实验二 进程调度

实验二 进程调度
实验二 进程调度

实验一 进程调度

一、 实验目的

多道程序设计中,经常是若干个进程同时处于就绪状态,必须依照某种策略来决定那个进程优先占有处理机。因而引起进程调度。本实验模拟在单处理机情况下的处理机调度问题,加深对进程调度的理解。

二、 实验要求

1. 设计进程调度算法,进程数不定

2. 包含几种调度算法,并加以实现

3. 输出进程的调度过程——进程的状态、链表等。

三、 参考例

1.题目——优先权法、轮转法

简化假设

1) 进程为计算型的(无I/O )

2) 进程状态:ready 、running 、finish

3) 进程需要的CPU 时间以时间片为单位确定

2.算法描述

1) 优先权法——动态优先权

当前运行进程用完时间片后,其优先权减去一个常数。

2) 轮转法

四、 实验流程图 开始 键盘输入进程数n ,和调度方法的选择 优先权法? 轮转法

产生n 个进程,对每个进程产生一个PCB ,并用

随机数产生进程的优先权及进程所需的CPU 时间

按优先权大小,把n 个进程拉成一个就绪队列

撤销进程就绪队列为空?

结束 N Y

Y

注意:

1.产生的各种随机数的取值范围加以限制,如所需的CPU 时间限制在1~20之间。

2.进程数n 不要太大通常取4~8个

3.使用动态数据结构

4.独立编程

5.至少三种调度算法

6.若有可能请在图形方式下,将PCB 的调度用图形成动画显示。

五.实验过程:

(1)输入:进程流文件(1.txt ),其中存储的是一系列要执行的进程, 每个作业包括四个数据项:

进程名 进程状态(1就绪 2等待 3运行) 所需时间 优先数(0级最高)

进程0 1 50 2

进程1 2 10 4

进程2 1 15 0

进程3 3 28 5

进程4 2 19 1

进程5 3 8 7

输出: 进程执行流等待时间,平均等待时间

本程序包括:FIFO 算法,优先数调度算法,时间片轮转调度算法

产生n

需的时间片数,已占用CPU 的时间片数置为0

按进程产生的先后次序拉成就绪队列链

=0? 撤销该进程

就绪队列为空吗? =轮转时间片数?

N

Y Y

Y 结束 N

(2)程序代码

#include

#include

#include

const int block_time=10; //定义时间片的长度为10秒const int MAXPCB=100; //定义最大进程数

//定义进程结构体

typedef struct node

{

char name[20];

int status;

int time;

int privilege;

int finished;

int wait_time; }pcb;

pcb pcbs[MAXPCB];

int quantity;

//初始化函数

void initial()

{

int i;

for(i=0;i

{

strcpy(pcbs[i].name,"");

pcbs[i].status=0;

pcbs[i].time=0;

pcbs[i].privilege=0;

pcbs[i].finished=0;

pcbs[i].wait_time=0;

}

quantity=0;

}

//读数据函数

int readData()

{

FILE *fp;

char fname[20];

int i;

cout<<"请输入进程流文件名:";

cin>>fname;

if((fp=fopen(fname,"r"))==NULL)

{

cout<<"错误,文件打不开,请检查文件名"<

}

else

{

while(!feof(fp))

{

fscanf(fp,"%s %d %d %d",pcbs[quantity].name,&pcbs[quantity].status,

&pcbs[quantity].time,&pcbs[quantity].privilege);

quantity++;

} //输出所读入的数据

cout<<"输出所读入的数据"<

cout<<"进程名进程状态所需时间优先数"<

for(i=0;i

{

cout<<" "<

}

return(1);

}

return(0);

}

//重置数据,以供另一个算法使用

void init()

{

int i;

for(i=0;i

{

pcbs[i].finished=0; pcbs[i].wait_time=0;

}

}

//先进先出算法

void FIFO()

{

int i,j; int total;

//输出FIFO算法执行流

cout<

cout<<"FIFO算法执行流:"<

for(i=0;i

{

cout<<" "<

for(j=i+1;j

{ pcbs[j].wait_time+=pcbs[i].time; }

}

total=0;

for(i=0;i

{ total+=pcbs[i].wait_time; }

cout<<"总等待时间:"<

}

//优先数调度算法

void privilege()

{

int i,j,p;

int passed_time=0;

int total;

int queue[MAXPCB];

int current_privilege=1000;

for(i=0;i

{

current_privilege=1000;

for(j=0;j

{

if((pcbs[j].finished==0)&&(pcbs[j].privilege

{ p=j;

current_privilege=pcbs[j].privilege;

}

}

queue[i]=p;

pcbs[p].finished=1;

pcbs[p].wait_time+=passed_time;

passed_time+=pcbs[p].time;

}

//输出优先数调度执行流

cout<

cout<<"优先数调度执行流:"<

cout<<"进程名等待时间"<

for(i=0;i

{

cout<<" "<

}

total=0;

for(i=0;i

{ total+=pcbs[i].wait_time; }

cout<<"总等待时间:"<

}

//时间片轮转调度算法

void timer()

{

int i,j,number,flag=1;

int passed_time=0;

int max_time=0;

int round=0;

int queue[1000];

int total=0;

while(flag==1)

{

flag=0;

number=0;

for(i=0;i

{

if(pcbs[i].finished==0)

{ number++; j=i; }

}

if(number==1)

{ queue[total]=j; total++; pcbs[j].finished=1; }

if(number>1)

{

for(i=0;i

{

if(pcbs[i].finished==0)

{ flag=1;

queue[total]=i;

total++;

if(pcbs[i].time<=block_time*(round+1))

{

pcbs[i].finished=1;

}

}

}

}

round++;

}

if(queue[total-1]==queue[total-2])

{ total--; }

cout<

cout<<"时间片轮转调度执行流:"<

for(i=0;i

{

cout<

cout<

}

}

//显示

void version()

{

cout<<" /********************* 进程调度********************/";

cout<

//主函数

void main()

