留数定义留数定理留数计算规则无穷远点留数24页PPT
合集下载
复变函数 留数和留数定理讲解
另解: f1(z) 在点 z0 0 的去心邻域 0 z 内的
Laurent级数为
e
z z5
1
1 z5
1
z
1 z4
1 2! z 3
z2 2! 1
3! z 2
z3 3!
1 4! z
z4 4! 1
5!
z5 5! z
6!
z6
,6!
,
Res[ f1(z), 0] 1 ; Res[ f1(z),1] 0 于是由留数定理得积分值为
I1 2i[1 0] 2i
20
(2)
I2
z 2
esin z dz z 2 (z 2 1)
解: f2 (z) esin z [z 2 (z 2 1)] 在圆 z 2 的内部有一
2 当z0为f(z)=g(z-z0) 的孤立奇点时,若 g 为偶
函数,则f(z)在点z0的留数为零.
3 若z0为f(z) 的一级极点,则有
Re
s
f
(
z),
z0
lim
zz0
(
z
z0
)
f
(
z)
4 若z0为f(z) 的m级极点,则对任意整数 n m有
Re s
f (z), z0
个二级极点 z 0和两个一级极点 z i ,
于是利用留数的计算规则 2 和 1得
Res[
f
2
(
z
),0]
lim
z 0
(
ze2sinz1)
lim
留数的概念及留数的求法课件
问题转化为易于处理的形式。
实例三:在物理中的应用
要点一
总结词
留数在物理问题中的应用
要点二
详细描述
在物理问题中,留数也有广泛的应用,如求解某些电磁场 问题、波动问题等。通过计算留数,可以将这些物理问题 转化为数学问题,从而得到更精确的解析解。
THANKS
感谢观看
03
留数的求法
利用Cauchy积分公式求留数
总结词
Cauchy积分公式是计算留数的常用方法之一,通过将积分路径进行变形,使得积分路径包含奇点,从而利用公 式计算留数。
详细描述
Cauchy积分公式指出,对于一个在复平面上有奇点的简单闭曲线上的函数f(z),其沿该曲线的积分等于2πi乘以 该函数在奇点的留数。因此,通过选择适当的积分路径,使得该路径经过函数的奇点,然后利用Cauchy积分公 式即可求得留数。
利用Residue定理求留数
总结词
Residue定理是一种计算复平面上简单闭合曲线上的积分的方法,通过计算奇点的留数,然后利用定 理计算出整个闭合曲线的积分。
详细描述
Residue定理指出,对于复平面上任意简单闭合曲线C,函数f(z)在C上的积分等于2πi乘以函数在C内 部的奇点的留数之和。因此,通过确定函数在内部的奇点,并计算其留数,即可利用Residue定理求 得整个闭合曲线上函数的积分。
利用留定理求留数
总结词
留数定理是复分析中的重要定理之一, 它建立了函数在无穷远点的行为与其在 有限区域内奇点的留数之间的关系。
VS
详细描述
留数定理指出,对于一个在无穷远处有极 点的函数f(z),其无穷远点的留数等于该 函数在有限区域内奇点的留数之和。因此 ,通过计算函数在有限区域内的奇点留数 ,并利用留数定理,可以求得函数在无穷 远点的留数。
实例三:在物理中的应用
要点一
总结词
留数在物理问题中的应用
要点二
详细描述
在物理问题中,留数也有广泛的应用,如求解某些电磁场 问题、波动问题等。通过计算留数,可以将这些物理问题 转化为数学问题,从而得到更精确的解析解。
THANKS
感谢观看
03
留数的求法
利用Cauchy积分公式求留数
总结词
Cauchy积分公式是计算留数的常用方法之一,通过将积分路径进行变形,使得积分路径包含奇点,从而利用公 式计算留数。
详细描述
Cauchy积分公式指出,对于一个在复平面上有奇点的简单闭曲线上的函数f(z),其沿该曲线的积分等于2πi乘以 该函数在奇点的留数。因此,通过选择适当的积分路径,使得该路径经过函数的奇点,然后利用Cauchy积分公 式即可求得留数。
利用Residue定理求留数
总结词
Residue定理是一种计算复平面上简单闭合曲线上的积分的方法,通过计算奇点的留数,然后利用定 理计算出整个闭合曲线的积分。
详细描述
