立体图形中的最短线问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体图形中的最短线问题
立体图形中的最短线问题,大都直接来源于生活.这类问题集知识性、实践性和趣味性于一“题”,因而倍受中考命题者的青睐.在近几年考题中频频出现,现选取几例分析如下,供同学们参考.
一、长方体上的最最短线问题
例1:如图1是一个长8m 、宽6m 、高5m 的仓库,在其内壁的A (长的四等份点)处有一只壁虎,B (宽的三等份点)处有一只蚊子,则壁虎爬到蚊子处的最短距离为 m .
分析与解:壁虎从A 处爬到B 处,所有可能最短路径有三种:①→③;②→③;①→④.
(1)从①→③,展开使A 、B 两点同在一个平面内,如图2—①所示,由题意知AC =10m ,
BC =5m .由勾股定理222BC AC AB +=,得555102
2=+=AB (m ); (2)从②→③,展开使A 、B 两点同在一个平面内,如图2—②所示,由题意知AC =11m ,
BC =4m .由勾股定理222BC AC AB +=,得1374112
2=+=AB (m ); (3)从①→④,展开使A 、B 两点同在一个平面内,如图2—③所示,由题意知AC =6m ,
BC =9 m .由勾股定理222BC AC AB +=,得1339622=+=AB (m ).
综合上述(1)、(2)、(3)可得,壁虎爬到蚊子处的最短距离为133 m .
B
图2—② A C
图1—③
二、正方体上的最短线问题
例2:如图2,一个无盖的正方体盒子的棱长为10cm ,顶点C 1处有一只昆虫甲,在盒子的内部顶点A 处有一只昆虫乙.(盒壁的厚度忽略不计) 1
(1)假设昆虫甲在顶点C 1处静止不动,如图3,在盒 子的内部我们先取棱BB 1中点E ,再连结AE 、E C 1,昆虫 乙如果沿路径A →E →C 1爬行,那么可以在最短的时间内捕 捉到昆虫甲.仔细体会其中的道理,并在图3中画出另一条 路径,使昆虫乙从顶点A 沿这条路径爬行,同样可以在最短 A
B 的时间内捕捉到昆虫甲;(2)假设昆虫甲从顶点
C 1以1 cm∕s 的速度在盒
子的 图2
内部沿棱C 1C 向下爬行,同时昆虫乙从顶点A 以2 cm∕s 的速度在盒壁上爬行,那么昆虫乙至少需要多少时间才能捕捉到昆虫甲?(精确到1s )
解:(1)可取DD 1中点E 1,DC 中点E 2,BC 中点E 3,将这些中点与A 和C 1相连,则A →E i →C 1(i=1,2,3)均为所求的路径,见图3.
(2)所有可能费时最短的路径有如图四种:可以看出,图3—①与图3—②中的路径相等,图3—③与图3—④中的路径相等. 1
F F
图3—① 图3—②
D 1 C 1
F D C F C 1
D C
A B B 1
A B
图3—③ 图3—④
设昆虫甲从顶点C 1沿棱C 1C 向F 爬行的同时,昆虫乙从顶点A 按路径A →E 1→F 爬行捕捉到昆虫甲需x s .如图3—①,在RtΔACF 中,22220)10()2(+-=x x ,解得x =10;
设昆虫甲从顶点C 1沿棱C 1C 向顶点C 爬行的同时,昆虫乙从顶点A 按路径A →E 2→F 爬行捕捉到昆虫甲需y s .如图3—③,在RtΔABF 中,22210)20()2(+-=x y ,解得8≈y .∴昆虫乙顶点A 爬行捕捉到昆虫甲需8 s .
四、圆柱体上的最短线问题
例4:如图4,一个蚂蚁要从树干(看做圆柱)底面的A 点沿表面爬到与A 点相对的B 点,已知从A 点到B 点升高了3米,树干底面的半径为1.27米,这只蚂蚁爬行的最短路程是(精确到1米,π取3.14) ( )
A .4米
B .5米
C .6米
D . 6.5 米
A A 图4—①
分析与解:圆柱的侧面展开图为矩形,如图4—①所示.连结AB ,则A 、B 两点之间的
最短距离就是A B 的长.由题意知BC =3米,AC =1.27π米,由勾股定理222BC AC AB +=,得53)271(22≈+=⋅πAB 米.故选B .
五、圆锥体上的最短线问题
例5:如图5,有一圆锥形粮堆,其正视图是边长为6米.的正三角形A BC ,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时,小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路线是 米.(结果不取近似值)
A
P
C B
图5 图5—①
分析与解:圆锥的侧面展开图为扇形,如图5—①所示.连结B P ,则B 、P 两点之间的
最短距离就是BP 的长.由已知条件可得圆锥的侧面积为18π米2
,∴2
618360n π⨯=π,解得n =180º,则∠BAP =90º,又AB =6米,AP =3米,由勾股定理得53=BP 米.
从以上几例可以看出,解决立体图形中的最短线问题的主要思想是:把立体图形平面化;具体方法是:把立体图形的侧面展开,根据“两点之间线段最短”,利用勾股定理,直接求出平面上两点之间的距离.