{

int flag;

version();

initial();

flag=readData();

if(flag==1)

{ FIFO();

init();

privilege();

init();

timer();

}

}

(3)运行结果:

输入进程流文件名1.txt即可得出以下输出结果:

实验一进程调度实验报告书

淮海工学院计算机工程学院实验报告书 课程名:《操作系统原理A》 题目:进程调度 班级:软件132 学号:2013122907 姓名:孙莹莹

操作系统原理实验——进程调度实验报告 一、目的与要求 1)进程是操作系统最重要的概念之一,进程调度是操作系统内核的重要功能,本实验要求用C 语言编写一个进程调度模拟程序,使用优先级或时间片轮转法实现进程调度。本实验可加深对进程调度算法的理解。 2)按照实验题目要求独立正确地完成实验内容(编写、调试算法程序,提交程序清单及及相关实验数据与运行结果) 3)于2015年4月18日以前提交本次实验报告(含电子和纸质报告,由学习委员以班为单位统一打包提交)。 二、实验内容或题目 1)设计有5个进程并发执行的模拟调度程序,每个程序由一个PCB表示。 2)模拟调度程序可任选两种调度算法之一实现(有能力的同学可同时实现两个调度算法)。 3)程序执行中应能在屏幕上显示出各进程的状态变化,以便于观察调度的整个过程。 4)本次实验内容(项目)的详细说明以及要求请参见实验指导书。 三、实验步骤与源程序 (1)流程图

(2)实验步骤 1)PCB的结构:优先级算法中,设PCB的结构如下图所示,其中各数据项的含义如下: Id:进程标识符号,取值1—5。 Priority:优先级,随机产生,范围1—5。 Used:目前已占用的CPU时间数,初值为0;当该进程被调用执行时,每执行一个时间片,Used加1。 Need:进程尚需的CPU时间数,初值表示该进程需要运行的总时间,取值范围为5—10。并随机产生,每运行一个时间片need减1;need为0则进程结束。 Status:进程状态R(运行),W(就绪),F(完成);初始时都处于就绪状态。 Next:指向就绪队列中下一个进程的PCB的指针。 2)初始状态及就绪队列组织: 5个进程初始都处于就绪状态,进程标识1—5,used初值都为0。各进程的优先级随机产生,范围1—5。处于就绪状态的进程,用队列加以组织,队列按优先级由高到低依次排列,队首指针设为head,队尾指针为tail。 3)调度原则以及运行时间的处理: 正在执行的进程每执行一个时间片,其优先级减1(允许优先级为负)。进程调度将在以下情况发生:当正在运行的程序其优先级小于就绪队列队首进程的优先级时。程序中进程的运行时间以逻辑时间片为单位。

进程调度程序设计报告(源代码)资料

课程设计报告 题 目 进程调度程序设计 课 程 名 称 操作系统课程设计 院 部 名 称 计算机工程学院 专 业 计算机科学与技术 班 级 13计算机科学与技术(单)(1) 学 生 姓 名 周敏健 学 号 1305201013 课程设计地点 A104 课程设计学时 20学时 指 导 教 师 何 健 金陵科技学院教务处制 成绩

目录 摘要 (3) 一、课程设计的目的和要求 (4) 二、系统需求分析 (4) 三、总体设计 (5) 四、详细设计 (6) 五、测试、调试过程 (9) 六、结论与体会 (11) 七、参考文献 (12) 附录:源程序 (12)

课程设计课题 进程调度程序设计 摘要 在多道系统中,对批处理作业需要进行作业调度。作业调度是在资源满足的条件下,将处于就绪状态的作业调入内存,同时生成与作业相对应的进程,并未这些进程提供所需要的资源。进程调度需要根据进程控制块(PCB)中的信息,检查系统是否满足进程的资源需求。只有在满足进程的资源需求的情况下,系统才能进行进程调度。下面是几种常见的作业调度算法:先来先服务(FCFS)、优先算法、轮换算法、短作业优先算法以及最高响应比优先法等,本文将对前两种算法进行详细的介绍。 关键词:进程调度,优先级,FCFS,PCB,作业,资源

一、课程设计的目的和要求 1、目的 进程调度是处理机管理的核心内容。本设计要求用C语言编写和调试一个简单的进程调度程序。通过设计本可以加深理解有关进程控制块、进程队列的概念,并体会和了解最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法的具体实施办法。 2、要求 1)进程调度算法:采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法。 2)每个进程有一个进程控制块(PCB)表示。进程控制块可以包含如下信息:进程名、优先数、到达时间、需要运行时间、已用CPU时间、进程状态等等。 3)进程的优先数及需要的运行时间可以事先人为地指定(也可以由随机数产生)。进程的到达时间为进程输入的时间。进程的运行时间以时间片为单位进行计算。 4)每个进程的状态可以是就绪W(Wait)、运行R(Run)、或完成F(Finish)三种状态之一。 5)就绪进程获得CPU后都只能运行一个时间片。用已占用CPU时间加1来表示。如果运行一个时间片后,进程的已占用CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减1(即降低一级),然后把它插入就绪队列等待CPU。 6)每进行一次调度程序都打印一次运行进程、就绪队列、以及各个进程的PCB,以便进行检查。 7)重复以上过程,直到所要进程都完成为止。 二、系统需求分析 编写一个模拟进程调度的程序,将每个进程抽象成一个进程控制块PCB,PCB 用一个结构体描述。 采用两种不同的调度算法来实现功能,主要有如下几大功能模块组成。 (1)创建优先数PCB模块