Residue定理指出,对于复平面上任意简单闭合曲线C,函数f(z)在C上的积分等于2πi乘以函数在C内 部的奇点的留数之和。因此,通过确定函数在内部的奇点,并计算其留数,即可利用Residue定理求 得整个闭合曲线上函数的积分。
利用留定理求留数
总结词
留数定理是复分析中的重要定理之一, 它建立了函数在无穷远点的行为与其在 有限区域内奇点的留数之间的关系。
VS
详细描述
留数定理指出,对于一个在无穷远处有极 点的函数f(z),其无穷远点的留数等于该 函数在有限区域内奇点的留数之和。因此 ,通过计算函数在有限区域内的奇点留数 ,并利用留数定理,可以求得函数在无穷 远点的留数。
第二讲 留数的计算
心邻域 0 | z z0 | r 内任意绕 z0 简单正向闭曲线。
注:由连续变形原理,留数与C的选取无关。 由留数定义 C f ( z )dz 2i Re s[ f ( z ), z0 ]
其中C 为简单正向闭曲线,且f ( z ) 在 C 及 C 内只有 z0
一个奇点。 上页 返回 结束
第二讲 数及留数的计算规则
1、留数的定义
2、留数的计算法则 3、留数定理 4、思考与练习
返回
1. 留数的定义
定义: 设 f ( z ) 以有限点z0 为孤立奇点, 即在点 z0 的某去 心邻域 0 | z z0 | r 内解析,则称积分
1 C f ( z )dz 2i 为 f ( z ) 在点 z0 的留数,记作Re s[ f ( z ), z0 ] 。其中C 为去
上页 返回 结束
由规则 II,得
ze z ze z e Re s[ f ( z ),1] lim ( z 1) 2 lim z 1 z 1 z 1 z 1 2
ze z ze z e 1 Re s[ f ( z ),1] lim ( z 1) 2 lim z 1 z 1 z 1 z 1 2 ze z e e 1 因此 C 2 dz 2i ( ) 2ich1 2 2 z 1
c1 ( z z0 )1 c0 c1 ( z z0 ) ,
( z z0 )m f ( z ) c m c m 1 ( z z0 ) c1 ( z z0 )m 1 c0 ( z z0 )m ,
两边求 m 1阶导数,得
由洛朗展式
sin z 1 z3 z2 f (z) ( z ) 1 z z 3! 3! 知 Re s[ f ( z ),0] c1 0 1 2) f ( z ) 2 在0 | z | 1内解析 z (1 z )
注:由连续变形原理,留数与C的选取无关。 由留数定义 C f ( z )dz 2i Re s[ f ( z ), z0 ]
其中C 为简单正向闭曲线,且f ( z ) 在 C 及 C 内只有 z0
一个奇点。 上页 返回 结束
第二讲 数及留数的计算规则
1、留数的定义
2、留数的计算法则 3、留数定理 4、思考与练习
返回
1. 留数的定义
定义: 设 f ( z ) 以有限点z0 为孤立奇点, 即在点 z0 的某去 心邻域 0 | z z0 | r 内解析,则称积分
1 C f ( z )dz 2i 为 f ( z ) 在点 z0 的留数,记作Re s[ f ( z ), z0 ] 。其中C 为去
上页 返回 结束
由规则 II,得
ze z ze z e Re s[ f ( z ),1] lim ( z 1) 2 lim z 1 z 1 z 1 z 1 2
ze z ze z e 1 Re s[ f ( z ),1] lim ( z 1) 2 lim z 1 z 1 z 1 z 1 2 ze z e e 1 因此 C 2 dz 2i ( ) 2ich1 2 2 z 1
c1 ( z z0 )1 c0 c1 ( z z0 ) ,
( z z0 )m f ( z ) c m c m 1 ( z z0 ) c1 ( z z0 )m 1 c0 ( z z0 )m ,
两边求 m 1阶导数,得
由洛朗展式
sin z 1 z3 z2 f (z) ( z ) 1 z z 3! 3! 知 Re s[ f ( z ),0] c1 0 1 2) f ( z ) 2 在0 | z | 1内解析 z (1 z )
留数计算规则
例3: 计算积分
