平面向量-PPT课件

合集下载

6.1 平面向量的概念 课件(共21张PPT)

6.1 平面向量的概念 课件(共21张PPT)
规定: 0 和任意向量平行.
(2)相等向量—长度相等且方向相同的向量,记作 a=b .
(3)共线向量—就是平行向量.
二、探究本质 得出新知
问题12:平行向量所在直线是否一定平行?共线向量所在直线 是否一定共线?
提示:不一定
总结:向量可以自由平移.
三、举例应用 掌握定义
例1.一辆汽车从点出发向西行驶了100千米到达B点,然后又 改变方向向西偏北 50 走了200千米到达C点,最后又改变方向, 向东行驶了100千米到达点D. (1)作出向量 AB, BC,CD ; (2)求 AD .
其中正确的有( A )
A.2个
B.3个
C.4个
D.5个
解:①正确;
②由 a = b 得 a 与 b的模相等,但不确定方向,故②错误;
③错误; ④所有单位向量的模都相等,都为1,但方向不确定,故④不 正确;⑤正确.故选A.
四、学生练习 加深理解
3.如图,D, E, F 分别是 ABC 的边 AB, BC,CA的中点,在以 A, B,C, D, E, F 为起点和终点的向量中.
(1)找出与向量 EF 相等的向量; (2)找出与向量 DF 共线的向量.
四、学生练习 加深理解
解:(1)因为 E, F分别为 BC,CA 的中点,所以 EF//BA ,

EF
1 2
BA
.又因为
D
是BA
的中点,所以
EF
BD
DA,所以
与 EF 向量相等的向量为BD, DA .
(2)因为 D, F 分别为 BA, AC 的中点,
第六章 平面向量及其应用
6.1 平面向量的概念
一、创设情境 引入新课
问题1:道路标识牌上的箭头和数字指的是什么? 问题2:老鼠由点A向东北方向逃窜,猫快速由点B向正东

6.1平面向量的概念课件共34张PPT

6.1平面向量的概念课件共34张PPT

探究点二 相等向量与共线向量
如图,O是正六边形DEF的中心,分别写出图中与向量
→ OA

O→B,O→C相等的向量,与向量A→D共线的向量.
解析: 与O→A相等的向量有C→B,D→O,E→F; 与O→B相等的向量有F→A,E→O,D→C; 与O→C相等的向量有A→B,F→O,E→D. 与向量A→D共线的向量有9个:D→A,E→F,F→E,A→O,O→A,O→D,D→O,B→C, → CB.
探究点三 向量的表示及应用 在蔚蓝的大海上,有一艘巡逻艇在执行巡逻任务.它首先从A点出
发向西航行了200 km到达B点,然后改变航行方向,向西偏北50°航行了 400 km到达C点,最后又改变航行方向,向东航行了200 km到达D点.此时, 它完成了此片海域的巡逻任务.
(1)作出A→B,B→C,C→D; (2)求|A→D|.
[对点训练] 在等腰梯形ABCD中,AB∥CD,对角线AC与BD相交于点O,EF是过点O 且平行于AB的线段,在所标的方向向量中: (1)写出与A→B共线的向量; (2)写出与E→F方向相同的向量; (3)写出与O→B,O→D的模相等的向量; (4)写出与E→O相等的向量.
解析: 在等腰梯形ABCD中,AB∥CD∥EF,AD=BC. (1)题干图中与A→B共线的向量有D→C,E→O,O→F,E→F. (2)题干图中与E→F方向相同的向量有A→B,D→C,E→O,O→F. (3)题干图中与O→B的模相等的向量为A→O,与O→D的模相等的向量为O→C. (4)题干图中与E→O相等的向量为O→F.
→ 2.已知D为平行四边形ABPC两条对角线的交点,则|P→D|的值为( )
|AD|
A.12
B.13
C.1
D.2