操作系统实验报告--实验一--进程管理

实验一进程管理 一、目的 进程调度是处理机管理的核心内容。本实验要求编写和调试一个简单的进程调度程序。通过本实验加深理解有关进程控制块、进程队列的概念,并体会和了解进程调度算法的具体实施办法。 二、实验内容及要求 1、设计进程控制块PCB的结构(PCB结构通常包括以下信息:进程名(进程ID)、进程优先数、轮转时间片、进程所占用的CPU时间、进程的状态、当前队列指针等。可根据实验的不同,PCB结构的内容可以作适当的增删)。为了便于处理,程序中的某进程运行时间以时间片为单位计算。各进程的轮转时间数以及进程需运行的时间片数的初始值均由用户给定。 2、系统资源(r1…r w),共有w类,每类数目为r1…r w。随机产生n进程P i(id,s(j,k),t),0<=i<=n,0<=j<=m,0<=k<=dt为总运行时间,在运行过程中,会随机申请新的资源。 3、每个进程可有三个状态(即就绪状态W、运行状态R、等待或阻塞状态B),并假设初始状态为就绪状态。建立进程就绪队列。 4、编制进程调度算法:时间片轮转调度算法 本程序用该算法对n个进程进行调度,进程每执行一次,CPU时间片数加1,进程还需要的时间片数减1。在调度算法中,采用固定时间片(即:每执行一次进程,该进程的执行时间片数为已执行了1个单位),这时,CPU时间片数加1,进程还需要的时间片数减1,并排列到就绪队列的尾上。 三、实验环境 操作系统环境:Windows系统。 编程语言:C#。 四、实验思路和设计 1、程序流程图

2、主要程序代码 //PCB结构体 struct pcb { public int id; //进程ID public int ra; //所需资源A的数量 public int rb; //所需资源B的数量 public int rc; //所需资源C的数量 public int ntime; //所需的时间片个数 public int rtime; //已经运行的时间片个数 public char state; //进程状态,W(等待)、R(运行)、B(阻塞) //public int next; } ArrayList hready = new ArrayList(); ArrayList hblock = new ArrayList(); Random random = new Random(); //ArrayList p = new ArrayList(); int m, n, r, a,a1, b,b1, c,c1, h = 0, i = 1, time1Inteval;//m为要模拟的进程个数,n为初始化进程个数 //r为可随机产生的进程数(r=m-n) //a,b,c分别为A,B,C三类资源的总量 //i为进城计数,i=1…n //h为运行的时间片次数,time1Inteval为时间片大小(毫秒) //对进程进行初始化,建立就绪数组、阻塞数组。 public void input()//对进程进行初始化,建立就绪队列、阻塞队列 { m = int.Parse(textBox4.Text); n = int.Parse(textBox5.Text); a = int.Parse(textBox6.Text); b = int.Parse(textBox7.Text); c = int.Parse(textBox8.Text); a1 = a; b1 = b; c1 = c; r = m - n; time1Inteval = int.Parse(textBox9.Text); timer1.Interval = time1Inteval; for (i = 1; i <= n; i++) { pcb jincheng = new pcb(); jincheng.id = i; jincheng.ra = (random.Next(a) + 1); jincheng.rb = (random.Next(b) + 1); jincheng.rc = (random.Next(c) + 1); jincheng.ntime = (random.Next(1, 5)); jincheng.rtime = 0;

实验21 进程调度

实验2、1 进程调度 一、 实验目的 多道程序设计中,经常就是若干个进程同时处于就绪状态,必须依照某种策略来决定那个进程优先占有处理机。因而引起进程调度。本实验模拟在单处理机情况下的处理机调度问题,加深对进程调度的理解。 二、 实验要求 1. 设计进程调度算法,进程数不定 2. 包含几种调度算法,并加以实现 3. 输出进程的调度过程——进程的状态、链表等。 三、 参考例 1.题目——优先权法、轮转法 简化假设 1) 进程为计算型的(无I/O) 2) 进程状态:ready 、running 、finish 3) 进程需要的CPU 时间以时间片为单位确定 2.算法描述 1) 优先权法——动态优先权 当前运行进程用完时间片后,其优先权减去一个常数。 2) 轮转法 四、 实验流程图 开始 键盘输入进程数n,与调度方法的选择 优先权法? 轮转法 产生n 个进程,对每个进程产生一个PCB,并用随机数产生进程的优先权及进程所需的CPU 时间 按优先权大小,把n 个进程拉成一个就绪队列 撤销进程就绪队列为空? 结束 N Y Y

注意: 1.产生的各种随机数的取值范围加以限制,如所需的CPU 时间限制在1~20之间。 2.进程数n 不要太大通常取4~8个 3.使用动态数据结构 4.独立编程 5.至少三种调度算法 6.若有可能请在图形方式下,将PCB 的调度用图形成动画显示。 五.实验过程: (1)输入:进程流文件(1、txt),其中存储的就是一系列要执行的进程, 每个作业包括四个数据项: 进程名 进程状态(1就绪 2等待 3运行) 所需时间 优先数(0级最高) 进程0 1 50 2 进程1 2 10 4 进程2 1 15 0 进程3 3 28 5 进程4 2 19 1 进程5 3 8 7 输出: 进程执行流等待时间,平均等待时间 本程序包括:FIFO 算法,优先数调度算法,时间片轮转调度算法 产生n 个进程, 的时间片数,已占用CPU 的时间片数置为0 按进程产生的先后次序拉成就绪队列链 =0? 撤销该进程 就绪队列为空不? =轮转时间片数? N Y Y Y 结束 N

实验二--单处理器系统的进程调度

实验二单处理器系统的进程调度 (附实验报告) 1.实验目的 加深对进程概念的理解,明确进程和程序的区别; 深入了解系统如何组织进程、创建进程; 进一步认识如何实现处理器调度。 2.实验预备知识 进程的概念; 进程的组织方式; 进程的创建; 进程的调度。 3.实验内容

