o)),求曲线在该点处的切线方程.这是求曲线的切线方程的基本类型,课本上的例、习题都是这种类型•其求法为:先求出函数f(x)的导数f (x),再将x o代入f (x) 求出f (x o),即得切线的斜率,后写出切线方程y f(x o) = f (x o) (x x o),并化简.例1 求曲线f(x) x3 3x2 3在点P(1,1)处的切线方程.解:由题设知点P在曲线上,J y 3x2 6x,二曲线在点P(1,1)处的切线斜率为f (1) 3,所求的切线方程为y 1 3(x 1),即y 3x 4 •2.已知曲线y f(x) 上一点A(X1, f(xj),求过点A的曲线的切线方程.这种类型容易出错,一般学生误认为点A一定为切点,事实上可能存在过点A而点A不是切点的切线,如下面例2,这不同于以前学过的圆、椭圆等二次曲线的情况,要引起注意,这类题型的求法为:设切点为P(x o, f (x o)),先求出函数f (x)的导数f (x),再将x o代入 f (x)求出f (x o),即得切线的斜率(用x o表示),写出切线方程y f(x o) = f (x o) (x X o),再将点A坐标(X1,yJ代入切线方程得y i f (X o ) = f(X o) (X i X o),求出X o,最后将X o代入方程y f (X o) = f (X o) (X X o)求出切线方程.例2 求过曲线y X3 2X上的点(1,1)的切线方程.解:设切点为点(X o,X o32X o),y 3X2 2,切线斜率为3x。
22 ,切线方程为y (X o32X o) (3X o22)(X x°) •又知切线过点(1, 1),把它代入上述方程,得31 (X o 2X o) (3X o 2)(1 X o) •1解得X o 1,或X o •所求切线方程为y (1 2) (3 2)(X 1),或13 1 、y ( — 1) ( 2)(X-),即X y 2 0 ,或5X 4y 1 0 •8 4 2上面所求出的两条直线中,直线X y 2 O是以(1, 1)为切点的切线,而切线5X 4y 1 O并不以(1, 1)为切点,实际上它是经过了点(1,1)且以(1,7)为切点的直线,如下图所示•这说明过曲线上一点2 8的切线,该点未必是切点.3.已知曲线y f(x)外一点A(X1, f(xj),求过点A作的曲线的切线方程.这种类型的题目的解法同上面第二种类型.例3过原点0作曲线y x4 3x2 6的切线,求切线方程.(2009年全国卷I文21题改编)解:由题设知原点0不在曲线上,设切点坐标为P(X o,x。
曲线上一点的切线方程题目
![曲线上一点的切线方程题目](https://img.taocdn.com/s3/m/e2683f2e640e52ea551810a6f524ccbff121ca08.png)
曲线上一点的切线方程题目
曲线上一点的切线是数学中的重要概念。
在数学中,切线是指曲线上的一条直线,它与曲线相切于一个点。
切线的方程是指以切点为起点,斜率为曲线在该点的导数的直线方程。
设曲线为y=f(x),其中f(x)在点x=a处可导。
点P(a, f(a))为曲线上一点,P处的切线方程为y=f(a)+f'(a)(x-a)。
例如,对于曲线y=x^2,当x=2时,点P(2,4)在曲线上。
此时,f'(x)=2x,在x=2处f'(2)=4。
因此,点P处的切线方程为y=4+4(x-2),即y=4x-4。
切线方程在数学中有着广泛的应用。
例如,在物理学中,切线方程可以用于描述物体在某一瞬间的运动情况。
在工程和建筑领域中,切线方程可以用于计算建筑物或桥梁的斜率和角度。
在经济学中,切线方程可以用于计算某个企业在某个时间点的增长率。
总之,曲线上一点的切线方程是数学中的重要概念。
它不仅仅是一种数学方法,也是一种实用工具。
无论在数学、物理、工程、建筑、经济等领域,都有着广泛的应用。
因此,学习和掌握曲线上一点的切线方程是非常有意义的。
- 1 -。
切线方程和切点弦所在直线方程
![切线方程和切点弦所在直线方程](https://img.taocdn.com/s3/m/d68653a8f46527d3250ce04d.png)
(一)圆的切线方程1. 过圆上一点的圆的切线方程方法:设圆心为C ,切点为),(00y x P ,根据CP ⊥切线,便可得到切线的斜率,再根据“点斜式”,即可求出切线方程.【例1】过点)1,1(P 作圆2:22=+y x O 的切线l ,求l 的方程【例2】求过点)2,1(A 的圆9)1()1(:22=++-y x C 的切线l 的方程【推广结论】过圆222r y x =+上一点),(00y x A 的圆的切线方程为2. 过圆外一点的圆的切线方程方法:设出切线方程,由“圆心到切线的距离等于半径”,可解出斜率.注:先考虑切线的斜率是否存在!【例2】求过点)32-(,A 的圆9)1()1(:22=++-y x C 的切线l 的方程(二)圆的切点弦所在直线方程1. 什么叫“圆的切点弦”?如图,过圆C 外一点P 作圆C 的切线,切点为B A ,,则称“AB ”为圆C 的切点弦.2. 如何求“圆的切点弦”所在直线方程?以P 为圆心,PA (PB )为半径作圆P ,则AB 可以视为圆P 与圆C 的相交弦,于是我们只需求出圆P 的方程,再将它与圆C 的方程相减,即得直线AB 的方程.【例3】已知点)3,2(--P ,圆9)2()4(:22=-+-y x Q ,PB PA ,是圆Q 的切线,求直线AB 的方程.【例4】(山东高考)过点1)1()1,3(22=+-y x 作圆的两条切线,切点分别是B A ,,则直线AB 的方程是( )34 )( 034 )(032 )( 032 )(=-+=--=--=-+y x D y x C y x B y x A【例5】已知圆044222=---+y x y x 为,点)1,4(--P ,过点P 作圆的切线PB PA ,,求直线AB 的方程.。
圆锥曲线的切点弦方程及其应用
![圆锥曲线的切点弦方程及其应用](https://img.taocdn.com/s3/m/5ad17bfb541810a6f524ccbff121dd36a32dc4a1.png)