c
z4
z
1
dz
,
C
为正向圆周
z
3
。
解:
f
(z)
z z4 1
四个一级极点 z1,2 1, z3,4 i 都在C 内,
由规则Ⅲ,
P zk Q zk
zk 4 zk 3
1 4zk 2
故由留数定理
c
z4
z
1
dz
2
i
1 4
1 4
解:
f
(z)
ez
z z 12
的一级极点z 0 二级极点 z 1 都在C 内
由规则Ⅰ,
Res
f
z,0
lim z z0
ez
z z 12
lim
z0
z
ez
12
1
由规则Ⅱ ,
Res
f
z,1
(2
1 lim 1)! z1
d dz
Res f
z, z0
1
m 1
lim ! zz0
d m1 dz m1
z z0 m
f
z
规则Ⅲ
设
f
z
=
P Q
z z
,其中 P(z,) Q(z)
在
z0
处解析, 且 P(z0 ) 0
,
Q(z0 ) 0, Q(z0 ) 0 即 z0 为 f (z)的一级极点, 那么
即 z0 为 f (z)的一级极点, 那么
留数的定义留数定理留数的计算规则无穷远点的留数
( g ( z ) ( z ) p( z ) 在z0解析, 且 g ( z0 ) 0 )
则z0为f ( z)的一级极点,由规则
Re s[ f ( z ), z0 ] lim ( z z0 ) f ( z )
z z0
Re s[ f ( z ), z0 ] lim ( z z0 ) f ( z )
(5)
事实上,由条件
f ( z ) cm ( z z0 ) m c2 ( z z0 ) 2 c1 ( z z0 ) 1 c0 c1 ( z z0 ) , (cm 0)
以( z z0 )m 乘上式两边 ,得
( z z0 ) m f ( z ) cm cm1 ( z z0 ) c1 ( z z0 ) m1 c0 ( z z0 ) m
当 m = 1时,式(5)即为式(4).
p( z ) , Q( z ) p( z ), Q( z )在z0 处解析,
规则III 设f ( z )
p( z0 ) 0 , Q( z0 ) 0 , Q' ( z0 ) 0,则
z0 是f ( z )的一级极点 ,且 p( z0 ) Re s[ f ( z ), z0 ] Q' ( z 0 ) ( 6)
c k 1
n
k
]
(3)
证明
用互不包含 , 互不相交的正向简单闭 曲线ck (k 1,2,n),将 c内的弧立奇点zk 围绕,
由复合闭路定理得:
f ( z)dz
c
c1
f ( z )dz f ( z )dz f ( z )dz
c2 cn
第一节留数定理 优质课件
第四章 留数定理
第1节 第2节
第3节
留数定理 应用留数定理计 算实变函数定积分 计算定积分补充例题
1
§4.1 留数定理
一. 留数及留数定理
1. 留数
如果函数f(z)在z0的邻域内解析, 那么根据柯西定理
f (z) d z 0.
l
但是, 如果z0为f(z)的一个孤立奇点, 则沿在z0的某个
=
lim ( z
zz0
-
z0
)
P(z0 Q(z0
) )
=
P(z0 ) Q' (z0 )
例
Re
s
z
ze z 2-
1
,-1
lim z
z-1
1
z
ze z 2-
1
ze z
lim z-1
2z
e -1 2
Re
s
z
ze z 2-
1
,1
(1)+(2)可得
0 2if z在所有各点的留数之和
即函数在全平面上所有各点的留数之和为零,这里所有的点 包括无留数的计算方法
(一)可去奇点的留数: 对于可去奇点由定义知:Resf(z0)=0
(二) 极点的留数
1. 如果z0为f(z)的一阶极点(单极点), 则
① l 包围一个 f(Z)的孤立奇点Z0 时
( z - z )
f (z)=
ak
k -
k
0
Cauchy 定理知: f (z)dz = f (z)dz
l
l0
又Q
1
2i
第1节 第2节
第3节
留数定理 应用留数定理计 算实变函数定积分 计算定积分补充例题
1
§4.1 留数定理
一. 留数及留数定理
1. 留数
如果函数f(z)在z0的邻域内解析, 那么根据柯西定理
f (z) d z 0.