编写程序完成单处理机系统中的进程调度,要求采用时间片轮转调度算法。实验具体包括:首先确定进程控制块的内容,进程控制块的组成方式;然后完成进程创建原语和进程调度原语;最后编写主函数对所作工作进程测试。 4.提示与讲解 这个实验主要要考虑三个问题:如何组织进程、如何创建进程和如何实现处理器调度。 考虑如何组织进程,首先就要设定进程控制块的内容。进程控制块PCB 记录各个进程执行时的情况。不同的操作系统,进程控制块记录的信息内容不一样。操作系统功能越强,软件也越庞大,进程控制块记录的内容也就越多。这里的实验只使用了必不可少的信息。一般操作系统中,无论进程控制块中信息量多少,信息都可以大致分为以下四类: ①标识信息 每个进程都要有一个惟一的标识符,用来标识进程的存在和区别于其他进程。这个标识符是必不可少的,可以用符号或编号实现,它必须是操作系统分配的。在后面给出的参考程序中,采用编号方式,也就是为每个进程依次分配一个不相同的正整数。 ②说明信息

用于记录进程的基本情况,例如进程的状态、等待原因、进程程序存放位置、进程数据存放位置等等。实验中,因为进程没有数据和程序,仅使用进程控制块模拟进程,所以这部分内容仅包括进程状态。 ③现场信息 现场信息记录各个寄存器的内容。当进程由于某种原因让出处理器时,需要将现场信息记录在进程控制块中,当进行进程调度时,从选中进程的进程控制块中读取现场信息进行现场恢复。现场信息就是处理器的相关寄存器内容,包括通用寄存器、程序计数器和程序状态字寄存器等。在实验中,可选取几个寄存器作为代表。用大写的全局变量AX、BX、CX、DX模拟通用寄存器、大写的全局变量PC模拟程序计数器、大写的全局变量PSW模拟程序状态字寄存器。 ④管理信息 管理信息记录进程管理和调度的信息。例如进程优先数、进程队列指针等。实验中,仅包括队列指针。 因此可将进程控制块结构定义如下: struct pcb {int name; int status;

操作系统的进程调度 实验报告

《计算机操作系统2》实验报告 实验一题目:操作系统的进程调度 姓名:学号:12125807 实验日期:2014.12 实验要求: 1.设计一个有n个进程工行的进程调度程序。每个进程由一个进程控制块(PCB)表示。 进程控制块通常应包含下述信息:进程名、进程优先数、进程需要运行的时间、占用CPU的时间以及进程的状态等,且可按调度算法的不同而增删。 2.调度程序应包含2~3种不同的调度算法,运行时可任意选一种,以利于各种算法的分 析比较。 3.系统应能显示或打印各进程状态和参数的变化情况,便于观察诸进程的调度过程 实验目的: 1.进程是操作系统最重要的概念之一,进程调度又是操作系统核心的主要内容。本实习要 求学生独立地用高级语言编写和调试一个简单的进程调度程序。调度算法可任意选择或自行设计。例如,简单轮转法和优先数法等。本实习可加深对于进程调度和各种调度算法的理解。 实验内容: 1.编制和调试示例给出的进程调度程序,并使其投入运行。 2.自行设计或改写一个进程调度程序,在相应机器上调试和运行该程序,其功能应该不亚 于示例。 3.直观地评测各种调度算法的性能。 示例: 1.题目 本程序可选用优先数法或简单轮转法对五个进程进行调度。每个进程处于运行R(run)、就绪W(wait)和完成F(finish)三种状态之一,并假设起始状态都是就绪状态W。为了便于处理,程序进程的运行时间以时间片为单位计算。各进程的优先数或轮转时间片数、以及进程需要运行的时间片数,均由伪随机数发生器产生。 进程控制块结构如下:

PCB 进程标识数 链指针 优先数/轮转时间片数 占用CPU时间片数 进程所需时间片数 进程状态 进程控制块链结构如下: 其中:RUN—当前运行进程指针; HEAD—进程就绪链链首指针; TAID—进程就绪链链尾指针。 2.算法与框图 (1) 优先数法。 进程就绪链按优先数大小从高到低排列,链首进程首先投入运行。每过一个时间片,运行进程所需运行的时间片数减1,说明它已运行了一个时间片,优先数也减3,理由是该进程如果在一个时间片中完成不了,优先级应该降低一级。接着比较现行进程和就绪链链首进程的优先数,如果仍是现行进程高或者相同,就让现行进程继续进行,否则,调度就绪链链首进程投入运行。原运行进程再按其优先数大小插入就绪链,且改变它们对应的进程状态,直至所有进程都运行完各自的时间片数。 (2) 简单轮转法。 进程就绪链按各进程进入的先后次序排列,进程每次占用处理机的轮转时间按其重要程度登入进程控制块中的轮转时间片数记录项(相当于优先数法的优先数记录项位置)。每过一个时间片,运行进程占用处理机的时间片数加1,然后比较占用处理机的时间片数是否与该进程的轮转时间片数相等,若相等说明已到达轮转时间,应将现运行进程排到就绪链末尾,调度链首进程占用处理机,且改变它们的进程状态,直至所有进程完成各自的时间片。(3) 程序框图如下图所示。

进程调度算法实验报告

操作系统实验报告(二) 实验题目:进程调度算法 实验环境:C++ 实验目的:编程模拟实现几种常见的进程调度算法,通过对几组进程分别使用不同的调度算法,计算进程的平均周转时间和平均带权周转时间,比较 各种算法的性能优劣。 实验内容:编程实现如下算法: 1.先来先服务算法; 2.短进程优先算法; 3.时间片轮转调度算法。 设计分析: 程序流程图: 1.先来先服务算法 开始 初始化PCB,输入进程信息 各进程按先来先到的顺序进入就绪队列 结束 就绪队列? 运行 运行进程所需CPU时间 取消该进程 2.短进程优先算法

3.时间片轮转调度算法 实验代码: 1.先来先服务算法 #include #define n 20 typedef struct { int id; //进程名

int atime; //进程到达时间 int runtime; //进程运行时间 }fcs; void main() { int amount,i,j,diao,huan; fcs f[n]; cout<<"请输入进程个数:"<>amount; for(i=0;i>f[i].id; cin>>f[i].atime; cin>>f[i].runtime; } for(i=0;if[j+1].atime) {diao=f[j].atime; f[j].atime=f[j+1].atime; f[j+1].atime=diao; huan=f[j].id; f[j].id=f[j+1].id; f[j+1].id=huan; } } } for(i=0;i #define n 5 #define num 5 #define max 65535 typedef struct pro { int PRO_ID; int arrive_time;