圆锥曲线的切点弦方程及其应用摘要:切点弦的问题是圆锥曲线中的重要内容之一,是近几年高考的热点考题,切点弦涉及到的问题,难度较大,技巧性强,计算繁琐,学生遇到此类问题较为棘手,束手无策,这里通过类比推理,探究其规律,掌握其性质,触类旁通,化繁就简,降低难度,进一步提高学习效率。
关键词:圆锥曲线;弦方程;应用1.内容解析1.切点弦的概念:过曲线C(圆,椭圆,双曲线,抛物线)外一点(对非封闭曲线是开口外一点)引两条切线,可以得到两个切点,连接切点即为切点弦。
2.微专题概述:圆锥曲线的切点弦方程是平面解析几何中的一类难点问题,围绕切点弦命制的解析几何试题具有内涵深刻、灵活多变的特点。
本专题在讲解一道课本习题即“过圆上一点圆的切线问题”的求解方法的基础上,立足学生思维的“最近发展区”,通过设置环环紧扣的问题串,最后得出椭圆、双曲线、抛物线的切点弦的一般性结论。
本微专题坚持“以小见大、微中知著”,最终达到启迪学生思维、开阔数学视野、培养类比归纳能力的目的;另一方面,客观题中熟练掌握切点弦方程结论,可以帮助学生有效简化解题过程、提高解题速度。
1.本专题所蕴含的数学思想方法及教学策略分析思想方法:数形结合思想、化归与转化思想、特殊与一般的思想教学策略:讲授法、分组讨论法、引导启示法立足高三年级学生实际、对基本概念和知识点采取讲授的方法;通过设置环环相扣的问题串,让学生分组讨论,教师引导实现同类知识的的迁移和整合归纳;注重问题串的整体性,在问题串的引领下,引导启示学生进行系列、连续的思维活动,使学生思维达到新高度。
1.教学目标1.知识与技能(1)掌握圆锥曲线在某点处的切点弦方程;(2)会用切点弦方程解决一些实际问题;(3)通过复习渗透数形结合、类比的思想,逐步培养学生分析问题和解决问题的能力。
2.过程与方法首先,通过对过圆上一点的圆的切线的求法的研究,进而设置一些列有较强逻辑关系的问题串,采取学生小组讨论法、教师启发引导法从而完成教学目标。
各种曲线方程大集合
![各种曲线方程大集合](https://img.taocdn.com/s3/m/8d094af555270722192ef7ea.png)
Pro/E 各种曲线方程集合: Pro/E 各种曲线方程集合1.碟形弹簧圓柱坐标方程:r = 5theta = t*3600z =(sin(3.5*theta-90))+24*t图12.葉形线.笛卡儿坐標标方程:a=10x=3*a*t/(1+(t^3))y=3*a*(t^2)/(1+(t^3))图2 3.螺旋线(Helical curve)圆柱坐标(cylindrical)方程:r=ttheta=10+t*(20*360)z=t*3图34.蝴蝶曲线球坐标方程:rho = 8 * ttheta = 360 * t * 4phi = -360 * t * 8图45.渐开线采用笛卡尔坐标系方程:r=1ang=360*ts=2*pi*r*tx0=s*cos(ang)y0=s*sin(ang)x=x0+s*sin(ang)y=y0-s*cos(ang)z=0图56.螺旋线.笛卡儿坐标方程:x = 4 * cos ( t *(5*360))y = 4 * sin ( t *(5*360))z = 10*t图67.对数曲线笛卡尔坐标系方程:z=0x = 10*ty = log(10*t+0.0001)图78.球面螺旋线采用球坐标系方程:rho=4theta=t*180phi=t*360*20图89.双弧外摆线卡迪尔坐标方程:l=2.5b=2.5x=3*b*cos(t*360)+l*cos(3*t*360)Y=3*b*sin(t*360)+l*sin(3*t*360)图910.星行线卡迪尔坐标方程:a=5x=a*(cos(t*360))^3y=a*(sin(t*360))^3图1011.心脏线圓柱坐标方程:a=10r=a*(1+cos(theta))theta=t*360图11 12.圆内螺旋线采用柱座标系方程:theta=t*360r=10+10*sin(6*theta)z=2*sin(6*theta)图1213.正弦曲线笛卡尔坐标系方程:x=50*ty=10*sin(t*360)z=0图1314.太阳线(这本来是做别的曲线的,结果做错了,就变成这样了)图1415.费马曲线(有点像螺纹线)数学方程:r*r = a*a*theta圓柱坐标方程1: theta=360*t*5a=4r=a*sqrt(theta*180/pi)方程2: theta=360*t*5a=4r=-a*sqrt(theta*180/pi)由于Pro/e只能做连续的曲线,所以只能分两次做图15 16.Talbot 曲线卡笛尔坐标方程:theta=t*360a=1.1b=0.666c=sin(theta)f=1x = (a*a+f*f*c*c)*cos(theta)/ay = (a*a-2*f+f*f*c*c)*sin(theta)/b图1617.4叶线(一个方程做的,没有复制)图1718.Rhodonea 曲线采用笛卡尔坐标系方程:theta=t*360*4x=25+(10-6)*cos(theta)+10*cos((10/6-1)*theta) y=25+(10-6)*sin(theta)-6*sin((10/6-1)*theta)图18 19. 抛物线笛卡儿坐标方程:x =(4 * t)y =(3 * t) + (5 * t ^2)z =0图1920.螺旋线圓柱坐标方程:r = 5theta = t*1800z =(cos(theta-90))+24*t图1920.螺旋线圓柱坐标方程:r = 5theta = t*1800z =(cos(theta-90))+24*t图2021.三叶线圆柱坐标方程:a=1theta=t*380b=sin(theta)r=a*cos(theta)*(4*b*b-1)圖2122.