l
但是, 如果z0为f(z)的一个孤立奇点, 则沿在z0的某个
=
lim ( z
zz0
-
z0
)
P(z0 Q(z0
) )
=
P(z0 ) Q' (z0 )
例
Re
s
z
ze z 2-
1
,-1
lim z
z-1
1
z
ze z 2-
1
ze z
lim z-1
2z
e -1 2
Re
s
z
ze z 2-
1
,1
(1)+(2)可得
0 2if z在所有各点的留数之和
即函数在全平面上所有各点的留数之和为零,这里所有的点 包括无留数的计算方法
(一)可去奇点的留数: 对于可去奇点由定义知:Resf(z0)=0
(二) 极点的留数
1. 如果z0为f(z)的一阶极点(单极点), 则
① l 包围一个 f(Z)的孤立奇点Z0 时
( z - z )
f (z)=
ak
k -
k
0
Cauchy 定理知: f (z)dz = f (z)dz
l
l0
又Q
1
2i
第四章 留数定理及其应用
对复变函数dzia定理41多个奇点的留数定理内的有限个奇点外均解析则复连通区域柯西积分定理单奇点留数定理由留数定理泰勒展开可反推出柯西积分公式和解析函数的无穷可导公式可以看作是留数定理的变形
第四章 留数定理及其应用
本章主要内容:
1. 留数的定义 2. 留数定理、留数的计算 留数定理、 3. 利用留数定理计算围线积分 4. 利用留数定理计算实积分
1 f (z) = , Res f (∞) = −1 z
※ 回顾:无穷远点奇点类型的判定。
定理4.2 如果 f (z)在扩充了的复平面上只有有限 个奇点,则 f (z)在所有奇点(包括无穷远点在内) 的留数之和为零。 如何证明? 例4.6
ez f (z) = ,求 Res f (∞) 1+ z
若 f (z)= tan z,是否能求出Res f (∞) ?
§4.1 留数定理 一. 留数的定义
设z0为 f (z)的孤立奇点, f (z) 在z0的去心邻域
0 < | z − z0 | < R 内有洛朗展式 :
f (z) = ∑ an (z − z0 )
n=−∞ ∞ n
称 a−1 为 f (z)在 z0点的留数,记作 Res f (z0)。 即,留数是 (洛朗展式中) 负一次幂的系数。 Question: 为什么强调 z0 孤立奇点?
z→z0
如何证明?
从右往左,利用留数的定义和洛朗展开证明.
P(z) 公式 II 若 f (z) = ,其中P(z)和Q(z)均在z0 Q(z) 点解析,且 P(z ) ≠ 0, Q(z ) = 0, Q'(z ) ≠ 0
0 0 0
则
P(z0 ) Res f (z0 ) = Q'(z0 )
第四章 留数定理及其应用
本章主要内容:
1. 留数的定义 2. 留数定理、留数的计算 留数定理、 3. 利用留数定理计算围线积分 4. 利用留数定理计算实积分
1 f (z) = , Res f (∞) = −1 z
※ 回顾:无穷远点奇点类型的判定。
定理4.2 如果 f (z)在扩充了的复平面上只有有限 个奇点,则 f (z)在所有奇点(包括无穷远点在内) 的留数之和为零。 如何证明? 例4.6
ez f (z) = ,求 Res f (∞) 1+ z
若 f (z)= tan z,是否能求出Res f (∞) ?
§4.1 留数定理 一. 留数的定义
设z0为 f (z)的孤立奇点, f (z) 在z0的去心邻域
0 < | z − z0 | < R 内有洛朗展式 :
f (z) = ∑ an (z − z0 )
n=−∞ ∞ n
称 a−1 为 f (z)在 z0点的留数,记作 Res f (z0)。 即,留数是 (洛朗展式中) 负一次幂的系数。 Question: 为什么强调 z0 孤立奇点?
z→z0
如何证明?
从右往左,利用留数的定义和洛朗展开证明.