进程调度算法模拟实验

华北科技学院计算机系综合性实验 实验报告 课程名称操作系统C 实验学期2012至2013学年第2学期学生所在系部计算机系 年级专业班级 学生姓名学号 任课教师杜杏菁 实验成绩 计算机系制

《操作系统C》课程综合性实验报告 开课实验室:基础六机房2013年6月3日 实验题目进程调度算法模拟 一、实验目的 通过对进程调度算法的模拟,进一步理解进程的基本概念,加深对进程运行状态和进程调度过程、调度算法的理解。 二、设备与环境 1.硬件设备:PC机一台 2.软件环境:安装Windows操作系统或者Linux操作系统,并安装相关的程序开发环境,如C \C++\Java等编程语言环境。 三、实验内容 (1)用C语言(或其它语言,如Java)实现对N个进程采用某种进程调度算法(如动态优先权调度)的调度。 (2)每个用来标识进程的进程控制块PCB可用结构来描述,包括以下字段: ?进程标识数ID。 ?进程优先数PRIORITY,并规定优先数越大的进程,其优先权越高。 ?进程已占用CPU时间CPUTIME。 ?进程还需占用的CPU时间ALLTIME。当进程运行完毕时,ALLTIME变为0。 ?进程的阻塞时间STARTBLOCK,表示当进程再运行STARTBLOCK个时间片后,进程将进 入阻塞状态。 ?进程被阻塞的时间BLOCKTIME,表示已阻塞的进程再等待BLOCKTIME个时间片后,将 转换成就绪状态。 ?进程状态STATE。 ?队列指针NEXT,用来将PCB排成队列。 (3)优先数改变的原则: ?进程在就绪队列中呆一个时间片,优先数增加1。 ?进程每运行一个时间片,优先数减3。 (4)为了清楚地观察每个进程的调度过程,程序应将每个时间片内的进程的情况显示出来,包括正在运行的进程,处于就绪队列中的进程和处于阻塞队列中的进程。

操作系统实验报告(进程调度算法)

操作系统实验报告(进程调度算法)

实验1 进程调度算法 一、实验内容 按优先数调度算法实现处理器调度。 二、实验目的 在采用多道程序设计的系统中,往往有若干个进程同时处于就绪状态。当就绪进程个数大于处理器数时,就必须依照某种策略来决定哪些进程优先占用处理器。本实验模拟在单处理器情况下的处理器调度,帮助学生加深了解处理器调度的工作。 三、实验原理 设计一个按优先数调度算法实现处理器调度的程序。 (1) 假定系统有五个进程,每一个进程用一个进程控制块PCB来代表,进程控制块的格式为: 进程名 指针 要求运行时 间 优先数

状态 其中,进程名——作为进程的标识,假设五个进程的进程名分别为P1,P2,P3,P4,P5。 指针——按优先数的大小把五个进程连成队列,用指针指出下一个进程的进程控制块的首地址,最后一个进程中的指针为“0”。 要求运行时间——假设进程需要运行的单位时间数。 优先数——赋予进程的优先数,调度时总是选取优先数大的进程先执行。 状态——可假设有两种状态,“就绪”状态和“结束”状态。五个进程的初始状态都为“就绪”,用“R”表示,当一个进程运行结束后,它的状态为“结束”,用“E”表示。 (2) 在每次运行你所设计的处理器调度程序之前,为每个进程任意确定它的“优先数”和“要求运行时间”。 (3) 为了调度方便,把五个进程按给定的优先数从大到小连成队列。用一单元指出队首进程,用指针指出队列的连接情况。例: 队首标志 K2

1P1 K 2 P2 K 3 P3 K 4 P4 K 5 P5 0 K4K5K3K1 2 3 1 2 4 1 5 3 4 2 R R R R R PC B1 PC B2 PC B3 PC B4 PC B5 (4) 处理器调度总是选队首进程运行。采用动态改变优先数的办法,进程每运行一次优先数就减“1”。由于本实验是模拟处理器调度,所以,对被选中的进程并不实际的启动运行,而是执行: 优先数-1 要求运行时间-1 来模拟进程的一次运行。 提醒注意的是:在实际的系统中,当一个进程被选中运行时,必须恢复进程的现场,让它占有处理器运行,直到出现等待事件或运行结束。在这里省去了这些工作。

操作系统原理-进程调度实验报告

一、实验目的 通过对进程调度算法的设计,深入理解进程调度的原理。 进程是程序在一个数据集合上运行的过程,它是系统进行资源分配和调度的一个独立单位。 进程调度分配处理机,是控制协调进程对CPU的竞争,即按一定的调度算法从就绪队列中选中一个进程,把CPU的使用权交给被选中的进程。 进程通过定义一个进程控制块的数据结构(PCB)来表示;每个进程需要赋予进程ID、进程到达时间、进程需要运行的总时间的属性;在RR中,以1为时间片单位;运行时,输入若干个进程序列,按照时间片输出其执行序列。 二、实验环境 VC++6.0 三、实验内容 实现短进程优先调度算法(SPF)和时间片轮转调度算法(RR) [提示]: (1) 先来先服务(FCFS)调度算法 原理:每次调度是从就绪队列中,选择一个最先进入就绪队列的进程,把处理器分配给该进程,使之得到执行。该进程一旦占有了处理器,它就一直运行下去,直到该进程完成或因发生事件而阻塞,才退出处理器。 将用户作业和就绪进程按提交顺序或变为就绪状态的先后排成队列,并按照先来先服务的方式进行调度处理,是一种最普遍和最简单的方法。它优先考虑在系统中等待时间最长的作业,而不管要求运行时间的长短。 按照就绪进程进入就绪队列的先后次序进行调度,简单易实现,利于长进程,CPU繁忙型作业,不利于短进程,排队时间相对过长。 (2) 时间片轮转调度算法RR