外摆线迪卡尔坐标方程:theta=t*720*5b=8a=5x=(a+b)*cos(theta)-b*cos((a/b+1)*theta)y=(a+b)*sin(theta)-b*sin((a/b+1)*theta)z=0图2223. Lissajous 曲线theta=t*360a=1b=1c=100n=3x=a*sin(n*theta+c)y=b*sin(theta)图2324.长短幅圆内旋轮线卡笛尔坐标方程:a=5b=7c=2.2theta=360*t*10x=(a-b)*cos(theta)+c*cos((a/b-1)*theta)y=(a-b)*sin(theta)-c*sin((a/b-1)*theta)图2425.长短幅圆外旋轮线卡笛尔坐标方程:theta=t*360*10a=5b=3c=5x=(a+b)*cos(theta)-c*cos((a/b+1)*theta)y=(a+b)*sin(theta)-c*sin((a/b+1)*theta)图25 26. 三尖瓣线a=10x = a*(2*cos(t*360)+cos(2*t*360))y = a*(2*sin(t*360)-sin(2*t*360))图2627.概率曲线!方程:笛卡儿坐标x = t*10-5y = exp(0-x^2)图2728.箕舌线笛卡儿坐标系a = 1x = -5 + t*10y = 8*a^3/(x^2+4*a^2)图2829.阿基米德螺线柱坐标a=100theta = t*400r = a*theta图29 30.对数螺线柱坐标theta = t*360*2.2a = 0.005r = exp(a*theta)图3031.蔓叶线笛卡儿坐标系a=10y=t*100-50solvex^3 = y^2*(2*a-x)for x图3132.tan曲线笛卡儿坐标系x = t*8.5 -4.25y = tan(x*20)图3233.双曲余弦x = 6*t-3y = (exp(x)+exp(0-x))/2图33 34.双曲正弦x = 6*t-3y = (exp(x)-exp(0-x))/2图3435.双曲正切x = 6*t-3y = (exp(x)-exp(0-x))/(exp(x)+exp(0-x))图3536.一峰三驻点曲线x = 3*t-1.5y=(x^2-1)^3+1图3637.八字曲线x = 2 * cos ( t *(2*180))y = 2 * sin ( t *(5*360))z = 0图3738.螺旋曲线r=t*(10*180)+1theta=10+t*(20*180)z=t图3839.圆x = cos ( t *(5*180))y = sin ( t *(5*180))z = 0图3940.封闭球形环绕曲线rho=2theta=360*tphi=t*360*10图4041.柱坐标螺旋曲线x = 100*t * cos ( t *(5*180))y = 100*t * sin ( t *(5*180))z = 042.蛇形曲线x = 2 * cos ( (t+1) *(2*180)) y = 2 * sin ( t *(5*360))z = t*(t+1)图4243.8字形曲线柱坐标theta = t*360r=10+(8*sin(theta))^2图4344.椭圆曲线笛卡尔坐标系a = 10b = 20theta = t*360x = a*cos(theta)y = b*sin(theta)图44 45.梅花曲线柱坐标theta = t*360r=10+(3*sin(theta*2.5))^2图4546.另一个花曲线theta = t*360r=10-(3*sin(theta*3))^2z=4*sin(theta*3)^2图4647.改一下就成为空间感更强的花曲线了;)theta = t*360r=10-(3*sin(theta*3))^2z=(r*sin(theta*3))^2图4748.螺旋上升的椭圆线a = 10b = 20theta = t*360*3x = a*cos(theta)y = b*sin(theta)z=t*12图48 49.甚至这种螺旋花曲线theta = t*360*4r=10+(3*sin(theta*2.5))^2z = t*16图49 50 鼓形线笛卡尔方程r=5+3.3*sin(t*180)+ttheta=t*360*10z=t*10图50 51 长命锁曲线笛卡尔方程:a=1*t*359.5b=q2*t*360c=q3*t*360rr1=w1rr2=w2rr3=w3x=rr1*cos(a)+rr2*cos(b)+rr3*cos(c)y=rr1*sin(a)+rr2*sin(b)+rr3*sin(c)图51 52 簪形线球坐标方程:rho=200*ttheta=900*tphi=t*90*10图5253.螺旋上升曲线r=t^10theta=t^3*360*6*3+t^3*360*3*3z=t^3*(t+1)图53 54.蘑菇曲线rho=t^3+t*(t+1)theta=t*360phi=t^2*360*20*20图5455. 8字曲线a=1b=1x=3*b*cos(t*360)+a*cos(3*t*360)Y=b*sin(t*360)+a*sin(3*t*360)图5556.梅花曲线theta=t*360r=100+50*cos(5*theta)z=2*cos(5*theta)图5657.桃形曲线rho=t^3+t*(t+1)theta=t*360phi=t^2*360*10*10图5758.名稱:碟形弹簧建立環境:pro/e圓柱坐r = 5theta = t*3600z =(sin(3.5*theta-90))+24图58。
二次曲线中点弦、切线、切点弦及双切线方程
![二次曲线中点弦、切线、切点弦及双切线方程](https://img.taocdn.com/s3/m/fd8b180fb7360b4c2e3f648a.png)
=(nla2 4-a;Ox;+(blb2+b A)《+
(aIb2+a2b1)XOYo一
[(alb2+a2b1)Yo+2ala2名o]名。一
[(aIb2+a2b1)茗o+2bIb2Yo]Yo,
且口A麟。算+A byoy=A似:+A 6_《.