P(z) 公式 II 若 f (z) = ,其中P(z)和Q(z)均在z0 Q(z) 点解析,且 P(z ) ≠ 0, Q(z ) = 0, Q'(z ) ≠ 0
0 0 0
则
P(z0 ) Res f (z0 ) = Q'(z0 )
5-第五章-留数定理
因此
z ez
e e1
C
z2
dz 1
2 π i( 2
) 2 πi ch1 2
: 我们也可以用规则III来求留数
| Res[ f (z),1] z ez e ; 2z z1 2
| Res[ f (z),1] z ez e1 . 2z z1 2
这比用规则1要简单些,但要注意应用的条件。
z
例7
环域内绕原点的任何一条简单闭曲线,则积分
1
2π i f (z) d z C
称其为f (z)在点的留数,记作
1
Res[ f (z), ]
f (z)d z
2i C
这里积分路径的方向是顺时针方向,这个方向很自然
地可以看作是围绕无穷远点的正向。
将 f (z)在 R<|z|<+∞内的罗朗展式为
f
(z)
z 4z3
1 4z2
,故z1111C源自z4d 1z
2π
i( 4
4
4
4)
0
Ñ 例 8
计算积分
C
ez z(z 1)2
dz,
C
为正向圆周|z|=2.
[解] z=0为被积函数的一级极点, z=1为二级极点, 而
Res[ f (z),0] lim z0
z
ez z(z 1)2
lim z0
ez (z 1)2
1.
一、 留数的定义
定义 若f (z)在去心邻域 0 z z0 R内解析,
z0是f (z)的孤立奇点,C是 0 z z0内 包R 围z0的
任意一条正向简单闭曲线,定义积分
1
2i
C
f
(z)d
z
留数
注 (1) 此类函数求留数,可考虑利用洛朗展式。
(非也!)
(2) 若此类函数求闭路积分,则可考虑利用高阶导公式,
而不一定非得使用下面即将介绍的留数定理。
16
三、留数定理
定理 设 f ( z ) 在区域 D 内除有限个孤立奇点 z1 , z2 , , zn 外
P113 定理 5.7
处处解析,在边界 C 上连续, 则
C
f ( z ) d z 2π i Res [ f ( z ) , zk ] .
k 1
n
z1
C
c1
D
c2 z 2
…
证明 如图,将孤立奇点用含于 D 内且 互不重叠的圆圈包围起来,根据复合闭路定理有
zn c1
C
f (z) d z
c k 1
n
k
f ( z ) dz 2π i Res [ f ( z ) , z k ] .
sin z 1 2 sin z lim Res [ f 2 ( z ) , 0 ] lim z 3 z 0 z 0 4 z 1! 4z
z cos z sin z sin z lim lim ( 罗比达法则 ) 0. 2 z 0 z 0 8 4z
§5.2 留数
一、留数的概念 二、留数的计算方法 三、留数定理 四、函数在无穷远点的留数
1
一、留数的概念
定义 设 z0 为函数 f ( z ) 的孤立奇点, 将 f ( z ) 在 z0 的去心邻域
P112 定义 5.4
内展开成洛朗级数:
a 1 a0 a1 ( z z0 ) , f ( z ) a n ( z z0 ) z z0 n
(非也!)
(2) 若此类函数求闭路积分,则可考虑利用高阶导公式,
而不一定非得使用下面即将介绍的留数定理。
16
三、留数定理
定理 设 f ( z ) 在区域 D 内除有限个孤立奇点 z1 , z2 , , zn 外
P113 定理 5.7
处处解析,在边界 C 上连续, 则
C
f ( z ) d z 2π i Res [ f ( z ) , zk ] .
k 1
n
z1
C
c1
D
c2 z 2
…
证明 如图,将孤立奇点用含于 D 内且 互不重叠的圆圈包围起来,根据复合闭路定理有
zn c1
C
f (z) d z
c k 1
n
k
f ( z ) dz 2π i Res [ f ( z ) , z k ] .