原理:时间片轮转法主要用于进程调度。采用此算法的系统,其程序就绪队列往往按进程到达的时间来排序。进程调度按一定时间片(q)轮番运行各个进程. 进程按到达时间在就绪队列中排队,调度程序每次把CPU分配给就绪队列首进程使用一个时间片,运行完一个时间片释放CPU,排到就绪队列末尾参加下一轮调度,CPU分配给就绪队列的首进程。 固定时间片轮转法: 1 所有就绪进程按 FCFS 规则排队。 2 处理机总是分配给就绪队列的队首进程。 3 如果运行的进程用完时间片,则系统就把该进程送回就绪队列的队尾,重新排队。 4 因等待某事件而阻塞的进程送到阻塞队列。 5 系统把被唤醒的进程送到就绪队列的队尾。 可变时间片轮转法: 1 进程状态的转换方法同固定时间片轮转法。 2 响应时间固定,时间片的长短依据进程数量的多少由T = N × ( q + t )给出的关系调整。 3 根据进程优先级的高低进一步调整时间片,优先级越高的进程,分配的时间片越长。 多就绪队列轮转法: (3) 算法类型 (4)模拟程序可由两部分组成,先来先服务(FCFS)调度算法,时间片轮转。流程图如下:

实验一-进程调度实验

实验一-进程调度实验 实验一进程调度实验 一、实验目的 用高级语言编写和调试一个进程调度程序,以加深对进程的概念 及进程调度算法的理解 二、实验类别 综合性实验。综合高级语言编程、进程调度模型、进程调度算法及数据结构等多方面的知识 三、实验示例 例题:设计一个有N个进程共行的进程调度程序 进程调度算法:采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法。 每个进程有一个进程控制块(PCB)表示。进程控制块可以包含如下信息:进程名、优先数、到达时间、需要运行时间、已用CPU时间、进程状态等等。 进程的优先数及需要的运行时间可以事先人为地指定(也可以由随机数产生)。进程的到达时间为进程输 入的时间。 进程的运行时间以时间片为单位进行计算。 每个进程的状态可以是就绪W(Wait )、运行R(Run )、或完成F

(Finish )三种状态之一。 就绪进程获得CPU后都只能运行一个时间片。用已占用CPU 时间加1来表示。 如果运行一个时间片后,进程的已占用CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减1 (即降低一级),然后把它插入就绪队列等待CPU。 每进行一次调度程序都打印一次运行进程、就绪队列、以及各个 进程的PCB,以便进行检查。 重复以上过程,直到所要进程都完成为止。 调度算法的流程图如下:

进程调度源程序如下: //jin gche ndiaodu.cpp #in elude "stdio.h"

实验二

进程调度 (1)目的和要求 进程调度是处理机管理的核心内容。本实验要求用C语言编写和调试一个简单的进程调度程序。通过本实验可以加深理解有关进程控制块、进程队列的概念,并体会和了解优先数和时间片轮转调度算法的具体实施办法。 (2)实验内容 1) 设计进程进程控制块PCB表结构,分别适用于优先数调度算法和循环轮转调度算法。 PCB结构通常包括以下信息:进程名,进程优先数(或轮转时间片),进程所占用的CPU时间,进程的状态,当前队列指针等。根据调度算法的不同,PCB结构的内容可以作适当的增删。 2) 建立进程就绪队列。对两种不同算法编制入链子程序。 3) 编制两种进程调度算法: 1)优先度调度; 2)循环轮转调度。 (3)实验环境 1) P4 2) windows系统 3) VC++语言 (4)实验提示 1) 本程序用两种算法对五个进程进行调度,每个进程可有三个状态,并假设初始状态为就绪状态。 2) 为了便于处理,程序中的运行时间以时间片为单位计算,各进程的优先数或轮转时间数以及进程需要运行的时间片数的初值均由用户给定。 3) 在优先数算法中,初始优先数为50-NEEDTIME,进程每执行一次,优先数减3,CPU时间片数加1,进程还需要的时间片数减1,在轮转算法中,采用固定时间片,时间片数为2,进程每执行1次,CPU时间片数加2,进程还需要的时间数减2,并排列到就绪队列的尾上。 (5)实验运行结果 优先数算法TYPE THE ALGORITHM:(PRIORITY/ROUNDROBIN) PRIORITY

INPUT NAME AND NEEDTIME A1 2 A2 3 A3 4 A4 2 A5 4 OUTPUT OF PRIORITY: NAME CPUTIME NEEDTIME PRIORITY STATE … … … … … NAME CPUTIME NEEDTIME PRIORITY STATE … … … … … 时间片轮转算法TYPE THE ALGORITHM:(PRIORITY/ROUNDROBIN) ROUNDROBIN INPUT NAME AND NEEDTIME A1 3 A2 2 A3 4 A4 2 A5 1 OUTPUT OF ROUNDROBIN: NAME CPUTIME NEEDTIME COUNT ROUND STATE … … … … … … NAME CPUTIME NEEDTIME COUNT ROUND STATE … … … … … …

实验一处理器调度实验报告

处理器调度一、实验内容 选择一个调度算法,实现处理器调度。 二、实验目的 在采用多道程序设计的系统中,往往有若干个进程同时处于就绪状态。 当就绪状态进程 个数大于处理器数时,就必须依照某种策略来决定哪些进程优先占用处理器。本实验模拟在单处理器情况下处理器调度,帮助学生加深了解处理器调度的工作。 三、实验题目 设计一个按优先数调度算法实现处理器调度的程序 提示: (1)假定系统有五个进程,每一个进程用一个进程控制块PCB来代表。进 程控制块的格 式为: 其中,进程名----作为进程的标识,假设五个进程的进程名分别是R, P2, P3, P4,R。 指针—按优先数的大小把五个进程连成队列,用指针指出下一个进程的进程控制块