从而,O;Xo髫+byoy=鲋j+6扼.
这说明,点M(戈。,Y。)关于双直线AC、
\ ∥~y /a。+2
O/
-x
/
都成等角.证明:这
图6
样的折线只能位于
抛物线对称轴的一侧.
(第22届全苏数学奥林匹克)
讲解:不妨设抛物线为Y=ax2(a>0).
依次取折线上三个相邻的顶点A;(并nax;)
(i=n,n+1,n+2,nE N).
由抛物线在点A。+。处的切线方程(或求
导数)可知其斜率
k七 l2j2:}2-ak=x^忌A+nl一, +l一An.++2.--=鼎掣叫=凸X(nX+n2+4"X石nn++I1)?).
即5菇一7y-鲁:o.
所以,Q也是MN的中点,即定点Q平分 线段MN.
注:从曲线的含变化参数的方程(实际
上就是曲线系方程)求出曲线上的定点,是
证明曲线过定点的常规方法.由于本题中的
切点弦MN只依赖点Jp的位置,因此,使用切
点弦方程正是时机.证明点Q平分线段MN
实际上是使用了同一法,同时也发挥了中点
弦方程的作用.
2009年第8期
7
二次曲线中点弦、切线、切点弦及双切线方程
胡圣团
(湖南省澧县一中,415500)
(本讲适合高中) 1知识简介
记G(x,Y)=Ax2+Bxy+Cy2+Dk+E|y+F 1.1二次曲线中点弦的方程
椭圆曲线“切点弦”的性质
![椭圆曲线“切点弦”的性质](https://img.taocdn.com/s3/m/cda9e3f9a5e9856a57126070.png)
椭圆曲线“切点弦”的性质_本人通过对椭圆曲线性质的研究,得出椭圆曲线切点弦的一条有趣的性质,现把它的探索过程写出来,与大家分享。
为了方便,不防从抛物线进行探究,然后再推广到其他椭圆曲线。
y2=2px的准线l上任意一点p作抛物线的两条切线,设切点分别为A、B,我们把线段AB称为切点弦,则切点弦AB必过定点所以切点弦AB所在的直线方程是tp=p(x-,即为抛物线y2=2px 的焦点探究1:如果性质1中直线L非抛物线的准线l,而是直线l:x=-c(c0),那么切点弦AB是否也具有类似的性质呢?自直线l:x=-c(c0)上任意一点p作抛物线y2=2px的两条切线,设切点分别为A、B,则切点弦AB必恒经过定点证明:设AB,P(c0)则经过点P的两条切线的方程是Ty1=p(x1-c)③,ty2=p(x2-c)④由③④得,显然AB都在直线ty=p(x-c)上,切点弦AB所在的直线的方程是ty=p(x-c)切点弦恒过定点显然性质1是性质2的特殊情形探究2:一般地,如果性质2中直线x=-c(c0)改为直线l:y=kx+b(其中k,b为常量),且l与抛物线y2=2px没有公共点,那么切点弦AB是否也具有类似的性质呢?若直线l:y=kx+b(其中k,b为常量),且l与抛物线y2=2px没有公共点,自直线l上任意一点P作抛物线的两条切线,设切点分别为A、B,那么切点弦AB恒过定点我们之所以假设直线l与抛物线没有公共点,是因为如果直线l 与抛物线相交,那么过l上任意一点并不总能作抛物线的切点;如果直线l与抛物线相切,那么切点弦显然恒过定点y=p(x+t)上,所以切点弦AB所在的直线的方程是y=p(x+t)k0,(y-k(p))=p(x-k(b)),所以切点弦AB恒过定点现在我们将抛物线切点弦的这条性质推广到椭圆和双曲线设直线l:y=kx+m(其中k,m为常量)与椭圆C:a2(x2)+b2(y2)=1没有公共点,直线l上任意一点p作椭圆C的两条切线,设切点分别为A、B则切点弦AB恒过定点,B,P(t,kt+m)同理可以得出:设直线l:y=kx+m(其中k,m为常量)与圆C:x2+y2=r2没有公共点,自直线l上任意一点P作椭圆C的两条切线,设切点分别为A、B,则切点弦AB恒过定点综上所述,我们得到椭圆曲线切点弦的性质如下:已知定直线l与椭圆曲线C没有公共点,自直线l上任意一点P作椭圆C的两条切线,设切点分别为A、B,则切点弦AB恒过定点。
高等数学曲线的切线方程
![高等数学曲线的切线方程](https://img.taocdn.com/s3/m/330032e685254b35eefdc8d376eeaeaad1f31614.png)
高等数学曲线的切线方程
在高等数学中,曲线的切线方程是一个非常重要的概念,在数学理解中应被熟练掌握。
切线是平面曲线在特定点上的切线,也就是切线方程在该点处的解析式。
切线方程的求解需要掌握求导和一些基本的几何概念。
首先来看一下什么是切线。
在欧几里得空间中,对于一条平面曲线,点的切线是曲线在该点附近的近似直线。
在微积分中,我们知道一条曲线在某个点处的导数描述了曲线在该点处的局部特征,而切线就是此点处的导数所对应的直线。
这也就是说,我们可以通过求导来求解曲线在某个点的切线方程。
具体来讲,求解切线方程的方法是求出曲线在该点处的导数,然后通过点斜式或斜截式的形式表示出切线。
举个例子,如果我们要求解曲线 $y=x^2$ 在点 $(1,1)$ 处的切线方程,我们首先需要求出曲线在该点处的导数,即 $f'(1)=2$,然后可以利用点斜式得出切线方程为 $y-1=2(x-1)$。
这个方程描述了曲线在点 $(1,1)$ 上的切线的形式。
需要指出的是,不是所有曲线都具有切线。
只有在该点处曲线存在关于导数的极限时,曲线才会有切线。
这个概念可以在微积分的学习中深入理解。
总的来说,曲线的切线方程是高等数学中一个非常重要的概念,对于解决各种计算问题有很大的指导意义。
通过对切线方程的理解和
计算,我们可以更好地掌握曲线在特定点处的变化规律,也可以在实
际问题中能够更为准确地描述曲线的性质。
所以,在学习高等数学时,应该认真掌握曲线的切线方程这一知识点。
【高考数学二轮复习大题讲义】第27讲 切点弦结论-解析版