《平面向量的概念》平面向量及其应用 PPT教学课件

《平面向量的概念》平面向量及其应用 PPT教学课件

必修第二册·人教数学A版
返回导航 上页 下页
知识梳理
名称 大小 方向
零向量 0
任意的
单位向量 1 规定了方向
必修第二册·人教数学A版
返回导航 上页 下页
知识点五 向量的关系 预习教材,思考问题 (1)向量由其模和方向所确定.对于两个向量 a,b,就其模等与不等,方向同与不同 而言,有哪几种可能情形?
必修第二册·人教数学A版
返回导航 上页 下页
探究三 相等向量与共线向量 [例 3] 如图,四边形 ABCD 为边长为 3 的正方形,把各边三等分后,共有 16 个交 点,从中选取两个交点作为向量,则与A→C平行且长度为 2 2的向量个数有________ 个.
必修第二册·人教数学A版
返回导航 上页 下页
[解析] 如图所示,满足与A→C平行且长度为 2 2的向量有A→F,F→A, E→C,C→E,G→H,H→G,→IJ,→JI共 8 个.
[答案] 8
必修第二册·人教数学A版
返回导航 上页 下页
相等向量与共线向量的探求方法 (1)寻找相等向量:先找与表示已知向量的有向线段长度相等的向量,再确定哪些是 同向共线. (2)寻找共线向量:先找与表示已知向量的有向线段平行或共线的线段,再构造同向 与反向的向量,注意不要漏掉以表示已知向量的有向线段的终点为起点,起点为终 点的向量. 提醒:与向量平行相关的问题中,不要忽视零向量.
[自主检测] )
B.拉力 D.压强
解析:拉力既有大小又有方向,是向量,其余均是数量.
答案:B
必修第二册·人教数学A版
返回导航 上页 下页
2.下列说法正确的是( ) A.数量可以比较大小,向量也可以比较大小 B.向量的模可以比较大小 C.模为 1 的向量都是相等向量 D.由于零向量的方向不确定,因此零向量不能与任意向量平行

2024版中职数学平面向量的概念ppt课件

2024版中职数学平面向量的概念ppt课件

01向量的定义向量是既有大小又有方向的量,通常用有向线段表示。

02向量的表示方法向量可以用小写字母或大写字母加箭头表示,如$vec{a}$或$overset{longrightarrow}{AB}$。

03向量的模向量的大小称为向量的模,记作$|vec{a}|$,模长是一个非负实数。

向量定义及表示方法03向量的模长等于有向线段的长度,可以通过勾股定理或三角函数计算。

向量的模长向量与正方向(通常是x 轴正方向)的夹角称为向量的方向角,记作$theta$,取值范围是$[0, pi]$或$[0, 180^circ]$。

方向角向量与坐标轴正方向的夹角的余弦值称为向量的方向余弦,可以通过方向角计算得到。

方向余弦向量模长与方向角模长为0的向量称为零向量,记作$vec{0}$,零向量没有方向。

零向量单位向量相反向量模长为1的向量称为单位向量,单位向量具有确定的方向。

与给定向量大小相等、方向相反的向量称为相反向量,记作$-vec{a}$。

030201零向量、单位向量和相反向量向量共线与平行关系向量共线如果两个向量在同一直线上或者平行于同一直线,则称这两个向量共线。

共线向量满足$vec{a} = kvec{b}$($k$为实数)。

向量平行如果两个向量的方向相同或相反,则称这两个向量平行。

平行向量满足$vec{a} parallel vec{b}$。

共线与平行的关系在平面内,共线的向量一定平行,但平行的向量不一定共线。

加法定义两个向量相加,即将它们的对应分量相加得到新的向量。

几何意义向量的加法满足平行四边形法则或三角形法则,即两个向量相加的结果可以表示为以这两个向量为邻边的平行四边形的对角线,或者可以表示为将其中一个向量的终点连接到另一个向量的起点的向量。