首地址,最后一个进程中的指针为“ 0”。 要求运行时间-- 假设进程需要运行的单位时间数。 优先数-赋予进程的优先数,调度时总是选取优先数大的进程先执行。 状态-可假设有两种状态,“就绪”状态和“结束“状态,五个进程的初 始状态都为 “就绪“状态,用“ R”表示,当一个进程运行结束后,它的状态变为“结束”, 用“ E”表示。 (2)在每次运行你所设计的处理器调度程序之前,为每个进程任意确定它的“优先数” 和“要求运行时间”。 (3)为了调度方便,把五个进程按给定的优先数从大到小连成队列,用一单元指出队首 进程,用指针指出队列的连接情况。例: 队首标志 (4)处理器调度总是选队首进程运行。采用动态改变优先数的办法,进程每运行一次优 先数就减“ 1”。由于本实验是模拟处理器调度,所以,对被选中的进程并不实际的 启动运行,而是执行: 优先数- 1 要求运行时间-1 来模拟进程的一次运行提醒注意的是:在实际的系统中,当一个进程被选中运

实验一-进程调度实验

实验一-进程调度实验

实验一进程调度实验 一、实验目的 用高级语言编写和调试一个进程调度程序,以加深对进程的概念及进程调度算法的理解 二、实验类别 综合性实验。综合高级语言编程、进程调度模型、进程调度算法及数据结构等多方面的知识 三、实验示例 例题:设计一个有 N个进程共行的进程调度程序 进程调度算法:采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法。 每个进程有一个进程控制块(PCB)表示。进程控制块可以包含如下信息:进程名、优先数、到达时间、需要运行时间、已用CPU时间、进程状态等等。 进程的优先数及需要的运行时间可以事先人为地指定(也可以由随机数产生)。进程的到达时间为进程输 入的时间。 进程的运行时间以时间片为单位进行计算。 每个进程的状态可以是就绪W(Wait)、运行R(Run)、或完成F(Finish)三种状态之一。 就绪进程获得CPU后都只能运行一个时间片。用已占用CPU 时间加1来表示。 如果运行一个时间片后,进程的已占用CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减1(即降低一级),然后把它插入就绪队列等待CPU。 每进行一次调度程序都打印一次运行进程、就绪队列、以及各个进程的PCB,以便进行检查。 重复以上过程,直到所要进程都完成为止。 调度算法的流程图如下:

进程调度源程序如下: //jingchendiaodu.cpp #include "stdio.h"

#include #include #define getpch(type) (type*)malloc(sizeof(type)) #define NULL 0 struct pcb { /* 定义进程控制块PCB */ char name[10]; char state; int super; int ntime; int rtime; struct pcb* link; }*ready=NULL,*p; typedef struct pcb PCB; sort() /* 建立对进程进行优先级排列函数*/ { PCB *first, *second; int insert=0; if((ready==NULL)||((p->super)>(ready->super))) /*优先级最大者,插入队首*/ { p->link=ready; ready=p; } else /* 进程比较优先级,插入适当的位置中*/ { first=ready; second=first->link; while(second!=NULL) { if((p->super)>(second->super)) /*若插入进程比当前进程优先数大,*/ { /*插入到当前进程前面*/ p->link=second; first->link=p;

操作系统:进程调度实验报告

设计性实验报告 一、实验目的 1.在Linux下用C语言编程模拟优先级进程调度算法和时间片轮转进程调度算法。 2.为了清楚地观察每个进程的调度过程,每次调度程序应将各个进程的情况显示出来。 二、总体设计(设计原理、设计方案及流程等) 1、优先级进程调度算法 采用动态优先级进程调度算法,其基本思想是每次调度总是把处理机分配给优先级最高的进程,同时在运行过程中进程的优先级随着执行或等待的时间而降低或增加。 在该实验中每个进程用一个进程控制块( PCB)表示。进程控制块包含如下信息:进程号,进程名、优先数、需要运行时间、已用CPU时间、进程状态。进程号,名字,优先数,运行的时间,事先人为地指定。每个进程的状态可以是就绪,执行,阻塞或完成4种状态之一。 就绪进程获得 CPU后都只能运行一个时间片。用已占用CPU时间加1来表示。就绪队列中的进程在等待一个时间片后,优先级增1。如果运行一个时间片后,进程的已占用 CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时将进程的优先级减1,然后把它插入就绪队列等待CPU。 2、时间片轮转调度算法 采用简单时间片轮转调度算法,其基本思想是:所有就绪进程按 FCFS排成一个队列,总是把处理机分配给队首的进程,各进程占用CPU的时间片相同。如果运行进程用完它的时间片后还未完成,就把它送回到就绪队列的末尾,把处理机重新分配给队首的进程。直至所有的进程运行完毕。 三、实验步骤(包括主要步骤、代码分析等) 1.打开linux虚拟机,用vim编辑器打开代码进行修改和调整。用gcc编译器进行编译编译运行首先运行优先级算法,如图所示:

实验三进程调度蔡凤武

实验三进程调度蔡凤武 进程调度实验目的 1、理解有关进程控制块、进程队列的概念。 2、掌握进程优先权调度算法和时间片轮转调度算法的处理逻辑。 实验内容与基本要求 1、设计进程控制块PCB的结构,分别适用于优先权调度算法和时间片轮转调度算法。 2、建立进程就绪队列。 3、编制两种进程调度算法:优先权调度算法和时间片轮转调度算法。 实验报告内容一.优先权调度算法和时间片轮转调度算法原理。对于优先权调度算法,其关键是在于是采用静态优先权还是动态优先权,以及如何确定进程的优先权。静态优先权是在创建进程是确定的,并且规定它在进程的整个运行期间保持不变。动态优先权要配合抢占调度方式使用,它是指在创建进程时所赋予的优先权,可以随着进程的推进而发生改变,以便获得更好的调度性能。在就绪队列中等待调度的进程,可以随着等待时间的增加,其优先权也以某个速率增加。因此,对于优先权初值很低的进程,在等待足够时间后,其优先权也可能升为最高,从而获得调度,占用处理器并执行。对已时间片轮转调度算法,系统将所

