如何训练分类器

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如何用OpenCV训练自己的分类器

另:英文说明http://se.cs.ait.ac.th/cvwiki/opencv:tutorial:haartraining

最近要做一个性别识别的项目,在人脸检测与五官定位上我采用OPENCV的haartraining 进行定位,这里介绍下这两天我学习的如何用opencv训练自己的分类器。在这两天的学习里,我遇到了不少问题,不过我遇到了几个好心的大侠帮我解决了不少问题,特别是无忌,在这里我再次感谢他的帮助。

一、简介

目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善。该方法的基本步骤为:首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类器训练,得到一个级联的boosted分类器。

分类器中的"级联"是指最终的分类器是由几个简单分类器级联组成。在图像检测中,被检窗口依次通过每一级分类器,这样在前面几层的检测中大部分的候选区域就被排除了,全部通过每一级分类器检测的区域即为目标区域。

分类器训练完以后,就可以应用于输入图像中的感兴趣区域的检测。检测到目标区域分类器输出为1,否则输出为0。为了检测整副图像,可以在图像中移动搜索窗口,检测每一个位置来确定可能的目标。为了搜索不同大小的目标物体,分类器被设计为可以进行尺寸改变,这样比改变待检图像的尺寸大小更为有效。所以,为了在图像中检测未知大小的目标物体,扫描程序通常需要用不同比例大小的搜索窗口对图片进行几次扫描。

目前支持这种分类器的boosting技术有四种:Discrete Adaboost, Real Adaboost, Gentle Adaboost and Logitboost。

"boosted" 即指级联分类器的每一层都可以从中选取一个boosting算法(权重投票),并利用基础分类器的自我训练得到。

根据上面的分析,目标检测分为三个步骤:

1、样本的创建

2、训练分类器

3、利用训练好的分类器进行目标检测。

二、样本创建

训练样本分为正例样本和反例样本,其中正例样本是指待检目标样本,反例样本指其它任意图片。

负样本

负样本可以来自于任意的图片,但这些图片不能包含目标特征。负样本由背景描述文件来描述。背景描述文件是一个文本文件,每一行包含了一个负样本图片的文件名(基于描述文件的相对路径)。该文件创建方法如下:

采用Dos命令生成样本描述文件。具体方法是在Dos下的进入你的图片目录,比如我的图片放在D:\face\posdata下,则:

按Ctrl+R打开Windows运行程序,输入cmd打开DOS命令窗口,输入d:回车,再输入cd D:\face\negdata进入图片路径,再次输入dir /b > negdata.dat,则会图片路径下生成一个negdata.dat文件,打开该文件将最后一行的negdata.dat删除,这样就生成了负样本描述文件。dos命令窗口结果如下图:

正样本

对于正样本,通常的做法是先把所有正样本裁切好,并对尺寸做规整(即缩放至指定大小),如下图所示:

由于HaarTraining训练时输入的正样本是vec文件,所以需要使用OpenCV自带的CreateSamples程序(在你所按照的opencv\bin下,如果没有需要编译

opencv\apps\HaarTraining\make下的.dsw文件,注意要编译release版的)将准备好的正样本转换为vec文件。转换的步骤如下:

1) 制作一个正样本描述文件,用于描述正样本文件名(包括绝对路径或相对路径),正样本数目以及各正样本在图片中的位置和大小。典型的正样本描述文件如下:

posdata/1(10).bmp 1 1 1 23 23

posdata/1(11).bmp 1 1 1 23 23

posdata/1(12).bmp 1 1 1 23 23

不过你可以把描述文件放在你的posdata路径(即正样本路径)下,这样你就不需要加前面的相对路径了。同样它的生成方式可以用负样本描述文件的生成方法,最后用txt的替换工具将“bmp”全部替换成“bmp 1 1 1 23 23

”就可以了,如果你的样本图片多,用txt替换会导致程序未响应,你可以将内容拷到word 下替换,然后再拷回来。bmp后面那五个数字分别表示图片个数,目标的起始位置及其宽高。这样就生成了正样本描述文件posdata.dat。

2) 运行CreateSamples程序。如果直接在VC环境下运行,可以在Project\Settings\Debug 属性页的Program arguments栏设置运行参数。下面是一个运行参数示例:

-info D:\face\posdata\posdata.dat -vec D:\face\pos.vec -num 50 -w 20 -h 20

表示有50个样本,样本宽20,高20,正样本描述文件为posdata.dat,结果输出到pos.vec。或者在dos下输入:

"D:\Program Files\OpenCV\bin\createsamples.exe" -info "posdata\posdata.dat" -vec data\pos.vec -num 50 -w 20 -h 20

运行完了会d:\face\data下生成一个*.vec的文件。该文件包含正样本数目,宽高以及所有样本图像数据。结果入下图:

Createsamples程序的命令行参数:

命令行参数:

-vec

训练好的正样本的输出文件名。

-img

源目标图片(例如:一个公司图标)

-bg

背景描述文件。

-num

要产生的正样本的数量,和正样本图片数目相同。

-bgcolor

背景色(假定当前图片为灰度图)。背景色制定了透明色。对于压缩图片,颜色方差量由bgthresh参数来指定。则在bgcolor-bgthresh和bgcolor+bgthresh中间的像素被认为是透明的。

-bgthresh

-inv

如果指定,颜色会反色

相关文档
最新文档