01减法定义02几何意义两个向量相减,即将被减数的各分量减去减数的对应分量得到新的向量。

向量的减法可以表示为将减数向量的终点连接到被减数向量的起点的向量,这个向量与减数向量方向相反,大小相等。

平面向量的概念PPT课件

平面向量的概念PPT课件

04
平面向量数量积概念及性 质
数量积定义及几何意义
数量积定义
两个向量的数量积是一个标量,等于它们模长的乘积与它们夹 角余弦的乘积。
几何意义
数量积反映了两个向量的相对位置和角度关系,正值表示同向, 负值表示反向,零表示垂直。
数量积性质及运算规律
性质
满足交换律、分配律、结合律,与标量乘法相容等。
运算规律
向量坐标与点坐标关系
向量坐标
向量坐标是由起点指向终点的有 向线段,在直角坐标系中可以用
两个坐标值表示。
点坐标
点坐标是直角坐标系中点的位置表 示,同样可以用两个坐标值表示。
关系
向量坐标与点坐标密切相关,向量 的起点和终点坐标可以决定向量的 坐标,而点的坐标可以用来表示向 量的起点或终点。
向量运算坐标表示法
坐标法求解向量问题
求解向量坐标
通过已知点的坐标和向量的关系,可以 求解向量的坐标。
求解向量模长
通过向量的坐标可以计算向量的模长, 进而求解与模长相关的问题。
求解向量夹角
通过向量的坐标可以计算向量的夹角, 进而求解与夹角相关的问题。
求解向量运算结果
通过向量的坐标表示法可以求解向量的 加法、减法和数乘运算结果。
向量运算满足基本定律
加法结合律
(a + b) + c = a + (b + c)
数乘结合律
(kl)a = k(la)
加法交换律
a+b=b+a
数乘分配律
k(a + b) = ka + kb
向量共线定理,使得b = λa
03
平面向量坐标表示法
直角坐标系中向量表示方法

《平面向量的应用》课件

《平面向量的应用》课件
详细描述
向量的模表示向量的长度,可以通过坐标表示计算得出。具体计算公式为$sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$,其中$(x_1, y_1)$和$(x_2, y_2)$分别是向量的起点和终点的坐标。
向量加法和数乘可以通过坐标表示进行计算,遵循平行四边形法则和数乘的分配律。
详细描述
总结词
向量的大小或模定义为向量起点到终点的距离。
总结词
向量的模是表示向量大小的数值,可以通过勾股定理计算得到。向量的模具有几何意义,表示向量起点到终点的距离。
详细描述
向量小。
总结词
向量的加法是将两个有向线段首尾相接,形成一个新的有向线段。数乘则是将一个向量放大或缩小,保持方向不变。通过向量的加法和数乘,可以组合多个向量,形成复杂的向量关系。
平面向量的应用实例
03
速度和加速度
在匀速圆周运动和平抛运动等物理问题中,可以利用平面向量表示速度和加速度,进而分析运动规律。
力的合成与分解
通过向量加法、数乘和向量的数量积、向量的向量积等运算,可以方便地表示出力的合成与分解过程,进而分析物体的运动状态。
力的矩
矩是一个向量,可以利用平面向量表示力矩,进而分析转动效果。
总结词:平面向量在解决几何问题中具有广泛的应用,如向量的加法、减法、数乘等运算可以用于解决长度、角度、平行、垂直等问题。
总结词:平面向量在解决代数问题中具有广泛的应用,如向量的模长、向量的数量积、向量的向量积等运算可以用于解决方程组、不等式等问题。
总结词
通过平面直角坐标系,可以将向量表示为有序实数对。
详细描述
在平面直角坐标系中,任意一个向量可以由其起点和终点的坐标确定,并表示为有序实数对。例如,向量$overset{longrightarrow}{AB}$可以表示为$(x_2 - x_1, y_2 - y_1)$。

高中数学平面向量完整_ppt课件

高中数学平面向量完整_ppt课件
a ,b ,c 为 共 线 向 量
b
c
bc a
任意一组平行向量都可以平移到同一直线上
平行向量就是共线向量
两向量的共线与平面几何里两线段的共线是否一样?
为什么?
说明:在平行向量、共线向量、相等向量的
19.04.2021
概念中应注精意选零PPT向课件量的特殊性
12
例1:已知O为正六边形ABCDEF的中心,
零向量
2、与任意向量都平行的向量是什么向量?
零向量
19.04.2021
精选PPT课件
BACK
20
练习 1、若两个向量在同一直线上,则这两个
向量是什么向量?
共线向量 或者说平行向量
2、共线向量一定在一条直线上吗? 不一定
19.04.2021
精选PPT课件
BACK 21
练习: 在质量、重力、速度、加速度、身 高、面积、体积这些量中,哪些是 数量?哪些是向量?
5
一、向量的定义 既有大小又有方向的量
向量的模
向量的长度
二、向量的表示方法
①几何表示——向量常用有向线段表示:有向线段的 长度表示向量的大小,箭头所指的方向表示向量的方向。 以A为起点、B为终点的向量记为:AB。
大小记着:│AB│

A
a
②也可以表示: a b c d ….
19.04.2021
精选PPT课件
11
12
精选PPT课件
17
练习:
1、单位向量是否一定相等?
不一定
2、单位向量的大小是否一定相等?
一定
19.04.2021
精选PPT课件
BACK
18
练习: 1、平行向量是否一定方向相同?