![【高考数学二轮复习大题讲义】第27讲 切点弦结论-解析版](https://img.taocdn.com/s3/m/b41670093868011ca300a6c30c2259010202f333.png)
第27讲 切点弦结论平面内一点引曲线的两条切线,两切点所在直线的方程叫作曲线的切点弦方程,切点弦方程是解析几何中的热点问题,而切线往往和导函数相关,近几年高考数学的趋势也是把解析几何和导函数相结合作为压轴题,这类题目综合性强,难度一般较大,圆锥曲线的切线问题有两种处理思路:(1)导数法:将圆锥曲线方程化为函数y =f (x ),利用导数法求出函数y =f (x )在点(x 0,y 0)处的切线方程,特别是焦点在y 轴上的抛物线常用此法求切线.(2)判别式法:根据题中条件设出切线方程,将切线方程代入圆锥曲线方程,化为关于x (或y )的一元二次方程,利用切线与圆锥曲线相切的充要条件:判别式△=0,可解出切线方程.圆锥曲线的切线问题要根据曲线不同,选择不同的方法.下面介绍一些切线和切点弦相关的结论,来帮助快速解题.一、圆相关的切线结论结论一:点()00 M x y ,在圆222x y R +=上,过点M 作圆的切线方程为200x x y y R +=.结论二:点()00 M x y ,在圆222x y R +=外,过点M 作圆的两条切线,切点分别为 A B ,,则切点弦AB 的直线方程为200x x y y R +=.结论三:点()00 M x y ,在圆222x y R +=内,过点M 作圆的弦AB (不过圆心),分别过 A B ,作圆的切线,则两条切线的交点P 的轨迹方程为直线200x x y y R +=.证明:由上述结论二可得过() P P P x y ,的圆的切点弦AB 的直线方程为P P x x y y +=2R .又弦AB 过点()00 M x y ,,即0P x x +20P y y R =,则两条切线的交点P的轨迹方程为直线200x x y y R +=.二、一般圆相关的结论结论四:点()00 M x y ,在圆2()x a -+22()y b R -=上,过点M 作圆的切线方程为()()200()()x a x a y b y b R --+--=.结论五:点()00 M x y ,在圆2()x a -+22()y b R -=外,过点M 作圆的两条切线,切点分别为 A B ,,则切点弦AB 的直线方程为()()200()()x a x a y b y b R --+--=.结论六:点()00 M x y ,在圆2()x a -+22()y b R -=内,过点M 作圆的弦AB (不过圆心),分别过 A B ,作圆的切线,则两条切线的交点P 的轨迹方程为()0()x a x a --+()20()y b y b R --=.三、椭圆相关结论结论七:点()00 M x y ,在椭圆2222x y a b+=1(0)a b >>上,过点M 作椭圆的切线方程为00221x x y y ab+=.结论八:点()00 M x y ,在椭圆2222x y a b+=1(0)a b >>外,过点M 作椭圆的两条切线,切点分别为 A B ,,则切点弦AB 的直线方程为00221x x y y a b +=.结论九:点()00 M x y ,在椭圆2222x y a b+=1(0)a b >>内,过点M 作椭圆的弦AB (不过椭圆中心),分别过 A B ,作椭圆的切线,则两条切线的交点P 的轨迹方程为直线02x x a+021y y b=.证明:由上述结论八可得过() P P P x y ,的椭圆的切点弦AB 的直线方程为2P x x a +21P y y b =,又弦AB 过点()00 M x y ,,即02P x x a +021P y y b =,则两条切线的交点P的轨迹方程为直线00221x x y y ab+=.四、双曲线相关结论结论十:点()00 M x y ,在双曲线2222x y a b-=1(0 0)a b >>,上,过点M 作双曲线的切线方程为00221x x y y a b -=.结论十一:点()00 M x y ,在双曲线22x a-221(0 0)y a b b =>>,外,过点M 作双曲线的两条切线,切点分别为 A B ,,则切点弦AB 的直线方程为00221x x y y ab-=.结论十二:点()00 M x y ,在双曲线22x a-221(0 0)y a b b =>>,内,过点M 作双曲线的弦AB (不过双曲线中心),分别过 A B ,作双曲线的切线,则两条切线的交点P 的轨迹方程为直线00221x x y y ab-=.五、抛物线相关结论结论十三:点()00 M x y ,在抛物线2y =2(0)px p >上,过点M 作抛物线的切线方程为()00y y p x x =+.结论十四:点()00 M x y ,在抛物线2y =2(0)px p >外,过点M 作抛物线的两条切线,切点分别为 A B ,,则切点弦AB 的直线方程为()00y y p x x =+.结论十五:点()00 M x y ,在抛物线2y =2(0)px p >内,过点M 作抛物线的弦AB ,分别过 A B ,作抛物线的切线,则两条切线的交点P 的轨迹方程为直线()00y y p x x =+.切线方程问题【例1】若点()00 P x y ,为曲线22:43x y C +=1上任意一点.证明:直线00:34l x x y y +-120=与曲线C 恒有且只有一个公共点.【解析】证明:(1)当00y =时,由2200143x y +=可得02x =±.①当002 0x y ==,时,直线l 的方程为2x =,直线l 与曲线C 有且只有一个交点(2 0),.