sin z 1 2 sin z lim Res [ f 2 ( z ) , 0 ] lim z 3 z 0 z 0 4 z 1! 4z
z cos z sin z sin z lim lim ( 罗比达法则 ) 0. 2 z 0 z 0 8 4z
§5.2 留数
一、留数的概念 二、留数的计算方法 三、留数定理 四、函数在无穷远点的留数
1
一、留数的概念
定义 设 z0 为函数 f ( z ) 的孤立奇点, 将 f ( z ) 在 z0 的去心邻域
P112 定义 5.4
内展开成洛朗级数:
a 1 a0 a1 ( z z0 ) , f ( z ) a n ( z z0 ) z z0 n
留数
[证] 因为 Qz0 0, Qz0 0, 所以z 为Q(z)的一级零点, 0
P z 1 g z 其中 z 在 zo点解析, 且 zo 0。 由此得 f z Q z z z0
其中gz z Pz 在 zo解析,且 gz0 z0 P z0 0
5!c1 6 52c0 z 因此
1 d5 6 1 d 5 6 z sin z 1 5 c1 lim 5 z f z lim 5 z lim z sin z 6 5! z 0 dz 5! z 0 dz z 5! z 0
n C k 1
Cn
C zn
z2 C 2
D
z1
C1
z3
C3
f z dz 2 i Re s f z , z k
[证 ]
f z dz f z dz f z dz f z dz
C C1 C2 Cn
把在C内的孤立奇点 zk k 1,2,, n 用互不包含的正向 简单闭曲线Ck围绕起来, 那末根据复合闭路定理有
2 i Re s f z , z1 2 i Re s f z , z2 2 i Re s f z , zn
2 i Re s f z , z k
n k 1
利用留数定理,求沿封闭曲线C的积分,就转化为求被积函数在C中 的各孤立奇点处的留数。 一般来说,求函数在孤立奇点z0处的留数只需求出函数在以z0为 中心的圆环域内的洛朗级数,从而得到负一次项的系数C-1即可。 为此,最好先判断孤立奇点z0的类型。 如果z0是可去奇点,那末一定有
法三:虽然z=0不是f(z)的六级极点,但也可按六级极点计算留数. 如果设
P z 1 g z 其中 z 在 zo点解析, 且 zo 0。 由此得 f z Q z z z0
其中gz z Pz 在 zo解析,且 gz0 z0 P z0 0
5!c1 6 52c0 z 因此
1 d5 6 1 d 5 6 z sin z 1 5 c1 lim 5 z f z lim 5 z lim z sin z 6 5! z 0 dz 5! z 0 dz z 5! z 0
n C k 1
Cn
C zn
z2 C 2
D
z1
C1
z3
C3
f z dz 2 i Re s f z , z k
[证 ]
f z dz f z dz f z dz f z dz
C C1 C2 Cn
把在C内的孤立奇点 zk k 1,2,, n 用互不包含的正向 简单闭曲线Ck围绕起来, 那末根据复合闭路定理有
2 i Re s f z , z1 2 i Re s f z , z2 2 i Re s f z , zn
2 i Re s f z , z k
n k 1
利用留数定理,求沿封闭曲线C的积分,就转化为求被积函数在C中 的各孤立奇点处的留数。 一般来说,求函数在孤立奇点z0处的留数只需求出函数在以z0为 中心的圆环域内的洛朗级数,从而得到负一次项的系数C-1即可。 为此,最好先判断孤立奇点z0的类型。 如果z0是可去奇点,那末一定有
法三:虽然z=0不是f(z)的六级极点,但也可按六级极点计算留数. 如果设
留数及其应用对数留数与辐角原理
以(z - z0 )m 乘上式两边, 得 (z - z0 )m f (z) c-m c-m1(z - z0 ) c-1(z - z0 )m-1
c0(z - z0 )m
两边求m - 1阶导数得
d m-1 dzm-1
{(z
-
z0 )m
f
(z)}
(m
- 1)!c-1
m!(z
-
z0 )
d m-1
1
d m-1
Re
s[
f
( z ),
z0 ]
(m
-
1)!
lim
z z0
dz m -1
(z - z0 )m
f (z)
(5)
证明:由条件
f (z) c-m (z - z0 )-m c-2(z - z0 )-2 c-1(z - z0 )-1 c0 c1(z - z0 ) , (c-m 0)
f
( z )]
lim
z0
-
e-z
-1
例
函数
f(z)
1
e iz z
2在极点处的留数
解:因为函数 且
f (z)
e iz 1 z2
,有两个一阶极点
z
i
,
P(z) 1 eiz , Q'(z) 2z
有Res[ f z, i] eiz
- i
2z zi
2e
Res[ f z,-i] eiz
i e.
2z z-i 2
2z
5
-
1 10
Res[
f
z ,2]
lim( z
z2
-
2)
f
(z)
lim
z2
留数及留数定理
R esf(z),z0=(m 1 -1 )!z li m z0d d z m m -1 -1[(z-z0)m f(z)]
由于f(z)=(z(zz)0)n,由高阶导数定理可得
Res[f(z),z0]=21πiC(zφ -(zz0))n
dz=φ(n-1)(z0 ) (n-1)!