有的就绪进程按进路就绪队列的先后次序排列。每次调度时把CPU 分配给队首进程,让其执行一个时间片,当时间片用完,由计时器发出时钟中断,调度程序则暂停改程序的执行,使其退出处理器,并将它送人就绪队的末尾,等待下一轮调度执行。然后,把cpu分配给就绪队列中新的队首进程,同时让它执行一个时间片。二.程序流程图。结束就绪队列为空吗三.程序及注释。 #include #include #include #include #include #include #define P_NUM5#define P_TIME50 enum st { ready, execute, block, finish};//状态定义进程//struct pcb{ char name[4];//进程名字// int priority;//进程优先权// int cputime;//CPU运行时间// int needtime;//进程运行需要的时间// int count;//进程执行次数// int round;//时间片轮转轮次// st process;//进程状态// pcb *next;};//定义进程//pcb *get_process(){ pcb *q; pcb *t; pcb *p; int i=0; cout<<"input name and time"<>q->name; cin>>q->needtime; q->cputime=0; q->priority=P_TIME-q- >needtime; q->process=ready; q->next=NULL; if(i==0) { p=q; t=q; } else { t->next=q; t=q;} i++; } return p;//输入模拟测试的进程名和执行所需的时间,初始设置可模拟5个进程的调度//}void display (pcb *p){ cout<<"name"<<"

实验二 进程调度

实验一 进程调度 一、 实验目的 多道程序设计中,经常是若干个进程同时处于就绪状态,必须依照某种策略来决定那个进程优先占有处理机。因而引起进程调度。本实验模拟在单处理机情况下的处理机调度问题,加深对进程调度的理解。 二、 实验要求 1. 设计进程调度算法,进程数不定 2. 包含几种调度算法,并加以实现 3. 输出进程的调度过程——进程的状态、链表等。 三、 参考例 1.题目——优先权法、轮转法 简化假设 1) 进程为计算型的(无I/O ) 2) 进程状态:ready 、running 、finish 3) 进程需要的CPU 时间以时间片为单位确定 2.算法描述 1) 优先权法——动态优先权 当前运行进程用完时间片后,其优先权减去一个常数。 2) 轮转法 四、 实验流程图 开始 键盘输入进程数n ,和调度方法的选择 优先权法? 轮转法 产生n 个进程,对每个进程产生一个PCB ,并用 随机数产生进程的优先权及进程所需的CPU 时间 按优先权大小,把n 个进程拉成一个就绪队列 撤销进程就绪队列为空? 结束 N Y Y

注意: 1.产生的各种随机数的取值范围加以限制,如所需的CPU 时间限制在1~20之间。 2.进程数n 不要太大通常取4~8个 3.使用动态数据结构 4.独立编程 5.至少三种调度算法 6.若有可能请在图形方式下,将PCB 的调度用图形成动画显示。 五.实验过程: (1)输入:进程流文件(1.txt ),其中存储的是一系列要执行的进程, 每个作业包括四个数据项: 进程名 进程状态(1就绪 2等待 3运行) 所需时间 优先数(0级最高) 进程0 1 50 2 进程1 2 10 4 进程2 1 15 0 进程3 3 28 5 进程4 2 19 1 进程5 3 8 7 输出: 进程执行流等待时间,平均等待时间 本程序包括:FIFO 算法,优先数调度算法,时间片轮转调度算法 产生n 需的时间片数,已占用CPU 的时间片数置为0 按进程产生的先后次序拉成就绪队列链 =0? 撤销该进程 就绪队列为空吗? =轮转时间片数? N Y Y Y 结束 N

实验一 进程调度

实验一进程调度 1.目的和要求 通过这次实验,理解进程调度的过程,进一步掌握进程状态的转变、进程调度的策略,进一步体会多道程序并发执行的特点,并分析具体的调度算法的特点,掌握对系统性能的评价方法。 2.实验内容 阅读教材《计算机操作系统》第二章和第三章,掌握进程管理及调度相关概念和原理。 编写程序模拟实现进程的时间片轮转调度过程,模拟程序只对PCB进行相应的调度模拟操作,不需要实际程序。假设初始状态为:有n个进程处于就绪状态,有m个进程处于阻塞状态。采用时间片轮转调度算法进行调度(调度过程中,假设处于执行状态的进程不会阻塞),且每过t个时间片系统释放资源,唤醒处于阻塞队列队首的进程。 程序要求如下: 1)按时间片顺序输出系统中进程的调度次序; 2)计算CPU利用率。 3.实验环境 Windows操作系统、VC++6.0 C语言 4.实验提示 用C语言实现提示: 1)程序中进程可用PCB表示,其类型描述如下: struct PCB_type { int pid ; //进程名 int state ; //进程状态

2——表示“执行”状态 1——表示“就绪”状态 0——表示“阻塞”状态 int cpu_time ; //运行需要的CPU时间(需运行的时间片个数) } 2)设置两个队列,将处于“就绪”状态的进程PCB挂在队列ready中;将处于“阻塞”状态的进程PCB挂在队列blocked中。队列类型描述如下:struct QueueNode{ struct PCB_type PCB; Struct QueueNode *next; } 并设全程量: struct QueueNode *ready_head=NULL, //ready队列队首指针 *ready_tail=NULL , //ready队列队尾指针 *blocked_head=NULL, //blocked队列队首指针 *blocked_tail=NULL; //blocked队列队尾指针 3)设计子程序: start_state(); //读入假设的数据,设置系统初始状态 dispath(); //模拟调度 calculate(); //计算CPU利用率 5. 实验要求: 1)上机前认真使用C语言编写好程序,采用Visual C++6.0作为编译环境; 2)上机时独立调试程序 3)根据具体实验要求,填写好实验报告(包括目的和要求、实验内容、实验环境、设计思想、源程序、实例运行结果、总结)。 4)测试用数据: n=2 m=3 t=5

相关文档
最新文档