②当002,0x y =-=时,直线l 的方程为2x =-,直线l 与曲线C 有且只有一个交点( 2 0)-,.(2)当00y ≠时得001234x x y y -=,代入22143x y +=,消去y 整理得()22220000432448160yx x x x y +-+-=. ①由点()00 P x y ,为曲线C 上一点,故2200143x y +=,即22034120x y +-=, 于是方程①可以化简为202x x x -+20x =,解得0x x =.将0x x =代入001234x xy y -=得0y y =.说明直线与曲线有且只有一个交点()00 P x y ,. 综上,不论点P 在何位置,直线0:3l x x +04120y y -=与曲线C 恒有且只有一个交点,交点即()00 P x y ,.【例2】已知抛物线y 2=x 的焦点为F ,()()0000 M x y y ≠,为抛物线上一点. 证明:过M 点的切线万程为:0020x y y x -+=. 【解析】证明:由已知,切线的斜率存在且不等于0. 设过M 点的切线方程为0(y y k x -=-)0x , 则联立方程()002y y k x x y x⎧-=-⎪⎨=⎪⎩,消去x 化简可得2000ky y y kx -+-=. ∵直线与抛物线相切,则()00140k y kx ∆=-⋅-=,得2004410x k y k -+=,而点()()0000 M x y y ≠,为抛物线上点,则20y x =,代入可得22004410y k y k -+=,∴012k y =. ()00012y y x x y -=-,即02x y y -+00x =.用切点弦结论解决定点、定值问题【例1】已知椭圆22:16x E y +=,点P 为直线3x =上的动点,过P 作椭圆E 的两条切线,切点分别为 A B ,,求证:直线AB 过定点.【解析】证明:设切点为()()1222 A x y B x y ,,,,点(3 )P t ,. 由切线方程结论得直线AP 方程为1116x x y y +=,直线BP 方程为2216x xy y +=. 通过点1122316(3 ) 316x y t P t x y t ⋅⎧+=⎪⎪∴⎨⋅⎪+=⎪⎩,,,∴ A B ,满足方程:12x ty +=.∴直线AB 恒过点(2 0),.【例2】过椭圆2213:144x y C +=上异于其顶点的任一点Q .作圆224:3O x y +=的切线,切点分别为 ( M N M N ,,不在坐标轴上),若直线MN 的横纵截距分别为m n ,,求证:22113m n+为定值. 【解析】设点()00 Q x y ,,点()11 M x y ,,点()22 N x y ,,由 M N ,是切点可得101020204343x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩.∵两点唯一确定一条直线,∴直线004:3MN x x y y +=,即0014433x y x y +=⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭.由截距式可知0044 33m n x y ==,,()2222000622111999331616483x y x y m n∴+=⋅+=+. ∵Q 在椭圆1C 上,∴22034x y +=.()220022119334843x y m n ∴+=+=,即22113m n +为定值34. 用切点弦结论解决最值问题【例1】已知抛物线2y x =的焦点为F ,点()()0000 M x y y ≠,为抛物线上一点,过直线2x =-上一点N 作抛物线的两条切线,切点为 A B ,,求ABO ∆与AFO ∆(O 为抛物线的顶点)面积之和的最小值.【解析】设点()11 A x y ,,点()22 B x y ,.由切点弦结论可知切线NA 的方程为1120 x y y x NB -+=,的方程为22x y y -+20x =.设 NA NB ,均过 (2)N m -,,∴1122220220 my x my x --+=--+=,. 故AB 的方程为220x my --=,由此可得AB 恒过定点(20 )G ,.联立2220x my y x--=⎧⎪⎨=⎪⎩得22y my --20=,12122 2y y m y y +==-,.设10y >,则20y <,∴()1212ABO AFO S S OG y y ∆∆+=⋅-+()1121111122224OF y y y y ⨯⋅=⨯-+⨯=1298y y -1119292388y y y =+⋅=,当且仅当11928y y =,即143y =时,等号成立. ∴ABO AFO S S ∆∆+的最小值为3.【例2】如下图所示,过圆22:(2)E x y ++1=上任意一点G ,作抛物线2:4C x y =的两条切线12 l l ,,与抛物线相切于点 M N ,,与轴分别交于点 A B ,,求四边形ABNM 面积的最大值.【解析】设点()11 M x y ,,点()22 N x y ,,点()000[31] G x y y ∈--,,,.切线AM的方程为1122x x y y =+,切线BN 的方程为2222x x y y =+.点()00 G x y ,在两切线上,从而满足()()1010202022x x y y x x y y ⎧=+⎪⎨=+⎪⎩,因此切点弦MN 的方程为()002x x y y =+.