8
规则3
设 为 f (z) 的一个孤立奇点;
的某去心邻域 r z
内的任一条正向简单闭曲线C: | z |= ρ > r
定义
若 f ( z ) 在 的 去 心 邻 域 r < | z | < + 内 解 析
则 称 1
记
2 π i f ( z ) d z Res[f (z),].= -C -1
分析 P ( 0 ) P ( 0 ) P ( 0 ) 0 , P(0)0. z0是 zsizn的三级零点
所以 z0是f(z)的三级极 由规点则, 2得 Rfe (z)s 0 ] , [(3 1 1 )lz !i0d d m z 2 2 z3z z s 6iz n . 计算较麻烦.
其中n=4的项的系数为c-1=1/4!, 从而也有
R [f1 e (z)s 0 ] , c 1 14 !
16
(2) f4(z)s, i1 nz;() z0 0
解: f4(在z)点 数为
的z0 去 0心邻域
内0的 zLaurent级
1 (1)nz2n1
sin z n0 (2n1)!
即
1
2i
Cf(z)dzc1
因此,我们可以根据求出系数c-1 的值来计算积分。 步骤:1.分析f(z)的解析性,确定解析环域;
2.在包含积分路径C的解析环域里将函数 展成Laurent级数
由于f(z)=(z(zz)0)n,由高阶导数定理可得
Res[f(z),z0]=21πiC(zφ -(zz0))n
dz=φ(n-1)(z0 ) (n-1)!
8
规则3
设 为 f (z) 的一个孤立奇点;
的某去心邻域 r z
内的任一条正向简单闭曲线C: | z |= ρ > r
定义
若 f ( z ) 在 的 去 心 邻 域 r < | z | < + 内 解 析
则 称 1
记
2 π i f ( z ) d z Res[f (z),].= -C -1
分析 P ( 0 ) P ( 0 ) P ( 0 ) 0 , P(0)0. z0是 zsizn的三级零点
所以 z0是f(z)的三级极 由规点则, 2得 Rfe (z)s 0 ] , [(3 1 1 )lz !i0d d m z 2 2 z3z z s 6iz n . 计算较麻烦.
其中n=4的项的系数为c-1=1/4!, 从而也有
R [f1 e (z)s 0 ] , c 1 14 !
16
(2) f4(z)s, i1 nz;() z0 0
解: f4(在z)点 数为
的z0 去 0心邻域
内0的 zLaurent级
1 (1)nz2n1
sin z n0 (2n1)!
即
1
2i
Cf(z)dzc1
因此,我们可以根据求出系数c-1 的值来计算积分。 步骤:1.分析f(z)的解析性,确定解析环域;
2.在包含积分路径C的解析环域里将函数 展成Laurent级数
留数的定义留数定理留数的计算规则无穷远点的留数
但是,若将 f ( z) 作Laurent 级数展开:
z sin z 1 1 3 1 5 6 [ z ( z z z )] 6 z z 3! 5! 1 1 11 3 3! z 5! z
z sin z 1 Re s[ ,0] c1 6 z 5!
4. 无穷远点的留数
1. 留数的定义
定义 设 z0为f (z)的孤立奇点, f (z)在 z0邻域内的 洛朗级数中负幂次项 (z- z0)–1 的系数 c–1 称为f (z)在 z0 的留数(Residue), 记作 Res[f (z), z0] 或 Res f (z0)。 由留数定义, Res[f (z), z0]= c–1
由规则
5z 2 2 Re s[ f ( z ), 0] lim zf ( x ) lim 2 z 0 z0 ( z 1)
1 d 2 5z 2 Re s[ f ( z ) , 1 ] lim {( z 1) } 2 z 1 ( 2 1)! dz z( z 1) 5z 2 2 lim ( )' lim 2 2 z 1 z 1 z z
---显然该方法较规则 II 更简单!
(2)由规则 II的推导过程知,在使用规则II时, 可将 m取得比实际级数高,有时,这可使计算更简单。
如
z sin z 1 d 6 z sin z Re s[ ,0] [z ( )] 6 5 6 z (6 1)! dz z
5
1 d5 1 1 ( z sin z ) lim( cos z ) 5 5! dz 5! z 0 5!