6.1平面向量的概念课件共45张PPT

6.1平面向量的概念课件共45张PPT

即时训练1-1:判断下列命题是否正确,若不正确,请简述理由.
(2)单位向量都相等;
解:(2)不正确,单位向量的模均相等且为1,但方向并不确定.
即时训练 1-1:判断下列命题是否正确,若不正确,请简述理由.


(3)四边形 ABCD 是平行四边形当且仅当=;
(4)一个向量方向不确定当且仅当模为 0;
有紧紧抓住概念的核心才能顺利解决与向量概念有关的问题.
即时训练 1-1:判断下列命题是否正确,若不正确,请简述理由.


(1)向量与是共线向量,则 A,B,C,D 四点必在同一直线上;
解:(1)不正确,共线向量即平行向量,只要求方向相同或相反即可,并不


要求两个向量,在同一直线上.
(3)两个特殊向量:
①零向量与非零向量:
长度为0的向量叫做零向量.印刷时用加粗的阿拉伯数字零表示,即0;书写

时,可写为.长度不为 0 的向量称为非零向量.
②单位向量:长度等于1个单位长度的向量,叫做单位向量.
2.向量间的关系
(1)平行向量(共线向量):方向相同或相反的非零向量叫做平行向量,向量
图所示的向量中,


(1)分别找出与, 相等的向量;




解:(1)=,=.
[例 2] O 是正方形 ABCD 对角线的交点,四边形 OAED,OCFB 都是正方形,在如
图所示的向量中,

(2)找出与共线的向量;




解:(2)与共线的向量有,,.
[例 2] O 是正方形 ABCD 对角线的交点,四边形 OAED,OCFB 都是正方形,在如
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行向量:方向相同或相反的非零向量. 共线向量:即平面向量.
如图,任作一条与a所在直线平行的直线l,在l上任 取一点O,则可在l上分别作出
任一组平行向量都可平移到同一直线上.
a b C c O B A
例 如图,设O是正六边形的中心,分别写出图 中与向量 相等的向量. 解:
B A
C
o
F
D
E
练习:
B(终点)
A(起点)
表示方法:以A为起点,B为终点的有向线段记作
三要素:起点—起点一定在终点前面 方向—在有向线段的终点处画上箭头表 示方向 长度—已知 ,线段AB的长度,记作| |
定义:既有大小又有方向的量. 向量表示法: •有向线段法——-有向线段的方向表示向量的大 小,箭头所指的方向表示向量的方向. •其他表示法——-用字母a,b,c等表示,或用表 示向量的有向线段的起点和终点字母表示. 有关向量的概念: 向量长度:向量的大小,亦称模. 零向量:长度为零的向量. 单位向量:长度等于1个单位长度的向量. 相等向量:长度相等且方向相等的向量.
1(1)用有向线段表示两个相等的向量,如果有 相同的起点,那么它们的终点是否相同? 是 (2)用有向线段表示两个方向相同但长度不同 的向量,如果有相同的起点,那么它们的终点是 否相同? 不是
2.如图,D,E,F分别是各边的中点,写出图中 A 与 相等的向量.
D F
B
E
CLeabharlann 5.1向量如图中的小船,由A地向 西北方向航行15n mile (海里)到达B地。在这 里,如果仅指出“由A地 航行15n mile”,而不 指明“向西北方向”航 行,那么小船就不一定 到达B地了。 位移是一个既有大小又有方向的量,这种量就是本 章所要研究的向量。
有向线段:在线段的两个端 点中,规定一个顺序,假设 A为起点,B为终点,就说 线段AB具有方向,具有方 向的线段叫做有向线段。
相关文档
最新文档