直线MN 与抛物线24x y =进行方程联立并化简得200240x x x y -+=,从而12012024x x x x x y +=⎧⎨=⎩,且||MN ==点()00 G x y ,到直线MN 的距离为d =, 12GMN GABABNM S S S ∆∆∴=-=四边形.012y ⋅121222y y x x -()32200121424y x y x x =-+-()32200142x y =-+()20004x y y=-+()20073y y=---,当[ 3 1]y∈--,=133,2200073773924y y y⎛⎫---=-++⎪⎝⎭,当且仅当3y=-时,两个等号同时成立,∴四边形ABNM的最大值为用切点弦结论解决范围问题【例1】经过圆22:10O x y+=上一动点P作椭圆22:19xC y+=的两条切线,切点分别记为A B,,求AOB∆面积的取值范围.【解析】设点()11A x y,,点()22B x y,,则直线PA的方程为1119x xy y+=,直线PB的方程为2219x xy y+=.∵()00,P x y在直线PA PB,上,∴102010201 199x x x xy y y y+=+=,.∴直线AB的方程为019x xy y+=.由221919x xy yxy⎧+=⎪⎪⎨⎪+=⎪⎩,结合220010x y+=,利用220010x y=-,同时消0x y,得()2220008101881810y x x x y+-+-=,∴()24200188y y∆=+,∴12||AB x x=-==2281810yy+=+.又∵点O到直线AB的距离d==.228111||22810yS AB dy+=⋅=⋅⋅+99810y==+,又2010y,∴记[1 9]t,,∴993[6 10]102t St⎡⎤+∈⇒∈⎢⎥⎣⎦,,.【例2】以椭圆221:142x yC+=的长轴为直径作圆2C,过直线x=-点T,作圆2C的两条切线,设切点分别为A B,,到直线AB与椭圆1C文于不同的两点C D,,求||||ABCD的取值范围.【解析】由题意可得圆222:4C x y+=.设点()T t-,,点()11A x y,,点()22B x y,,由圆的性质可得直线11:4AT x x y y+=,直线2:BT x x+24y y=,代入()T t-,可得112244tyty⎧-+=⎪⎨-+=⎪⎩,∴点A B,满足方程40ty-+-=.则O到AB的距离O ABd-,∴||AB==下面计算||CD:联立方程()2222416824tyt y tyx y⎧-+=⎪⇒+--⎨+=⎪⎩160=.设点()33C x y,,点()44D x y,,3434228161616ty y y yt t∴+==-++,.∴()212248||16tCD y yt+=-=+,∴()22||16||48AB tCD t+==+22168tt++.不妨设28(8)m t m=+.||||ABCD=设118s sm⎛⎫=<⎪⎝⎭,||||ABCD∴=设3()112256f s s s=+-,21()1276808f s s s'=-=⇒=,∴()f s在18⎛⎫⎪⎝⎭,单调递增,()(1 2]f s∴∈,,即||(1||ABCD∈。
切点弦方程知识点归纳及应用技巧总结
![切点弦方程知识点归纳及应用技巧总结](https://img.taocdn.com/s3/m/55ceb373804d2b160a4ec017.png)
切点弦方程知识点归纳及应用技巧总结谢吉【摘要】切点弦方程是平面解析几何中的热点问题,求常见曲线的切点弦方程也成了近年来高考的热门题型。
随着导数的引入, 它的内涵更加深刻、题型更加丰富。
熟练掌握切点弦方程的基本知识点,熟记圆锥曲线切点弦的基本性质,巧妙的应用切点弦的几个定理,能够非常灵活的求出常见曲线的切点弦方程。
本文将会总结出常见曲线切点弦方程相关的知识点,探究圆锥曲线的基本性质,并对切点弦方程的相关定理及应用技巧做简要介绍,其目的在于说明运用此定理可以有效简化解题过程,提高解题速度,启迪思维开阔视野。
【关键词】:切点弦 圆锥曲线 1、常见曲线的切点弦知识点归纳 (1)圆的切点弦方程命题 1 过圆 C: x2+ y2= r2外一点M ( x0 , y0 ) 作圆的两条切线 MA 、MB ,则切点弦 AB 所在的直线方程为 x0x + y0 y = r2证明: 因为 OA ⊥ MA , O B ⊥ MB, 所以,O 、 A 、 M 、 B 四点落在以 O M 为直径的圆x ( x - x0 ) + y ( y - y0 ) = 0上, 它与圆 C 的公共弦即为 AB 。
两圆方程相减, 得切点弦 AB 所在的直线方程为x0 x + y0y = r2 (2) 椭圆的切点弦方程命题 2 过椭圆 C:12222=+b y a x 外一点M ( x0 , y0 ) 作椭圆的两条切线 MA 、 MB ,则切点弦 AB 所在的直线方程为12020=+b yy a x x 。
证明: 设 A ( x1 , y1 ) 、 B ( x2 , y2 ) ,将方程12222=+b y a x 两边对 x 求导得122'22=+y b y a x 。
于是, 切线 MA 的方程为y - y1 =)(11212x x y a x b --,即0)()(121121=-+-y y b y x x a x 化简得:1:2121=+b y y a x x L MA ,特别地, 当 y1 = 0 时, 上式也成立。
二次曲线中点弦_切线_切点弦及双切线方程
![二次曲线中点弦_切线_切点弦及双切线方程](https://img.taocdn.com/s3/m/a58bfe0203d8ce2f00662307.png)
相交 ,当 0 < t < 1 时 , 圆 ( x - 1 ) 2 + y2 = 1 是
△PB C 的旁切圆 ,所以 , t > 1.