1 故 Re s[ f ( z ), z0 ] c1 f ( z )dz 2i c ( 2)
第四章留数定理
第四章 留数定理
重点
1、留数的概念与留数定理; 2、应用留数定理计算复变函数的积分; 3、应用留数定理计算实变函数的积分
§4.1 留数定理
一 、留数及留数定理
1.留数
如果函数f(z)在z0的邻域内解析, 那么根据Cauchy定理
f (z) d z 0.
l
但是, 如果z0为f(z)的一个孤立奇点, 则沿在z0的某个去 心邻域0<|z-z0|<R内包含z0的任意一条正向闭曲线的积分
l
l1
l2
ln
f (z) d z 2πi[Res f (z1) Res f (z2 ) Res f (zn )]
l
n
即 f (z) d z 2 π i Res f (z j ).
l
j 1
zn l3 z3
ln z1 l2 z2
l1
D
l
求函数在奇点z0处的留数即求它在以z0为中心的圆环域内
令 z ei
dz iei d d dz ,
iz
sin 1 (ei ei ) z - z-1 ,
2i
2i
cos 1 (ei ei )
z z1
,
2
2
当 历经变程 [0,2π ] 时,
z 沿单位圆周 z 1的 正方向绕行一周.
2π
0
R(cos
,
sin
)d
z
1
R
z
2 2z
1
,
z
2 2iz
(1)n
例4 计算积分
z
zez 2
1
d
z
,C为正向圆周|z|=2.
C
解
由于
f (z)
重点
1、留数的概念与留数定理; 2、应用留数定理计算复变函数的积分; 3、应用留数定理计算实变函数的积分
§4.1 留数定理
一 、留数及留数定理
1.留数
如果函数f(z)在z0的邻域内解析, 那么根据Cauchy定理
f (z) d z 0.
l
但是, 如果z0为f(z)的一个孤立奇点, 则沿在z0的某个去 心邻域0<|z-z0|<R内包含z0的任意一条正向闭曲线的积分
l
l1
l2
ln
f (z) d z 2πi[Res f (z1) Res f (z2 ) Res f (zn )]
l
n
即 f (z) d z 2 π i Res f (z j ).
l
j 1
zn l3 z3
ln z1 l2 z2
l1
D
l
求函数在奇点z0处的留数即求它在以z0为中心的圆环域内
令 z ei
dz iei d d dz ,
iz
sin 1 (ei ei ) z - z-1 ,
2i
2i
cos 1 (ei ei )
z z1
,
2
2
当 历经变程 [0,2π ] 时,
z 沿单位圆周 z 1的 正方向绕行一周.
2π
0
R(cos
,
sin
)d
z
1
R
z
2 2z
1
,
z
2 2iz
(1)n
例4 计算积分
z
zez 2
1
d
z
,C为正向圆周|z|=2.
C
解
由于
f (z)
4-1留数定理
4 z / 4 cos2z
z / 4 2 sin 2z
/ 4
zdz |z|2 1/ 2 sin 2
z
2i[Re sf
(
/ 4) Re sf
(
/ 4)]
2i
例5:计算
I
z15dz |z|4 ( z 2 1)2 ( z 4 2)3
z1
z n1
1 zn2 ...
z
1
1 n
另解:
Re
sf
(1)
lim
z 1
1 (zn 1)
lim
z 1
1 nz n 1
1 n
例2:确定函数 f (z) ez 的奇点,求在奇点的留数。
1 z
解:∵ lim ez ∴ z=-1是f(z)的极点
z11 z
1 z
1 2
1 z2
...1 3
2 z4
...
则: a-1=1
Re sf () 1 I 2i[ Re sf ()] 2i
作业:P55-56:1--(2)、(4)、(5) 2--(2)、(3)
,l的方程是x2+y2-2x-2y=0
1)2
解:方程化为(x-1)2+(y-1)2=2
f (z)
(z2
1 1)( z 1)2
有两个单极点z0=±i和一
个二阶极点z0=1,其中z0=-i不在l内。
Re
sf
(i)
lim[(z
zi
i)
(z2
1 1)(z
1) 2
]
相关主题