于是 , yB
=1
t +
, t
yC
=t 1-
, t
BC
= 1
t+t
1
t -
t
=
2 t2 t2 -
. 1
故
S△PB C
=
1 2
B
C
|
xP
|
=
1 2
· 2 t2 t2 -
中心 , F为焦点 ,
P 为椭圆上的一
点 , CD 为 通 过
O 的弦且平行
于过 P 的切线 ,
直线 PF 与 CD
(或 其 延 长 线 )
图4
交于点 Q. 证明
或否定 PQ =OA =OB.
讲解 :设椭圆方程为
x2 a2
+
y2 b2
=1
( a > b >0).
设 P ( acosθ, bsinθ) . 则过点 P的椭圆的
y
+ 2
xy0
+ Cy0 y +
D·x0 + x + E·y0 + y + F
2
= 0 ( ≠0) .
2
2
把双切线交点 P0 ( x0 , y0 )代入上述方程
8
可以确定 ,进而求出双切线方程.
2 四种方程的应用
例 1 如
图 1, P 是抛物
线 y2 = 2x上的
动 点 , 点 B、C
在 y 轴上, 圆
切点弦方程知识点归纳及应用技巧总结
![切点弦方程知识点归纳及应用技巧总结](https://img.taocdn.com/s3/m/d6dc5ac2168884868662d684.png)
切点弦方程知识点归纳及应用技巧总结谢吉【摘要】 切点弦方程是平面解析几何中的热点问题,求常见曲线的切点弦方程也成 了近年来高考的热门题型。
随着导数的引入 , 它的内涵更加深刻、题型更加丰富 熟练掌握切点弦方程的基本知识点,熟记圆锥曲线切点弦的基本性质,巧妙的应用 切点弦的几个定理,能够非常灵活的求出常见曲线的切点弦方程。
本文将会总结出 常见曲线切点弦方程相关的知识点,探究圆锥曲线的基本性质,并对切点弦方程的 相关定理及应用技巧做简要介绍,其目的在于说明运用此定理可以有效简化解题过 程,提高解题速度,启迪思维开阔视野。
【关键词】:切点弦 圆锥曲线 1、常见曲线的切点弦知识点归纳 (1)圆的切点弦方程命题 1 过圆 C: x2+ y2= r2 外一点 M ( x0 , y0 ) 作圆的两条切线 MA 、MB , 则切点弦 AB 所在的直线方程为 x0x + y0 y = r2证明: 因为 OA MA , O B MB, 所以,O 、 A 、 M 、 B 四点落在以 O M 为 直径的圆 x ( x - x0 ) + y ( y - y0 ) = 0 上 , 它与圆 C 的公共弦即为 AB 。
两圆方程相减 , 得切点弦 AB 所在的直线方程为 x0 x + y0y = r2 (2) 椭圆的切点弦方程x0x y0y12 21MB ,则切点弦 AB 所在的直线方程为 a 2b 2也成立。
L : x 2x y2 y1MB 2 2a b 。
x1x 0 y 1y 0 1, x 2x 0 y 2y0 1 22 2 2又 M( x 0 , y 0 ) 在直线 MA 、 MB 上 , 则 a 2b 2a 2b2命题 22 x 2 过椭圆 C: a 22b y21外一点M ( x0 , y0 )作椭圆的两条切线 MA 、证明: 设 A ( x1 , y1 )、 B ( x2 , y2 ),将方程 2x 2a2y2212b 2两边对 x 求导2x 2 22y y '1a 2b 2。
(2021年整理)圆锥曲线的切线方程和切点弦方程
![(2021年整理)圆锥曲线的切线方程和切点弦方程](https://img.taocdn.com/s3/m/da52f71b2cc58bd63086bd1f.png)
(完整)圆锥曲线的切线方程和切点弦方程编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)圆锥曲线的切线方程和切点弦方程)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)圆锥曲线的切线方程和切点弦方程的全部内容。
课题:圆锥曲线的切线方程和切点弦方程主讲人: 安庆一中 李治国 教学目标:(1)。
掌握圆锥曲线在某点处的切线方程及切点弦方程。
(2).会用切线方程及切点弦方程解决一些问题.(3)通过复习渗透数形结合、类比的思想,逐步培养学生分析问题和解决问题的能力。
(4) 掌握曲线与方程的关系。
教学重点:切线方程及切点弦方程的应用教学难点:如何恰当使用切线方程及切点弦方程教学过程:1. 引入: 通过09年安徽省高考题及近几年各省考察圆锥曲线的实例引出本节课。
2. 知识点回顾:1. 2。
3。
4.圆锥曲线切线的几个性质:22200(,)x y r M x y +=过圆 上一点 的切线方程:200xx yy r +=00221xx yy a b +=220022(,)1x y P x y a b+=设为椭圆上的点,则过该点的切线方程为:220022(,)1x y P x y a b -=设为双曲线上的点,则过该点的切线方程为:00221xx yy a b-=00(,)2P x y px =2设为抛物线y 上的点,则过该点的切线方程为:00()yy p x x =+性质1 过椭圆的准线与其长轴所在直线的交点作椭圆的两条切线,则切点弦长等于该椭圆的通径.同理:双曲线,抛物线也有类似的性质性质2 过椭圆的焦点F 1的直线交椭圆于A ,B 两点,过A ,B 两点作椭圆的切线交于点P ,则P 点的轨迹是焦点 的对应的准线,并且同理:双曲线,抛物线也有类似的性质3. 例题精讲:练习1: 抛物线 与直线 围成的封闭的图形的面积为 ,若直线l 与抛物线相切,且平行于直线 ,则直线l 的方程为例1: 设抛物线 的焦点为F,动点P 在直线上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点。